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1 Abstract/Executive Summary  
The U.S. Army is faced with the challenge of dramatically improving its war fighting capability through advanced 
technologies. Any new technology must provide significant improvement over existing technologies, yet be reliable 
enough to provide a fielded system. The focus of this paper is to assess the novelty and maturity of agent technology 
for use in the Future Combat System. The Future Combat System (FCS) concept represents the U.S. Army’s 
“mounted” form of the Objective Force. This concept of vehicles, communications, and weaponry is viewed as a 
“system of systems” which includes net-centric command and control (C2) capabilities. This networked C2 is an 
important transformation from the historically centralized, or platform-based, C2 function, since a centralized 
command architecture may become a decision-making and execution bottleneck, particularly as the pace of war 
accelerates. A mechanism to ensure an effective network-centric C2 capacity—combining intelligence-gathering and 
analysis available at lower levels in the military hierarchy—is needed.  

Achieving a networked C2 capability will require breakthroughs in current software technology. Many have 
proposed the use of agent technology as a potential solution. Agents are an emerging technology, and it is not yet 
clear whether it is suitable for addressing the networked C2 challenge, particularly in satisfying battlespace 
scalability, mobility, and security expectations.  

We have developed a set of software requirements for FCS based on military requirements for this system. We have 
then evaluated these software requirements against current computer science technology. This analysis provides a 
set of limitations in the current technology when applied to the FCS challenge. Agent technology is compared 
against this set of limitations to provide a means of assessing the novelty of agent technology in an FCS 
environment. 

From this analysis we find that existing technologies will not likely be sufficient to meet the networked C2 

requirements of FCS due to limitations in scalability, mobility, and security. Agent technology provides a number of 
advantages in these areas, mainly through much stronger messaging and coordination models. These models 
theoretically allow for significant improvements in many areas, including scalability, mobility, and security. 
However, the demonstration of such capabilities in an FCS environment does not currently exist, although a number 
of strong agent-based systems have been deployed in related areas. Additionally, there are challenges in FCS that 
neither current technology, nor agent technology are particularly well suited for, such as information fusion and 
decision support. 

In summary, we believe that agent technology has the capability to support most of the networked C2 requirements 
of FCS. However, we would recommend proof of principle experiments to verify the theoretical advantages of this 
technology in an FCS environment. 

2 Introduction  
The U.S. Army’s new concept for the future combat system (FCS) describes forces that must be “flexible, effective 
and efficient multi-mission forces capable of projecting overwhelming military power worldwide” [1] across the full 
spectrum of engagement. This “system of systems” will include networked command and control (C2) capabilities 
designed for future missions, which is a significant departure from the historically centralized C2 system. Before this 
new networked C2 capability can be achieved, several major technical challenges must be overcome. The goal of this 
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paper is to highlight the significant new software requirements of such a system and to determine whether software 
agent technology is a suitable means of addressing these technical challenges. 

The FCS C2 system is a revolutionary approach to provide network-centric C2 with dedicated battlespace visibility 
and support for a completely integrated intelligence, surveillance, and reconnaissance (ISR) capability. The system 
is to be built within an Objective Force consisting of a family of autonomous and non-autonomous vehicles expected 
to assure command of a battlespace tens of kilometers wide, in three-dimensional space, vertically integrated, and 
effectively interoperable among allied and joint forces.  

The complexity of the future war fighting environment will require that information be securely and reliably 
transmitted over dynamic and potentially unreliable virtual and physical networks. Data from a wide range of 
systems and sensors need to be fused, analyzed, and summarized to help support rapid and effective decision-
making.  

Creating software to manage this modern C2 functionality provides a number of significant computer science 
challenges. For such a complex system to be developed within any reasonable time frame, improvements in software 
development productivity and quality are needed. Indeed, it is unclear whether the technology to create such a 
system is available today. However, many have suggested that agent technology and its emerging software 
development conventions and environment may provide the strongest capability for solving such a substantive 
development problem [2]. 

The goal of this paper is to address those technologies that seem suitable for building this C2 environment for FCS, 
particularly agent technology. We begin (Section 3) with a background review of the networked C2 challenge in an 
FCS environment, in the process also developing a set of software requirements for such a system. We then analyze 
the networked C2 requirements against the current state-of-the-art non-agent-based software technology to develop a 
list of limitations in the current technology (Section 4). In Section 5, we review these limitations against agent 
technology and explore the potential of this technology. Section 6 describes briefly several current agent-based 
systems of particular relevance given FCS requirements. The final sections provide recommendations and 
conclusions on the suitability of agent technology in creating the environment for the envisioned C2 of the Army’s 
FCS. 

3 Background  

3.1 Command and Control (C2) Evolution 
According to U.S. Army leadership, the main enhancement of the FCS C2 system is that it will be network-centric at 
its core [3]. Historically, C2 has been centralized—i.e., intelligence has been sent to a central location where military 
decisions are generated and from which C2 emanates. Typically, decision makers have relied on centralized C2 
structures and adequate time to make and transmit decisions. As the operational tempo of war increases to allow 
modern forces to succeed, the older concepts of C2 become a liability to forces in the battlespace. 

The concept of decentralized control and centralized command is not new, having been used by the Greeks, Trojans, 
and Romans, as well as in recent warfare. However, the revolutionary concept of networked command is so recent 
as to seem visionary and can now be considered only because of advances in information technology. This paper 
addresses how and when such technology can be applied given its limitations. In order to decentralize command, 
intelligence gathering and analysis must be available at lower levels in the military hierarchy [4]. Figure 1 depicts a 
notional information network of the sort required to support a decentralized C2 environment. 
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Figure 1 The FCS concept of networked command and control. 

 

The FCS concept implies that data will be produced by a very large number of sources—every human and most 
machines involved in an FCS operation—and shared among a very large number of entities, vertically integrated, 
and so broadly federated as to define interoperability in a new venue.  

