

 Page 1 of 17

Suitability of Agent Technology for Military Command and Control in
the Future Combat System Environment

Thomas Potok1, Laurence Phillips2, Robert Pollock2, and Andy Loebl1

1Oak Ridge National Laboratory

Post Office Box 2008, Mail Stop 6414
Computationa l Sciences and Engineering Division

Oak Ridge, Tennessee 37831-6414
Phone: 865-574-0834

Fax: 865-241-6211
potokte@ornl.gov

2Sandia National Laboratories, New Mexico
PO Box 5800, Mail Stop 0455

Advanced Information and Control Systems
Albuquerque, New Mexico 87185-0455

Phone: 505-845-8846
Fax: 505-844-9641
lrphill@sandia.gov

1 Abstract/Executive Summary
The U.S. Army is faced with the challenge of dramatically improving its war fighting capability through advanced
technologies. Any new technology must provide significant improvement over existing technologies, yet be reliable
enough to provide a fielded system. The focus of this paper is to assess the novelty and maturity of agent technology
for use in the Future Combat System. The Future Combat System (FCS) concept represents the U.S. Army’s
“mounted” form of the Objective Force. This concept of vehicles, communications, and weaponry is viewed as a
“system of systems” which includes net-centric command and control (C2) capabilities. This networked C2 is an
important transformation from the historically centralized, or platform-based, C2 function, since a centralized
command architecture may become a decision-making and execution bottleneck, particularly as the pace of war
accelerates. A mechanism to ensure an effective network-centric C2 capacity—combining intelligence-gathering and
analysis available at lower levels in the military hierarchy—is needed.

Achieving a networked C2 capability will require breakthroughs in current software technology. Many have
proposed the use of agent technology as a potential solution. Agents are an emerging technology, and it is not yet
clear whether it is suitable for addressing the networked C2 challenge, particularly in satisfying battlespace
scalability, mobility, and security expectations.

We have developed a set of software requirements for FCS based on military requirements for this system. We have
then evaluated these software requirements against current computer science technology. This analysis provides a
set of limitations in the current technology when applied to the FCS challenge. Agent technology is compared
against this set of limitations to provide a means of assessing the novelty of agent technology in an FCS
environment.

From this analysis we find that existing technologies will not likely be sufficient to meet the networked C2

requirements of FCS due to limitations in scalability, mobility, and security. Agent technology provides a number of
advantages in these areas, mainly through much stronger messaging and coordination models. These models
theoretically allow for significant improvements in many areas, including scalability, mobility, and security.
However, the demonstration of such capabilities in an FCS environment does not currently exist, although a number
of strong agent-based systems have been deployed in related areas. Additionally, there are challenges in FCS that
neither current technology, nor agent technology are particularly well suited for, such as information fusion and
decision support.

In summary, we believe that agent technology has the capability to support most of the networked C2 requirements
of FCS. However, we would recommend proof of principle experiments to verify the theoretical advantages of this
technology in an FCS environment.

2 Introduction
The U.S. Army’s new concept for the future combat system (FCS) describes forces that must be “flexible, effective
and efficient multi-mission forces capable of projecting overwhelming military power worldwide” [1] across the full
spectrum of engagement. This “system of systems” will include networked command and control (C2) capabilities
designed for future missions, which is a significant departure from the historically centralized C2 system. Before this
new networked C2 capability can be achieved, several major technical challenges must be overcome. The goal of this

 Page 2 of 17

paper is to highlight the significant new software requirements of such a system and to determine whether software
agent technology is a suitable means of addressing these technical challenges.

The FCS C2 system is a revolutionary approach to provide network-centric C2 with dedicated battlespace visibility
and support for a completely integrated intelligence, surveillance, and reconnaissance (ISR) capability. The system
is to be built within an Objective Force consisting of a family of autonomous and non-autonomous vehicles expected
to assure command of a battlespace tens of kilometers wide, in three-dimensional space, vertically integrated, and
effectively interoperable among allied and joint forces.

The complexity of the future war fighting environment will require that information be securely and reliably
transmitted over dynamic and potentially unreliable virtual and physical networks. Data from a wide range of
systems and sensors need to be fused, analyzed, and summarized to help support rapid and effective decision-
making.

Creating software to manage this modern C2 functionality provides a number of significant computer science
challenges. For such a complex system to be developed within any reasonable time frame, improvements in software
development productivity and quality are needed. Indeed, it is unclear whether the technology to create such a
system is available today. However, many have suggested that agent technology and its emerging software
development conventions and environment may provide the strongest capability for solving such a substantive
development problem [2].

The goal of this paper is to address those technologies that seem suitable for building this C2 environment for FCS,
particularly agent technology. We begin (Section 3) with a background review of the networked C2 challenge in an
FCS environment, in the process also developing a set of software requirements for such a system. We then analyze
the networked C2 requirements against the current state-of-the-art non-agent-based software technology to develop a
list of limitations in the current technology (Section 4). In Section 5, we review these limitations against agent
technology and explore the potential of this technology. Section 6 describes briefly several current agent-based
systems of particular relevance given FCS requirements. The final sections provide recommendations and
conclusions on the suitability of agent technology in creating the environment for the envisioned C2 of the Army’s
FCS.

3 Background

3.1 Command and Control (C2) Evolution
According to U.S. Army leadership, the main enhancement of the FCS C2 system is that it will be network-centric at
its core [3]. Historically, C2 has been centralized—i.e., intelligence has been sent to a central location where military
decisions are generated and from which C2 emanates. Typically, decision makers have relied on centralized C2
structures and adequate time to make and transmit decisions. As the operational tempo of war increases to allow
modern forces to succeed, the older concepts of C2 become a liability to forces in the battlespace.

The concept of decentralized control and centralized command is not new, having been used by the Greeks, Trojans,
and Romans, as well as in recent warfare. However, the revolutionary concept of networked command is so recent
as to seem visionary and can now be considered only because of advances in information technology. This paper
addresses how and when such technology can be applied given its limitations. In order to decentralize command,
intelligence gathering and analysis must be available at lower levels in the military hierarchy [4]. Figure 1 depicts a
notional information network of the sort required to support a decentralized C2 environment.

 Page 3 of 17

Figure 1 The FCS concept of networked command and control.

The FCS concept implies that data will be produced by a very large number of sources—every human and most
machines involved in an FCS operation—and shared among a very large number of entities, vertically integrated,
and so broadly federated as to define interoperability in a new venue.

