
Recovering Transient Data: Automated On-demand Data
Reconstruction and Offloading for Supercomputers

Sudharshan Vazhkudai
Computer Science and Mathematics Division

Oak Ridge National Laboratory
vazhkudaiss@ornl.gov

Xiaosong Ma
Computer Science Department
North Carolina State University

and
Computer Science and Mathematics Division

Oak Ridge National Laboratory
ma@cs.ncsu.edu

ABSTRACT
It has become a national priority to build and use PetaFlop
supercomputers. The dependability of such large systems
has been recognized as a key issue that can impact their
usability. Even with smaller, existing machines, failures are
the norm rather than an exception. Research has shown
that storage systems are the primary source of faults lead-
ing to supercomputer unavailability. In this paper, we en-
vision two mechanisms, namely on-demand data reconstruc-
tion and eager data offloading, to address the availability of
job input/output data. These two techniques aim to allow
parallel jobs and post-job processing tools to continue execu-
tion despite storage system failures in supercomputers. Fun-
damental to both approaches is the definition and acquisi-
tion of recovery-related parallel file system metadata, which
is then coupled with transparent remote data accesses. Our
approach attempts to maximize the utilization of precious
supercomputer resources by improving the accessibility of
transient job data. Further, the proposed methods are best-
effort in nature and complement existing file system recovery
schemes, which are designed for persistent data. Several of
our previous studies help in demonstrating the feasibility of
the proposed approaches.

Categories and Subject Descriptors
D.4 [Software]: Operating Systems

General Terms
Supercomputer avalability, file system recovery, data recon-
struction

1. INTRODUCTION
PetaFlop (PF) computers are looming on the horizon for
high-end computing (HEC). For example, the Department

System # CPUs MTBF/I Outage src.

ASCI Q 8,192 6.5 hrs Storage, CPU

ASCI White 8,192 40 hrs Storage, CPU

PSC Lemieux 3,016 6.5 hrs

Google 15,000 20 reboots Storage, mem
per day

Table 1: Reliability statistics from several large-
scale systems, including the top sources of hardware
failures. MTBF/I stands for mean time between
failures/interrupts.

of Energy has announced the upgrading of the Leadership
Computing facility at Oak Ridge National Laboratory (ORNL)
to 250 TeraFlops by 2007, and one PetaFlop by 2008. The
National Science Foundation has announced a major HPC
acquisition solicitation for a petascale computing environ-
ment to be in place by 2010. Similarly, the DARPA HPCS
initiative plans on the delivery of a PF machine by 2010.
Such machines will contain tens of thousands of nodes, along
with powerful interconnection and storage networks.

Unfortunately, reliability and service availability concerns
are expected to rise with the ever-increasing supercomputer
system scale. Even with today’s machines, fault tolerance is
a serious problem. Table 1, from a recent study by DOE
researchers, reports the reliability of several state-of-the-
art supercomputers and distributed computing systems [11].
With such frequent system downtimes, expensive resources
are sitting idle while user jobs pile up in wait queues. Thus,
many petascale solicitations from federal agencies are calling
for stringent availability requirements, e.g., when averaged
over one month, 95% of jobs submitted to the system should
complete without having to be resubmitted as a result of a
failure.1

Data and I/O availability are integral to providing a non-
stop, continuous computing experience to applications. Ta-
ble 1 indicates that the storage subsystem is consistently
the primary source of failure on large supercomputers. The
situation is only likely to worsen in the near future, due to

1High performance computing system acquisition: Towards
a petascale computing environment for science and engineer-
ing—NSF program solicitation 05-625, September 27, 2005.



the growing relative size of the storage system forced by two
trends: (1) disk performance improves slower than that of
CPUs and (2) users’ data needs grow faster than does the
available compute power [10]. A survey of DOE applications
suggests that most applications require a sustained 1 GB/sec
I/O throughput for every TeraFlop of peak computing per-
formance. Thus a PF computer will require 1 TB/sec of I/O
bandwidth. Current disk performance trends suggest such
a PF system by the 2008/2009 time frame may require tens
of thousands of disk drives attached to a few thousand I/O
nodes. An I/O subsystem of this size makes a large parallel
machine itself and is subject to very frequent failures.

Most current fault-tolerance and recovery mechanisms are
designed for the commercial world. However, several charac-
teristics of HPC storage systems and workloads distinguish
them from those in the commercial realm and pose unique
challenges.

