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Abstract

In today’s highly competitive software development environments, accurately estimating software duration and cost can often mean the difference between project success or failure. The traditional techniques used to estimate software cost and duration are typically based on the underlying assumption that software development teams operate in a statistically independent manor from task to task. This assumption is not based on the observed behavior of the team, but on the fact that this assumption greatly simplifies the process of estimation, since the team’s output covariance from task to task is assumed to be zero. However, there is ample evidence that the behavior of software development teams is correlated from project to project, and from experience, most would agree that software development teams behave consistently over the life of a project. If these teams do indeed behaved independently from task to task, then the team output from one task would be completely unrelated to the output of the following task. Therefore, it is quite likely that the accuracy of software estimates suffers due to the simplifying assumptions made in the estimation techniques. We present results from what we believe is the first general model for representing correlated team behavior in a software development environment. The model is developed from a general convolution model to simulate the effect of correlated team output by deriving a distribution that when randomly sampled from produces correlated samples. It appears that correlated teams can have a significant effect on software productivity, and the common assumption that software development teams perform independently from task to task can limit the accuracy of a software project estimate. Our theoretical model shows that strong team that behave in a correlated fashion out perform teams that operate randomly. What is not as obvious is that weak teams that consistently perform poorly, have a lower overall productivity than a random team, suggesting that the best cure for a poorly performing team would be to randomly shuffle the team members. 

Introduction

As software development processes mature, and software development cycles shorten there is becoming less and less margin for error in the successful development of a software project. Where a few years ago developer’s estimates were routinely doubled before a schedule commitment was made, now it is not uncommon for a developer’s best estimates to actually be shortened before a project commitment is made. This is particularly true of the rapidly developing software consulting industry. Based on a relatively limited amount of information, a consultant needs to estimate how much time and effort is required to satisfy a potential client. An overestimate may result in losing a bid, while an underestimate may result in reduced profit, or even lost money. Having the ability to estimate the correlative effects of a software development team provides a powerful tool for refining software cost and duration estimates.

Related Work

Estimating the cost and duration of a software project can be performed in a wide variety of ways. Generally, these estimating methods can be grouped into two broad categories; statistical models, and activity based models. Statistical models generally are derived from regression analysis on software development data from several projects, forming a high-level relationship. This relationship typically implies a log-linear association between the effort and size of a software project. The effects of the team experience and capabilities are usually represented by adjusting the regression equation coefficients [Walston et al. (1977), Boehm (1981), Bailey et al. (1981)]. 

Activity based models organize a software project into a network of several smaller parts, commonly called tasks. Estimates of duration are made at the task level, then computed over for the entire project network. Often an estimate of the duration for a task is based on a range a values, or an approximate PDF for the duration of each task. This implies that the overall project duration can be estimated by the joint PDF of the duration of the relevant tasks. Clearly deriving or simulating this joint distribution can be a very difficult task. However, if it is assumed that the tasks are 1) independent, and identically distributed and 2) the mean and variance of each task is known, then estimating the mean and variance of the joint PDF can be a fairly trivial task. The PERT model is probably the best-known activity based model used for software development. This model provides a network description of tasks in a project, and a means of describing the task duration uncertainty through the Beta distribution. It is unclear why the Beta distribution is used to represent task duration. It appears that the reason has more to do with the flexible characteristic of the distribution, rather than from observed activity behavior. [MacCrimmon et al. (1964)].  Other representations of task networks that have been used to model software development, include: Petri nets using Beta distributions for task durations [Lui et al. (1989), Park et al. (1993)]; Markov chains [Raffo (1993)]; and PETAN networks combining general activity networks and Petri nets [Elmaghraby et al. (1995)] to name a few. There has also been work on simulating the activity with the software development process, Borger et al. proposed that Parkinson’s Law and the Deadline Effect influence schedules, and that the task duration uncertainty can be represented by a normal distribution [Borger et al. (1991)].  Potok and Vouk use common business model effects to derive a distribution for software task completion based on enterprise, methodology, and process factors [Potok et al. (1997)].

