
A Model of Correlated Team Behavior in a Software Development
Environment

Thomas E. Potok/Oak Ridge National Laboratory
Mladen A. Vouk/North Carolina State University

Abstract
In today’s highly competitive software

development environments, accurately estimating
software duration and cost can often mean the
difference between project success or failure.
Traditional software development estimation
techniques often assume that software development
teams operate independently from task to task. This
assumption allows task estimate covariances to be
ignored. However, there is ample evidence that the
behavior of a software development team is not
independent, but is consistent over the life of a
project. This means that the accuracy of software
estimates may suffer due to this simplifying
assumption. We present results from what we believe
is the first general model for representing correlated
team behavior in a software development
environment. This model shows that strong teams
that behave in a correlated manor out perform teams
that operate randomly. What is not as obvious is that
weak teams that consistently perform poorly have a
lower overall productivity than a random team. This
suggests that the best cure for a poorly performing
team may be to randomly shuffle the team members.

1. Introduction

As software development processes mature, and
software development cycles shorten there is
becoming less and less margin for error in the
successful development of a software project. Where
a few years ago developer’s estimates were routinely
doubled before a schedule commitment was made,
now it is not uncommon for a developer’s best
estimates to actually be shortened before a project
commitment is made.

1.1. Related work

The most frequently used software estimation
models are typically activity based models. These
models organize a software project into a network of
several smaller parts, commonly called tasks.

Estimates of duration are made for each task, then the
overall project duration is computed from task
information over for the entire project network. Often
an estimate of the duration for a task is based on a
range a values, or an approximate PDF for the
duration of each task. This implies that the overall
project duration can be estimated by the joint PDF of
the duration of the relevant tasks. Clearly deriving or
simulating this joint distribution can be a very
difficult task, particularly if the tasks are correlated in
some way. However, the tasks are typically
assumed to be independent. That is the task duration
times are 1) independent and identically distributed,
and 2) the mean and variance of each duration time is
known. If this assumption holds, then estimating the
mean and variance of the joint PDF can be a fairly
trivial task. The PERT model is probably the best-
known activity based model used for software
development [1]. Other representative activity model
include: Markov chains [2]; and PETAN networks
combining general activity networks and Petri nets
[3]. There has also been work on simulating the
activity with the software development process, Potok
and Vouk use common business model effects to
derive a distribution for software task completion
based on enterprise, methodology, and process
factors [4].

The key issues related to modeling the behavior
of software develop teams are, 1) is it valid to assume
that software development teams act independently
from task to task in a project, and 2) how can the
correlated behavior of a software development team
be effectively modeled.

We propose a simulation model that supports
correlated team behavior, i.e., a strong team will
exhibit high-productivity over all the tasks, while a
weak team will perform with low productivity over all
the tasks. The correlated team model uses a preset
factor to estimate the team proficiency, then uses
randomly selected values from tailored distributions
that produce correlated samples. These samples are
then used to determine the task and project duration
for a team behaving in a correlated manor. We

believe that this approach can provide far greater
insight into both estimating and understanding how
software development teams operate.

2. Background

We now describe a general model that we have
used to estimate task and project duration for
software development [4]. In the context of this paper
we define average productivity of a software
professional in thousands of LOC (KLOC) per
person-month, but with an understanding that the
effort (or time) expended includes many non-coding
activities that are necessary in developing a viable
project. A software team may consist of one or more
software professionals, not all of which need to be
engaged in software coding and testing activities. We
will express software team productivity in terms of
KLOC per calendar month.

A task or activity is a unit of work that produces
a subcomponent of the overall project. Work
performed in a task is well defined with a planned
start and finish time. Tasks can be viewed as
individual segments of a project starting at the
completion of the previous task, which we call
individual tasks.

1.2. Model

We assume that the distribution of task
durations absent of external influences is uniform and
bounded by the minimum and maximum task duration
ranges (TDRs) for the task.

