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Abstract
The growth of crystalline silicon from the amorphous phase in the presence of
an applied stress is modelled using advanced numerical methods. The crystal
region is modelled as a linear elastic solid and the amorphous as a viscous fluid
with a time-dependent viscosity to reflect structural relaxation. Appropriate
coupling conditions across the boundary are defined, and both problems are
solved using a symmetric-Galerkin boundary integral method. The interface is
advanced in time using the level set technique. The results match well with
experiments and support the proposed kinetic mechanism for the observed
interface growth instability.

1. Introduction

It is well known that the surface of a non-hydrostatically stressed solid is subject to an elastic
strain energy-driven morphological instability [1–3]. However, up until recently, little attention
had been paid to the effect that stress has on the mobilities of the interface atoms involved in
the growth process, and the resulting effect on the interface morphology. In two recent papers
studying the amorphous/crystal silicon system [4, 5], both experiments and simulations were
used to demonstrate that the kinetic effect, i.e. the effect of stress on the mobilities, is responsible
for the observed growth instability. Furthermore, these results were shown to be consistent
with a linear stability analysis by Voorhees and Aziz [6].

Although the initial simulations in [4, 5] were sufficient to establish the dominance of
the kinetic effect, they were far from a complete analysis. In particular, these calculations
simply assumed all stress was relaxed in the amorphous solid, i.e. that the interface was a
traction-free surface. In this paper, we significantly improve both the model and numerical
methods to provide much more detailed simulations of the growth process. Specifically, the
stress in the amorphous solid is modelled as both a viscous fluid (Stokes flow) and an elastic
solid, and improvements have been made in the modelling of the phase transformation at the
crystal/amorphous interface. These include a more accurate model of the angular dependence
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Figure 1. Crystal growth in a furnace.

of the growth velocity as well as newer values for some of the physical parameters. The
numerical accuracy has also been significantly improved by replacing a marker particle method
for tracking the moving boundary with the level set method [7]. The elasticity and Stokes
solutions are obtained from a boundary integral analysis, and the combination with the level
set is very effective.

The present paper is organized as follows. The experiments and mathematical model
for the silicon system are described in section 2. The numerical methods are discussed in
section 3 and the simulations in section 4. In section 5, the numerical results are compared
with experiment and analysed. Concluding remarks are in section 6.

2. Experiment and model

A schematic of the experimental set-up is shown in figure 1. A rippled interface was fabricated
by ion implantation of a silicon wafer with a lithographically corrugated free surface. Several
Si(001) wafers 1 mm thick were patterned using x-ray lithography. The free surfaces of the
samples were patterned with lines parallel to [100] and a repeat length of λ = 400 nm. Each
wafer’s surface was then amorphized by ion implantation (Si+, 90 keV, 2 × 1015 cm−2, 77 K)
to form a continuous layer of amorphous Si. The samples were then annealed at 520 ◦C while
a compressive stress was applied in the plane of the interface producing a uniaxial stress of
−0.5 GPa. A control series of samples was annealed under zero stress. Another single sample
[5] was annealed while being loaded between two rings of different size to produce tension
in the amorphous side of the sample. This configuration resulted in a uniform biaxial stress
of +0.5 GPa in the plane of the interface in the region within the smaller ring. All samples
were analysed using cross sectional transmission electron microscopy to measure the interface
amplitude and final depth.

The rippled interface separating the crystal and amorphous silicon is approximated by a
sine wave with a wavelength of 400 nm and a peak-to-peak amplitude of 20 nm. By symmetry,
only a half wavelength segment of 200 nm need be treated. The silicon crystal is modelled
as an isotropic linear elastic solid. Since silicon is a cubic solid, Voight averaging is used to
determine the best fit for the isotropic elastic constants; shear modulus Gc = 0.6814×1011 Pa
and Poisson’s ratio νc = 0.2174 [8]. The amorphous solid is modelled as a viscous fluid with a
time-dependent viscosity as given in figure 6 later [9]. For completeness, we also consider two
limiting cases that provide upper and lower bounds for the simulations. Modelling the amor-
phous solid as an isotropic linearly elastic solid with elastic constants Ga = 0.79Gc and νa = νc

[10] overestimates the stress in the amorphous phase, while modelling the amorphous solid as
stress free (i.e. a free surface on the crystal silicon at the interface) underestimates the stress.
The stress-free amorphous assumption was used in the original simulations published in [4, 5].
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Figure 2. Angles θ and θM.