All of these activity based models provide a way of deriving the mean and variance of the duration of a task, under the assumption that the tasks in a project are statistically independent of each other. This assumption allows for the covariance among tasks to be considered zero, which significantly simplify the calculations required to estimate project duration, i.e., E(T1+T2+…+Tn)=E(T1)+E(T2)+…+E(Tn), where Ti is the duration of an individual task.

The key issues related to modeling the behavior of software develop teams are, 1) is it valid to assume that software development teams act independently from task to task in a project, and 2) how can the correlated behavior of a software development team be effectively modeled. 

One could argue that the assumption of tasks being independent is not valid. In an activity like software development, where the progress towards completing a project is dependent on the human element, it intuitively seems likely that the team productivity on project tasks is correlated. It has been well documented that people and teams experience a learning curve in performing new tasks. The productivity ratio between a novice, and experienced worker can be as high as 6:1 [Stevenson (1995)].  However, there appears to be little study of the behavior of a programming team within a project, therefore, we use the following scenario to further illustrate the point. Suppose there is a hypothetical project to be developed by a software development team selected from a randomly distributed pool of programmers. Further, that there are two teams to be selected to develop the same project. Team A, is randomly selected from the pool prior to the start of the project, while team B is a “floating” team, whose members are randomly selected from the pool prior to the start of each task. In other words, the members of team A stay the same throughout the project, while the members of team B change at the beginning of each task. If software development teams act independently from task to task, then on average, team A should produce the same amount of code over a given time period as team B, since team B is truly an independent from task to task.  Even in the most extreme cases, it would seem very unlikely that these two teams would perform at a comparable productivity rate. Team B will have a steep learning curve at the start of each new task, with the team needing to understanding what has been done, what needs to be done, and what new roles need to be played. Therefore this random team would be hard pressed consistently match team A’s productivity rates, since the members of team A already know what has been done, what needs to be done, and what roles they play. Therefore, we believe that a persuasive argument can be made that software development teams do not appear to act independently from task to task. This argument then raises the question, do existing software estimation models produce reasonable approximations if they are based on a questionable assumption. 

We propose a simulation model that supports correlated team behavior, i.e., a strong team will exhibit high-productivity over all the tasks, while a weak team will perform with low productivity over all the tasks. The correlated team model uses a preset factor to estimate the team proficiency, then uses randomly selected values from tailored distributions that produce correlated samples. These samples are then used to determine the task and project duration for a team behaving in a correlated manor.  We believe that this approach can provide far greater insight into both estimating and understanding how software development teams operate.

In the next section we describe a general convolution model to estimate the duration of a software development project. This is followed by the introduction of an extension to this model to support teams that operate with consistent productivity from task to task. In a later section we analyze the results of a hypothetical project that is developed by a team that performs randomly, and consistently from task to task. Summary and conclusions are given in the last section.

Background

We now describe a general model that we have used to estimate task and project duration for software development [Potok et al. (1997)]. In the context of this paper we define average productivity of a software professional in thousands of LOC (KLOC) per person-month, but with an understanding that the effort (or time) expended includes many non-coding activities that are necessary in developing a viable project. A software team may consist of one or more software professionals, not all of which need to be engaged in software coding and testing activities. We will express software team productivity in terms of KLOC per calendar month. 

A task or activity is a unit of work that produces a subcomponent of the overall project. Work performed in a task is well defined with a planned start and finish time. Tasks can be viewed as individual segments of a project starting at the completion of the previous task, which we call individual tasks. 

Model

We assume that the distribution of task durations absent of business influences is uniform and bounded by the minimum and maximum task duration ranges (TDRs) for the task, see Figure 1.  One could argue that a triangular or beta distribution may be a good starting representation for the task duration.  However, there is no evidence that the unconstrained task durations have a specific distribution, so the more general uniform distribution seems appropriate.  Note that introduction of business influences such as the Deadline and Parkinson’s Effect will require constrained samples of these task durations, and that the resulting conditional distributions are not uniform.