3.2 C2 Requirements
Although FCS requirements have not been fully defined at the time of this writing, information from a U.S. Army
Training and Doctrine Command (TRADOC) briefing, reproduced as items 1–7 below, describes the functional
requirements of the FCS C2 system [5]. We use these requirements to develop a list of software capabilities that are
required to support the FCS C2 system. We then use these software capabilities as a basis for evaluation and
comparison. Each numbered item from the TRADOC briefing, shown in italics, is followed by an analysis of the
capabilities and behaviors the numbered item would demand of the software supporting it.

1. Collect, display and disseminate a seamless, fully integrated, multidimensional, and tailorable common
operating picture; and precision geospatial environment information layers (modifiable digital overlays) which
support cognitive and dynamic mission planning/rehearsal, thus creating a real-time virtual decision making
capability based on the commander’s and battle staff’s detailed “knowledge” of the friendly, enemy and
physical environment.

To meet the first functional requirement, the software system must maintain a real-time, easy-to-understand,
and accurate Common Operating Picture (COP). This implies that the volume of information distributed
throughout the battlefield sensors and systems network must be rapidly and accurately integrated, then analyzed
and organized to support military decisions. For a COP to be common, it must either be 1) produced in one
place and distributed, or 2) produced wherever needed using distributed information. The first approach calls
for centralized command, and becomes an obvious bottleneck, where delays or failure limit or prevent access to
an up-to-date COP. The second approach has no such bottleneck. In such a system, the FCS software system
would act to provide the information needed to construct the COP over the C2 network. There would be no
central creation point whose destruction would prevent the COP from being formed, and the FCS system would
degrade gracefully under component destruction or failure since no component or group of components is
responsible for the COP. All FCS components would act to provide COP information to the network where any
site with COP formation capability can produce its own COP.

2. Enable battle command on the move supported by C4ISR architecture for continuous estimate of the situation
on the move. Share integrated common operating picture to enable visualization and dissemination of tactical
scheme by combined arms mission orders with graphic overlays. Changes in leadership that occur during battle
will be automatically disseminated to appropriate levels with shared COP to enable continuity of command.

 Page 4 of 17

This second functional requirement expands on the first by adding the capability of mobile command, decision
making, and ISR. To meet this functional requirement, the system software must have the ability to move
command securely from one future combat vehicle and/or commander to another. This type of command
requires that FCS system software support the ability to deliver orders when one or more of the participants are
moving. This function would also have to be tightly integrated with the physical C2 network.

3. Objective force units must contain a mission-centric, embedded information system that enables commanders to
effectively lead during dynamically changing and offensive operations anywhere on the battlefield. This
includes the following tasks.

a. They must maintain situational understanding at all times. This is greater that just providing fused sensor
data to provide the red and blue COP. It includes that capability to collaborate with subject matter experts,
subordinate commanders and staff in real time in order to develop a complete appreciation of the situation.

b. They must identify schemes of maneuver, opportunities, decisive points, terrain and weather updates,
enemy vulnerabilities, and conceptualize solutions through accelerated collaborative planning, rehearsal
and simulation.

c. They must make reasoned decisions based on information available. The commander will be able to
leverage intelligent agents in his information systems to assist him in filtering through the vast amount of
information so that he only focuses on the most pertinent items to assist in his decision making process.

d. Commanders will direct decisive action through communicating orders, intent and supporting operational
graphics from the commander’s battle command system.

e. Commanders will synchronize maneuver, fires and RSTA [reconnaissance, surveillance, targeting and
acquisition]

Requirement 3 adds the concept of mission-centric situational understanding in a dynamic environment where
the participants in command operations are not only mobile but also in different locations. To meet this
requirement, the C2 software and supporting ISR resources must be able to rapidly and accurately acquire and
fuse mission-relevant data, then assist in analyzing and summarizing the data, and finally help to support
command decisions.

4. Commanders and battle staffs will leverage automated cognitive decision aids and real-time collaborative
planning support tools to achieve knowledge-based course(s) of action development. Systems must be mobile,
fully interoperable in the joint multinational, and interagency environment.

Requirement 4 poses a significant technical challenge in the area of decision support and security. We believe
that commanders and their forces will use the most effective technology available to help plan and make
decisions. However, many significant issues must be overcome in the area of decision support and collaborative
planning [6]. In addition to this is the security challenge of sharing information at various levels of classification
with various other joint and allied and even coalition forces, ensuring that it does not get corrupted by, or fall
into the hands of, an enemy.

5. [The mission-centric, embedded information system] will provide [a] digital 3D mapping tool for high terrain
resolution to enable C2 of small unit tactical action in close, complex terrain; virtual rehearsals; and terrain
analysis. Also allows visualization of inside buildings and subterranean dimension.

Requirement 5 adds three-dimensional (3D) and geospatial visualization to the FCS C2 system concept. These
features will require the software to perform very complex data analysis, summarization, and transformation so
that it can be viewed in a comprehensive and understandable way. Creating two-dimensional (2D) images of
large amounts of data is a difficult problem; 3D portrayal dictates significant additional complexity.

6. [The mission-centric, embedded information system] will enable continuous mission planning from alert
through deployment to employment. Support continuous mission planning, rehearsal, battle command, and
ability to integrate into gaining theater command during movement by air, land, and sea.

This sixth functional requirement is closely aligned with the second requirement, command on the move, and
the fourth requirement, real-time collaborative planning support and course-of-action development. This item
adds no new software requirements to the FCS C2 system. It emphasizes that the other requirements must be
met continuously, regardless of transport mode, beginning at first alert and ending some time after force stand-
down and postmortem mission analysis.

 Page 5 of 17

7. Enable command and control needed to synchronize fire, maneuver, and RSTA in real time to close with and
destroy the enemy.

In an environment where command and control are decentralized, it becomes necessary to coordinate and
synchronize activities. This requirement’s use of the word “synchronize” implies temporal requirements and
constraints for all C2 functions. We assume that it must be possible to include these concerns during planning
and course-of-action development, although this is not explicitly stated.

3.3 C2 Requirements Analysis
To satisfy the requirements as analyzed above, the networked FCS C2 concept will need to be based on significant
software technology advances in scalability, mobility, and security. The emerging FCS concept of C2 activities will
no longer be performed in a centralized manner, but over a dynamic network of moving vehicles, and will be
dependent on a vast array of sensors to gather data from the battlefield. This new C2 network will be created in an ad
hoc fashion, with nodes entering and leaving the network at unpredictable times. The C2 system must be highly
reliable and highly secure. The battlefield sensor information, vital to C2, will be broadcast from potentially
thousands of locations. This proposed FCS C2 network must be able to process this information rapidly and deliver
the right information to the right locations and people at the right time.