A transition state theory based model is used to describe the phase transformation at the
silicon crystal/amorphous interface. This model assumes that a single, unimolecular, defect
mediated mechanism controls the silicon crystal to amorphous transition rate in the temperature
range of interest. Within this model [9] the growth velocity normal to the interface at any point
on the interface can be expressed as

v = v0(θ) exp

(
σV ∗ − E∗

kBT

)
sinh

(
�Gac

2kBT

)
. (1)

The prefactor v0(θ) contains factors such as the attempt frequency and defect hopping
distance and is a function of interface orientation θ (see figure 2). From experiments [11, 12]
we determine the angular dependence of the velocity function to be

v0(θ) = v100

2

[
(1 − α) cos

(
πθ

θM

)
+ (1 + α)

]
α = v111

v100
(2)

where θ is the angle between the normal at a point on the interface and the (100) axis of
crystalline Si, and v100 and v111 are the relative growth velocities for interfaces oriented in the
(100) and (111) directions respectively. θM is the angle between the direction of the (111)
axis and that of the (100) axis. From [11], α = 0.05v100, and θM = 54.7◦ and from [13]
v100 = 3.1 × 108 cm s−1.

The first exponential factor in equation (1) represents the temperature dependence of the
interface mobility. E∗ = 2.68 eV is the activation energy [13], V ∗ is the activation strain, σ

is the stress at the interface evaluated from the crystal side, T is the temperature, and kB is the
Boltzmann constant. The activation strain term can be written as

σV ∗ = σxxVxx + σyyVyy + 2σxyVxy

Vxx = 0.14� Vyy = −0.35� Vxy = 0 (3)

where x and y are aligned along the (100) and (001) directions, � = 12.0 × 10−6 m3 mol−1 is
the molar volume of crystalline silicon [9, 14, 15], and σij are the corresponding elements of
the stress tensor. The assumption that the stress state on the amorphous side of the interface
does not influence the growth rate has some experimental support [16] but it is by no means a
closed question.

The sinh term is the free energy driving force for growth and �Gac is the difference in
free energy between amorphous and crystalline silicon. The free energy is composed of three
terms,

�Gac(T , κ, σ ) = �Go
ac(T ) + �Gκ + �Gσ . (4)

The first term

�Go
ac(T ) = (gT T + g0)N0 (5)
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is the temperature-dependent free energy change per unit volume from amorphous to crystalline
silicon [17]. gT = −0.274×10−4 eV/(atom K), g0 = 0.1 eV/atom, N0 is Avogadro’s number
= 6.025 × 1023 atoms/mol, and T is the temperature in degrees Kelvin. The change in free
energy due to interface curvature is

�Gκ = γ κ� (6)

where γ = 0.49 eV m−2 is the interfacial energy [18, 19], and κ is the curvature, reckoned
positive for a convex crystal.

Lastly, the free energy change due to stress can be separated into two contributions

�Gσ = �G(1)
σ + �G(2)

σ . (7)

The first contribution, �G(1)
σ , is due to changes in the total energy of the crystal when

a volume of materials is crystallized. Upon crystallization, the volume of the system
(crystal + amorphous) changes by �Vc. If the system is held under stress by a set of external
forces, then the free energy of crystallization will change because the system must do work
against these forces. From [20],

�Vc = 0.117� (8)

and the change in free energy per volume of crystal is

�G(1)
σ = p�Vc = −Tr(σ )�Vc

3
= −(σxx + σyy)0.117

�

3
(9)

where we have assumed plane stress.
The second term, �G(2)

σ , arises from the change in the internal strain energy of the
system when a volume of material crystallizes. The change in internal energy per unit volume
crystallized is

�G(2)
σ = σ a

ij εa
ij

�

2
− σ c

ij εc
ij

�

2
= (εa

ij Ca
ijklε

a
kl − εc

ij Cc
ijklε

c
kl)

�

2
(10)

where Ca
ijkl and Cc

ijkl are the elastic constants. Crystalline silicon is cubic and the non-zero
elastic constants are given below in standard cubic notation [21]:

Cc
11 = 1.658 × 1012 Pa Cc

12 = 0.639 × 1012 Pa Cc
44 = 1.592 × 1012 Pa. (11)

Amorphous silicon is isotropic with shear modulus G = 0.5383 × 1012 Pa, and Poisson’s
ratio ν = 0.2174 [10]. For inclusion in equation (10), they are converted to cubic form [22]
below

Ca
11 = 1.491 × 1012 Pa Ca

12 = 0.414 × 1012 Pa Ca
44 = 1.077 × 1012 Pa. (12)

Note that the solid-state physics and engineering literatures employ different definitions for the
off-diagonal strains εij . The convention in solid-state physics [23] is εij = ui,j + uj,i without
the 1/2 factor employed elsewhere (ui are the components of the displacement vector, the
subscript after the comma indicating differentiation in that direction). Thus C44 in engineering
notation is twice as big as C44 in solid-state physics notation. We employ engineering notation
in this paper. In the simulations presented, the contribution from the amorphous silicon to
�G(2)

σ is not included because a surface stress evaluator for the viscous amorphous code has
not been constructed as yet. For consistency, we do not include it in the elastic model of the
amorphous phase as well. Since, the �G(2)

σ term is relatively small, the neglected amorphous
contribution should have a negligible effect on the simulations.
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3. Numerical methods

3.1. Symmetric-Galerkin boundary integral analysis

In the simulations reported below, a boundary integral formulation is employed to solve the
elasticity and Stokes flow problems. The symmetric-Galerkin approximation is used to reduce
these continuous equations to a finite system. This section presents a quick overview of this
symmetric-Galerkin boundary integral method (SGBIM). A good introduction to this technique
is provided in the recent text by Bonnet [24], and a recent review by Bonnet et al [25] provides
an excellent summary and references to the literature.