First, supercomputers are typically shared resources, pro-
cessing transient jobs and their associated data. Job data
at supercomputers is typically not stored beyond the pro-
cessing duration of the job. Therefore, backup operations
are normally restricted to user home directories, that are
formatted with modest quotas to store programs, libraries,
and documents. Job scratch space, uses high-performance
parallel file systems and is seldom backed up. Furthermore,
their contents are often purged within hours or days of job
completion, leaving users responsible for offloading output
data in time.

Second, allocated processing time is an extremely valuable
commodity in leadership class supercomputing facilities, ob-
tained only through rigorously peer-reviewed proposals. Users
are charged by service units, usually calculated as the prod-
uct of job execution time and the number of nodes used.
Furthermore, there is a significant waiting time at these
facilities, especially for large jobs requesting many nodes.
A whole-system shutdown (which is often the case when
the storage system fails) wastes user resources and labor,
and further increases the job turn-around time. Even when
such shutdowns could be avoided—through standard RAID
techniques, storage server node failover, or hot swappable
hardware—data movement/reconstruction time and man-
agement latency can consume users’ valuable allocated com-
pute time, or worse yet, cause job re-runs. Periodic check-
pointing, a common application-level fault-tolerance mea-
sure, can reduce the risk of wasting large amounts of service
units on incomplete jobs. However, it is resource intensive
and heavily relies on the secondary storage itself.

Finally, data-intensive user jobs prefer a high performance
scratch parallel file system on supercomputers for their ag-
gregate I/O bandwidth. Further, different jobs running con-
currently on the same system seldom share data. Therefore,
aggressive replication techniques as advocated by the Google
file system [8] and OceanStore [5], will consume precious
storage resources (both in terms of extra space as well as
network or I/O bandwidth). Such techniques also increase
system complexity due to the need to maintain consistent
replicas of large, transient datasets.

In summary, many existing fault-tolerance and recovery ap-

proaches are built with “persistent data” in mind, while
HPC environments predominantly deal with large volumes
of transient data that “pass through” supercomputers. HPC
jobs need to stage in their input data and stage out their out-
put data. Recognizing this difference, we address the HPC
storage system reliability problem from a resource preserv-
ing angle. More specifically, we propose:

• on-demand data reconstruction, that fetches unavail-
able pieces of user input data from external data sources
or mirrors.

• eager data offloading, that proactively moves output
data away from the supercomputer while the job is
still running.

Our approach takes advantage of the existence of an exter-
nal data source/sink, the immutable nature of job data, the
functionality of scientific job management and data move-
ment tools, and the network bandwidth of a job’s allocated
compute nodes. We propose to build the above mecha-
nisms into parallel file systems and scientific job manage-
ment tools, so that applications can seamlessly utilize avail-
able storage elements. They complement existing file system
recovery semantics and aim at maximizing the utilization of
the precious processing resources of supercomputers. In par-
ticular, they help alleviate the impact on users productivity
due to storage system failures. Further, we demonstrate the
feasibility of our approach with prototypes and preliminary
results.

2. TARGET ENVIRONMENT
Our target environment is supercomputing centers where
parallel jobs are submitted and processed. Such centers
are equipped with parallel file systems, such as Lustre [4],
GPFS [16] and PVFS [3]. In addition, they have access
to archival tape storage such as HPSS or Unitree for per-
sistent storage. Lately, computer centers are also begin-
ning to be connected with storage caches (e.g., IBP [15],
FreeLoader [17]) to support latency hiding and “impedance
matching”. Further, these storage systems are equipped
with sophisticated data transfer tools (GridFTP [2], LoRS [14]
and others) that are optimized for wide-area bulk data trans-
fer. Aiding such data movement is the network connectivity
in modern supercomputing centers. For instance, the com-
puter center at ORNL is well connected with several state-
of-the-art networks such as the TeraGrid (10 Gb/sec con-
nectivity to the 40 Gb/sec TeraGrid backbone), UltraNet,
and LambdaRail.

Modern grid computing and job management tools (such as
Globus [6] and Condor-G [7]) assist users in job submission
and data movement. Input data can be automatically pre-
staged to a supercomputer when such transfer commands
are specified in a user-provided job script. The input and
output dataset sizes of today’s complex simulations can eas-
ily reach the multi-TB level and are expected to keep in-
creasing rapidly. In most cases, the job input files are read-
only and output files are write-once. However, persistent
copies of these immutable datasets are typically held at an
external data source (e.g., users’ local file servers, data cen-
ters attached to experiment instruments, or tape archival



systems), or at several mirror sites (e.g., NIH databases).
The degenerate case is when a persistent copy is available
in users’ “/home” area at the supercomputer center, while
the job is run off the staged copy in the “/scratch” space.
These persistent copies themselves are typically protected
through standard dependability techniques. It is the avail-
ability of their transient version at supercomputers that we
are concerned with in this paper.

