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Temperature dependence of the elastic constants of Ni:
reliability of EAM in predicting thermal properties
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Abstract. The temperature dependence of the elastic constants of Ni is calculated using
molecular dynamics (MD) simulations in conjunction with the embedded atom method (EAM).
The Parrinello-Rahman version of molecular dynamics is employed along with the fluctuation
formulae in theHoN andEhN ensembles at various temperaturesfro K to somewhat below

the melting point (experimental value 1725 K). The calculated results for the elastic constants,
compressibility, linear coefficient of thermal expansion, specific heat and the melting temperature
compare reasonably well to experiment.

1. Introduction

The elastic constants of solids provide valuable information on their mechanical and
dynamical properties. In particular, they provide information on the stability and stiffness of
materials. Various experimental techniques are available for the measurement of the elastic
constants such as ultrasonic wave propagation, neutron scattering and Brillouin scattering,
to name a few. Interatomic potentials are usually results of fits to various experimental
data 4 0 K or room temperature. It is not clear whether simulations performed at other
temperatures should still reproduce the experimental data as accurately. Comparison of
theoretical and experimental elastic constants and other properties at various temperatures
can thus serve as a further measure of the reliability and utility of a potential model.
Andersen [1] has developed a version of molecular dynamics (MD) in which the volume
of the computational box can vary but its shape can not. This form of MD can generate the
isoenthalpic—isobaricHPN) ensemble, in which the enthalp¥y, the hydrostatic pressure
P and the total number of particle$ in the system are all constant. The bulk modulus,
which is a measure of volume fluctuation, can be determined usingRheensemble. The
HPN ensemble is appropriate only for the cases where a fixed isotropic pressure is at work
and the shape of the computational box does not change. The extenditiPNoMD to
treat anisotropic external stresses with a variable-shaped computational cell was developed
by Parrinello and Rahman [2]. The Parrinello-Rahman extensiétPdf MD can generate
the isoenthalpic—isostress ensemhiz /), whereo is the stress. An important aspect of
HoN MD is that it can be employed in the study of structural phase transformations of
solids as functions of temperature and external stress.
There are several theoretical methods for the calculation of elastic constants. In the
direct method, one applies a constant stress on the sample and determines the corresponding
average strain [2,3]. From the stress—strain relationship one can then calculate the elastic
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constants. The direct method is inconvenient because for the calculation of all the elastic
constants several stresses need to be applied at several times. An alternative way to
determine the elastic constants is to use Ma&V ensemble; Parrinello and Rahman derived

a formula in this ensemble that relates average equilibrium strain fluctuations to the elastic
constants [2]. There are similar fluctuation formulae inHe&v ensemble for the calculation

of the compressibility [2], the specific heat [4] and the linear coefficient of thermal expansion
[4]. A shortcoming ofHoN MD is the ambiguity about the ‘mas$/ of the computational

cell [2, 3], since the equations of motion depend on this mass. Although it can be proven
that the final averaged equilibrium quantities should not deperid otihe coupling between

the box and particles inside it is weak and dependdforBecause of the weak coupling it

is difficult to equilibrate the box and particles at the same time.

Elastic constants can also be determined usingetid ensemble [5], wherer is the
total energy/: is a matrix representing the volume and shape of the computational cell and
N is the total number of particles. Although calculation of the elastic constants iBhNe
ensemble has been shown to converge faster than the correspdidihgalculation, it
has not been employed more frequently because it requires (a) the second derivatives of the
potential, which is not a trivial task for some potential models, and (b) a refereifroen
a previousHoN MD run.

Finally, the elastic constants of a crystal can be calculated using a Monte Carlo (MC)
simulation [6]. The MC method for the calculation of the elastic constants has all the
advantages offloN MD and EhN MD simulations without some of their disadvantages.

Prerequisite to any realistic atomistic computer simulation is a reliable interatomic
potential. The embedded atom method (EAM) was originally developed by Daw and
Baskes [7] to model the interatomic interactions of face-centred cubic (fcc) metals. Since
its development, the EAM has been extended to body-centred cubic (bcc) and hexagonal
close-packed (hcp) metals and to semiconductors [8], albeit with somewhat less success
for the bcc and tetrahedrally-coordinated materials than for the close-packed metals. The
EAM has been applied to many bulk, surface and interface problems. The applications
in bulk or bulk-like environments have generally been more successful than corresponding
applications for surfaces. This behaviour is expected from the EAM because it is generally
fitted to bulk properties. The reliability of the EAM in the bulk and its simple form for use
in computer simulations makes it attractive for utilization in the present problem. In our
calculations, we have used the EAM functions for Ni developed by Voter and Chen (VC)
[9] which were fitted to bulk experimental properties. We chose Ni because it is an fcc
metal, and VC's version of the EAM is both easy to use computationally and gives good
results for Ni at room temperature.