3.1.1. SGBIM for linear elasticity. The boundary integral equation (BIE) for linear elasticity,
without body forces, is given by Rizzo [26]. For a source point P exterior to the domain, this
equation takes the form

U(P ) ≡
∫

#

Ukj (P, Q)τj (Q) dQ −
∫

#

Tkj (P, Q)uj (Q) dQ = 0 (13)

where Q is the field point, τj and uj are traction and displacement vectors, and the kernel
tensors Ukj and Tkj are the appropriate (Kelvin) fundamental solutions.

For plane strain problems (see [26] for example),

Ukj = 1

8πG(1 − ν)
[r,kr,j − (3 − 4ν)δkj ln(r)] (14)

Tkj = − 1

4π(1 − ν)r

[
{(1 − 2ν)δkj + 2r,kr,j } ∂r

∂n
− (1 − 2ν)(nj r,k − nkr,j )

]
(15)

where ν is Poisson’s ratio, G is the shear modulus, δij is the Kronecker delta, rk =
xk(Q) − xk(P ), r2 = riri , r,k = rk/r and ∂r/∂n = r,ini .

It can be shown that the limit of the right-hand side of equation (13) as P approaches the
boundary exists. The result is the boundary displacement at P , and thus equation (13) is called
the BIE for displacement. From now on, for P ∈ #, the BIE is understood in this limiting
sense.

As P is off the boundary, the kernel functions are not singular and it is permissible to
differentiate equation (13) with respect to P , yielding the hypersingular BIE (HBIE) for the
displacement gradient∫

#

Ukj,L(P, Q)τj (Q) dQ −
∫

#

Tkj,L(P, Q)uj (Q) dQ = 0. (16)

As usual, the HBIE for boundary stress is of interest. This equation follows from the
strain-displacement equation and Hooke’s law, and taking the appropriate linear combinations
of equation (16) results in

S(P ) ≡
∫

#

Dkjl(P , Q)τj (Q) dQ −
∫

#

Skjl(P , Q)uj (Q) dQ = 0. (17)

The new kernel tensors are

Dkj. = 1

4π(1 − ν)r
[(1 − 2ν)(δkj r,. + δj.r,k − δ.kr,j ) + 2r,kr,j r,.] (18)

Skj. = G

2π(1 − ν)r2

[
2

∂r

∂n
{(1 − 2ν)δ.kr,j + ν(δkj r,. + δj.r,k) − 4r,kr,j r,.}

+2ν(nkr,j r,. + n.r,kr,j ) + (1 − 2ν)(2nj r,.r,k + δkj n. + δj.nk)

−(1 − 4ν)δ.knj

]
. (19)



314 A-V Phan et al

In the Galerkin approximation, equations (13) and (17) are multiplied by a weighting
function and integrated over the boundary a second time,∫

#

/m(P )U(P ) = 0 (20)
∫

#

/m(P )S(P ) = 0. (21)

The weighting functions /m are the shape functions employed to interpolate the boundary
tractions and displacements from the nodal values. In this work, a quadratic interpolation is
used. The prescription to obtain a symmetric coefficient matrix, and hence the name symmetric-
Galerkin, is to employ equation (20) on the part of the boundary with prescribed displacements,
and equation (21) on the boundary segment with prescribed tractions. The symmetry is a
consequence of the symmetry properties of the four kernel functions.

Galerkin enforces the integral equations ‘on average’, rather than the pointwise approach
of the traditional collocation approximation. Apart from symmetry, a key advantage of this
technique is that the second boundary integration counterbalances the differentiation that
created the hypersingular kernel. Galerkin therefore only involves singular integrals which are
effectively Cauchy type at worst. Thus, unlike collocation, there is no interpolation smoothness
constraint required for the existence of the hypersingular Skj. integral [27–33], and standard
C0 elements can be employed.

The primary disadvantage of the Galerkin procedure is the additional computational work
required by the second boundary integration. However, this can be somewhat mitigated by
exploiting symmetry, both in the matrix construction [34] and solution phases [35]. A second
perceived disadvantage is the complexity of the singular integral evaluation. A number of
techniques are available [36–38]; in this work we employ a ‘direct’ evaluation method which
combines both analytical and numerical quadrature [39].