The above hardware and software environments provide a
natural data redundancy and potent data movement capa-
bility between storage elements. Yet, there is no concerted
effort or an integrated recovery/failover architecture to uti-
lize these facilities to increase supercomputers’ data and ser-
vice availability. Parallel file systems are often not equipped
to handle failures in accessing bulk, transient data. They
simply throw an I/O exception and leave error recovery to
applications. Such recovery models are unacceptable with
the growing need to improve resource utilization as well as
the desire to reduce resubmission rates at modern super-
computers.

3. METHODOLOGY AND DESIGN
3.1 Metadata: Recovery Hints
To enable on-demand data recovery and offloading mech-
anisms, we first propose the addition of optional recovery
metadata to parallel file systems, which can then be used
intelligently to improve fault tolerance and data/resource
availability.

As mentioned earlier, staged input data on supercomput-
ers usually have persistent copies held remotely, while the
generated output data needs to be moved to external long-
term storage systems. Such external file locations, as well
as information regarding the corresponding data movement
protocols, can be recorded as optional recovery metadata
(extended attributes) on file systems. For instance, the loca-
tion can be in the form of a uniform resource index (URI) of
the dataset, comprising of the protocol, URL, port and path
(e.g., “http://source1/staged-input-file” or “gsiftp://mirror/
staged-input-file”). In addition to URIs, user credentials
(e.g., GSI certificates, etc.) needed to access the particular
dataset from remote mirrors can also be included as meta-
data so that a supercomputer can enact data recovery on
behalf of the user. Simple file system interface extensions
(such as those using extended attributes) would allow appli-
cations to specify these metadata values. By setting these
optional metadata attributes, applications should be able to
use either or both of our proposed schemes.

One advantage of embedding such recovery related infor-
mation in file system metadata is that the description of
a user job’s data “source” and “sink” becomes an integral
part of the transient dataset on the supercomputer while it
executes. This allows the file system to recover and offload
elegantly without manual intervention from the end-users
or significant code modification. In particular, existing dis-
tributed job management tools such as Globus, Condor, and
DAGMan already provide utilities for automatic staging of
input data for job submission. Therefore, the authentica-
tion and data movement elements needed by our proposed
approach have already been implemented. Better yet, such
automatic data staging enables part or all of the recovery

metadata to be automatically stripped from a job submis-
sion script by a job scheduler, facilitating transparent data
recovery.

3.2 On-Demand Data Reconstruction
With our proposed on-demand data reconstruction, staged
input files that are unavailable due to I/O node failures in
a parallel file system are transparently patched from source
copies using the recovery metadata described in the previous
section.

The reader might wonder why we simply do not wait for the
data in question to become available through RAID recon-
struction. This is a legitimate argument since even staged,
transient data on supercomputer parallel file systems are
likely to be stored on RAID systems. The reason is two fold.
First, even when hot spare disks are available for RAID re-
construction to kick in automatically, the latency of such
native reconstruction methods is high (reconstruction time
for a 160-GB disk takes dozens of minutes.) During this
time, the application performs in a degraded mode, at best.
The reconstruction time is obviously proportional to drive
size, load and the number of drives in the RAID group.
This time is bound to get worse with storage systems on
petascale machines. When hot spares are not available, the
reconstruction requires manual intervention by the system
administrator and will typically take longer. Second, data
reconstruction based on hardware RAID does not help when
there are I/O node failures. Petascale systems will likely
employ hundreds to thousands of I/O nodes. There are two
classes of parallel file systems, namely those whose architec-
tures are based on having I/O nodes/servers serving data
from directly attached storage devices (such as PVFS and
LUSTRE) and those with centralized, shared storage de-
vices that are shared by all I/O nodes (such as GPFS). For
the former category, node failure implies that a partition of
the storage system is unavailable. Since parallel file systems
usually stripe datasets for better I/O performance, failure of
one node may affect a large portion of user jobs. Moreover,
unlike specialized nodes/servers such as metadata servers,
token servers, etc., I/O nodes in parallel file systems are not
usually protected through failover.

Our proposed on-demand data reconstruction, which takes
advantage of the existence of external data sources as well
as the immutable nature of scientific datasets on supercom-
puters, easily handles both underlying storage device failures
and file system server node failures. The question is whether
it can provide faster recovery than what is offered by cur-
rent parallel file systems. We believe the answer is yes, as
justified below.

