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Abstract. A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional
Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the
boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown
to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with
corresponding singularities in the adjacent edge integrals. A single analytic integration is employed
for the edge and vertex singular integrals. This is sufficient to display the divergent term in the
edge-adjacent integral and to show that the vertex integral is finite. By explicitly identifying the
divergent quantities, we can compute the hypersingular integral without recourse to Stokes’s theo-
rem or the Hadamard finite part. The algorithms are developed in the context of a linear element
approximation for the Laplace equation but are expected to be generally applicable. As an example,
the algorithms are applied to solve a thermal problem in an exponentially graded material.
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1. Introduction. The Galerkin approximation of boundary integral equations,
well studied theoretically [57], has become increasing popular in computational work.
In particular, the symmetric-Galerkin approximation (a few basic references are [27,
30, 39, 41, 58, 59]; the review [6] has more complete citations) has two key advan-
tages. First, as the name implies, the resulting coefficient matrix is symmetric, which
is physically appealing [40] and allows for symmetric coupling with finite elements
[29]. Second, with the Galerkin approach, integrals involving two derivatives of the
Green’s function, termed hypersingular, can be evaluated using standard continuous
C0 elements. This is in contrast to collocation, where existence of the hypersingular
integral requires either C1 elements or a discontinuous nonconforming interpolation;
see [10, 15, 24, 32, 46, 47] for a more complete discussion of this issue. A recent survey
of singular integration methods for both Galerkin and collocation can be found in [60].

The ability to work effectively with hypersingular equations is of importance
beyond symmetric-Galerkin. These equations are essential for viable treatment of
crack problems [5, 7, 58] and the postprocessing evaluation of surface stress [20].
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They have proved useful for error estimation methods [51] and other areas as well. It
is therefore important to have effective techniques for evaluating Galerkin integrals of
hypersingular kernels.

Singular integrals are present because the Green’s function G(P,Q) and its deriva-
tives diverge as Q → P . In a Galerkin approximation, the integration of these func-
tions is carried out with respect to both Q and P , and in terms of the numerical
implementation, this means that integrations are required for every pair of elements
{EP , EQ}. An integral is therefore singular if the elements are coincident (EP = EQ)
or are adjacent, sharing either an edge or a vertex.

In two dimensions, the treatment of hypersingular integrals is reasonably straight-
forward, and several successful methods are available [8, 13, 31, 56]. A “direct”
approach presented in [16] demonstrated that the coincident and adjacent singular
integrals are not separately finite and that, as expected, the divergences cancel when
the integrals are added. It is, moreover, a relatively simple matter to explicitly iden-
tify and remove the singularities, clearly essential for a numerical implementation. In
the adjacent singular integration, the divergent terms occur only at a single point (the
point common to the two elements), and as a consequence, they appear after a single,
comparatively simple, analytic integration is carried out.

The situation in three dimensions is naturally much more complicated, as sin-
gularities now appear all along the edge shared by two elements. The predominant
technique for handling the hypersingular integral has been to reformulate it using
Stokes’s theorem [11, 12, 37]. (Stokes’s theorem is also the basis for a modified
boundary element procedure called the boundary contour method [38, 49, 50].) In
this approach the divergences disappear through the exact cancellation of contour
integrals having opposite orientations. However, one must be able to perform the in-
tegration by parts. For the traditional Green’s functions in computational mechanics,
executing the Stokes transformation will not be a problem. For nonstandard applica-
tions, e.g., functionally graded materials [3, 19, 43, 44], it is likely to be possible, but
also quite complicated. Thus, the development of a non-Stokes “direct” algorithm is
of interest.

There are two additional important reasons for pursuing a direct evaluation proce-
dure. First, due to simpler remeshing, the boundary integral method can be a highly
effective technique for a wide range of moving boundary problems [23, 25, 42, 53].
However, computing the velocity of the surface usually requires complete knowledge
of the function derivatives (e.g., gradient of potential, stress tensor) on the surface,
and the boundary integral expressions for these quantities involve hypersingular ker-
nels. As discussed elsewhere [22], direct limit evaluation leads to an accurate and
highly efficient algorithm for computing these derivatives.