As developed above, this system provides a number of new software challenges that we have summarized in the
following list:

1. Distributed computing over an unreliable, ad hoc, dynamic physical network

2. Fault tolerance over a system in which, at any given time, it is unclear what nodes are available within the
network

3. Network security and accessibility. Warfighters will need immediate access to the network, but adversaries
need to be prevented from accessing or corrupting it.

4. Data fusion. Data from a wide range of systems and sensors will need to be correctly related

5. Information analysis and summary of enormous amounts of data from the C2 network on the basis of user
needs

6. Decision support. A network capable of supporting C2 decision making

7. Software development improvements to reduce the complexity and risk in creating the proposed system

Figure 2 provides a schematic mapping the TRADOC FCS functional requirements to the expected software
requirements. Clearly, this is not an exhaustive list of C2 requirements. However, we believe that the list is
representative of the challenges placed on software of the networked C2. In the next section, we evaluate how
software technologies are equipped to meet these challenges.

 Page 6 of 17

Software

Requirements

TRADOC
Requirements D

is
tri

bu
te

d
C

om
pu

tin
g

F
au

lt
T

ol
er

an
ce

S
ec

ur
ity

M
ob

ile
 C

od
e

In
fo

rm
at

io
n

F
us

io
n

In
fo

rm
at

io
n

A
na

ly
si

s
S

um
m

ar
y

D
ec

is
io

n
S

up
po

rt

S
of

tw
ar

e
P

ro
du

ct
iv

ity

Common Operational Picture X X X X X X X

Mobile Command X X X X

Mission-Centric IS X X X X X X

Decision Support/Planning X X X X X

3D Visualizations X

Continuous Mission Planning X X X

Synchronized C2 X X X X

Figure 2 A mapping of TRADOC FCS functional requirements
to expected software requirements.

4 State-of-the-Art Software Technology
Software development methods have been transformed over the years from structured analysis methods, where
processing and data were kept separate [7], to object-oriented methods, where processing and data are combined into
software entities called objects [8]. Object technology has been further enhanced with distributed capabilities,
allowing an object on one system to communicate with objects on other systems [9]. There is also the capability for
an object to be transmitted across a trusted network and executed on another computer, a technique commonly
known as mobile code [10].

What we must consider at this point is whether the development of software technology has reached a stage of
sophistication that will allow it to meet the seven FCS C2 software requirements listed above. If so, the use of any
less mature technology would be ill-advised. A full analysis of these very broad requirements is beyond the scope of
this paper. Instead, we provide a very general review of the state-of-the-art in relation to these requirements and note
some obvious limitations with respect to the FCS environment. These limitations will then be assessed against the
capabilities of agent technology (Section 5 below).

4.1 Distributed Computing
Distributed computing or ubiquitous computing is the vision that devices ranging from super computers to nanoscale
processing units will be able to communicate and act in concert to solve problems. The distributed computing
approaches widely in use today include the Common Object Request Broker Architecture (CORBA) [11], the
Distributed Component Object Model (DCOM) [12], and Remote Method Invocation (RMI) [13]. Each of these
approaches provides a way of executing a software function needed by one computer on a different computer. To be
executed remotely, this functionality places a number of constraints on the software. For example, assume that a
source object1 is attempting to execute some function on a target object; for this to happen, the source object must
have the capability to resolve the network and computer memory address of the target object. Next, the source object
must have detailed prior knowledge of the functions (methods) and parameters available on the target object, as well
as the expected return information. There are also assumptions that these remote functions will be accessed
synchronously and that the network connections are available and permanent. If any of these assumptions does not
hold, then these distributed interactions will fail [14].

1 For ease of discussion, we will refer to software programs or functions as objects.

 Page 7 of 17

It is very unlikely that all of these above assumptions can be relied on in the dynamic FCS environment. Therefore,
a C2 system build on the current distributed object models is unlikely to succeed without significant enhancement.

The communication topology of the current distributed computing models is another potential limitation. This
topology is typically a client-server model, in which the client sends a request to a server and then waits for a
response. In the FCS C2 network, messages will need to be drawn from a richer model of interaction than the client-
server model, since the structure and stability of the network is likely to change at any time. A message may need to
be broadcast to several sites, relayed by several objects, retransmitted, or postponed, depending on the nature and
status of the network, which is a very complex challenge for the client-server model.

4.2 Fault Tolerance
Fault tolerance is concerned with making a distributed system more reliable by handling faults within the system. A
great deal of work has been done in this area, culminating in formal fault tolerant models. These systems are usually
described as having the properties of safety and “liveness.” Safety properties consist of the set of acceptable system
configurations, or invariants, defining the operations that are legal within a distributed system. “Liveness” describes
the notion of the progress of a task within the distributed system. For example, safety properties may require that an
FCS vehicle cannot fire on friendly troops, while a liveness property may require that a friendly troop notification
will arrive at the appropriate FCS vehicle or force warrior.

Ideal fault tolerance provides that all safety and liveness properties are guaranteed to be satisfied within a software
program. When neither safety nor liveness properties are guaranteed, the software program has no fault tolerance. If
only safety properties can be guaranteed, then the program will not violate system invariants but may not complete
the task—i.e., the system will not fire if a friendly troop notification has not been received, or in other words, the
system is failsafe. If only liveness properties are met, the system will fire, and may find out when the notification
arrives that friendly troops were fired on [15].

The key to fault tolerance is redundancy and the ability to detect and correct faults. These concepts are mainly
design principles that need to be enforced during the construction of software. However, there are some practical
technology limitations to fault tolerance based on current distributed computing models. The client-server model, as
described above, limits the capability for message redundancy within a distributed system. A client passes a message
to a server and waits for a response. If the client, the message, or the server suffers a fault, the transaction will fail.
This can significantly limit the fault tolerant capability of current technology in an FCS environment.

4.3 Security
Security ensures that data can be safely transmitted within the FCS system. The nodes within the system can be
authenticated, and data securely communicated. Existing security systems tend to be static; consequently, security
policies and mechanisms are very difficult to change once the systems are installed. With systems that support a
ubiquitous and/or mobile computing environment, the fundamental problem that arises is to provide security that is
expressive and flexible enough to satisfy the specific needs of diverse applications [16].

Security operations are typically based on a security policy that defines which operations are proper and should be
allowed. A security policy usually specify access, accountability, authentication availability, maintenance, violations
reporting and response, and support information about interaction with entities that are either unknown or known but
non-local. If such a policy can be enforced, and there are no violations, the system is secure by definition. The goal
is to create software than can enforce such a policy.