3.1.2. SGBIM for Stokes flow. For a source point P located inside a selected area of flow,
the boundary integral and hypersingular boundary integral equations are written as [40]

vk(P ) =
∫

#

Ūkj (P, Q)τj (Q) dQ −
∫

#

T̄kj (P, Q)vj (Q) dQ (22)

σk.(P ) =
∫

#

D̄kj.(P, Q)τj (Q) dQ −
∫

#

S̄kj.(P, Q)vj (Q) dQ (23)

where τj , vj , and σk. are traction, flow velocity, and stress tensor respectively, and Ūkj , T̄kj ,
D̄kj., and S̄kj. are the kernel tensors for Stokes flow,

Ūkj = 1

4πµ
[r,kr,j − δkj ln(r)] (24)

T̄kj = − 1

πr
r,kr,j

∂r

∂n
(25)

D̄kj. = 1

πr
r,kr,j r,. (26)

S̄kj. = − µ

πr2

[
(8r,kr,j r,. − δj.r,k − δkj r,.)

∂r

∂n
− (r,kn. + r,.nk)r,j − δk.nj

]
(27)

where µ is the viscosity.
Observe that these kernels can be obtained by substituting G and ν in the kernels for

elasticity ((14), (15), (18), and (19)) with µ and 0.5, respectively. Thus, the SGBIM code
for elasticity can be employed to solve Stokes flow problems by using viscosity µ as shear
modulus G and ν = 0.5.



Modelling a growth instability in a stressed solid 315

3.1.3. Surface stress evaluation. In order to compute the velocity of the
amorphous/crystalline interface, solution of the specified boundary value problems does not
suffice. From equation (3) the velocity is a function of the complete stress tensor on the
crystal side of the interface, whereas the boundary integral solution only supplies the normal
component (traction). The tangential components can be expressed by using the interior limit
form of equation (17),

σkl(P ) =
∫

#

Dkjl(P , Q)τj (Q) dQ −
∫

#

Skjl(P , Q)uj (Q) dQ (28)

and the boundary integral solution provides the complete boundary traction τj (Q) and
displacement vectors uj (Q). However, direct evaluation of σkl(P ) from this hypersingular
equation is nevertheless problematic, due to, as noted above, the smoothness constraint on
uj (Q). In this work the stress tensor is obtained by once again employing a Galerkin procedure
to reduce the order of the singularities [41]. This method results in a system of linear equations
for the tensor everywhere on the boundary. A feature of this approach exploited herein is that
the system of equations naturally terminates at boundary corners. Thus, the interface stress
tensor can be evaluated without computing this quantity elsewhere on the boundary.

3.2. Level set methods

A traditional technique for tracking moving interfaces is known as the marker particle method
for which the interface propagation during an incremental time step �t is monitored by shifting
each interfacial marker x in its normal direction n by an amount v(x)�t . This method can
be highly accurate for small-scale motions of the interfaces because of their adaptive nature.
However, under complex motions of the interface, the technique can suffer from instability
and topological limitations because it follows a local representation of the front, rather than a
global one that takes into account the proper entropy conditions and weak solutions.

Level set methods are computational techniques, introduced by Osher and Sethian [42], for
tracking moving interfaces in two and three dimensions. These techniques work by embedding
the propagating interface as the zero level set of a time-dependent, implicit function, and then
solving the resulting equations of motion in a fixed grid Eulerian setting. They have been used
with considerable success in a wide collection of settings, including fluid mechanics, crystal
growth, combustion, and medical imaging. A general overview of the theory, numerical
approximation, and range of applications may be found in [7].

Level set methods rely in part on the theory of curve and surface evolution given in [43]
and on the link between front propagation and hyperbolic conservation laws discussed in [44].
They recast interface motion as a time-dependent Eulerian initial value partial differential
equation, and rely on viscosity solutions to the appropriate differential equations to update the
position of the front, using an interface velocity that is derived from the relevant physics both
on and off the interface. These viscosity solutions are obtained by exploiting schemes from
the numerical solution of hyperbolic conservation laws. Level set methods are specifically
designed for problems involving topological change, dependence on curvature, formation of
singularities, and a host of other issues that often appear in interface propagation techniques.
Over the past few years, various aspects of these techniques have been refined to the point where
a general computational approach to arbitrary front propagation problems can be developed.
This general computational approach allows one to track the motion of very complex interfaces,
with significant and delicate coupling between the relevant physics and the interface motion.