Second, even though the algorithms will be presented in the simplest context,
the Laplace Green’s function and a linear element approximation, the direct method
appears to be completely general. This is supported by recent work applying these
methods to the more complicated Green’s functions for anisotropic elasticity [17] and
graded materials [61]; the solution of a thermal problem in a graded material will be
discussed below. Moreover, as demonstrated in [16] for two dimensions, the treatment
of a higher order interpolation can be based upon the linear element procedures. The
details of the analysis for a curved element in three dimensions are somewhat different
and will be presented separately.

It will be demonstrated herein that the three-dimensional coincident and adjacent
edge hypersingular integrals are separately divergent. To our knowledge, this has
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not been previously established, though this must have been at least part of the
motivation for the Stokes procedure. A direct evaluation must explicitly confront these
divergences: it goes without saying that an algorithm must evaluate finite integrals;
i.e., the divergent terms are, as in the Stokes procedure, removed exactly. Recently,
two different direct evaluation approaches have been suggested, though a common
theme is to exploit analytic integration. In [1, 9, 54, 55] exact integration is employed
together with the Hadamard finite part definition [26] to assign finite values to the
nonexistent integrals. The finite part definition of hypersingular integrals has a long
history in boundary integral analysis [33, 34, 45]. In an alternate direct procedure
presented in [18], the divergent coincident and adjacent edge integrals are first forced
to be finite by moving the source point P off the boundary a distance ε [14, 21].
After (partial) analytic integration, the divergent terms of the form log(ε) explicitly
appear and can be seen to cancel when all integrals are added. Taking the limit ε → 0
back to the boundary then results in finite expressions and obviates the need for the
Hadamard finite part.

In addition to the fundamental difference in the definition of the integrals, finite
part versus limit, the strategies for analytic integration also differ significantly. With
the finite part method, the inner integral is treated exactly, and the outer integration
handled numerically. In [18] and herein, the analytic integration is always with respect
to the distance from the singularity, accomplished by means of appropriate polar
coordinate transformations. As a consequence, both the inner and outer integrals are
handled partially analytically and partially numerically.

The limit analysis in [18] was tremendously simplified in that the (linear) elements
were chosen to be identical to the parameter space; the purpose therein was solely to
demonstrate that the divergent terms could be seen explicitly. Thus, while serving
as a simple instructive exercise, [18] is far short of a complete and general algorithm.
Nevertheless, a perusal of this previous paper would likely be a good preparation for
going through the details herein.

Finally note that while the focus in this paper is on the hypersingular kernel, the
techniques presented can also be applied to the less singular integrals involving the
Green’s function and its first derivative. The integrals of these functions are finite,
no divergent terms arising in the boundary limit, and thus other approaches could
be employed. However, the techniques described herein apply and are effective for
these integrals as well. In the test calculations presented below, this approach will be
adopted.

A synopsis of the paper is as follows. A brief review of background material
on the Galerkin approximation of the hypersingular (Laplace) equation is provided
in the next section. The subsequent three sections analyze the coincident, adjacent
edge, and adjacent vertex integrals. The two basic techniques employed are, first,
defining the integrals as boundary limits and, second, constructing appropriate polar
coordinate transformations in the parameter spaces that are centered at the singu-
larity. Specifically, the source point P is moved off the boundary a distance ε, and
the limit ε → 0 is considered after analytic integration of the radial polar coordinate.
For the coincident and adjacent edge cases, the integrations produce log(ε) diver-
gent terms, and the proof that these quantities mutually cancel is provided in section
6. The proof is simply brute force, evaluating the integrals that multiply the log(ε)
terms. The correctness of these algorithms is confirmed by results from three test
calculations presented in section 7, one of which involves the Green’s function for an
exponentially graded material. The hypersingular kernel in this case is considerably
more complicated than its counterpart for the Laplace equation.
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2. Hypersingular equation. The purpose of this section is to define the quan-
tity of interest, the Galerkin hypersingular integral for the Laplace equation, and to
set the notation used throughout. A good reference for this material is the recent
book by Bonnet [4].