There is certainly existing software that meets some of the demands outlined above, but nothing capable of
supporting the size, distribution, and lifecycle requirements that will flow from the relevant FCS scenarios. Software
protecting individual computers—firewalls, intrusion detection systems, password mechanisms, Public Key
Infrastructures (PKI), and so on would make FCS operations, relatively, but not absolutely secure in the sense
outlined above. To meet FCS demands, it is imperative that the FCS security system be unified, policy-based, and
dynamic. Current COTS systems are relevant but only marginally capable of meeting these requirements.

 Page 8 of 17

4.4 Mobile Code
The term “mobile code” typically refers to a capability whereby a combination of data, code, and execution state is
sent to another machine and executed on that machine through a general virtual machine. The virtual machine may
take the form of a distributed system layer, such as CORBA, or as a computational environment, such as the Java
Virtual Machine. Currently, there are three design paradigms for a mobile code system: (1) a code-on-demand
system allowing code to be transmitted to the data, (2) a remote evaluation system allowing code and data to be
moved to another system, and (3) a mobile agent system allowing code, data, and state2 to be moved to another
system [17].

FCS levies very demanding requirements for mobile code. There is no guarantee that any node in the C2 network
will be available at any one time. Therefore, the design paradigms represented in 1 and 2 above provide limitations
if the source node is no longer available to hold the code or state of a mobile transaction. The third paradigm, mobile
agents, will be discussed in the next section.

Security—most notably, how to prevent malicious software from entering a system—is a major issue with mobile
code. A typical solution is to prevent state from being sent with the code—i.e., mobile code is generally executed in
a very narrow computational space where the target memory is not accessible and can only communicate with the
source system. It appears that this approach may not be viable in an FCS environment.

4.5 Information Fusion
Fusing data from different sources is a difficult problem. The most promising technique for doing so appears to be
the use of a metadata tag language such as Extensible Markup Language (XML) [18]. With this approach a common
ontology or set of XML tags is developed. Then specific data is tagged using this common ontology and can then be
combined with data from other sources [19]. Kim argues that ontologies will be best for reducing uncertainty, while
XML will be most effective in reducing the complexity of the shared data [20].

This approach shows great promise. Unfortunately, tagging data does not necessarily ensure that the data can be
fused. There are many examples where it is technically impossible to fuse data derived from different relative scales
or with differing assumptions. The ultimate goal of data fusion is for the software to understand and manipulate the
data, which has been an open issue for decades.

4.6 Information Analysis and Summary
After data are fused, there is likely to be a need to analyze the data for a wide variety of reasons. Typically, this
analysis will result in reducing the size of the data being analyzed. This provides for faster processing and
transmission of the data. There are a number of mathematical techniques for analyzing and reducing data—feature
extraction, dimensionality reduction, principle component analysis, and cluster analysis, to name a few. These topics
are orthogonal to state-of-the-practice software methods but are very important to addressing the networked C2
challenge of FCS.

4.7 Decision Support
After data has been gathered, fused, and analyzed, this information would typically be used to make military
decisions. A number of decision-support methods and systems can be used to perform this task. As wi th information
analysis, decision support models are not dependent on the state-of-the-practice software methods, yet are very
important to addressing the networked C2 challenge of FCS.

4.8 Software Development Productivity
The proposed FCS networked C2 functionality will be very large and particularly complex by today’s standards. The
engineering effort to assemble such a resource is challenging in both effort and risk. Object-oriented methods have
been shown to produce simpler designs and provide a greater capability for reuse than other methods. However,

2 State is a description of a partially completed process, including the values of all program variables and which step of the
process is the next to be executed. State information is necessary in order for another computer to complete a process that another
has begun.

 Page 9 of 17

object-oriented technology has not been shown to improve software development productivity in a commercial
environment [21]. While simpler designs are clearly desirable in building new software systems, the need for
improved productivity is a significant concern as well.

4.9 Software Development Challenges Posed by FCS
As is apparent from the preceding discussion, a number of challenging software requirements that must be met to
build any networked C2 system, much less the proposed FCS concept. We have analyzed the functional requirements
to produce a reasonable set of software characteristics needed to create this system. We have then analyzed these
software requirements to understand the key technology challenges posed by these requirements, see Figure 3. From
this figure, the distributed computing requirement poses the greatest software challenge for the new FCS system,
while information fusion, information summary and analysis, and decision support are tangential to software
technology advances.

Software

Requirements

Software

Limitations D
is

tri
bu

te
d

C
om

pu
tin

g

F
au

lt
T

ol
er

an
ce

M
ob

ile
 C

od
e

S
ec

ur
ity

In
fo

rm
at

io
n

F
us

io
n

In
fo

rm
at

io
n

A
na

ly
si

s
S

um
m

ar
y

D
ec

is
io

n
S

up
po

rt

S
of

tw
ar

e
P

ro
du

ct
iv

ity

Higher-level Interfaces X X

Asynchronous Interaction X

Sporadic Network Support X X X

Security X X

Peer-to-peer Models X X

Software Productivity X

Figure 3 A mapping of the software requirements to the
limitations of the current software technology

Our analysis indicates six keys software challenges in building this system:

1. Providing higher-level interfaces to distributed objects.
2. Allowing asynchronous object interaction.
3. Providing message support for sporadic network connections.
4. Providing secure object communication and information system operation.
5. Providing support for richer peer-to-peer programming models.
6. Increasing software development productivity.

In the next section we evaluate the suitability of agent technology against these six challenge areas.

5 Agent Technology
Agent technology is an evolving paradigm that strives to create software that can mimic certain human behavior.
Agents are typically described as possessing human characteristics, for example, agents are normally considered to
be autonomous, adaptable, social, knowledgeable, mobile, and reactive to name a few [22]. The focus of much
discussion about agents is on the characteristics of agents. While this can be a very useful abstraction for discussing
agents, it does not provide a strong means of objective comparison. For the purposes of this paper, we are more
interested in the computer science novelties of the technology; therefore, we will limit the discussion of
characteristics, and focus strongly on the comparative benefits of agent technology.

 Page 10 of 17

There are many proposed and deployed agent architectures. A representative architecture by Sycara et al. [23]
proposes planning, communication and coordination, scheduling, and execution monitoring of agent activities. In
this architecture, the agents have access to shared information, typically implemented through a coordination model
that can be domain specific or domain independent. Another architecture description is offered by Griss et al. [24]
who provide a broad description of a general agent architecture where the architecture provides facilities for locating
and communicating with moving and unconnected agents, and for gathering information about groups of agents.
This architecture provides services that include support for mobility, security, management, persistence, and naming
of agents.