3.2 C2 Requirements  
Although FCS requirements have not been fully defined at the time of this writing, information from a U.S. Army 
Training and Doctrine Command (TRADOC) briefing, reproduced as items 1–7 below, describes the functional 
requirements of the FCS C2 system [5]. We use these requirements to develop a list of software capabilities that are 
required to support the FCS C2 system. We then use these software capabilities as a basis for evaluation and 
comparison. Each numbered item from the TRADOC briefing, shown in italics, is followed by an analysis of the 
capabilities and behaviors the numbered item would demand of the software supporting it. 

1. Collect, display and disseminate a seamless, fully integrated, multidimensional, and tailorable common 
operating picture; and precision geospatial environment information layers (modifiable digital overlays) which 
support cognitive and dynamic mission planning/rehearsal, thus creating a real-time virtual decision making 
capability based on the commander’s and battle staff’s detailed “knowledge” of the friendly, enemy and 
physical environment. 

To meet the first functional requirement, the software system must maintain a real-time, easy-to-understand, 
and accurate Common Operating Picture (COP). This implies that the volume of information distributed 
throughout the battlefield sensors and systems network must be rapidly and accurately integrated, then analyzed 
and organized to support military decisions. For a COP to be common, it must either be 1) produced in one 
place and distributed, or 2) produced wherever needed using distributed information. The first approach calls 
for centralized command, and becomes an obvious bottleneck, where delays or failure limit or prevent access to 
an up-to-date COP. The second approach has no such bottleneck. In such a system, the FCS software system 
would act to provide the information needed to construct the COP over the C2 network. There would be no 
central creation point whose destruction would prevent the COP from being formed, and the FCS system would 
degrade gracefully under component destruction or failure since no component or group of components is 
responsible for the COP. All FCS components would act to provide COP information to the network where any 
site with COP formation capability can produce its own COP. 

2. Enable battle command on the move supported by C4ISR architecture for continuous estimate of the situation 
on the move. Share integrated common operating picture to enable visualization and dissemination of tactical 
scheme by combined arms mission orders with graphic overlays. Changes in leadership that occur during battle 
will be automatically disseminated to appropriate levels with shared COP to enable continuity of command. 
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This second functional requirement expands on the first by adding the capability of mobile command, decision 
making, and ISR. To meet this functional requirement, the system software must have the ability to move 
command securely from one future combat vehicle and/or commander to another. This type of command 
requires that FCS system software support the ability to deliver orders when one or more of the participants are 
moving. This function would also have to be tightly integrated with the physical C2 network. 

3. Objective force units must contain a mission-centric, embedded information system that enables commanders to 
effectively lead during dynamically changing and offensive operations anywhere on the battlefield. This 
includes the following tasks. 

a. They must maintain situational understanding at all times. This is greater that just providing fused sensor 
data to provide the red and blue COP. It includes that capability to collaborate with subject matter experts, 
subordinate commanders and staff in real time in order to develop a complete appreciation of the situation. 

b. They must identify schemes of maneuver, opportunities, decisive points, terrain and weather updates, 
enemy vulnerabilities, and conceptualize solutions through accelerated collaborative planning, rehearsal 
and simulation. 

c. They must make reasoned decisions based on information available. The commander will be able to 
leverage intelligent agents in his information systems to assist him in filtering through the vast amount of 
information so that he only focuses on the most pertinent items to assist in his decision making process. 

d. Commanders will direct decisive action through communicating orders, intent and supporting operational 
graphics from the commander’s battle command system. 

e. Commanders will synchronize maneuver, fires and RSTA [reconnaissance, surveillance, targeting and 
acquisition] 

Requirement 3 adds the concept of mission-centric situational understanding in a dynamic environment where 
the participants in command operations are not only mobile but also in different locations. To meet this 
requirement, the C2 software and supporting ISR resources must be able to rapidly and accurately acquire and 
fuse mission-relevant data, then assist in analyzing and summarizing the data, and finally help to support 
command decisions. 

4. Commanders and battle staffs will leverage automated cognitive decision aids and real-time collaborative 
planning support tools to achieve knowledge-based course(s) of action development. Systems must be mobile, 
fully interoperable in the joint multinational, and interagency environment. 

Requirement 4 poses a significant technical challenge in the area of decision support and security. We believe 
that commanders and their forces will use the most effective technology available to help plan and make 
decisions. However, many significant issues must be overcome in the area of decision support and collaborative 
planning [6]. In addition to this is the security challenge of sharing information at various levels of classification 
with various other joint and allied and even coalition forces, ensuring that it does not get corrupted by, or fall 
into the hands of, an enemy. 

5. [The mission-centric, embedded information system] will provide [a] digital 3D mapping tool for high terrain 
resolution to enable C2 of small unit tactical action in close, complex terrain; virtual rehearsals; and terrain 
analysis. Also allows visualization of inside buildings and subterranean dimension. 

Requirement 5 adds three-dimensional (3D) and geospatial visualization to the FCS C2 system concept. These 
features will require the software to perform very complex data analysis, summarization, and transformation so 
that it can be viewed in a comprehensive and understandable way. Creating two-dimensional (2D) images of 
large amounts of data is a difficult problem; 3D portrayal dictates significant additional complexity. 

6. [The mission-centric, embedded information system] will enable continuous mission planning from alert 
through deployment to employment. Support continuous mission planning, rehearsal, battle command, and 
ability to integrate into gaining theater command during movement by air, land, and sea. 

This sixth functional requirement is closely aligned with the second requirement, command on the move, and 
the fourth requirement, real-time collaborative planning support and course-of-action development. This item 
adds no new software requirements to the FCS C2 system. It emphasizes that the other requirements must be 
met continuously, regardless of transport mode, beginning at first alert and ending some time after force stand-
down and postmortem mission analysis.  
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7. Enable command and control needed to synchronize fire, maneuver, and RSTA in real time to close with and 
destroy the enemy. 