The hypersingular boundary integral equation for the Laplace equation ∇2φ = 0
is an expression for the surface flux ∂φ/∂n = ∇φ •n, usually written in the form

∂φ

∂N
(P ) +

∫
Σ

φ(Q)
∂2G

∂N∂n
(P,Q) dQ−

∫
Σ

∂G

∂N
(P,Q)

∂φ

∂n
(Q) dQ = 0 .(1)

Here n = n(Q), N = N(P ) denote the outward unit normal on the boundary surface
Σ, and P and Q points on Σ. The fundamental solution G(P,Q) is usually taken as
the point source potential

G(P,Q) =
1

4πr
,(2)

where R = Q−P and r = ‖R‖ is the distance between P and Q. The kernel functions
in (1) are given by

∂G

∂N
(P,Q) =

1

4π

N •R

r3
,

∂2G

∂N∂n
(P,Q) =

1

4π

(
n •N

r3
− 3

(n •R)(N •R)

r5

)
,(3)

the second function being termed hypersingular. In potential theory, the integral of
the first derivative is called a double layer potential; there doesn’t appear to be a
corresponding nomenclature for the hypersingular kernel. It is important to note that
(1) is formally obtained by differentiating the standard boundary integral equation
for surface potential,

φ(P ) +

∫
Σ

[
φ(Q)

∂G

∂n
(P,Q) −G(P,Q)

∂φ

∂n
(Q)

]
dQ = 0 ,(4)

and then interchanging the derivative with the integral. As discussed in [14, 21], this
interchange is in fact illegal, due to the singularity in the integrand. One way to
legally reorder and therefore to legitimize (1) is to first write the surface potential
equation with P off the boundary. As the kernel function is now well-behaved, the
differentiation can be moved under the integral sign; the limit as P returns to the
boundary can then be considered. This limit process will be employed below.

A side benefit of the direct limit procedure is that if the limit is taken with the
source point P approaching the boundary from outside the domain, then the “free
term” ∂φ(P )/∂N from (1) is not present (and thus normalization of the Green’s
function becomes unimportant). Assuming this exterior limit, (1) takes the form

F(P ) ≡
∫

Σ

φ(Q)
∂2G

∂N∂n
(P,Q) dQ−

∫
Σ

∂G

∂N
(P,Q)

∂φ

∂n
(Q) dQ = 0 ,(5)

with the free term automatically incorporated in the limit evaluation of the second
integral in this equation. A separate computation of this term is therefore avoided.
Note that the hypersingular integral is continuous as P crosses the boundary and is
therefore the same whether an interior or exterior limit is used.
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Following standard practice, we approximate the boundary potential and flux in
terms of values at element nodes Qj and shape functions ψj(Q), i.e.,

φ(Q) =
∑
j

φ(Qj)ψj(Q),

∂φ

∂n
(Q) =

∑
j

∂φ

∂n
(Qj)ψj(Q) .(6)

In a Galerkin approximation, these shape functions are employed to define weighting
functions to enforce the integral equations. Specifically (5) becomes

∫
Σ

ψ̂k(P )F(P ) dP = 0,(7)

where the weight function ψ̂k(P ) consists of all shape functions ψl(P ) that are nonzero

at a particular node Pk. The weight function ψ̂k(P ) therefore has limited support,
being nonzero only on the elements containing Pk.

For a particular element EP for the outer P integration, singular integrals (i.e.,
when Q = P ) occur if the Q-element either is coincident with EP or shares a common
edge or vertex with EP . The evaluation of these integrals is discussed in detail herein.
Unlike the coincident and edge-adjacent, the vertex-adjacent hypersingular integral
will turn out to have a finite limit. Nevertheless, it can be effectively evaluated using
the same techniques as used for the edge-adjacent case.

A linear element calculation will be analyzed in detail, as this forms the basis for
handling higher order interpolations. An equilateral triangle parameter space {η, ξ},
where −1 ≤ η ≤ 1, 0 ≤ ξ ≤

√
3(1−|η|), will be employed to construct approximations

to the boundary and the boundary functions. This somewhat nonstandard choice
of parameter space is convenient for executing the coincident integration, as will be
explained in the next section. The three linear shape functions are

ψ1(η, ξ) =

√
3(1 − η) − ξ

2
√

3
,

ψ2(η, ξ) =

√
3(1 + η) − ξ

2
√

3
,(8)

ψ3(η, ξ) =
ξ√
3
.