These architectures and most others highlight the communication and control aspects of agent systems, which are
typically provided by a general messaging paradigm where one agent can communicate with one or several other
agents. This messaging approach encapsulates the messages that agents send and receive [22]. Object-oriented
methods popularized the concept of data encapsulation, which provides for simple software functions to access an
object’s data. These functions, not direct data access, are then used to retrieve and update this data. This capability
limits the software that must change when minor changes are made to the data. The agent paradigm extends
encapsulation from data to messages sent among agents. This capability is provided through agent coordination
models [25]. These models define how agents communicate among themselves, and can be seen as coordinating
communication based on the time a message is sent (temporal) or the names of the target agents (spatial). These
models provide the ability for communication that is encapsulated and asynchronous with the use of blackboards,
and tuple space models and associated pattern-matching, such as Linda [26]. Agents that use a blackboard or Linda
type coordination model provide a level of indirection for agent communication. In other words, an agent sends a
message to a blackboard, and those subscribers to the blackboard retrieve the message. The agent that sent the
message may have no idea who actually receives it. This concept allows for asynchronous and encapsulated
communication among a collection of connected or disconnected agents, a capability that currently not available in
non-agent systems.

Another aspect of agent messaging is that these messages are typically written in an agent control language [27]
(ACL) such as KQML or the FIPA ACL. These languages provide a structured means of exchanging information
and knowledge among agents. ACLs provide support for a higher-level communication protocol that currently does
not exist with distributed objects.

We will now review in detail how suitable agent technology is for the software development challenges posed by
FCS.

5.1 Higher level interfaces to distributed objects
Agent technology is based on a flexible messaging scheme and agent control languages. Agents conceptually are
connected to blackboards, not other agents. The encapsulation of messages allows for an agent interfaces to change,
requiring only minor modifications to a blackboard, not to all calling agents [22]. This capability provides for a
more robust interface than is currently available in distributed object systems.

Another advantage of agent messaging is that ACLs provide the ability to pass propositions, rules, actions, and
states among agents. This means that messaging is not merely a way of activating a function on a remote agent, but
provides a way of sending information to another agent. The agent can then decide what to do about this
information, if anything. This information can be used to describe what requirements need to be met for an agent to
take action, what states the sender and receiver will be in after the action takes place, or what states the agents will
be in when the overall transaction is complete [27]. Information sent from one agent to another may also be
informative or declarative, having nothing to do with instructing the receiving agent to take action.

The challenge of implementing such an agent interface is selecting both a messaging architecture and an ACL.
Currently there is not a universally accepted messaging architecture or ACL. For an agent system to take advantage
of this high-level interface, there must be very specific and precise specifications on how agents will communicate,
and on the precise syntax of the ACL.

5.2 Asynchronous object interaction
Griss et al. [24] points out that agent systems typically have simple interfaces, and derive capability from loose
coupling and asynchronous messaging. This capability of asynchronous messaging is results from the ability of a

 Page 11 of 17

message to be sent to and retrieved through a loosely coupled temporal agent coordination model. Cabri et al. [25]
reference two coordination models that provide asynchronous agent communication. The first model is a
blackboard-based model that provides a shared area where agents can send and retrieve messages. A message is
posted to a blackboard by an agent, and other agents have the ability to read the message posted by that agent. The
sending agent’s identifier is used by other agents to determine whether to retrieve the message. A blackboard-based
system can be considered asynchronous; however, knowledge of the agent identifiers is required. The second model
is based on a Linda coordination model approach. These models define a messaging protocol which is made up of a
tuple of information, for example a tuple may include the data format, the date of creation, the classification, or a list
of keywords. These tuples are then placed in a shared area, such as a blackboard. Agent can access these messages,
not based on agent identifiers, but on a query of the tuple information, i.e., an agent may retrieve all messages
created yesterday with the “Taliban” keyword. This type of model is asynchronous, and does not require knowledge
of the agent identifier.

Both of these types of models are mature, and widely used in agent systems today. They provide the type of
asynchronous behavior that is required by the FCS system. Clearly, a system that uses a single blackboard for all
agent communication is exposed to security and performance failures. An operational agent system would require
multiple blackboards supporting redundancy to provide a more fault tolerant system.

5.3 Message support for sporadic network connections
Providing software that can effectively function over a faulty network is a very challenging, if not impossible
problem. The advantage that agent technology provides in this type environment is the flexibility and redundancy of
the communication paths among agents, and the ability for agents to change location. Vogler et al. [28] propose a
distributed transaction model using a two-phase commit protocol to verify that an agent message has been delivered.
This very well known approach can provide a means of ensuring that an agent transaction has successfully or
unsuccessfully completed. The agent coordination model must support the ability for an agent to store undelivered
messages within the agent, or support the ability to rollback the transaction, if synchronous transactions are required.
If a transaction has not completed successfully, then a number of network or graph theory algorithms can be used to
determine a viable path through the network, and the transaction can be attempted again, or the agent can move to
another location and try again. If a physical path cannot be found then the transaction is not possible.

The messaging architecture and mobility of agents can be effectively used to communicate over a sporadic network,
however, there is a point where the network can degrade to a point where agent communication is no longer
possible. Distributed transaction protocols (DTP) are very useful for verifying the success of transactions, and can
be used to ensure network security, however, adding this capability can limit the performance of the overall system.

5.4 Secure Communication and Information Operations
As Abadi [29] notes, it is practically impossible to construct a truly secure information system. Communications are
secure if transmitted messages can be neither affected nor understood by an adversary, likewise, information
operations are secure if information cannot be damaged, destroyed, or acquired by an adversary.

Most agree that security in a distributed system should be enforced through system wide security policies. There
policies are often static, and difficult to modify and enforce with existing technology [16]. Agents have
demonstrated that they can enforce a security policy defining what must be done and what must not be done when
information is moved (including communication), stored, created, or destroyed. Agent technology is valuable in this
context because it provides multiple, standalone, persistent processes that can act at high speeds to ensure that all the
rules are always followed. Encapsulated instructions concerning what actions to take under what circumstances
enables agents to execute very complex operations, enabling agents to participate in complex collaborative security
protocols such as key updating and multiparty authorization.

There is no overt reason agents cannot be designed to provide a very secure information management system within
the FCS environment. The challenge for FCS is in defining the FCS system-wide security policy and designing
agents able to enforce it without undo complexity or performance limitations.