In an environment where command and control are decentralized, it becomes necessary to coordinate and 
synchronize activities. This requirement’s use of the word “synchronize” implies temporal requirements and 
constraints for all C2 functions. We assume that it must be possible to include these concerns during planning 
and course-of-action development, although this is not explicitly stated. 

3.3 C2 Requirements Analysis 
To satisfy the requirements as analyzed above, the networked FCS C2 concept will need to be based on significant 
software technology advances in scalability, mobility, and security. The emerging FCS concept of C2 activities will 
no longer be performed in a centralized manner, but over a dynamic network of moving vehicles, and will be 
dependent on a vast array of sensors to gather data from the battlefield. This new C2 network will be created in an ad 
hoc fashion, with nodes entering and leaving the network at unpredictable times. The C2 system must be highly 
reliable and highly secure. The battlefield sensor information, vital to C2, will be broadcast from potentially 
thousands of locations. This proposed FCS C2 network must be able to process this information rapidly and deliver 
the right information to the right locations and people at the right time.  

As developed above, this system provides a number of new software challenges that we have summarized in the 
following list: 

1. Distributed computing over an unreliable, ad hoc, dynamic physical network 

2. Fault tolerance over a system in which, at any given time, it is unclear what nodes are available within the 
network 

3. Network security and accessibility. Warfighters will need immediate access to the network, but adversaries 
need to be prevented from accessing or corrupting it. 

4. Data fusion. Data from a wide range of systems and sensors will need to be correctly related 

5. Information analysis and summary of enormous amounts of data from the C2 network on the basis of user 
needs 

6. Decision support. A network capable of supporting C2 decision making 

7. Software development improvements to reduce the complexity and risk in creating the proposed system 

Figure 2 provides a schematic mapping the TRADOC FCS functional requirements to the expected software 
requirements. Clearly, this is not an exhaustive list of C2 requirements. However, we believe that the list is 
representative of the challenges placed on software of the networked C2. In the next section, we evaluate how 
software technologies are equipped to meet these challenges. 
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Mobile Command X X X     X 

Mission-Centric IS X X   X X X X 

Decision Support/Planning   X  X X X X 

3D Visualizations      X   

Continuous Mission Planning      X X X 

Synchronized C2 X X X  X    

Figure 2  A mapping of TRADOC FCS functional requirements  
to expected software requirements. 

4 State-of-the-Art Software Technology 
Software development methods have been transformed over the years from structured analysis methods, where 
processing and data were kept separate [7], to object-oriented methods, where processing and data are combined into 
software entities called objects [8]. Object technology has been further enhanced with distributed capabilities, 
allowing an object on one system to communicate with objects on other systems [9]. There is also the capability for 
an object to be transmitted across a trusted network and executed on another computer, a technique commonly 
known as mobile code [10].  

What we must consider at this point is whether the development of software technology has reached a stage of 
sophistication that will allow it to meet the seven FCS C2 software requirements listed above. If so, the use of any 
less mature technology would be ill-advised. A full analysis of these very broad requirements is beyond the scope of 
this paper. Instead, we provide a very general review of the state-of-the-art in relation to these requirements and note 
some obvious limitations with respect to the FCS environment. These limitations will then be assessed against the 
capabilities of agent technology (Section 5 below). 

4.1 Distributed Computing 
Distributed computing or ubiquitous computing is the vision that devices ranging from super computers to nanoscale 
processing units will be able to communicate and act in concert to solve problems. The distributed computing 
approaches widely in use today include the Common Object Request Broker Architecture (CORBA) [11], the 
Distributed Component Object Model (DCOM) [12], and Remote Method Invocation (RMI) [13]. Each of these 
approaches provides a way of executing a software function needed by one computer on a different computer. To be 
executed remotely, this functionality places a number of constraints on the software. For example, assume that a 
source object1 is attempting to execute some function on a target object; for this to happen, the source object must 
have the capability to resolve the network and computer memory address of the target object. Next, the source object 
must have detailed prior knowledge of the functions (methods) and parameters available on the target object, as well 
as the expected return information. There are also assumptions that these remote functions will be accessed 
synchronously and that the network connections are available and permanent. If any of these assumptions does not 
hold, then these distributed interactions will fail [14]. 

                                                             
1 For ease of discussion, we will refer to software programs or functions as objects. 
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It is very unlikely that all of these above assumptions can be relied on in the dynamic FCS environment. Therefore, 
a C2 system build on the current distributed object models is unlikely to succeed without significant enhancement. 

The communication topology of the current distributed computing models is another potential limitation. This 
topology is typically a client-server model, in which the client sends a request to a server and then waits for a 
response. In the FCS C2 network, messages will need to be drawn from a richer model of interaction than the client-
server model, since the structure and stability of the network is likely to change at any time. A message may need to 
be broadcast to several sites, relayed by several objects, retransmitted, or postponed, depending on the nature and 
status of the network, which is a very complex challenge for the client-server model. 

4.2 Fault Tolerance 
Fault tolerance is concerned with making a distributed system more reliable by handling faults within the system. A 
great deal of work has been done in this area, culminating in formal fault tolerant models. These systems are usually 
described as having the properties of safety and “liveness.” Safety properties consist of the set of acceptable system 
configurations, or invariants, defining the operations that are legal within a distributed system. “Liveness” describes 
the notion of the progress of a task within the distributed system. For example, safety properties may require that an 
FCS vehicle cannot fire on friendly troops, while a liveness property may require that a friendly troop notification 
will arrive at the appropriate FCS vehicle or force warrior.  

Ideal fault tolerance provides that all safety and liveness properties are guaranteed to be satisfied within a software 
program. When neither safety nor liveness properties are guaranteed, the software program has no fault tolerance. If 
only safety properties can be guaranteed, then the program will not violate system invariants but may not complete 
the task—i.e., the system will not fire if a friendly troop notification has not been received, or in other words, the 
system is failsafe. If only liveness properties are met, the system will fire, and may find out when the notification 
arrives that friendly troops were fired on [15]. 