There has not yet been a comprehensive study of the temperature dependence of various
properties of materials using the EAM. In this paper, we study the temperature dependence
of several properties of a Ni single crystal usifigN MD and EhN MD. In particular, we
calculate the temperature dependence of the elastic constants, compressibility, specific heat
and linear thermal expansion coefficient. We also employ a simple model [10] to estimate
the melting point. Our results will be compared with the available experimental data. In
section 2, highlights of the EAM and MD are described. In section 3, we present our results.
A summary and conclusions are given in section 4.

2. Technical approach

In the EAM, the binding energy of atomis a sum of contributions from the embedding
potential and the pair potential,
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1
E; = Fi(pi)"i‘ézqﬁij(rtj) (1a)
e

Epot= Y E; (1b)

where E; is the energy of atoni, p; is the electronic charge density at siteF; is the
embedding energy function of atoitand ¢;; is the pair potential between atomsnd ;.
p; is approximated by the superposition of atomic charge densitiesThe EAM (VC)
functions employed here have a Morse-type pair potential with three free parameters for
¢;j, and F; is determined from equation 4} with E; approximated with the universal
form from the Rose equation of state [11]. The atomic electron depsitlas the form
presented in [9] with one free parameter. Due to the nature of the fitting process for the
embedding function, the lattice constant, cohesive energy and bulk modulus are exact fits
to the experimental values. In order to make and ¢;; appropriate for use in computer
simulations, they and their first derivatives have been smoothed by the prescription set forth
by VC. Four parameters of the EAM functions (threegirand one inp“) are determined
by fitting to the bulk properties of a Ni single crystal including the elastic constgntand
the single vacancy formation energy, and to dimer properties (bond energy and length) [9].
In the MD simulation, Newton’s equations of motion are integrated to determine the

phase-space trajectories of all atoms in the system using a force function which is derived
from the EAM potential in equation (1). The fordg on atoma is determined fromE
by

F, = (28)

0x,

where for the EAMF, would take the following form,

d0F, d at IF, dp 0P (ra
Fo==Y Py, OFy s, 3bar(rab) |
0pq 0rap 0pp Orap 0rap

(2b)

b=1
b#a

wherer,, is a vector from atonu to atomb andr7,, is a unit vector in that direction.
Throughout this paper we have adopted the notation of [5]. A prime denotes the derivative
with respect to the argument of the function. The microscopic stress tensor for the EAM
functions can be determined from the virial theorem and has the following form,

1 a PaiPaj / / / Xabi Xab'
Py = 5| PP S (R Fypl o+ gl KA ©
a=1 Mg a,b:hl ab

where V is the volume of the computational bow,, is the mass of atoma, p,; is the
ith component of the linear momentum of partieleX,,;; is theith component of the,,
vector and the summation is over all atoms with: b.

In all the simulations, we have used a lattice of 256 atoms arranged in an fcc crystal.
The equations of motion are integrated with a fifth order predictor—corrector Nordsieck
integration scheme [12], with periodic boundary conditions in three dimensions. We have
used time steps which are small enough to conserve energy (enthalpy) in the simulations
with good accuracy. The MD simulations were performed for a period of tinusing the
To N ensemble (constant temperature), followed by a petiating theHoN ensemble to
confirm that thermal equilibrium has been reached, and a subsequent run for g,time
which statistical averages were calculated.

In the following, we briefly outline the fluctuation formulae that will be employed in
the calculations.
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2.1. Elastic constants

2.1.1. b N ensemble. The time average of the strain fluctuations is related to the adiabatic
compliancesy;ji by [2—4]

(ijer) = (kgT/VoIniju 4)

whereg;; is theijth strain component] is the temperaturel, is the reference volume,
andn;;; is the compliance matrix. The elastic constants matiiy, is the inverse of the
compliance matrix. However, the>99 n;;; matrix is singular and does not have a proper
inverse. Using the \Voigt notation, 1% 1, 22— 2, 33— 3,23— 4, 13— 5,12 6
and, by the prescription set forth in [13]; is transferred into an equivalent non-singular
6 x 6 n,,, matrix,

1 X niju 1<m,n<3
Nmn = 3 2 X Niju I<morn<3,4<norm<6
4 X niji 4<m,n<6.

2.1.2. EhN ensemble.The fluctuation formula for the calculation of the elastic constants
in the EhN ensemble was derived in [5],