First, the costs of network transfer is decreasing much faster
than that of disk-to-disk copy. For instance, in a demon-
stration at Supercomputing 2003, the Caltech team could
move data from CERN to Phoenix at an average speed of 4
GB/sec over Abilene and SciNet backbone [1]. This is testa-
ment to rapidly increasing network speeds and connectivity,
as well as transfer protocols better tuned for moving bulk
datasets. Improvement in these areas is continuing at sev-
eral national initiatives (e.g., TeraGrid). At the same time,
a disk-to-disk copy occurs at approximately 10 MB/sec [9]
and the disk access rate has not been growing significantly



 0

 5

 10

 15

 20

 25

1 64 128 256

A
gg

re
ga

te
 d

ow
nl

oa
d 

th
ro

ug
hp

ut
(M

B
/s

)

Partial file retrieval request size (MB)

PW=10
PW=9
PW=8
PW=7
PW=6

Figure 1: Parallel download rates from PSC to
ORNL workstations. PW denotes patch width, the
number of nodes participating in the parallel down-
load.

in the past years.

Second, the hardware and software settings in contemporary
HEC environments will readily support on-demand data re-
construction from external data sources. File data is striped,
meaning that storage device or node failures will cause a
small portion of affected files to become temporarily un-
available. Meanwhile, many high-performance data transfer
tools and protocols (such as GridFTP and LoRS) support
partial data retrieval, through which disjoint segments of file
data—specified by pairs of start offset and extent—can be
retrieved.

While current wide-area data movement performance can-
not match that of a supercomputer’s interconnection and
storage area network, this performance gap can be mended
with a few optimizations. First, to hide the latency of ac-
cessing a remote data site (e.g., high-latency tape archives),
a parallel file system can proactively work with job man-
agement/scheduling system to prefetch the missing pieces of
the staged input data for a job when the job is about to be
or has just been scheduled. Second, to improve the band-
width of data recovery, multiple nodes can work together to
perform parallel downloads. In particular, file system clients
residing on the compute nodes assigned to this specific job
can be enrolled in this collective “patching activity”. The
fetched data can be cached in memory or stored as tem-
porary internal files on the parallel file system. This way, a
job with input data staged to a partially unavailable parallel
file system will not be stalled in the queue or thrown an I/O
exception during execution. Instead, it will pitch in some
of its allocated resources in the transparent data recovery
process.

We have recently obtained preliminary results [13] that show
that on-demand data reconstruction is promising when it
comes to performance. In this study, we have combined
prefix caching with collective downloading of the uncached
suffix of a dataset. The premise is to optimize the perfor-
mance of scientists’ local data accesses using a distributed
cache. Figure 1 shows sample benchmarking results from
tests where a group of desktop machines at Oak Ridge Na-

tional Lab (ORNL) download, in parallel, stripes of a 2.5GB
dataset from the Pittsburgh Supercomputing Center (PSC),
a TeraGrid site. Partial file transfer was conducted through
GridFTP. We measured the aggregate downloading through-
put using various numbers of local downloading nodes and
request sizes (the cost included initial latency such as au-
thentication). We observed that while the current band-
width is not impressive, the aggregate throughput scales
very well with with a number of concurrently downloading
nodes even when these nodes are in the same LAN (our tests
were limited by our testbed size). Moreover, the download-
ing nodes were only connected through 100 MB/sec network
cards. We believe the high-end configuration of petascale su-
percomputers will allow much better aggregate data patch-
ing performance that is more than adequate to compensate
for the storage device or node faults in most situations.

3.3 Eager On-Demand Data Offloading
The ultimate goal of running jobs on supercomputers is to
advance science and engineering through the analysis of out-
put data. Storage system failures at supercomputers may
delay users from accessing their job output data. Worse yet
is the loss of output data due to scratch space purging oper-
ations. One proactive measure is to eagerly push the output
data out of the supercomputer even as the job is running,
thereby mitigating the risk of having data stuck in a tem-
porarily unavailable parallel file system. To this end, we pro-
pose online data offloading, a rough equivalent to on-demand
data reconstruction discussed earlier. With this approach, a
parallel file system augmented with recovery metadata con-
cerning output data destination would perform transparent
data migration.