The key to fault tolerance is redundancy and the ability to detect and correct faults. These concepts are mainly 
design principles that need to be enforced during the construction of software. However, there are some practical 
technology limitations to fault tolerance based on current distributed computing models. The client-server model, as 
described above, limits the capability for message redundancy within a distributed system. A client passes a message 
to a server and waits for a response. If the client, the message, or the server suffers a fault, the transaction will fail. 
This can significantly limit the fault tolerant capability of current technology in an FCS environment. 

4.3 Security 
Security ensures that data can be safely transmitted within the FCS system. The nodes within the system can be 
authenticated, and data securely communicated. Existing security systems tend to be static; consequently, security 
policies and mechanisms are very difficult to change once the systems are installed. With systems that support a 
ubiquitous and/or mobile computing environment, the fundamental problem that arises is to provide security that is 
expressive and flexible enough to satisfy the specific needs of diverse applications [16]. 

Security operations are typically based on a security policy that defines which operations are proper and should be 
allowed. A security policy usually specify access, accountability, authentication availability, maintenance, violations 
reporting and response, and support information about interaction with entities that are either unknown or known but 
non-local. If such a policy can be enforced, and there are no violations, the system is secure by definition. The goal 
is to create software than can enforce such a policy. 

There is certainly existing software that meets some of the demands outlined above, but nothing capable of 
supporting the size, distribution, and lifecycle requirements that will flow from the relevant FCS scenarios. Software 
protecting individual computers—firewalls, intrusion detection systems, password mechanisms, Public Key 
Infrastructures (PKI), and so on would make FCS operations, relatively, but not absolutely secure in the sense 
outlined above. To meet FCS demands, it is imperative that the FCS security system be unified, policy-based, and 
dynamic. Current COTS systems are relevant but only marginally capable of meeting these requirements. 
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4.4 Mobile Code 
The term “mobile code” typically refers to a capability whereby a combination of data, code, and execution state is 
sent to another machine and executed on that machine through a general virtual machine. The virtual machine may 
take the form of a distributed system layer, such as CORBA, or as a computational environment, such as the Java 
Virtual Machine. Currently, there are three design paradigms for a mobile code system: (1) a code-on-demand 
system allowing code to be transmitted to the data, (2) a remote evaluation system allowing code and data to be 
moved to another system, and (3) a mobile agent system allowing code, data, and state2 to be moved to another 
system [17].  

FCS levies very demanding requirements for mobile code. There is no guarantee that any node in the C2 network 
will be available at any one time. Therefore, the design paradigms represented in 1 and 2 above provide limitations 
if the source node is no longer available to hold the code or state of a mobile transaction. The third paradigm, mobile 
agents, will be discussed in the next section. 

Security—most notably, how to prevent malicious software from entering a system—is a major issue with mobile 
code. A typical solution is to prevent state from being sent with the code—i.e., mobile code is generally executed in 
a very narrow computational space where the target memory is not accessible and can only communicate with the 
source system. It appears that this approach may not be viable in an FCS environment. 

4.5 Information Fusion 
Fusing data from different sources is a difficult problem. The most promising technique for doing so appears to be 
the use of a metadata tag language such as Extensible Markup Language (XML) [18]. With this approach a common 
ontology or set of XML tags is developed. Then specific data is tagged using this common ontology and can then be 
combined with data from other sources [19]. Kim argues that ontologies will be best for reducing uncertainty, while 
XML will be most effective in reducing the complexity of the shared data [20].  

This approach shows great promise. Unfortunately, tagging data does not necessarily ensure that the data can be 
fused. There are many examples where it is technically impossible to fuse data derived from different relative scales 
or with differing assumptions. The ultimate goal of data fusion is for the software to understand and manipulate the 
data, which has been an open issue for decades. 

4.6 Information Analysis and Summary 
After data are fused, there is likely to be a need to analyze the data for a wide variety of reasons. Typically, this 
analysis will result in reducing the size of the data being analyzed. This provides for faster processing and 
transmission of the data. There are a number of mathematical techniques for analyzing and reducing data—feature 
extraction, dimensionality reduction, principle component analysis, and cluster analysis, to name a few. These topics 
are orthogonal to state-of-the-practice software methods but are very important to addressing the networked C2 
challenge of FCS. 

4.7 Decision Support 
After data has been gathered, fused, and analyzed, this information would typically be used to make military 
decisions. A number of decision-support methods and systems can be used to perform this task. As wi th information 
analysis, decision support models are not dependent on the state-of-the-practice software methods, yet are very 
important to addressing the networked C2 challenge of FCS. 

4.8 Software Development Productivity 
The proposed FCS networked C2 functionality will be very large and particularly complex by today’s standards. The 
engineering effort to assemble such a resource is challenging in both effort and risk. Object-oriented methods have 
been shown to produce simpler designs and provide a greater capability for reuse than other methods. However, 

                                                             
2 State is a description of a partially completed process, including the values of all program variables and which step of the 
process is the next to be executed. State information is necessary in order for another computer to complete a process that another 
has begun. 



   

  Page 9 of 17 
  

object-oriented technology has not been shown to improve software development productivity in a commercial 
environment [21]. While simpler designs are clearly desirable in building new software systems, the need for 
improved productivity is a significant concern as well. 

4.9 Software Development Challenges Posed by FCS 
As is apparent from the preceding discussion, a number of challenging software requirements that must be met to 
build any networked C2 system, much less the proposed FCS concept. We have analyzed the functional requirements 
to produce a reasonable set of software characteristics needed to create this system. We have then analyzed these 
software requirements to understand the key technology challenges posed by these requirements, see Figure 3. From 
this figure, the distributed computing requirement poses the greatest software challenge for the new FCS system, 
while information fusion, information summary and analysis, and decision support are tangential to software 
technology advances. 