For an element defined by nodal points {Qj = (xj , yj , zj)}, the mapping from param-
eter space to the approximate boundary surface is

Σ(η, ξ) =

3∑
j=1

(xj , yj , zj)ψj(η, ξ) ,(9)

and the corresponding surface potential is

φ(η, ξ) =

3∑
j=1

φ(Qj)ψj(η, ξ) .(10)
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ξ∗

η∗

θ

ρ

(η, ξ)ξ)

-1 1t

Fig. 1. First polar coordinate transformation, {η∗, ξ∗} → {ρ, θ}, for the coincident integration.
The variable t eventually replaces θ.

3. Coincident integration. In the following we consider only the integration
of the hypersingular kernel in (3). The integration of G or its first derivative can be
handled in exactly the same manner, with the added simplification that no divergent
terms appear in the ε → 0 limit.

For EP = EQ = E, the coincident integral to be evaluated is∫
E

ψk(P )

∫
E

φ(Q)
∂2G

∂N∂n
(P,Q) dQdP(11)

=
3∑

j=1

φ(Qj)

∫
E

ψk(P )

∫
E

ψj(Q)
∂2G

∂N∂n
(P,Q) dQdP ,

where E is defined by nodes Pk, 1 ≤ k ≤ 3. Transferring the integral to parameter
space requires including the (constant) Jacobian JP (= JQ), conveniently incorporated
into the hypersingular kernel,

J2
P

∂2G

∂N∂n
(P,Q) =

1

4π

(
J2
P

r3
− 3

(JPN •R)2

r5

)
.(12)

The parametric variables for the outer P integration will be denoted by (η, ξ),
and that for Q by (η∗, ξ∗). For the inner Q integration, the first step is to define a
polar coordinate system centered at P = (η, ξ),

η∗ − η = ρ cos(θ),(13)

ξ∗ − ξ = ρ sin(θ),(14)

as illustrated in Figure 1. Polar coordinate transformations, centered at the singular-
ity, are particularly effective, as the Jacobian of the transformation ρ dρ reduces the
order of the singularity. This will be exploited in all integrations.

As the expression for the upper limit of ρ, ρL(θ), is different as θ traverses each
edge, the (ρ, θ) integration must be split into three subtriangles. In the following, we
carry out the calculation for the lower subtriangle associated with the edge ξ∗ = 0.
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Although the remaining two cases could be handled in exactly the same manner, this
would require repeating the analysis below for these two subtriangles. An alternate
route, which has the benefit of simplifying the implementation, is to exploit the sym-
metry of the equilateral parameter space: the remaining subtriangles are handled by
rotating the element and employing the formulas for the lower subtriangle. Com-
pared to computing the integrals over all three subtriangles at the same time, this
does create some small additional computational overhead. However, compared to
the O(M2) work required for the nonsingular integrals (M the number of elements),
the coincident integrals are not a major contributor to the total computational cost.
Thus, this is not a serious expense.

For this lower subtriangle, the integration limits are 0 ≤ ρ ≤ ρL and Θ1 ≤ θ ≤ Θ2,
where

ρL = − ξ

sin(θ)
,

Θ1 = −π

2
− tan−1

(
1 + η

ξ

)
,(15)

Θ2 = −π

2
+ tan−1

(
1 − η

ξ

)
.

The distance r = ‖Q−P‖, with P replaced by P + εN for the exterior boundary
limit, takes the simple form

r2(ρ, θ) = ε2 + a2(θ)ρ2 ,(16)

where

a2 = acc cos(θ)2 + acs cos(θ) sin(θ) + ass sin(θ)2(17)

and the three coefficients aαβ , α, β = c, s depend solely on the coordinates of the
element nodes (a2 is in fact a positive quantity). With (13), the shape function ψj(Q)
becomes a linear function of ρ,

ψj(ρ, θ) = cj,0(η, ξ) + cj,1(η, ξ, θ)ρ(18)

(cj,0(η, ξ) = ψj(P )). (To simplify the expressions that follow, the arguments will be
dropped and the coefficients denoted simply as a, cj,0, and cj,1.) Thus, employing the
boundary limit procedure and expressing the kernel function in polar coordinates, the
hypersingular integral in (11) becomes