The granularity of our model is at the level of
project tasks. Therefore, in addition to individual
tasks, we recognize aggregate tasks. The start of an
aggregate task is conditioned on completion of the
task that precedes it. We represent the duration of a
project task as a function of team productivity
requiring estimation of the effective size or
complexity of a project task (e.g., in terms equivalent
KLOC), and of the average team productivity over
the task in the same units (e.g., in KLOC/(calendar
development month). The duration of a task is then

 Task Duration =
ity ProductivTeam

SizeTask . (1)

The relationship between task duration and size
is linear if and only if team productivity is constant as
the size of a project increases. Next we define the
metrics used to describe planned and actual task
duration. The minimum and maximum team
productivity range is used to estimate the minimum
and maximum task duration range (TDR).

Let t be the duration of a task. For each
individual task j, within project i, four metrics are

recorded: ti,j,act, the actual task duration time; ti,j,plan,

the planned duration time; ti,j,max, the maximum

duration time; and ti,j,min, the minimum duration

period. The cumulative task completion time up to
and including task j, for a given project i, is a
function of the preceding sequence of tasks, i.e.,

d ti j act i u act
u

j

, , , , .=
=

∑
1

 For example, d1,1,plan=t1,1,plan,

d1,2,plan=t1,1,plan+t1,2,plan, etc. As with the

individual tasks, there are four cumulative durations:
actual, planned, maximum, and minimum.

The minimum and maximum duration times for
a task define a range of possible completion times for
that task. This duration is represented for task j with
the random variable Tj. Tj can assume the values

between the minimum duration time ti,j,min, and the

maximum duration ti,j,max. Duration of a project with

n tasks is a random variable D defined by

D=T1+ T2 +...+Tn, (2)

Where Tj is a discrete independent random
variable within the task duration range of the critical
path, and D is a discrete random variable representing
the project duration.

To complete the basic model, we assume that
the software development team operates
independently from task to task, then to simulate the
duration of a project whose tasks fall within the
intervals [ti,min, ti,max], i=1,...,n, we take a sample

from each interval according to the distribution
assigned to that interval. This provides an estimate of
the individual task duration times for the project.
From this estimate, the aggregate durations can be
determined, as well as the overall project duration
time. We repeat this sampling until the required
simulation accuracy is achieved. We will now
quantify the sampling distribution that produces
correlated team behavior.

3. Correlated team extension

If we no longer assume that the tasks are
independent, but correlated. We now need a method
for obtaining random correlated samples. For
example, if the correlation level is set to 75%, then all
simulated projects will see task durations that
correlated to approximately 75%.

The correlated task duration samples for a
project form the random column vector T≡[T1,...,Tn]

T,
where Tj is a random variable representing the

duration of a task j in project i which can assume

values between the minimum duration time ti,j,min,

and the maximum duration ti,j,max.

From T, we can then define the multivariate
distribution with the mean vector

µT≡[E(T1), E(T2),..., E(Tn) (3)
With the variance-covariance matrix taking the

form





















≡∑

2
21

2
2
221

112
2
1

nnn

n

n

σσσ

σσσ
σσσ

LOLL

L

L

X . (4)

Due to the very limited study in this area we
make the assumption that there is a common
correlation between the team productivity rates of any
two tasks. This implies that a software development
team will produce software at a correlated level for
any two tasks. Translating team productivity to task
duration (see Equation (1)) this correlation is seen in
the relative location within Tj a duration sample is

collected. This matrix can be expressed in terms of
correlations, i.e., YXXYXY σσσρ /= which

produces ΣT that has the “repeated-measures” form

∑ ≡



















T

σ ρσ σ ρσ σ
ρσ σ σ ρσ σ

ρσ σ ρσ σ σ

1
2

1 2 1

2 1 2
2

2

1 2
2

L

L

L L O L

n

n

n n n

. (5)

The method used to sample T is approximate;
but if the univariate marginal distributions of T are
symmetric, then the approximation is excellent in the
sense that the generated random vector has exactly
the target mean, Equation (3), while the target
covariance matrix, Equation (5), is a very close
approximation.