5.5 Peer-to-peer programming models
Through the use of blackboard and Linda type coordination models, the programming model of agents can be very
general. Any number of agents can send messages to one or many blackboard(s), and any number of agents can

 Page 12 of 17

receive messages from one or many blackboard(s). This provides the building blocks to create virtually any network
topology that can be defined, and allows for very broad scalability of the network. Care must be taken in defining
the bandwidth, messaging rates, and processing requirements of the network. These topologies will require tuning to
enhance fault tolerance and performance.

5.6 Increasing software development productivity
There are indications that agent technology may provide some software development productivity improvement
[24]. While there does not appear to be any empirical evidence to support this to date, the proposed theory is that
agents increase the level of software reuse. Agents are software components that have their messaging, functionality,
and location encapsulated, which is believed will increase the level of software reuse, thus increasing productivity.
Likewise, if standard messaging protocols and ACLs can be defined, the agent development teams may require less
communication overhead since the interfaces are far richer than with traditional programming.

6 Specific Agent Projects and Technological Readiness
In this section we briefly review a handful of existing agent-based systems that appear to address FCS C2
requirements. This analysis provides a brief glimpse into the state-of-the-practice of agent technology. This review
looks at the published reports of the systems, not the actual systems themselves. The assessment of technology
readiness level (TRL), see Appendix A, is performed strictly from the open literature, and may not accurately reflect
the TRL level of the actual system.

6.1 Cooperating Agents for Specific Tasks (CAST)
Principal investigator: Kenneth Whitebread
Affiliation: Lockheed Martin Advanced Technology Laboratories
URL: http://www.atl.external.lmco.com/indexlist.html

Lockheed Martin has significant experience developing agent-based systems for military applications. We focus
here on Cooperating Agents for Specific Tasks (CAST), which is affiliated with the DARPA Control of Agent-
Based Systems (CoABS) program. The CAST system performed C2 functions for Theater Air Missile Defense
(TAMD) during USN Fleet Battle Experience. The CAST system manages large amounts of distributed information
and provides COP and situation awareness data in the TAMD domain supporting naval C2 of surveillance and strike
assets. CAST does not support large numbers of distributed information sources and links, and scaling properties are
unknown. However, Lockheed Martin Advanced Technology Laboratories also developed and deployed the Domain
Adaptive Information system (DAIS) with the Army 201st Military Intelligence Brigade. DAIS was built to query
heterogeneous databases over unreliable low-bandwidth networks. Although it is safe to say that neither of these
systems would be capable of meeting FCS C2 requirements, according to their information, both perform aspects of
these requirements very well and both are at high TRL: CAST is TRL 7 and DAIS is TRL 9.

6.2 Dartmouth Agent (D’Agent) Multidisciplinary University Research Initiative (MURI)
Demonstration
Principal investigator: Robert Gray
Affiliation: Dartmouth College
URL: http://actcomm.thayer.dartmouth.edu/

The D’Agent MURI demonstration focused on a small number of distributed agents deployed in support of low-
intensity-conflict urban operations, specifically location and arrest of a specific individual. The agents operated
within a dynamic network maintaining two-way C2 connectivity among mobile soldiers and a static command post
in a realistic outdoor urban environment. The commercial off-the-shelf (COTS) hardware used in the demonstration
would not serve in an FCS mission environment, and it is not clear whether the software would scale; the number of
participants in the three demonstrations have been in the low tens of individuals. However, good measures of
performance and logs were taken, the entirety of which can be seen online at the above URL. This work falls at TRL
6. Achievement of TRL 7 would require mission-relevant hardware and a more realistic Military Operations in
Urban Terrain (MOUT)–like test environment.

 Page 13 of 17

6.3 Standard Agent Architecture (SAA) Development Program
Principal investigator: Steven Goldsmith
Affiliation: Sandia National Laboratories Advanced Information Systems Laboratory (AISL)
URL: http://www.aisl.sandia.gov/

Sandia’s Advanced Information Systems Laboratory (AISL) has focused on providing agent technology to
cooperatively manage and protect complex operations on critical data. The Standard Agent Architecture (SAA)
program is unusual in that it uses no COTS agent technology but instead relies on a unique framework constructed
in-house from first principles. SAA agents use KQML and HTML to communicate with non-SAA entities. Recent
work is aimed at in-house deployment of the Boxer cybersecurity application that will detect specific types of
otherwise undetectable anomalous transactions in high-volume TCP/IP traffic (TRL 5). Initial deployment will field
only a few agents; however, Boxer is designed for expansion. AISL will also demonstrate C2 of a mixed collective
of nonrobotic agents, robots controlled by on-board agents, and semiautonomous non-agent robots near the end of
2002 (TRL 4). AISL has demonstrated multi-agent execution of several advanced cryptographic algorithms
specifically designed to protect against stealthy penetration and individual system failure or cooption (TRL 4).
When deployed, the Boxer system will be at TRL 6 (not technically TRL 7 because neither the hardware nor the
personnel are military), but Boxer will be providing operational information to computer security operations
personnel in an operational environment.

6.4 UltraLog Program
Principal investigator: Mark Greaves (program manager)
Affiliation: DARPA/IXO
URL: http://www.ultralog.net/; http://www.cougaar.org/sitemap.html

UltraLog is a DARPA program whose expressed goal is to improve the reliability and robustness of the Cougaar
architecture by eventually deploying at least 1000 simultaneously functioning agents providing military logistics
support in a major regional contingency. The primary contractor providing the Cougaar architecture and most of the
development is Bolt, Beranek, and Newman (BBN). We would place UltraLog at TRL 6 or 7; there is room for
interpretation as to whether the demonstration environment is an “operational” environment.

In any case, UltraLog at this time is focused on logistics, and is able to construct an operational plan to move large
quantities of material to a given location. This involves several dozen distributed agents (i.e., the agents are not co-
located) trading information about constraints, capabilities, commitments, and so on to arrive at a workable plan.
This work begins to show that agent systems large enough to support FCS operations are possible. The agents are
general-purpose with specializing behavior provided by “plug-ins,” which are code modules written by the
application programmers. BBN has also done substantial work to prepare Cougaar-based agents for FCS-like
operation of unattended sensors and battlefield logistics.