VO 2NkBT

Cijtm = — = (P Pam) — {Pij){(Prm)) + ————(8ixSjm + 8imbji)
kBT 0

+(Bijim) + (B2ijim) + (B3ijim)- (5)

The first term on the right-hand side is called the fluctuation term, the second the temperature
correction and the last three are called the Born terms. Pair terms are includddand

B2 while many-body contributions are iB3. The Born terms have the following forms

for the EAM functions:

1 "1 XabiXabi XabkX,
Blijin = - > [% - %] CabiZabiabkZabm (6a)
0 4b=1 Tab Tap
a<b
1 / atr psfl XabiXabjXabkXabm
B2ijun = - D Fy | ply = 0 | SRR (6b)
Vo 521 Tab Tab
a#b
1 N
B3ijkm = Z F:gaijgakm (6C)
Vo a=1
andg,;; is given by
P2 Xapi Xavj
8aij = Z % (6d)
b=1 ab
b

It has been shown by Ray [3] that tiie= 0 elastic constants in tHehN ensemble can
be determined using the following equation:

Cijim = Blijum + B2ijkm + B3jjim. (7)

By comparing equations (5) and (7) one can see that the two are the same if the fluctuation
and temperature correction terms are both zero, and the average Born terms are replaced
with their values at the& = 0 equilibrium lattice positions of the crystal. Equation (7)

is determined by taking second derivatives Bfy assuming that the deformation is
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homogeneous. Th& = 0 elastic constants formula is valid for a primitive Bravais lattice
with zero strain.

As discussed by Johnson [14,, in equation (1) is invariant under the following
gauge transformation,

Fa(p) - F'a(p) + Cap ¢ab - ¢ab - ca/o}?t - Cbpst (8)

wherec, andc, are arbitrary constants. Under this transformatkih+ B2 as well asB3

are invariant. Therefore, if two EAM potentials are related by this gauge transformation,
their correspondingB3 terms will stay the same. On the other hand, if two different
looking EAM potentials generate the saml8 atT = 0, they can be related by this gauge
transformation.

2.2. Compressibility (N ensemble)
The fluctuation in volume is related to the compressibijityy [2]

(V2 = (V) = (V)/B)x )
whereg = 1/(kgT). The bulk modulusB is the reciprocal ofy.

2.3. Specific heat (#IN ensemble)

The fluctuation in kinetic energk is related to the specific he@} at constant stress using
the following formula [4],

(K?) — (K)?> = 1.5N (kg T)?[1 — 1.5Nkg/C,] (10)

where N is the total number of particles in the system.

2.4. Linear coefficient of thermal expansions(N ensemble)

The linear coefficient of thermal expansiay) is obtained from fluctuations of the product
of kinetic energyK and straing;; [4],

(eijK) — (ij)(K) = —=LBN (ka T)’w;j / . (11)

3. Results

For simulations performed in thBoN ensemble, the system is first brought into equilibrium

at zero external pressure and stress at each temperature. MD is run for a period of about
30 ps in theT o N ensemble, after which it continues to run for 150 ps inHe&v ensemble

to reach thermal equilibrium. The thermal average properties are determined in a subsequent
run of 150 ps. With the time steps chosem £d 0.003 ps and 0.001 ps for low and high

T, respectively), the enthalpy is conserved to one part thtdQLcP.

The EhN MD calculation of the elastic constants proceeds as follows. A perfect Ni
lattice of 256 atoms is constructed with each atom in its ideal bulk position and a reference
ho = (h(T)) matrix corresponding to the desired temperature from a previiug MD
run. To reach thermal equilibrium, we perform a short constant temperature run followed
by a long constant energy run of about 100 ps; averages are calculated in a subsequent
EhN run of 100 ps. We checked the convergence of the elastic constants by increasing
the simulation times in steps two and three from 100 ps to 150 ps and did not find any
significant change in the results.
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Figure 1. Elastic constants of Ni against temperatufésN MD, full circles; EhN MD, open
circles; experiment [15], open triangles connected with a full curve.

The elastic constants of Ni calculated in these ways are compared with experiment [15]
in figure 1. Over the range of 0-760 K for which experimental values are available, the
EAM results generally track those measured to within about 10%. It should be noted that
VC [9] fitted their potential to room temperature ratherrth@d K values for the elastic
constants; this accounts in part for the downward shift of the calculated values in figure 1
relative to the experimental results. An estimate of the statistical errors in the calculations
can be obtained from the differences betweenht@’ and EhN results, which are as large
as 6.9, 3.6 and 8.3% fafi1, C12 and Cy4 respectively.
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Figure 2. Compressibility of Ni against temperaturgloN MD from volume fluctuations
(equation (9)), full circlesHoN MD from strain fluctuations (equation (4)) and= 1/B, open
squares; experiment [16], open triangles connected with a full curve.
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Figure 3. Specific heat of Ni against temperatudsN MD, full circles; experiments [17], full
curve and crosses.