Software  

Requirements 
 

 

Software 

Limitations D
is

tri
bu

te
d 

C
om

pu
tin

g 

F
au

lt 
T

ol
er

an
ce

 

M
ob

ile
 C

od
e 

S
ec

ur
ity

 

In
fo

rm
at

io
n 

F
us

io
n 

In
fo

rm
at

io
n 

A
na

ly
si

s 
S

um
m

ar
y 

D
ec

is
io

n 
S

up
po

rt 

S
of

tw
ar

e 
P

ro
du

ct
iv

ity
 

Higher-level Interfaces X   X     

Asynchronous Interaction X        

Sporadic Network Support X X X      

Security   X X     

Peer-to-peer Models X X       

Software Productivity        X 

Figure 3 A mapping of the software requirements to the 
limitations of the current software technology 

  
Our analysis indicates six keys software challenges in building this system: 

1. Providing higher-level interfaces to distributed objects. 
2. Allowing asynchronous object interaction. 
3. Providing message support for sporadic network connections. 
4. Providing secure object communication and information system operation. 
5. Providing support for richer peer-to-peer programming models. 
6. Increasing software development productivity. 

In the next section we evaluate the suitability of agent technology against these six challenge areas.  

5 Agent Technology 
Agent technology is an evolving paradigm that strives to create software that can mimic certain human behavior. 
Agents are typically described as possessing human characteristics, for example, agents are normally considered to 
be autonomous, adaptable, social, knowledgeable, mobile, and reactive to name a few [22]. The focus of much 
discussion about agents is on the characteristics of agents. While this can be a very useful abstraction for discussing 
agents, it does not provide a strong means of objective comparison. For the purposes of this paper, we are more 
interested in the computer science novelties of the technology; therefore, we will limit the discussion of 
characteristics, and focus strongly on the comparative benefits of agent technology.  
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There are many proposed and deployed agent architectures. A representative architecture by Sycara et al. [23] 
proposes planning, communication and coordination, scheduling, and execution monitoring of agent activities. In 
this architecture, the agents have access to shared information, typically implemented through a coordination model 
that can be domain specific or domain independent. Another architecture description is offered by Griss et al. [24] 
who provide a broad description of a general agent architecture where the architecture provides facilities for locating 
and communicating with moving and unconnected agents, and for gathering information about groups of agents. 
This architecture provides services that include support for mobility, security, management, persistence, and naming 
of agents. 

These architectures and most others highlight the communication and control aspects of agent systems, which are 
typically provided by a general messaging paradigm where one agent can communicate with one or several other 
agents. This messaging approach encapsulates the messages that agents send and receive [22]. Object-oriented 
methods popularized the concept of data encapsulation, which provides for simple software functions to access an 
object’s data. These functions, not direct data access, are then used to retrieve and update this data. This capability 
limits the software that must change when minor changes are made to the data. The agent paradigm extends 
encapsulation from data to messages sent among agents. This capability is provided through agent coordination 
models [25]. These models define how agents communicate among themselves, and can be seen as coordinating 
communication based on the time a message is sent (temporal) or the names of the target agents (spatial). These 
models provide the ability for communication that is encapsulated and asynchronous with the use of blackboards, 
and tuple space models and associated pattern-matching, such as Linda [26]. Agents that use a blackboard or Linda 
type coordination model provide a level of indirection for agent communication. In other words, an agent sends a 
message to a blackboard, and those subscribers to the blackboard retrieve the message. The agent that sent the 
message may have no idea who actually receives it. This concept allows for asynchronous and encapsulated 
communication among a collection of connected or disconnected agents, a capability that currently not available in 
non-agent systems. 

Another aspect of agent messaging is that these messages are typically written in an agent control language [27] 
(ACL) such as KQML or the FIPA ACL. These languages provide a structured means of exchanging information 
and knowledge among agents. ACLs provide support for a higher-level communication protocol that currently does 
not exist with distributed objects.  

We will now review in detail how suitable agent technology is for the software development challenges posed by 
FCS.  

5.1 Higher level interfaces to distributed objects 
Agent technology is based on a flexible messaging scheme and agent control languages. Agents conceptually are 
connected to blackboards, not other agents. The encapsulation of messages allows for an agent interfaces to change, 
requiring only minor modifications to a blackboard, not to all calling agents [22]. This capability provides for a 
more robust interface than is currently available in distributed object systems.  

Another advantage of agent messaging is that ACLs provide the ability to pass propositions, rules, actions, and 
states among agents. This means that messaging is not merely a way of activating a function on a remote agent, but 
provides a way of sending information to another agent. The agent can then decide what to do about this 
information, if anything. This information can be used to describe what requirements need to be met for an agent to 
take action, what states the sender and receiver will be in after the action takes place, or what states the agents will 
be in when the overall transaction is complete [27]. Information sent from one agent to another may also be 
informative or declarative, having nothing to do with instructing the receiving agent to take action. 

The challenge of implementing such an agent interface is selecting both a messaging architecture and an ACL. 
Currently there is not a universally accepted messaging architecture or ACL. For an agent system to take advantage 
of this high-level interface, there must be very specific and precise specifications on how agents will communicate, 
and on the precise syntax of the ACL. 

5.2 Asynchronous object interaction 
Griss et al. [24] points out that agent systems typically have simple interfaces, and derive capability from loose 
coupling and asynchronous messaging. This capability of asynchronous messaging is results from the ability of a 
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message to be sent to and retrieved through a loosely coupled temporal agent coordination model. Cabri et al. [25] 
reference two coordination models that provide asynchronous agent communication. The first model is a 
blackboard-based model that provides a shared area where agents can send and retrieve messages. A message is 
posted to a blackboard by an agent, and other agents have the ability to read the message posted by that agent. The 
sending agent’s identifier is used by other agents to determine whether to retrieve the message. A blackboard-based 
system can be considered asynchronous; however, knowledge of the agent identifiers is required. The second model 
is based on a Linda coordination model approach. These models define a messaging protocol which is made up of a 
tuple of information, for example a tuple may include the data format, the date of creation, the classification, or a list 
of keywords. These tuples are then placed in a shared area, such as a blackboard. Agent can access these messages, 
not based on agent identifiers, but on a query of the tuple information, i.e., an agent may retrieve all messages 
created yesterday with the “Taliban” keyword. This type of model is asynchronous, and does not require knowledge 
of the agent identifier. 