Assisting this approach is the fact that most parallel sim-
ulations generate output data periodically, with intermit-
tent computation phases. Therefore, data offloading can be
performed in the background, possibly directly through the
compute nodes (which run the parallel file system client).
Our previous work on application-level on-demand data mi-
gration showed that (1) wide-area data movement overlaps
well with computation, without significantly slowing down
the latter, and (2) compression may be worthwhile, trading
CPU resources for faster data movement, which often turns
out to be the bottleneck [12]. Note that resource contention
at popular destinations (such as a mass storage system co-
located with the supercomputer) may become an issue if
eager output data offloading is routinely carried out by the
parallel file system for a large number of jobs. However, this
can be alleviated by exploiting impedance matching storage
cache elements (IBP [15] or FreeLoader [17]) that might be
available along the data pathway between the supercom-
puter site and the destination. Such systems, when used as
intermediate hops in the end-to-end data transfer, provide
better data access scalability and are potentially excellent
candidates as failover systems for the parallel file system on
a nearby supercomputer.

Again, with the help of additional file system metadata
items, the eager data offloading scheme can work hand in
hand with job management tools. This allows output data
offloading to recognize files that have already been moved
to the destination site, or offloaded to an intermediate site.
Doing so saves both resources and jobs’ overall turnaround



time. Eager data offloading, as well as on-demand input
data reconstruction, should be able to be turned off by the
user if file consistency is a concern.

4. CONCLUSION
In this paper, we outlined the motivation, design overview,
and preliminary results for new approaches toward improv-
ing the availability of transient job input/output data on
supercomputers. Compared to most existing data avail-
ability solutions designed to make data persistent, our ap-
proach recognizes the natural data redundancy external to
the supercomputer site and aims at improving the supercom-
puter’s resource and service availability. By automatically
reconstructing missing input data and proactively offload-
ing output data, a parallel file system will greatly reduce
the impact of storage system failures on the productivity of
both supercomputers and their users.

5. ACKNOWLEDGMENT
This work is supported in part by a DOE ECPI Award
(DE-FG02-05ER25685), an NSF HECURA Award (CCF-
0621470), a DOE contract with UT-Battelle, LLC (DE-
AC05-00OR2275), and Xiaosong Ma’s joint appointment be-
tween NCSU and ORNL.

6. REFERENCES
[1] Caltech SLAC and LANL set new network

performance marks.
http://pr.caltech.edu/media/Press Releases/PR12465.html,
2003.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, and
M. Link. The Globus Striped GridFTP framework and
server. In Proceedings of Supercomputing ’05, 2001.

[3] P. Carns, W. Ligon III, R. Ross, and R. Thakur.
PVFS: A Parallel File System For Linux Clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, 2000.

[4] Cluster File Systems, Inc. Lustre: A scalable,
high-performance file system.
http://www.lustre.org/docs/whitepaper.pdf, 2002.

[5] J. Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In the 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[6] I. Foster and C. Kesselman. Globus: A
metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications
and High Performance Computing, 11(2), 1997.

[7] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke. Condor-G: A computation management
agent for multi-institutional grids. In Proceedings of
the 10th IEEE International Symposium on High
Performance Distributed Computing, 2001.

[8] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. In Proceedings of the 19th Symposium on
Operating Systems Principles, 2003.

[9] J. Gray. Greetings from a file system user.

http://research.microsoft.com/G̃ray/talks/Fast 2005.ppt,
2005.

[10] J. Gray and A. Szalay. Scientific data federation. In
I. Foster and C. Kesselman, editors, The Grid 2:
Blueprint for a New Computing Infrastructure, 2003.

[11] C. Hsu and W. Feng. A power-aware run-time system
for high-performance computing. In SC, 2005.

[12] J. Lee, X. Ma, M. Winslett, and S. Yu. Active
buffering plus compressed migration: An integrated
solution to parallel simulations’ data transport needs.
In Proceedings of the 16th ACM International
Conference on Supercomputing, 2002.

[13] X. Ma, S. Vazhkudai, V. Freeh, T. Simon, T. Yang,
and S. L. Scott. Coupling prefix caching and collective
downloads for remote data access. In Proceedings of
the ACM International Conference on
Supercomputing, 2006.

[14] J. Plank, S. Atchley, Y. Ding, and M. Beck.
Algorithms for high performance, wide-area
distributed file downloads. Parallel Processing Letters,
13(2), 2003.

[15] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany,
and R. Wolski. The Internet Backplane Protocol:
Storage in the network. In Proceedings of the Network
Storage Symposium, 1999.

[16] F. Schmuck and R. Haskin. GPFS: a shared-disk file
system for large computing clusters. In Proceedings of
the First Conference on File and Storage Technologies,
2002.

[17] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland,
N. Tammineedi, and S. Scott. Freeloader: Scavenging
desktop storage resources for bulk, transient data. In
Proceedings of Supercomputing, 2005.