The isothermal compressibilityy, the specific heat at constant stre§s and the
coefficient of linear thermal expansianhave been calculated using the fluctuation formulae
in the HoN ensemble. Results are shown in figures 2—4 along with the experimental data.
Two sets of calculated results for the compressibijityare shown in figure 2. One is
obtained from the fluctuations in volume in equation (9). The other is determined from the
reciprocal of the bulk modulug = 1/B = 3/(C11 + 2C;2), with C11 and C;, obtained
from the strain fluctuations in equation (4). The differences between the two sets of values
are small & 5%), and give another measure of the uncertainties in the calculations. The
experimental data is for the bulk modulus [16], which we have converted to compressibility
usingxy = 1/B. As can be seen in figure 2, the agreement between the simulations and the
experiment fory (recall that the EAM model al" = 0 is precisely fitted taB at 7 = 0,
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Figure 4. Coefficient of linear thermal expansion of Ni against temperatifeN MD, full
circles; experiment [18], open triangles connected with a full curve.

but that VC fitted the room temperature value) is rather good over the ranfjecofered
by experiment, with the difference apparently growing with increaging

In figure 3, the calculated specific heat is in good agreement with experiment [17]
except in the region arounti ~ 600 K. Due to the ferromagnetic nature of Ni, which is
not included in the EAM calculations, there is a specific heat anomaly around the Curie
temperature ;. = 631 K).

Our results for the coefficient of linear thermal expansion are compared to experiment
[18] in figure 4. The calculations appear to systematically overstdtg roughly 20%. The
experimental results exhibit a small peak at the Curie temperature.

Experimentally, Ni melts at about 1725 K [19]. There are several methods for
determining the bulk melting temperatufg of a crystal. Traditionally, MD simulations
are performed on a bulk sample at various temperatures and the cohesive energy is plotted
as a function of temperature. At the melting point there is a discontinuity in the cohesive
energy. A problem with this approach is that the solid phase can usually be superheated
above the melting temperature, and the liquid phase supercooled figlowFoiles and
Adams [10] determined the thermodynamic melting points of several fcc metals using
the free energy, a method which is more involved than that previously descikets
obtained as the temperature at which the Gibbs free energies of the solid and liquid become
equal.

Another way [10] of determining the melting point of a crystal is to construct a sample
and melt half of it to simulate an interface between the liquid and solid. The temperature
for which the interface velocity goes to zero is determined as the melting point. We have
implemented this approach in samples containing 20 layers along £1¢001] direction
with 128 atoms per layer; periodic boundary conditions were imposed in thed y
directions, and free surfaces along TVN simulations were performed starting with the
first ten layers in the liquid state and the other ten in the crystalline state for various
temperatures near the melting point at interval§\d@f = 50 K. The density profile along
was used to monitor the position of the solid-liquid interface as the simulations proceeded
for 10 ps for each value df. From this procedure, we obtaingy, = 1630+ 50 K, which
is in reasonably good agreement with experiment.
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4. Summary and conclusions

We have employed the VC EAM functions for Ni and carried ditN and EhN MD
simulations to calculate the elastic constants, compressibility, specific heat and coefficient
of thermal expansion of Ni as a function of temperature. Similar simulations have been
performed for Ar by Spriket al [20] using the Lennard-Jones (LJ) potential, for Pd by
Wolf et al [5] using the EAM inEhN MD, and for the LJ potential irHoN Monte Carlo
simulations [6].

Our results for the accuracy and convergence of the elastic constants are consistent
with the predictions of [2, 3,5, 20]. Th&locN simulations converge rather slowly at lower
temperatures, and more slowly at higher temperatures.EffNecalculations require fewer
time steps than th&loN simulations, but the accuracy of the former depends on the accuracy
of the cellhg = (h(T)) determined by a previous run of the latter. It may be more efficient
to calculate the elastic constants using the Monte Carlo approach developed in [6]. This
converges as fast as the correspondith$y MD simulations and does not require calculation
of the second derivatives of the potential.

Our results for the various physical properties are in reasonable agreement with
the corresponding experimental results, and provide another measure of the quantitative
limitations of the EAM for bulk fcc metals. The calculated value<ef and C44 appear to
be systematically low, and those @fsystematically high, but they track the experimental
data. An estimate of the melting temperature based on the interface velocity technique
gaveTy = 1630+ 50 K, which is in reasonable agreement with the experimental value of
1725 K.
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