J2
P

4π

1∑
m=0

∫ 1

−1

dη

∫ √
3(1−|η|)

0

ψk(η, ξ) dξ

∫ Θ2

Θ1

cj,m dθ

×
∫ ρL

0

ρm+1

(
1

(a2ρ2 + ε2)3/2
− 3

ε2

(a2ρ2 + ε2)5/2

)
dρ .(19)

The ρ integral is easily evaluated analytically. For m = 0 this results in

F0 = − ρ2
L

( ε2 + a2 ρ2
L )3/2

,(20)

while for m = 1

F1 = − 1

a3

[
log( ε ) − log

(
aρL +

√
ε2 + a2ρ2

L

)
+

2a3ρ3
L + ε2aρL

(ε2 + a2ρ2
L)3/2

]
.(21)

The log( ε ) term that appears in F1 is not the divergent term that is being sought;
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it can be seen to vanish in the subsequent θ integration. Note that this term is
independent of ρL, and thus the complete integration over 0 ≤ θ ≤ 2π can be
considered. As the coefficient cj,1(η, ξ, θ) is linear in cos(θ) and sin(θ), it satisfies
cj,1(η, ξ, π + θ) = −cj,1(η, ξ, θ). In addition, from (17), a(π + θ) = a(θ), and thus

− log(ε)

∫ 2π

0

cj,1(η, ξ, θ)

a3
dθ = 0 .(22)

Removing this log( ε ) term and then safely setting ε = 0 in (21), the appropriate
formula for m = 1 is

F1 = − 2 − log( 2aρL )

a3
(23)

(and in fact the 2/a3 term could be dropped, as the same argument shows that it too
will integrate to zero).

This first analytic integration is not sufficient to display the divergent term. Note
that for ξ ≈ 0 in the subsequent integration, ρL ≈ 0, and thus the singularities in F0

and F1 at ρL = 0 are of interest. The weak (integrable) singularity in F1 is obviously
not a problem as far as producing divergent terms is concerned, but for numerical
implementation it is clearly beneficial to integrate this singularity analytically. For
F0, however, the behavior is 1/ρL and is capable of producing a log( ε ) contribution
upon integration. In the following we therefore consider only m = 0; m = 1 is handled
similarly. Note that the dependence of the integrand on θ is harmless; it is ξ = 0 which
must be dealt with analytically. The needed interchange in the order of integrations
is impeded by the fact that Θ1 and Θ2 depend on η and ξ. To maneuver around this,
introduce the variable t, −1 ≤ t ≤ 1, via

θ = −π

2
+ tan−1

(
t− η

ξ

)
,

dθ

dt
=

ξ

ξ2 + (t− η)2
,(24)

which also results in ρL = (ξ2 + (t − η)2)1/2. As indicated in Figure 1, t is the
“end-point” (t, 0) of ρ on the ξ∗-axis.

Interchanging the order of integration, (19), for m = 0, becomes

J2
P

4π

∫ 1

−1

dη

∫ 1

−1

dt

∫ √
3(1−|η|)

0

ψk(η, ξ) cj,0 F0 dξ .(25)

From (24), the singularity in (20) is now at t = η, ξ = 0, and this once again suggests
polar coordinates {Λ,Ψ} to replace {t, ξ},

t = Λ cos(Ψ) + η ,

ξ = Λ sin(Ψ) ,(26)

and integrating with respect to Λ. It is important to note that with the two changes
of variables, θ → t and {t, ξ} → {Λ,Ψ}, cos(θ) becomes cos(Ψ) and sin(θ) becomes
− sin(Ψ). Thus, a(θ), equation (17), becomes simply a(Ψ) and is a constant as far as
the Λ integration is concerned. As shown in Figure 2, the {t, ξ} domain is a rectangle,
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Ψ1
Ψ2

η-1
t

1
0

ξ

( )||13 η−

Fig. 2. Geometry of the second polar coordinate transformation, {t, ξ} → {Λ,Ψ}, for the
coincident integration.

and integrating over {Λ,Ψ} will necessitate a decomposition into three subdomains
0 ≤ Ψ ≤ Ψ1, Ψ1 ≤ Ψ ≤ π − Ψ2, and π − Ψ2 ≤ Ψ ≤ π, where