The granularity of our model is at the level of project tasks. Therefore, in addition to individual tasks, we recognize aggregate tasks. The start of an aggregate task is conditioned on completion of the task that precedes it. We represent the duration of a project task as a function of team productivity requiring estimation of the effective size or complexity of a project task (e.g., in terms equivalent KLOC), and of the average team productivity over the task in the same units (e.g., in KLOC/(calendar development month). The duration of a task is then [Badiru (1995)]


Task Duration =
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The relationship between task duration and size is linear if and only if team productivity is constant as the size of a project increases.
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Figure 1 The planned (shaded box) and actual  (heavy line) task durations and the corresponding minimum and maximum task durations.    

Next we define the metrics used to describe planned and actual task duration. The minimum and maximum team productivity range is used to estimate the minimum and maximum task duration range (TDR).  The minimum duration for a task can be achieved only if the programming team is working at their maximum productivity; this will almost certainly include code developed from overtime work.  The maximum task duration is theoretically infinite, but in practice is usually limited by market forces such as a fraction of an 18-month development cycle.  Figure 1 illustrates the quantitative characteristics of a task.  

Let t be the duration of a task.  For each individual task j, within project i, four metrics are recorded: ti,j,act, the actual task duration time; ti,j,plan, the planned duration time; ti,j,max, the maximum duration time; and ti,j,min, the minimum duration period.  Under the assumption that the size of the problem being solved in a task remains essentially constant during that task, then the minimum and maximum durations are functions of maximum and minimum team productivity, respectively, in that task.  In practice, a new project task will not start before the previous task has completed.  Hence, for each task there is a chain of events that lead to it, i.e., its cumulative duration, d.  The cumulative task completion time up to and including task j, for a given project i, is a function of the preceding sequence of tasks, i.e., 

 For example, d1,1,plan=t1,1,plan, d1,2,plan=t1,1,plan+t1,2,plan, etc.  As with the individual tasks, there are four cumulative durations: actual, planned, maximum, and minimum.
The minimum and maximum duration times for a task define a range of possible completion times for that task.  This duration is represented for task j with the random variable Tj.  Notationally, random variables are represented with upper case letters, and instances of these random variables with the corresponding lower case letters.  Tj can assume the values between the minimum duration time ti,j,min, and the maximum duration ti,j,max.  Duration of a project with n tasks is a random variable D defined by

D=T1+ T2 +...+Tn,                                                    (2)

Where Tj is a discrete independent random variable within the task duration range of the critical path, and D is a discrete random variable representing the project duration.  For example, adding the minimum task duration time from each task on the critical path, ti,j,min, gives the minimum duration time for the overall project, di,n,min.  Adding the maximum task duration times, ti,j,max, gives the maximum duration time for the project, di,n,max.  

To complete the basic model, we assume that the software development team operates independently from task to task, then to simulate the duration of a project whose tasks fall within the intervals [ti,min, ti,max], i=1,...,n, we take a sample from each interval according to the distribution assigned to that interval.  This provides an estimate of the individual task duration times for the project. From this estimate, the aggregate durations can be determined, as well as the overall project duration time. We repeat this sampling until the required simulation accuracy is achieved. We will now quantify the sampling distribution that produces correlated team behavior.

Correlated Team Extension

If we no longer assume that the tasks are independent, but correlated, we now need a method for obtaining random correlated samples. For example, if the correlation level is set to 75%, then all simulated projects will see task durations that correlated to approximately 75%. 