Level set methods rely on two central embeddings. First, the embedding of the interface as
the zero level set of a higher-dimensional function, and second, the embedding (or extension)
of the interface’s velocity to this higher-dimensional level set function. More precisely, given a
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moving closed hypersurface #(t), that is, #(t = 0) : [0, ∞) → RN , propagating with a speed
v in its normal direction n, it is desired to produce an Eulerian formulation for the motion
of the hypersurface propagating along its normal direction with speed v, where v can be a
function of various arguments, including the curvature, normal direction, etc. Let ±d be the
signed distance to the interface. If this propagating interface is embedded as the zero level set
of a higher-dimensional function φ, that is, let φ(x, t = 0), where x ∈ RN , be defined by

φ(x, t = 0) = ±d (29)

then an initial value partial differential equation can be obtained for the evolution of φ, namely

φt + vext|∇φ| = 0 (30)

φ(x, t = 0) given. (31)

This is known as the level set equation, given in [42]. Since we are interested in the interface
evolution, in equation (30), vext is some velocity field defined for all the level sets, not just the
zero level set corresponding to the interface itself. In other words,

vext = v on φ = 0.

This new velocity field vext is known as the ‘extension velocity’. The correct extension velocity
is one that satisfies the equation

∇vext · ∇φ = 0. (32)

The solution vext to equation (32) can be produced using a variant on the fast marching
method [46] that does not require the computation of field values away from the interface.

The above equations are all discretized on a fixed, Eulerian mesh, and then approximated
using conservative schemes designed to accurately approximate the correct extension velocity
solution of the equations of motion. Geometric quantities, such as the local curvature, normal
direction, boundary integrals, etc, may all be accurately approximated in this fixed setting
using either finite-element or finite-difference formulations. Therefore, the level set methods
not only accurately characterize and advance the moving interfaces, but also provide accurate
local curvatures and normals which are required by the computation of the growth velocity v

(section 2). Finally, in order to limit computational labour, all of the above approximations are
confined to a thin zone of computational cells around the zero level set; this is known as the
narrow band level set method introduced by Adalsteinsson and Sethian [45]. The narrow band
width must have an upper bound dependent on the curvature of the level sets, or dependent
on the size of the speed function. Once the front moves out of this thin zone, Sethian’s fast
marching method [46] is used to rebuild a new narrow band centred around the current position
of the interface.

This work uses a narrow band level set formulation [45] to characterize and advance
the evolving interface. For details about the theory, algorithms, and applications of level set
methods, the reader is referred to [7].

4. Simulations

Consider a solid being subject to non-hydrostatic stress (σ1) as shown in figure 3. We examine
the interface growth of the stressed crystal/amorphous system from t = 0 to 7000 s. The
interface is ‘prerippled’ so that it has a sine-wave shape of amplitude A = 10 nm and
wavelength λ = 400 nm. Since the interface rippling is in one direction, the sample may
be treated as a two-dimensional solid. We assume plane stress for the elastic solids analyses.
The interface velocity (normal to the interface) is determined by using equation (1) in section 2.
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Figure 4. Geometry and BCs for the simulation with stress-free amorphous phase.

The velocity is a function of a number of variables, including surface stress, orientation, and
curvature at each point on the interface.

Three cases are studied in this work. In the following calculations, only a half wavelength
segment of the interface is considered.

4.1. Stress-free amorphous case

It is assumed here that there is no stress in the amorphous phase, thus this interface is traction
free (τ = 0). Since the left-hand surface of the crystal is kept planar during the experiment,
instead of (τx = σ1, τy = 0), (ux = u0, τy = 0) is used as the boundary condition (BC),
where u0 = S11σ1λ/2 and S11 is an elastic constant derived from the strain–stress relations
εi = Sij σj . The BC at the bottom of the crystal is (τx = 0, uy = 0) while that on the right-hand
side is (ux = 0, τy = 0) due to symmetry (see figure 4).

The interface’s velocity normal to itself is determined by using equation (1) (section 2).
The stress state of the interface is computed via the post-processing Galerkin method (discussed
in section 3.1.3) after the unknown displacements and tractions on the boundary are obtained
by the SGBIM. Finally, the interface growth can be determined from its velocity by using
level set methods. The flowchart (figure 5) represents the algorithm used for determining the
interface growth.

4.2. Elastic amorphous case

Here, both crystalline and amorphous Si are taken into account and amorphous Si is assumed
to have elastic behaviour. Elastic constants of amorphous Si can be found in [10], and the
following relationship between the elastic constants of the amorphous and crystalline Si is
employed in this work:

Ga = 0.79Gc νa = νc. (33)
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Figure 6. Geometry and BCs for the simulation with elastic amorphous phase.

In this situation, the elastic domain contains a bi-material interface where unknown
physical quantities need to be found such that they satisfy continuity conditions across the
interface. Again, the SGBIM for elasticity can be used to solve this problem [47]. The
geometry and BCs of the problem are shown in figure 6. Once the displacements and tractions
on the boundary and interface of crystalline Si are obtained, boundary stresses on the crystal
interface can be found in the same manner as described in section 3.1.1. Therefore, the only
difference between the flowcharts of this case and the stress-free amorphous case is that a
SGBIM routine for multi-zone problems is employed instead of that for a single zone.