4. Analysis

We now used the simulation model described
above to explore the impact of correlated and
independent teams on the productivity of a
hypothetical project. For this analysis, we define a
project that has five equally sized tasks. For
simplicity, the planned duration for each task is set to
10 weeks. This translates to planned deadlines at 10,
20, 30, 40 and 50 weeks, respectively. We also
assume that an equivalent of 10 KLOC is developed
during each task. We further assume that the

development team productivity1 for the project
operates within the ranges of 500 LOC/week to 1250
LOC/week. From equation (1) it follows that each
project task has a duration range between 8 to 20
weeks. For this project we run two simulations, the
first assumes that a team works independently from
task to task, and the second assumes that the team
behavior is correlated at a 75% level from task to
task.

Comparison of independent and correlated team productivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

Duration in weeks
C

u
m

u
la

ti
ve

 F
re

q
u

en
cy

Correlated

Independent

Figure 1 A comparison of correlated and
random team behavior

Figure 1 shows the cumulative distributions for the
duration of the project developed by a random team
(dashed line) and a correlated team (solid line). Not
surprisingly, a development team that consistently
performs with high-productivity will have a higher
likelihood early completion of a project than a team
that exhibits independent or random behavior. For
example, at a 40-week deadline, the correlated team
has roughly a 20% chance of success, while a random
team has about a 2% chance. Conversely, at a 75-
week deadline, a random team clearly out performs a
poor performing team.

It appears that a correlated team does indeed
perform quite differently than a random team,
however, it is surprising that a strongly correlated
team that has consistently weak performance will take
longer on average than a random team. Based on this
result, it appears that a team that consistently
performs poorly may benefit through randomization
in order to see improved performance.

Figure 2 shows the typical effect of the business
model on correlated and random team behavior.
Again the deadline is set to 50 weeks, but it is now
strongly enforced, meaning that there are strong

1 It is also assumed that the average team size is around 10

software professionals.

negative consequences if the deadline is not met.
This plot shows that correlated teams have a smaller
variance around a task deadline than do teams that
exhibit random behavior from task to task. This
smaller variance shows as expected that the correlated
team performs more consistently than the random
team, however, may have less flexibility to
significantly improve its behavior during the project
life-cycle. From these plots, it is clear that the
correlated effects of the software development team
can alter the results of project estimates that are based
on independent team behavior.

Comparison of independent and correlated team productivity
Deadline and Parkinson’s Effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Duration in weeks

R
el

at
iv

e
F

re
q

u
en

cy

Correlated

Independent

Figure 2 A comparison of correlated and
random team behavior both under common
business effects.

5. Summary

We present a model to support correlated team
behavior over a software development project. Rather
than a team performing strongly on one task, then
poorly on the next, a team can be simulated to
perform consistently over all tasks. Results from this
model sustain the contention that software
development teams do not perform independently
from task to task, and that assuming so can limit the
accuracy of a software project estimate.

The results further indicate the obvious, that
good teams perform better than random teams, and
not as clear, that random teams perform better than
poor teams. However, it also provides some insight
into managing such teams. Clearly a good team
should be maintained and used where high
productivity is needed. For a weak team, it seems
they should be used when low productivity is
acceptable, or the team should be randomized in
some way to improve their productivity.

Further investigation is required to understand
what factors may influence a software development
team behavior.

6. Acknowledgments
Oak Ridge National Laboratory, managed by the Lockheed
Martin Energy Research Corporation for the U. S.
Department of Energy, under contract number DE-AC05-
96OR22464. This submitted manuscript has been authored
by a contractor of the U. S. Government under Contract
No. DE-AC05-96OR22464. Accordingly, the U. S.
Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this
contribution, or allow others to do so, for U. S.
Government purposes.

7. References

1. K. R. MacCrimmon and C. A. Ryavec. “An
Analytic Study of the PERT Assumptions,” Journal
of the Operations Research Society of
America,1964.

2. D. Raffo. “Evaluating the Impact of Process
Improvements Quantitatively using Process
Modeling,” Proceedings of CASCON’93, 290-313,
1993.

3. S. E. Elmaghraby, E. I. Baxter and M. A. Vouk.
“An Approach to the Modeling and Analysis of
Software Production Process,” International
Transactions in Operational Research, 2(1): 117-
135, 1995.

4. T. E. Potok and M. A. Vouk. “The Effects of the
Business Model on Object-Oriented Software
Development Productivity,” submitted for
publication to IBM Systems Journal, 1996.