6.5 Virtual Information Processing Agent Research (VIPAR)
Principal investigator: Thomas E. Potok
Affiliation: Oak Ridge National Laboratory
URL: http://www.csm.ornl.gov/~v8q/Homepage/Projects/vipar.htm

The VIPAR project uses the Oak Ridge National Laboratory (ORNL) Oak Ridge Mobile Agent Community
(ORMAC) to address challenges facing the intelligence community for the U.S. Pacific Command (USPACOM).
ORNL has used ORMAC to develop agent-based systems for the U.S. 6th Fleet, the Defense Logistics Agency,
Lockheed Martin, and the Department of Energy. ORMAC is a blackboard based agent framework that uses FIPA
compliant messaging, and supports full agent mobility.

The VIPAR system quickly gathers and organizes massive amounts of information, up to 10,000 documents, then
distills that information into a form directly and explicitly amenable for use by an intelligence analyst. This system
is deployed and in use at USPACOM. The USPACOM commander in chief Admiral Blair calls VIPAR “A
tremendously successful project” where “Software agents … lead to substantially improved analytical products.”
The USPACOM Science and Technology Advisor calls VIPAR “a grand slam home run!” the “first time we've seen
information discovery and knowledge management software working at HQ USCINCPAC operationally.” This
system is at TRL level 9, however, it only addresses a small part of the C2 requirements for FCS.

 Page 14 of 17

7 Discussion
The analysis in this paper begins by deriving a set of software requirements for the FCS networked C2 system based
on a set of TRADOC functional requirements. This set of software requirements is not an exhaustive set for C2,
however, from a military point of view provides a credible and representative list of the challenges awaiting the
software designers of FCS.

A comparison of these requirements with the capabilities of existing technology is very revealing. Several of the
limitations of existing technology bring into question whether it is capable of producing a C2 system for FCS. The
main limitations of existing technology are low-level interfaces, synchronous interactions, requirements for
continuous network availability, limited redundancy, and limited productivity improvements. Clearly, the current
technology would require major enhancements to be able to support an FCS environment.

Reviewing the limitations of existing technology against agent technology, we are able to assess the suitability of
agent technology in the FCS environment. This assessment highlights the main strength of agent technology within
an FCS environment, which are the messaging and coordination models that agents use. These models enable better
solutions to the FCS challenges than do existing technology. The issue however, is to determine whether the
theoretical capabilities of these models can be realized in practice.

We provide a brief review of some relevant agent work in related areas. This is a paper analysis that may not fully
represent the actual systems, however, there appears to be ample evidence that agent systems have been used to
solve some of the problems faced by FCS.

There are two main questions that this analysis raises, 1) should FCS be built on enhancements to existing
technology or on an agent architecture? 2) Is agent technology mature enough to be used for a project the size and
complexity of FCS? The first question deals more with an economic analysis than a technical analysis. If current
technology is enhanced to solve some of its limitations, the resulting system will most likely look like existing agent
systems. It does not make much sense to reinvent what already exists. The maturity of agent technology is an issue.
There is not a reference agent system that supports the complexity or scale of the proposed FCS system. On the
other hand, it is pretty clear that existing technology will not be able to solve this problem. Looking strictly at the
success of the FCS project, it would appear that agent systems will perform at least as well as traditional systems,
but with the promise of doing much better. Therefore, we recommend the use of agent technology for the FCS C2
system.

There are some issues not related to software that must be addressed as well—namely, security, information analysis
and summary, and decision support. Agent technology can clearly support these tasks, but the technology does not
explicitly provide these capabilities, and these are challenging problems. If these problems cannot be adequately
solved, regardless of whether or not agent technology is used, the FCS system will be limited.

We recommend the use of prototypes and experimentation with agent technology to reduce the software
development risk of FCS, specifically in the areas of scalability, mobility, and security. The resulting information
will provide a clearer picture of the expected benefits of agent technology.

8 Conclusion
 The U.S. Army is transforming through advanced technologies to significantly improve its war fighting capability.
The Army is looking for technologies that can provide dramatic improvements over existing capabilities, yet are
reliable enough to provide a fielded system. Our study assesses both the potential improvements, and the reliability
of using software agent technology for the network-centric C2 portion of FCS. The emerging FCS concept of C2
activities is a dynamic network of moving vehicles that will gather and analyze data from a vast array of battlefield
sensors. This ad hoc network will have vehicles entering and leaving the network at unpredictable times. This
system must be highly reliable and highly secure, with the ability to scale to process massive amounts of data. This
proposed FCS C2 network must be able to process this information rapidly and deliver the right information to the
right locations and people at the right time.

Achieving a networked C2 capability will require significant advances in existing software technologies. Key experts
have proposed agent technology as a potential solution to this challenge. To analyze the capabilities of agent
technology, we have developed a set of software requirements of FCS based on military requirements. These
requirements are then reviewed against the current computer science literature to highlight limitations and challenge

 Page 15 of 17

areas. These challenge areas are then reviewed against agent technology to illustrate the comparative benefits of this
technology in an FCS environment.

From this analysis we find that the networked C2 requirements of FCS are beyond the capabilities of existing
technologies in scalability, mobility, and security. Agent technology provides a number of significant advantages in
these areas, due to much stronger messaging and coordination models, and theoretically is much better suited to the
FCS challenge that is existing technology. There are some mature agent systems that meet some of the requirements
of FCS, but there is currently no single agent system that meets the scale and complexity proposed by FCS.

In summary, agent technology will clearly perform at least as well as traditional technology in an FCS environment,
but with the promise of solving a number of existing technology limitations. Our theoretical and system level
analysis shows that agent technology has the capability to support the significant networked C2 requirements of
FCS, requirements that likely pose unachievable challenges with current technology. In other words, agent
technology is the best technology, perhaps the only technology, for delivering a viable C2 system for FCS. To further
strengthen this analysis, we recommend proof of principle experiments to verify and validate the results of this
analysis.