4.3. Viscous amorphous case

In this case, the amorphous phase is assumed to be an incompressible Newtonian fluid that is
governed by the Navier–Stokes equation. For this experiment, the half wavelength along the
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Figure 8. Geometry and BCs for the simulation with viscous amorphous phase.

interface is λ/2 = 200 nm = 2 × 10−7 m, the velocity imposed on the viscous fluid at the
interface (which is defined below in (36)) is approximately v � 7 × 10−16 m s−1, the density
of the amorphous Si is ρ � 2.3 × 103 kg m−3, and the minimum viscosity (as t = 0 s, see
figure 7) is µ � 1013.6 Pa s. Thus, the Reynolds number

Re = vλρ

2µ
� 8 × 10−33 � 1. (34)

For Re � 1, the Navier–Stokes equation reduces to the Stokes equation (see [40], for
example) and the amorphous Si can be considered as a Stokes flow. As a result, the BCs of
the amorphous problem only involve tractions and velocities on the boundary. These BCs
are shown in figure 8 where the BCs of the crystal problem are similar to those in the elastic
amorphous case. Here, the continuity condition across the interface requires that tractions on
the amorphous and crystal interfaces should be counterbalanced.

The flowchart (figure 9) describes the algorithm employed for determining the interface
growth in this case. First, it is recalled that the unknowns on the boundary of the crystal or
amorphous problems can be found by solving the following linear system constructed by the
SGBIM:

Au = b (35)
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Figure 9. Basic flowchart for computing interface growth (viscous amorphous case).

where A, u and b are the coefficient matrix, vector of unknowns, and right-hand side (RHS)
vector, respectively.

During the iteration to determine tractions on the interface at a given time t , only the
boundary values on the crystal and amorphous interfaces change. Thus, the coefficent matrices
[A] for both problems are unchanged and they should be constructed using the SGBIM routine
before the iterative calculation.

At a given time t , tractions τ c on the crystal interface need to be initialized. At t = 0, the
iteration begins with τ c = 0. The converged tractions at a given time are then used to initialize
tractions at the next time step. Once τ c are initialized/updated, the RHS vector can be built
and system (35) is solved. A post-processing SGBIM routine and a velocity routine are then
used to compute boundary stresses and velocities vc, respectively, on the crystal interface.

A key step in obtaining the continuity condition across the interface is determining the
velocity va of the amorphous interface at a given time. This velocity results from the relaxation
of stress in the crystal due to the change in shape of the interface as it grows. The rate
of displacement change �u on the crystal interface induces the velocity of the amorphous
interface

va ≈ �u

�t
. (36)
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Figure 10. Pertubation amplitude versus distance grown (compression).

Once va is determined, the RHS vector can be built and system (35) can be solved to obtain
tractions τ a on the amorphous interface. If tractions on both interfaces are counterbalanced
or the criterion |τ c − τ a| < ε is satisfied, vc is supplied to FrontPack (a level set library of
routines used for solving problems involving the evolution of moving interfaces) in order to
advance the crystal interface; otherwise, τ (i)

a of the current time step is used to update tractions
τ

(i+1)
c of the next time step on the crystal interface as follows:

τ (i+1)
c = τ (i)

c + krτ
(i)
a (37)

where kr is a relaxation coefficient, and the calculation is iterated towards convergence.

5. Results and discussion

In figure 10, the results for growth under compression are plotted for all three models, together
with the experimental data [4]. The experimental values of the interface ripple are normalized
by the amplitude of the surface corrugation in order to account for sample-to-sample variations
in the latter. The abscissa is the average depth of the interface below the free surface. It
decreases with time as the amorphous phase transforms to crystalline form. All three models
predict a growth instability, i.e. the amplitude of the ripple grows as the crystal grows. The
stress-free amorphous model overestimates the amplitude growth while the elastic amorphous
model underestimates the growth. The viscous amorphous model gives the best fit to the
experiment. While there is a lot of scatter in the experiments it appears that this model still
slightly overestimates the amplitude growth. Figure 11 shows a series of seven snapshots of
the interface as it evolves under compression for the viscous amorphous model.

In figure 12, the results for crystal growth under tension are plotted for the three models.
The models all predict a decrease in amplitude as the crystal grows. The stress-free amorphous
model overestimates the rate at which the amplitude dies off while the elastic amorphous
model underestimates it. Again the best fit is provided by the viscous amorphous model.
While recognizing that there is only one data point for the tension case, it appears the viscous
amorphous model slightly overestimates the rate of amplitude reduction.
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Figure 11. Snapshots of the interface evolution for the viscous amorphous case under compression.
Each successive curve is plotted after a time step of 500 s.
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Figure 12. Pertubation amplitude versus distance grown (tension and stress free).
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Figure 13. Origin of instability.