Both of these types of models are mature, and widely used in agent systems today. They provide the type of 
asynchronous behavior that is required by the FCS system. Clearly, a system that uses a single blackboard for all 
agent communication is exposed to security and performance failures. An operational agent system would require 
multiple blackboards supporting redundancy to provide a more fault tolerant system.  

5.3 Message support for sporadic network connections 
Providing software that can effectively function over a faulty network is a very challenging, if not impossible 
problem. The advantage that agent technology provides in this type environment is the flexibility and redundancy of 
the communication paths among agents, and the ability for agents to change location. Vogler et al. [28] propose a 
distributed transaction model using a two-phase commit protocol to verify that an agent message has been delivered. 
This very well known approach can provide a means of ensuring that an agent transaction has successfully or 
unsuccessfully completed. The agent coordination model must support the ability for an agent to store undelivered 
messages within the agent, or support the ability to rollback the transaction, if synchronous transactions are required. 
If a transaction has not completed successfully, then a number of network or graph theory algorithms can be used to 
determine a viable path through the network, and the transaction can be attempted again, or the agent can move to 
another location and try again. If a physical path cannot be found then the transaction is not possible. 

The messaging architecture and mobility of agents can be effectively used to communicate over a sporadic network, 
however, there is a point where the network can degrade to a point where agent communication is no longer 
possible. Distributed transaction protocols (DTP) are very useful for verifying the success of transactions, and can 
be used to ensure network security, however, adding this capability can limit the performance of the overall system. 

5.4 Secure Communication and Information Operations 
As Abadi [29] notes, it is practically impossible to construct a truly secure information system. Communications are 
secure if transmitted messages can be neither affected nor understood by an adversary, likewise, information 
operations are secure if information cannot be damaged, destroyed, or acquired by an adversary.  

Most agree that security in a distributed system should be enforced through system wide security policies. There 
policies are often static, and difficult to modify and enforce with existing technology [16]. Agents have 
demonstrated that they can enforce a security policy defining what must be done and what must not be done when 
information is moved (including communication), stored, created, or destroyed. Agent technology is valuable in this 
context because it provides multiple, standalone, persistent processes that can act at high speeds to ensure that all the 
rules are always followed. Encapsulated instructions concerning what actions to take under what circumstances 
enables agents to execute very complex operations, enabling agents to participate in complex collaborative security 
protocols such as key updating and multiparty authorization.  

There is no overt reason agents cannot be designed to provide a very secure information management system within 
the FCS environment. The challenge for FCS is in defining the FCS system-wide security policy and designing 
agents able to enforce it without undo complexity or performance limitations. 

5.5 Peer-to-peer programming models 
Through the use of blackboard and Linda type coordination models, the programming model of agents can be very 
general. Any number of agents can send messages to one or many blackboard(s), and any number of agents can 
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receive messages from one or many blackboard(s). This provides the building blocks to create virtually any network 
topology that can be defined, and allows for very broad scalability of the network. Care must be taken in defining 
the bandwidth, messaging rates, and processing requirements of the network. These topologies will require tuning to 
enhance fault tolerance and performance. 

5.6 Increasing software development productivity 
There are indications that agent technology may provide some software development productivity improvement 
[24]. While there does not appear to be any empirical evidence to support this to date, the proposed theory is that 
agents increase the level of software reuse. Agents are software components that have their messaging, functionality, 
and location encapsulated, which is believed will increase the level of software reuse, thus increasing productivity. 
Likewise, if standard messaging protocols and ACLs can be defined, the agent development teams may require less 
communication overhead since the interfaces are far richer than with traditional programming. 

6 Specific Agent Projects and Technological Readiness 
In this section we briefly review a handful of existing agent-based systems that appear to address FCS C2 
requirements. This analysis provides a brief glimpse into the state-of-the-practice of agent technology. This review 
looks at the published reports of the systems, not the actual systems themselves. The assessment of technology 
readiness level (TRL), see Appendix A, is performed strictly from the open literature, and may not accurately reflect 
the TRL level of the actual system.  

6.1 Cooperating Agents for Specific Tasks (CAST) 
Principal investigator: Kenneth Whitebread 
Affiliation: Lockheed Martin Advanced Technology Laboratories 
URL: http://www.atl.external.lmco.com/indexlist.html 

Lockheed Martin has significant experience developing agent-based systems for military applications. We focus 
here on Cooperating Agents for Specific Tasks (CAST), which is affiliated with the DARPA Control of Agent-
Based Systems (CoABS) program. The CAST system performed C2 functions for Theater Air Missile Defense 
(TAMD) during USN Fleet Battle Experience. The CAST system manages large amounts of distributed information 
and provides COP and situation awareness data in the TAMD domain supporting naval C2 of surveillance and strike 
assets. CAST does not support large numbers of distributed information sources and links, and scaling properties are 
unknown. However, Lockheed Martin Advanced Technology Laboratories also developed and deployed the Domain 
Adaptive Information system (DAIS) with the Army 201st Military Intelligence Brigade. DAIS was built to query 
heterogeneous databases over unreliable low-bandwidth networks. Although it is safe to say that neither of these 
systems would be capable of meeting FCS C2 requirements, according to their information, both perform aspects of 
these requirements very well and both are at high TRL: CAST is TRL 7 and DAIS is TRL 9.  