The correlated task duration samples for a project form the random column vector T([T1,...,Tn]T where Tj is a random variable representing the duration of a task j in project i which can assume values between the minimum duration time ti,j,min, and the maximum duration ti,j,max.
From T, we can then define the multivariate distribution with the mean vector

(T([E(T1), E(T2),..., E(Tn)]T                                  (3)

With the variance-covariance matrix taking the form
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Due to the very limited study in this area we make the assumption that there is a common correlation between the team productivity rates of any two tasks. This implies that a software development team will produce software at a correlated level for any two tasks. Translating team productivity to task duration (see Equation (1)) this correlation is seen in the relative location within Tj a duration sample is collected.  For example, in a highly correlated project, if a sample taken for task 1 is at the upper end of the TDR, then the samples taken for the remaining tasks will also be at the upper end of the TDR for each task, respectively. 

This matrix can be expressed in terms of correlations, i.e., 
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The method used to sample T is approximate; but if the univariate marginal distributions of T are symmetric, then the approximation is excellent in the sense that the generated random vector has exactly the target mean, Equation (3), while the target covariance matrix, Equation (5), is a very close approximation. 

Analysis

We now used the simulation model described above to explore the impact of correlated and independent teams on the productivity of a hypothetical project. For this analysis, we define a project that has five equally sized tasks. For simplicity, the planned duration for each task is set to 10 weeks. This translates to planned deadlines at 10, 20, 30, 40 and 50 weeks, respectively. We also assume that an equivalent of 10 KLOC is developed during each task. We further assume that the development team productivity
 for the project operates within the ranges of 500 LOC/week  to 1250 LOC/week. From equation (1) it follows that each project task has a duration range between 8 to 20 weeks. For this project we run two simulations, the first assuming a team that works independently from task to task, and the second assumes that the team behavior is correlated at a 75% level from task to task.  

We further evaluate the influence of two commonly observed business influences, the Deadline Effect, and Parkison’s Law on correlated teams. Boehm defines the Deadline Effect in the phrase “the amount of energy and effort to an activity is strongly accelerated as one approaches the deadline for completing the activity” [Boehm (1981)]. The Deadline Effect depends on enforcement of milestone (task/iteration) deadlines. We model this by discarding the cases for which any of the hard deadline aggregate tasks in the case finish after their deadline. Cyril Parkinson published a collection of aphorisms about economics in 1957, the most remembered is that “work expands to fill the time, ” or as originally stated, “work expands so as to fill the time available for its completion” [Parkinson (1957)]. Projects under Parkinson’s Law will generally not have an aggregate duration of less than the scheduled duration. We model Parkinson’s Law by delaying the aggregate completion times that are less than the planned duration times. An aggregate duration that would normally be shorter than the planned deadline is expanded so that it meets the deadline, while an iteration that would normally finish after the deadline is not modified. Tasks under Parkinson’s Law either finish, or are expanded to finish, within the interval [di,plan-, di,max], where   is a small time period, typically one or two weeks [Potok et al. (1997)]. 
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Figure 2 A comparison of a hypothetical procedural project between correlated and random team behavior

Figure 2 shows the cumulative distributions for the duration of the project developed by a random team (dashed line) and a correlated team (solid line). Not surprisingly, a development team that consistently performs with high-productivity will have a higher likelihood early completion of a project than a team that exhibits independent or random behavior.  For example, at a 40-week deadline, the correlated team has roughly a 20% chance of success, while a random team has about a 2% chance.  Conversely, at a 75-week deadline, a random team clearly out performs a poor performing team.  

It appears that a correlated team does indeed perform quite differently than a random team, however, it is surprising that a strongly correlated team that has consistently weak performance will take longer on average than a random team.  Based on this result, it appears that a team that consistently performs poorly may benefit through randomization in order to see improved performance.
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Figure 3 A comparison of a hypothetical procedural project between correlated and random team behavior both under Parkinson’s Law.

Next, Figure 3 shows the same random and correlated team scenario, but under the influence of a common business influence known as Parkinson’s Law. This influence is manifest in teams finishing a task on or after a schedule deadline, but not before.  It is assumed that the deadline is set to 50 weeks.  Note that the point where the curves cross has moved from 59 weeks in figure 2 to 61 weeks in figure 3. Parkinson’s Law appears to have a significant impact on a high-proficiency team and little impact on a weak team. This begs two questions, 1) do strong teams perform poorly as a result of Parkinson’s Law, and 2) can weak teams be improved if development schedules were better managed.