The calculations show that the instability is driven by the change in the growth rate at
the interface due to the variation of stress along the rippled interface (see figure 13). Stress
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concentrates in the valleys of the crystal interface and is relieved in the peaks. The effect of the
stress on the mobility of the atoms in the interface (the term σV ∗ in the velocity equation (1))
dominates the growth process. For compressive stress, the growth rate is slowed. Since the
compressive stress is greater in the valleys than in the peaks, the peaks are slowed down less
than the valleys and the amplitude grows. For tensile stress, the growth rate is increased. Now
the concentration of stress in the valleys speeds them up more than the peaks are speeded up
and the amplitude decreases.

The small tendency of the viscous amorphous model to overestimate the rates of amplitude
increase and decrease for the compression and tension cases, respectively, may be a result of
assuming a viscous fluid model for the amorphous phase. In fact, the extremely small Reynolds
number calculated in section 4.3 for this experiment indicates that a viscous-elastic model for
the amorphous phase may be needed. Since in both the compression and tension cases, the
viscous amorphous result can be improved by moving it slightly towards the elastic amorphous
result, a viscous-elastic model for the amorphous phase should improve the accuracy of the
simulation.

For completeness, interface evolution is considered in the absence of stress. The result
is shown in figure 12. In this case, all three models give the same result. The only terms
that contribute in the absence of applied stress are the curvature term, �Gκ , and the angular
dependence of the velocity term, v0(θ). The angular term dominates in this case and the result
of the simulation is very sensitive to the form of this angular term. We have used a relatively
crude fit to the measured angular dependence of the velocity.

One process that is only partially included in the model is the flow induced in the amorphous
silicon to account for the density difference between the crystal and amorphous phases. The
crystal is approximately 1.7% denser than the amorphous phase. As a result, there is a flow of
silicon atoms in the amorphous phase towards the interface that plays a part in determining the
rate of crystallization. The flow is sustained in the amorphous material by a density gradient.
The fitting of the velocity function to experiment automatically includes this effect for a flat
interface where the flow is uniform. However, when the interface is rippled the flow develops
a non-uniform component and this may slightly alter the crystallization rate. The contribution
from the non-uniform part of the flow should be very small for the problem we are considering.

For modelling the silicon phase transformation experiment, a two-dimensional calculation
was appropriate. Simulating a more general geometry where three-dimensional (3D)
calculations would be necessary appears to be quite feasible. The analogous 3D boundary
integral and level set techniques are well established and available. The only missing piece of
a 3D algorithm is a remeshing routine that automatically converts the level set surface points
into a suitable mesh of the interface for the BIM calculation (in two dimensions, this is trivial).
Regarding the physics, the only significant changes in the interface phase transformation
equation would be in the description of the angular dependence of the growth velocity, and in
the treatment of the interface curvature.

6. Conclusions

We have developed an accurate method based on advanced numerical techniques for modelling
crystal growth in a stressed solid. The numerical methods include advanced boundary integral
analysis to model the elastic solids and viscous fluid, and level set methods to treat the moving
boundaries. The coupling of boundary integral and level set methods for moving boundary
problems appears to be highly effective [48]. We used this method to model the growth
of crystal silicon from the amorphous phase. Our results compare very favourably with
experiment and strongly support the proposed kinetic mechanism for the observed interface
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growth instability. These methods will be applied to a number of new applications involving
phase transformations and chemical reactions in solids.

Acknowledgments

This research was supported in part by the Applied Mathematical Sciences Research Program
of the Office of Mathematical, Information, and Computational Sciences, US Department of
Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC, and under contract DE-
AC03-76SF00098 with the University of California. Additional support was provided by the
ORNL Laboratory Directed Research and Development Program of the Oak Ridge National
Laboratory. Work at Harvard was supported by NSF-DMR-98-13803. Work at Berkeley was
also supported by the Division of Mathematical Sciences of the National Science Foundation,
and the Office of Naval Research under grant FDN00014-96-1-0381. DA acknowledges the
support from the Alfred P Sloan Foundation, and WB-C acknowledges the support from NSF
and DARPA through cooperative agreement DMS-9615854 as part of the Virtual Integrated
Prototyping Initiative.