6.2 Dartmouth Agent (D’Agent) Multidisciplinary University Research Initiative (MURI) 
Demonstration 
Principal investigator: Robert Gray 
Affiliation: Dartmouth College 
URL: http://actcomm.thayer.dartmouth.edu/ 

The D’Agent MURI demonstration focused on a small number of distributed agents deployed in support of low-
intensity-conflict urban operations, specifically location and arrest of a specific individual. The agents operated 
within a dynamic network maintaining two-way C2 connectivity among mobile soldiers and a static command post 
in a realistic outdoor urban environment. The commercial off-the-shelf  (COTS) hardware used in the demonstration 
would not serve in an FCS mission environment, and it is not clear whether the software would scale; the number of 
participants in the three demonstrations have been in the low tens of individuals. However, good measures of 
performance and logs were taken, the entirety of which can be seen online at the above URL. This work falls at TRL 
6. Achievement of TRL 7 would require mission-relevant hardware and a more realistic Military Operations in 
Urban Terrain (MOUT)–like test environment. 
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6.3 Standard Agent Architecture (SAA) Development Program 
Principal investigator: Steven Goldsmith 
Affiliation: Sandia National Laboratories Advanced Information Systems Laboratory (AISL) 
URL: http://www.aisl.sandia.gov/  

Sandia’s Advanced Information Systems Laboratory (AISL) has focused on providing agent technology to 
cooperatively manage and protect complex operations on critical data. The Standard Agent Architecture (SAA) 
program is unusual in that it uses no COTS agent technology but instead relies on a unique framework constructed 
in-house from first principles. SAA agents use KQML and HTML to communicate with non-SAA entities. Recent 
work is aimed at in-house deployment of the Boxer cybersecurity application that will detect specific types of 
otherwise undetectable anomalous transactions in high-volume TCP/IP traffic (TRL 5). Initial deployment will field 
only a few agents; however, Boxer is designed for expansion. AISL will also demonstrate C2 of a mixed collective 
of nonrobotic agents, robots controlled by on-board agents, and semiautonomous non-agent robots near the end of 
2002 (TRL 4). AISL has demonstrated multi-agent execution of several advanced cryptographic  algorithms 
specifically designed to protect against stealthy penetration and individual system failure or cooption (TRL 4). 
When deployed, the Boxer system will be at TRL 6 (not technically TRL 7 because neither the hardware nor the 
personnel are military), but Boxer will be providing operational information to computer security operations 
personnel in an operational environment. 

6.4 UltraLog Program 
Principal investigator: Mark Greaves (program manager) 
Affiliation: DARPA/IXO  
URL: http://www.ultralog.net/; http://www.cougaar.org/sitemap.html 

UltraLog is a DARPA program whose expressed goal is to improve the reliability and robustness of the Cougaar 
architecture by eventually deploying at least 1000 simultaneously functioning agents providing military logistics 
support in a major regional contingency.  The primary contractor providing the Cougaar architecture and most of the 
development is Bolt, Beranek, and Newman (BBN). We would place UltraLog at TRL 6 or 7; there is room for 
interpretation as to whether the demonstration environment is an “operational” environment.  

In any case, UltraLog at this time is focused on logistics, and is able to construct an operational plan to move large 
quantities of material to a given location. This involves several dozen distributed agents (i.e., the agents are not co-
located) trading information about constraints, capabilities, commitments, and so on to arrive at a workable plan. 
This work begins to show that agent systems large enough to support FCS operations are possible. The agents are 
general-purpose with specializing behavior provided by “plug-ins,” which are code modules written by the 
application programmers. BBN has also done substantial work to prepare Cougaar-based agents for FCS-like 
operation of unattended sensors and battlefield logistics. 

6.5 Virtual Information Processing Agent Research (VIPAR) 
Principal investigator: Thomas E. Potok 
Affiliation: Oak Ridge National Laboratory 
URL: http://www.csm.ornl.gov/~v8q/Homepage/Projects/vipar.htm 

The VIPAR project uses the Oak Ridge National Laboratory (ORNL) Oak Ridge Mobile Agent Community 
(ORMAC) to address challenges facing the intelligence community for the U.S. Pacific Command (USPACOM). 
ORNL has used ORMAC to develop agent-based systems for the U.S. 6th Fleet, the Defense Logistics Agency, 
Lockheed Martin, and the Department of Energy. ORMAC is a blackboard based agent framework that uses FIPA 
compliant messaging, and supports full agent mobility.  

The VIPAR system quickly gathers and organizes massive amounts of information, up to 10,000 documents, then 
distills that information into a form directly and explicitly amenable for use by an intelligence analyst. This system 
is deployed and in use at USPACOM. The USPACOM commander in chief Admiral Blair calls VIPAR “A 
tremendously successful project” where “Software agents … lead to substantially improved analytical products.”  
The USPACOM Science and Technology Advisor calls VIPAR “a grand slam home run!” the “first time we've seen 
information discovery and knowledge management software working at HQ USCINCPAC operationally.” This 
system is at TRL level 9, however, it only addresses a small part of the C2 requirements for FCS. 
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7 Discussion  
The analysis in this paper begins by deriving a set of software requirements for the FCS networked C2 system based 
on a set of TRADOC functional requirements. This set of software requirements is not an exhaustive set for C2, 
however, from a military point of view provides a credible and representative list of the challenges awaiting the 
software designers of FCS. 

A comparison of these requirements with the capabilities of existing technology is very revealing. Several of the 
limitations of existing technology bring into question whether it is capable of producing a C2 system for FCS. The 
main limitations of existing technology are low-level interfaces, synchronous interactions, requirements for 
continuous network availability, limited redundancy, and limited productivity improvements. Clearly, the current 
technology would require major enhancements to be able to support an FCS environment.  

Reviewing the limitations of existing technology against agent technology, we are able to assess the suitability of 
agent technology in the FCS environment. This assessment highlights the main strength of agent technology within 
an FCS environment, which are the messaging and coordination models that agents use. These models enable better 
solutions to the FCS challenges than do existing technology. The issue however, is to determine whether the 
theoretical capabilities of these models can be realized in practice. 