9 References

[1] Col. William Johnson, Program Manager, “Future Combat Systems,” DARPA/Army Collaborative Future

Combat Systems Demonstration Program, at http://www.arpa.mil/ tto/programs/fcs.html, accessed 4/30/02.
[2] T. M. Carrico, “Vision and Concepts: Agent-Based Command and Control for FCS,” The UltraLog White

Paper Series, Darpa Technical Report.
[3] DARPA/Army Collaborative Future Combat Systems Demonstration Program, “FCS Public Briefings,” at

http://www.arpa.mil/fcs/public.html, accessed 4/30/02.
[4] T. Lee and S. Ghosh, “Simulating Asynchronous, Decentralized Military Command and Control,” IEEE

Computational Sciences & Engineering 3, no. 4 (1996): 69–79.
[5] U.S. Army Training and Doctrine (TRADOC) Briefing, given at Eatontown, N.J. FCS Integrated Study

Team Workshop, December 2001.
[6] G. Fischer and J. Ostwald, “Knowledge Management: Problems, Promises, Realities, and Challenges,” IEEE

Intelligent Systems 16, no. 1 (2001): 60–72.
[7] T. Demarco and P. J. Plauger, Structured Analysis and System Specification, Prentice Hall, New York, 1985.
[8] G. Booch, Object-Oriented Design with Applications, Benjamin/Cummings Publishing, Redwood City,

Calif., 1991.
[9] R. S. Chin and S. T. Chanson, “Distributed, Object-Based Programming Systems,” ACM Computing Surveys

23, no. 1 (1991).
[10] T. Thorn, “Programming Languages for Mobile Code,” ACM Computing Surveys 29, no. 3 (1997).
[11] See the Object Management Group’s (OMG’s) CORBA web site, at http://www.corba.org, accessed 4/30/02.
[12] M. Horstmann and M. Kirtland, “DCOM Architecture,” July 23, 1997, at http://msdn.microsoft.com/

library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp, accessed 4/30/02.
[13] “Java Remote Method Invocation - Distributed Computing for Java,” White Paper, at

http://java.sun.com/marketing/collateral/javarmi.html, accessed 4/30/02.
[14] K. Geihs, “Middleware Challenges Ahead,” IEEE Computer 34, no. 6 (2001): 24–31.
[15] F. Gartner, “Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous Environments,” ACM

Computing Surveys 31, no. 1 (1999): 1–26.
[16] Z. Liu, P. Naldurg, S. Yi, R. Campbell, and M. Mickunas, “Pluggable Active Security for Active Networks,”

in Proceedings of the Twelfth IASTED International Conference on Parallel and Distributed Computing and
Systems (PDCS 2000), November 2000.

[17] A. Fuggetta, G. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions on Software
Engineering 24, no. 5 (1998): 342–361.

 Page 16 of 17

[18] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000,

http://www.w3.org/TR/2000/REC-xml-20001006.
[19] T. Potok, M. Elmore, J. Reed, and N. Samatova, “An Ontology-based HTML to XML Conversion Using

Intelligent Agents,” in Proceedings of the 35th Hawaii International Conference on System Sciences, January
(2002).

[20] H. Kim, “Predicting How Ontologies for the Semantic Web Will Evolve,” Communications of the ACM 45,
no. 2 (2002): 48–54.

[21] T. Potok, M. Vouk, and A. Rindos, “Productivity Analysis of Object-Oriented Software Development in a
Commercial Environment,” Software—Practice and Experience 29, no. 10 (1999): 833–847.

[22] N. Jennings, K. Sycara and M. Wooldridge “A Roadmap of Agent Research and Development” International
Journal of Autonomous Agents and Multi-Agent Systems 1 no. 1 (1998): 7 -38.

[23] K. Sycara, A. Pannu, M. Williamson, and D. Zeng, “Distributed Intelligent Agents,” IEEE Expert 11, no. 6
(Dec. 1996): 36-46

[24] M. Griss and G. Pour, “Accelerating Development with Agent Components,” IEEE Computer 34 no. 5 (May
2001): 37-43.

[25] G. Cabri, L. Leonardi, and F. Zambonelli, “Mobile-Agent Coordination Models for Internet Applications,”
IEEE Computer 33, no. 2 (Feb 2000): 82-89

[26] D. Gelernter and N. Carriero, “Coordination Languages and Their Significance,” Communications of the
ACM 35 no. 2 (Feb. 1992): 96-107.

[27] Y. Labrou, T. Finin, and Y. Peng, “Agent Communication Languages: The Current Landscape,” IEEE
Intelligent Systems 14 no. 2 (March 1999): 45-52.

 [28] H. Vobler, T. Kunkelmann, and M. Moschgath, “An Approach for Mobile Agent Security and Fault
Tolerance using Distributed Transactions,” Proceedings of the International Conference on Parallel and
Distributed Systems (1997): 268-274.

[29] M. Abadi, “Secrecy by Typing in Security Protocols,” Journal of the ACM 46, no. 5 (Sept 1999): 749-786.
[30] J. Mankins “Technology readiness Levels: A White Paper”; Advanced Concepts Office, NASA Office of

Space Access and Technology; (April 1995);
http://see.msfc.nasa.gov/see/WorkShop/TRL%20Descriptions.doc

Appendix A: Technology Readiness Level (TRL) Summary

The phrase “technology readiness level” has been in use “for many years” [30] by the National Aeronautics and
Space Administration (NASA) for use in managing the technology maturation process. Although levels 7, 8, and 9
specifically refer to space flight, they can be generalized to any technology by replacing the word “space” with the
word “operational” and the word “flight” with the word “operations.”

Interpretation is required to differentiate among the terms: “laboratory environment,” “relevant environment,” and
“space [operational] environment.” In this white paper we have used the following interpretations in assigning
TRLs:

An operational environment is an environment in which the technology in question is exercised under conditions
that replicate a military mission in every way possible. In general this implies the technology is installed on military
hardware and operated by military personnel in conditions that are within their mission envelope. If the mission
involves adversaries they will be simulated in the exercise.

A relevant environment is an environment in which the technology in question is exercised under conditions that
resemble a military mission. The technology need not be installed on military hardware or operated by military
personnel. In general the intent is to use the technology in an environment whose gross characteristics—number and
roles of participants, physical distances, structures, weather, etc.—are within the envelope of missions of interest.
Both Blue and Red forces are simulated as necessary.

 Page 17 of 17

A laboratory environment is an environment in which the technology in question is exercised under conditions that
are largely irrelevant and whose resemblance to military missions is either accidental or narrowly focused. The
technology need not be installed on military hardware or operated by military personnel. In general the intent is to
measure performance or validate functionality within a narrow scope relative to the missions in which the
technology is expected to operate.

We further interpret the term flight[operations]-qualified to mean that the technology in question has been declared
by the military to be fit for use in military operations and the term flight[operations]-proven to mean that the
technology in question has been successfully used in military operations.

TRL 1 Basic principles observed and reported

TRL 2 Technology concept and/or application formulated

TRL 3 Analytical and experimental critical function and/or proof of concept

TRL 4 Component and/or breadboard validation in laboratory environment

TRL 5 Component and/or breadboard validation in relevant environment

TRL 6 Model or prototype demonstration in a relevant environment

TRL 7 System prototype demonstration in a space environment

TRL 8 Actual system completed and flight-qualified through test and demonstration

TRL 9 Actual system flight-proven through successful mission operations