Ψ1 = tan−1

(√
3(1 − |η|)
1 − η

)
,

Ψ2 = tan−1

(√
3(1 − |η|)
1 + η

)
.(27)

With this final coordinate transformation, the P shape functions are linear in Λ,
as are the coefficients cj,m from the Q shape functions. The product is quadratic, and
the integrals to be evaluated are therefore of the form

−J2
P

4π

∫ 1

−1

dη

∫
sin(Ψ) dΨ

∫
0

Λs Λ2

(ε2 + a2 Λ2)
3/2

dΛ(28)

for s = 0, 1, 2. The missing limits for the Λ and Ψ integrals depend upon the particular
subtriangle in Figure 2 being considered. Clearly, the Λ integration is trivial, as is,
with the exception of s = 0, the limit ε → 0. For s = 0 we find a finite contribution
plus divergent terms

Lc
kj = log(ε)

J2
P

4π

∫ 1

−1

ψ̂0
k ψ̂

0
j dη

∫ π

0

sin(Ψ)

a3
dΨ ,(29)

where ψ̂0
l are the shape functions evaluated at Λ = ρ = 0, the same for both P and

Q:

ψ̂0
1 =

1 − η

2
, ψ̂0

2 =
1 + η

2
, ψ̂0

3 = 0 .(30)

As expected, there are no log(ε) terms associated with ψ3, as this shape function
is zero along the ξ = 0 edge; this will of course cycle appropriately when the other
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two subtriangles for the Q integration are considered. Note too that as a = a(Ψ) is
independent of η, (29) simplifies to

Lc
kj = log(ε)

J2
P

4π

1 + δkj
3

∫ π

0

sin(Ψ)

a3
dΨ ,(31)

where δkj is the usual Kronecker delta function and 1 ≤ k, j ≤ 2. We postpone a
further discussion of this term until section 6, following the analysis of the edge- and
vertex-adjacent integrals. It will be shown that Lc

kj cancels with corresponding terms
from the edge-adjacent integration. Thus, the desired goal has been achieved: the
coincident integral has been separated into a finite, easily evaluated component, plus
the divergent term which will be seen to cancel with the adjacent edge integral.

4. Edge-adjacent integration. The treatment of the adjacent edge integral
will omit much of the detail, focusing only on the derivation of the divergent term.
However, it is instructive to take some space to point out what does not work, or
at least what does not work very well. In [18], the (simplified) edge-adjacent inte-
gral was, as with the coincident case, treated using two analytic integrations. For
the general situation, it is possible to push through this analysis, but it leads to ex-
tremely complicated and lengthy expressions (in fact, Maple’s answers for the analytic
integrations contain inverse hyperbolic tangents of complex quantities). The numeri-
cal implementation would therefore be inefficient and cumbersome. Moreover, if the
Laplace equation produces ugly expressions, the analysis for elasticity would likely be
unbearable. The only benefit of pursuing this approach is that the expression for the
divergent term involves a single integral instead of the double integral (41) found be-
low. However, it is better to face the nasty integrals once in the proof of cancellation,
rather than having to continually compute with them.

The root of the problem is that the expression for the distance r2 is sufficiently
complicated that the double integration is quite involved. To be more specific, orient
the elements so that the shared edge is defined by ξ = 0 in EP , and ξ∗ = 0 for EQ, and
the singularity occurs when η = −η∗. Based upon the successful coincident scheme, a
seemingly reasonable approach is to employ polar coordinates for the Q integration,

η∗ = ρ cos(θ) − η,(32)

ξ∗ = ρ sin(θ),

and then integrate ρ and ξ analytically. The distance function takes the form

r2 = ε2 + b00ξ
2 + (b10ε + b11ξ)ρ + b22ρ

2 ,(33)

and it is the (unavoidable) presence of the first order term in ρ that creates the
complications. The expression obtained by integrating out ρ will have complicated
denominators, involving two quadratic factors, one having an integer exponent and one
having a half-integer exponent. Thus, the second analytic integration, while possible,
results in very lengthy formulas. A different path for the edge integration will therefore
be taken, although it will be necessary to confront these types of integrals in the proof
that the singularities cancel; see section 6.