References

[1] Asaro R J and Tiller W A 1972 Metall. Trans. 3 789
[2] Grinfeld M A 1986 Sov. Phys.–Dokl. 31 831
[3] Srolovitz D J 1989 Acta Metall. 37 621
[4] Barvosa-Carter W, Aziz M J, Gray L J and Kaplan T 1998 Phys. Rev. Lett. 52 1445
[5] Sage J F, Barvosa-Carter W and Aziz M J 2000 Appl. Phys. Lett. 77 516
[6] Voorhees P W and Aziz M J 1999 Proc. Conf. on Interfaces for the Twenty-First Century (London: Imperial

College Press)
[7] Sethian J A 1999 Level Set Methods and Fast Marching Methods (New York: Cambridge University Press)
[8] Gray L J, Chisholm M F and Kaplan T 1993 Boundary Element Technology VIII (BETECH-93) ed H Pina and

C A Brebbia (Computational Mechanics Publications) p 181
[9] Barvosa-Carter W 1997 PhD Thesis Harvard University

[10] Witvrouw A and Spaepen F 1993 J. Appl. Phys. 74 7154
[11] Csepregi L, Kennedy E F, Mayer J W and Sigmon T W 1978 J. Appl. Phys. 49 3906
[12] Khoptiar Y and Aziz M J, unpublished
[13] Olson G L and Roth J A 1993 Solid phase epitaxy Handbook of Crystal Growth 3: Thin Films and Epitaxy

ed D T J Hurle (Amsterdam: Elsevier) ch 7
[14] Barvosa-Carter W and Aziz M J 1995 Mater. Res. Soc. Symp. Proc. 356 87
[15] Barvosa-Carter W and Aziz M J 1997 Mater. Res. Soc. Symp. Proc. 441 75
[16] Barvosa-Carter W and Aziz M J 2001 Appl. Phys. Lett. at press
[17] Donovan E P, Spaepen F, Turnbull D, Poate J M and Jacobson D C 1985 J. Appl. Phys. 57 1795
[18] Yang C M 1997 PhD Thesis California Institute of Technology
[19] Bernstein N, Aziz M J and Kaxiras 1998 Phys. Rev. B 58 4579
[20] Custer J S et al 1990 Mater. Res. Soc. Symp. Proc. 157 689
[21] Cowley E R 1988 Phys. Rev. Lett. 60 2379
[22] Feynman R P, Leighton R B and Sands M 1966 The Feynman Lectures on Physics vol II (Reading, MA:

Addison-Wesley) p 396
[23] Kittel C 1967 Introduction to Solid State Physics 3rd edn (New York: Wiley) p 112
[24] Bonnet M 1995 Boundary Integral Equation Methods for Solids and Fluids (Chichester: Wiley)
[25] Bonnet M, Maier G and Polizzotto C 1998 ASME Appl. Mech. Rev. 51 669
[26] Rizzo F J 1967 Q. Appl. Math. 25 83
[27] Gray L J 1991 Math. Comput. Model. 15 165
[28] Martin P A and Rizzo F J 1989 Int. J. Num. Methods Eng. 421 341
[29] Krishnasamy G, Rizzo F J and Rudolphi T J 1992 Comput. Mech. 9 267
[30] Martin P A and Rizzo F J 1996 Int. J. Num. Methods Eng. 39 687
[31] Richardson J D, Cruse T A and Huang Q 1997 Comput. Mech. 20 213



Modelling a growth instability in a stressed solid 325

[32] Cruse T A and Richardson J D 1996 Int. J. Num. Methods Eng. 39 3273
[33] Martin P A, Rizzo F J and Cruse T A 1998 Int. J. Num. Methods Eng. 42 885
[34] Gray L J and Griffith B 1998 Commun. Num. Methods Eng. 14 1109
[35] Balakrishna C, Gray L J and Kane J H 1994 Comput. Meth. Appl. Mech. Eng. 111 335
[36] Frangi A and Novati G 1996 Comput. Mech. 19 58
[37] Hölzer S M 1993 Commun. Num. Meth. Eng. 9 219
[38] de Paula F A and Telles J C F 1989 Eng. Anal. Bound. Elements 6 123
[39] Gray L J 1998 Advances in Boundary Elements Series: Singular Integrals in Boundary Element Methods

ed V Sladek and J Sladek (Boston, MA: Computational Mechanics) ch 2
[40] Pozrikidis C 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow (New York:

Cambridge University Press)
[41] Gray L J, Maroudas D and Enmark M N 1998 Comput. Mech. 22 187
[42] Osher S and Sethian J A 1988 J. Comput. Phys. 79 12
[43] Sethian J A 1985 Commun. Math. Phys. 101 487
[44] Sethian J A 1987 Numerical Methods for Propagating Fronts in Variational Methods for Free Surface Interfaces

ed P Concus and R Finn (New York: Springer)
[45] Adalsteinsson D and Sethian J A 1995 J. Comput. Phys. 118 269
[46] Sethian J A 1996 Proc. Natl Acad. Sci. 93 1591
[47] Maier G, Diligenti M and Carini A 1991 Comput. Meth. Appl. Eng. 92 193
[48] Sethian J A and Strain J D 1992 J. Comput. Phys. 98 231