We provide a brief review of some relevant agent work in related areas. This is a paper analysis that may not fully 
represent the actual systems, however, there appears to be ample evidence that agent systems have been used to 
solve some of the problems faced by FCS. 

There are two main questions that this analysis raises, 1) should FCS be built on enhancements to existing 
technology or on an agent architecture? 2) Is agent technology mature enough to be used for a project the size and 
complexity of FCS? The first question deals more with an economic analysis than a technical analysis. If current 
technology is enhanced to solve some of its limitations, the resulting system will most likely look like existing agent 
systems. It does not make much sense to reinvent what already exists. The maturity of agent technology is an issue. 
There is not a reference agent system that supports the complexity or scale of the proposed FCS system. On the 
other hand, it is pretty clear that existing technology will not be able to solve this problem. Looking strictly at the 
success of the FCS project, it would appear that agent systems will perform at least as well as traditional systems, 
but with the promise of doing much better. Therefore, we recommend the use of agent technology for the FCS C2 
system. 

There are some issues not related to software that must be addressed as well—namely, security, information analysis 
and summary, and decision support. Agent technology can clearly support these tasks, but the technology does not 
explicitly provide these capabilities, and these are challenging problems. If these problems cannot be adequately 
solved, regardless of whether or not agent technology is used, the FCS system will be limited. 

We recommend the use of prototypes and experimentation with agent technology to reduce the software 
development risk of FCS, specifically in the areas of scalability, mobility, and security. The resulting information 
will provide a clearer picture of the expected benefits of agent technology.  

8 Conclusion  
 The U.S. Army is transforming through advanced technologies to significantly improve its war fighting capability. 
The Army is looking for technologies that can provide dramatic improvements over existing capabilities, yet are 
reliable enough to provide a fielded system. Our study assesses both the potential improvements, and the reliability 
of using software agent technology for the network-centric C2 portion of FCS. The emerging FCS concept of C2 
activities is a dynamic network of moving vehicles that will gather and analyze data from a vast array of battlefield 
sensors. This ad hoc network will have vehicles entering and leaving the network at unpredictable times. This 
system must be highly reliable and highly secure, with the ability to scale to process massive amounts of data. This 
proposed FCS C2 network must be able to process this information rapidly and deliver the right information to the 
right locations and people at the right time.  

Achieving a networked C2 capability will require significant advances in existing software technologies. Key experts 
have proposed agent technology as a potential solution to this challenge. To analyze the capabilities of agent 
technology, we have developed a set of software requirements of FCS based on military requirements. These 
requirements are then reviewed against the current computer science literature to highlight limitations and challenge 
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areas. These challenge areas are then reviewed against agent technology to illustrate the comparative benefits of this 
technology in an FCS environment. 

From this analysis we find that the networked C2 requirements of FCS are beyond the capabilities of existing 
technologies in scalability, mobility, and security. Agent technology provides a number of significant advantages in 
these areas, due to much stronger messaging and coordination models, and theoretically is much better suited to the 
FCS challenge that is existing technology. There are some mature agent systems that meet some of the requirements 
of FCS, but there is currently no single agent system that meets the scale and complexity proposed by FCS. 

In summary, agent technology will clearly perform at least as well as traditional technology in an FCS environment, 
but with the promise of solving a number of existing technology limitations. Our theoretical and system level 
analysis shows that agent technology has the capability to support the significant networked C2 requirements of 
FCS, requirements that likely pose unachievable challenges with current technology. In other words, agent 
technology is the best technology, perhaps the only technology, for delivering a viable C2 system for FCS. To further 
strengthen this analysis, we recommend proof of principle experiments to verify and validate the results of this 
analysis. 
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Appendix A: Technology Readiness Level (TRL) Summary 

The phrase “technology readiness level” has been in use “for many years”  [30] by the National Aeronautics and 
Space Administration (NASA) for use in managing the technology maturation process. Although levels 7, 8, and 9 
specifically refer to space flight, they can be generalized to any technology by replacing the word “space” with the 
word “operational” and the word “flight” with the word “operations.”  

Interpretation is required to differentiate among the terms: “laboratory environment,” “relevant environment,” and 
“space [operational] environment.” In this white paper we have used the following interpretations in assigning 
TRLs: 

An operational environment is an environment in which the technology in question is exercised under conditions 
that replicate a military mission in every way possible. In general this implies the technology is installed on military 
hardware and operated by military personnel in conditions that are within their mission envelope. If the mission 
involves adversaries they will be simulated in the exercise. 

A relevant environment is an environment in which the technology in question is exercised under conditions that 
resemble a military mission. The technology need not be installed on military hardware or operated by military 
personnel. In general the intent is to use the technology in an environment whose gross characteristics—number and 
roles of participants, physical distances, structures, weather, etc.—are within the envelope of missions of interest. 
Both Blue and Red forces are simulated as necessary. 

 



   

  Page 17 of 17 
  

 
A laboratory environment is an environment in which the technology in question is exercised under conditions that 
are largely irrelevant and whose resemblance to military missions is either accidental or narrowly focused. The 
technology need not be installed on military hardware or operated by military personnel. In general the intent is to 
measure performance or validate functionality within a narrow scope relative to the missions in which the 
technology is expected to operate. 

We further interpret the term flight[operations]-qualified to mean that the technology in question has been declared 
by the military to be fit for use in military operations and the term flight[operations]-proven to mean that the 
technology in question has been successfully used in military operations. 

TRL 1  Basic principles observed and reported  

TRL 2  Technology concept and/or application formulated  

TRL 3  Analytical and experimental critical function and/or proof of concept 

TRL 4  Component and/or breadboard validation in laboratory environment  

TRL 5  Component and/or breadboard validation in relevant environment 

TRL 6  Model or prototype demonstration in a relevant environment 

TRL 7  System prototype demonstration in a space environment 

TRL 8  Actual system completed and flight-qualified through test and demonstration 

TRL 9  Actual system flight-proven through successful mission operations 

 

 