A much simpler algorithm, requiring only one analytic integration, begins with
the polar coordinates in (32). As shown in Figure 3(a), the θ integration must be
split into two pieces (for simplicity, the integrands are omitted, but it will be useful
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Fig. 3. (a) Polar coordinate transformation employed in the Q element, {η∗, ξ∗} → {ρ, θ}. (b)
Second polar coordinate transformation {ρ, ξ} → {Λ,Ψ} for the edge-adjacent integration.

to retain the Jacobians of the transformations),∫ 1

−1

dη

∫ √
3(1−|η|)

0

dξ

[∫ Θ1(η)

0

dθ

∫ L+

0

ρdρ +

∫ π

Θ1(η)

dθ

∫ L−

0

ρdρ

]
,(34)

where L± =
√

3(1 ± η)/(sin(θ) ±
√

3 cos(θ)). The key observation is that the break-
point in θ,

Θ1(η) =
π

2
− tan−1

(
η√
3

)
,(35)

is only a function of η. The integrations can therefore be rearranged,∫ 1

−1

dη

∫ Θ1(η)

0

dθ

∫ √
3(1−|η|)

0

dξ

∫ L+

0

ρdρ(36)

+

∫ 1

−1

dη

∫ π

Θ1(η)

dθ

∫ √
3(1−|η|)

0

dξ

∫ L−

0

ρdρ .

As the singularity occurs when ρ = ξ = 0, it makes sense to now introduce a second
polar coordinate transformation,

ρ = Λ cos(Ψ),(37)

ξ = Λ sin(Ψ).

As Λ = 0 encapsulates all three conditions for r = 0, namely, ξ = ξ∗ = 0, η = −η∗, one
analytic integration (over Λ) will suffice to produce the log(ε) term. Said another way,
the combined Jacobian from the two transformations is cos(Ψ)Λ2, and the Λ2 factor
from the two polar transformations sufficiently reduces the order of the singularity
that only the constant (Λ = 0) term from the product of the shape functions poses
any difficulty. As in the coincident algorithm, the exact integration is with respect to
the distance from the singularity. Moreover, both algorithms indicate that in order
to fully attend to the singularity, both inner and outer integrations must be involved.

The second point to note is that although distance takes the form

r2 = ε2 − εb1Λ + b2Λ
2 ,(38)
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the first order term in Λ does not present a major problem: there is only one integra-
tion, and, moreover, the ε factor will eventually simplify the resulting expressions.

Carrying out the Λ integration results in a finite quantity plus a divergent con-
tribution,

Le
kj = log(ε)

1

4π

∫ 1

−1

ψ̂0
k ψ̂

0
j dη

∫ π

0

dθ

∫ π/2

0

cos(Ψ)

(
3j1pj1q

b
5/2
2

− n •N

b
3/2
2

)
dΨ ,(39)

where j1p and j1q are the coefficients of Λ in JQn •R and JPN •R,

JPN •R = j1pΛ − JP ε,

JQn •R = j1qΛ − JQn •N .(40)

As in (29), ψ̂0
k and ψ̂0

j denote the shape functions evaluated at Λ = 0. Here we have
a slight problem with notation in matching the edge Le

kj terms with the coincident
Lc
kj . In the edge ordering, node 1 in P is node 2 in Q and vice versa. Thus, Le

11

corresponds to the off-diagonal contribution Lc
12, and Le

12 should cancel with Lc
11. To

simplify the discussion of the cancellation, we adopt, for (39), the convention that the
subscripts refer to the coincident integral (i.e., the numbering of the P element). In

this case, ψ̂0
l are the same for P and Q and, moreover, given by (30). It is important

to note that b2 is a function of the nodal coordinates and the angles θ, Ψ, but not of
η, and indeed all other quantities in the integrand are independent of η. Thus, (39)
reduces to

Le
kj = log(ε)

1

4π

1 + δkj
3

∫ π

0

dθ

∫ π/2

0

cos(Ψ)

(
3j1pj1q

b
5/2
2

− n •N

b
3/2
2

)
dΨ ,(41)

again for 1 ≤ k, j ≤ 2. This expression and that for Lc
kj , (31), do not, at first

sight, appear to cancel. The proof that they do will be given in section 6 following a
discussion of the vertex integration.