Figure 4 shows the typical effect of the business model on correlated and random team behavior.  Again the deadline is set to 50 weeks, but it is now strongly enforced, meaning that there are strong negative consequences if the deadline is not met.  This plot shows that correlated teams have a smaller variance around a task deadline than do teams that exhibit random behavior from task to task. This smaller variance shows as expected that the correlated team performs more consistently than the random team, however, may have less flexibility to significantly improve its behavior during the project life-cycle.  From these plots, it is clear that the correlated effects of the software development team can alter the results of project estimates that are based on independent team behavior.
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Figure 4 A comparison of a hypothetical procedural project between correlated and random team behavior both under Parkinson’s Law and the Deadline Effect.

Discussion

It is evident that correlated teams can have a significant effect on software productivity. From this model is appears that a strong team will clearly out perform a random team, and perhaps not as obvious, a weak team will perform worse than a random team. Further is seems that typical business effects such as Parkinson’s Law may some what lessen the positive impact of a stongly performing team, while other business influences such as the enforcement of deadlines, tends to increase the output of weaker teams. Based on this model, it would seem difficult to justify the assumption that tasks in a software development project are independent. 

Exactly how much of this effect is due to the make up of the team versus the management of the software development process is unclear. One explanation is that the teams performance is determined strictly by the human characteristics of the team. A group of people that have work together over a period of time will produce consistent results from task to task. If this is indeed the case, then this type of correlated model should provide a fair representation of this situation. Another possible explanation for this type of behavior is that it is some how driven by external factors, such as management pressure to meet schedule deadlines, or increase productivity.  For instance, referring back to the scenario given at the introduction to this paper of team A and team B
, if team B is coerced to meet the same deadlines as team A, then the productivity with respect to calendar time for the two teams will be the same. However, team B is clearly not behaving in an independent manor, since the output from the team can be correlated to the amount of schedule pressure applied to the team. This is another case where this type of correlated model can be useful. 

Taking this example a step further, it may also be possible for a highly correlated team to be forced into “random” behavior if controlling business pressures on a project are exerted randomly, i.e., project schedule changes caused by supplier problems, or competitive challenges. In this case, a team that would have normally behaved in a consistent manor may now behave randomly based on the governing business influences. Unfortunately, the presented model would provide little benefit in estimating the project duration. However, in this case the driving factors on the project are non-deterministic, so it could be argued that any type of project estimate is fruitless.

Another issue of interest to business is the use of consultants or an existing team to develop a software project. It is commonly believed that a random collection of skilled consultants can out perform even a strong existing team of software developer, as evident in the strong surge in demand for software consultants. However, this hypothetical project does not support that contention, unless the productivity range that the consultants work in is significantly higher than that of the local team. Again, this is an area where the data is limited, however, one worthy of further investigation.

Summary

We present a model to support correlated team behavior over a software development project. Rather than a team performing strongly on one task, then poorly on the next, a team can be simulated to perform consistently over all tasks.  Results from this model sustain the contention that software development teams do not perform independently from task to task, and that assuming so can limit the accuracy of a software project estimate. 

The results further indicate the obvious, that good teams perform better than random teams, and not as clear, that random teams perform better than poor teams.  However, it also provides some insight into managing such teams.  Clearly a good team should be maintained and used where high productivity is needed.  For a weak team, it seems they should be used when low productivity is acceptable, or the team should be randomized in some way to improve their productivity. 

Further investigation is required to understand what factors may influence a software development team behavior. Likewise, is it possible to have a random team of potentially high-productivity consultants out perform a strong existing team, and if so, what are the contributing factors.
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�	It is also assumed that the average team size is around 10 software professionals.

� Team A is randomly selected from the pool prior to the start of the project, while team B is a “floating” team, whose members are randomly selected from the pool prior to the start of each task.
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