5. Vertex-adjacent integration. As discussed above, the vertex-adjacent in-
tegrals are separately finite, the singularity being limited to a single point in the
four-dimensional integration. Thus, any number of different algorithms can be used
to evaluate these terms. However, the procedures described above, when suitably
modified for the vertex situation, will integrate the singularity as completely as possi-
ble using one analytic integration, and would therefore appear to be an effective and
efficient approach. The discussion that follows will simply outline the basic procedure,
highlighting only the differences from the edge-adjacent case.

Orient the P and Q elements so that the singular point is η = −1 and η∗ = −1.
Separate polar coordinates can then be introduced in each element,

η∗ = ρq cos(θq) − 1, ξ∗ = ρq sin(θq),
η = ρp cos(θp) − 1, ξ = ρp sin(θp).

(42)

This results in an integral of the form (again omitting the kernel function and just
keeping track of the Jacobians)∫ π/3

0

dθp

∫ Lp(θp)

0

ρp dρp

∫ π/3

0

dθq

∫ Lq(θq)

0

ρq dρq(43)

=

∫ π/3

0

dθp

∫ π/3

0

dθq

∫ Lp(θp)

0

ρp dρp

∫ Lq(θq)

0

ρq dρq,
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Fig. 4. (a) Initial polar coordinate transformation employed in both P and Q elements. (b)
Final polar coordinate transformation {ρp, ρq} → {Λ,Ψ} for the vertex adjacent integration.

where Lp(θp) = 2
√

3/
[
sin(θp) +

√
3 cos(θp)

]
, and similarly for Lq. The lone singu-

larity is at the common vertex ρp = ρq = 0, and thus one further polar coordinate
transformation,

ρp = Λ cos(Ψ),(44)

ρq = Λ sin(Ψ),

is warranted. As indicated in Figure 4, the {ρp, ρq} domain is a rectangle, and thus
the Ψ integration must be taken in two pieces. The combined Jacobian in this case is
cos(Ψ) sin(Ψ)Λ3, and thus (43) becomes

∫ π/3

0

dθp

∫ π/3

0

dθq

[∫ Ψ1

0

cos(Ψ) sin(Ψ) dΨ

∫ L1(Ψ)

0

Λ3 dΛ(45)

+

∫ π/2

Ψ1

cos(Ψ) sin(Ψ) dΨ

∫ L2(Ψ)

0

Λ3 dΛ

]
,

where L1(Ψ) = LP (θp)/ cos(Ψ) and L2(Ψ) = LQ(θq)/ sin(Ψ). With the Λ3 factor
the kernel function simplifies, as it is possible to immediately set ε = 0, and the
distance is then r2 = b2Λ2 (the coefficient being a function of all three angles and
nodal coordinates). Thus, it is then apparent that this integral is finite, and it is a
simple matter to execute the analytic integrations.

6. Proof of cancellation. Recapitulating the above results, the coincident and
edge-adjacent integrations give rise to divergent log(ε) terms of the form

Lc
kj =

J2
P

4π

1 + δkj
3

∫ π

0

sin(Ψ)

a3
dΨ,(46)

Le
kj =

1

4π

1 + δkj
3

∫ π

0

dθ

∫ π/2

0

cos(Ψ)

(
3j1pj1q

b
5/2
2

− n •N

b
3/2
2

)
dΨ ,
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where k, j = 1, 2 refer to the two nodes P1 and P2 along the common edge. It is
therefore necessary to establish that

J2
P

∫ π

0

sin(Ψ)

a3
dΨ = −

∫ π

0

dθ

∫ π/2

0

cos(Ψ)

(
3j1pj1q

b
5/2
2

− n •N

b
3/2
2

)
dΨ ,(47)

and this will be accomplished by brute force, evaluating the integrals. This is most
easily carried out using a symbolic computation program.

To simplify matters, it is convenient (and permissible) to shift and rotate the ele-
ments so that P1 = (0, 0, 0), P2 = (x2, 0, 0), and P3 = (x3, y3, 0), and thus N = (0, 0, 1)
and JP = x2y3/2

√
3. Note that for the edge-adjacent Q-element, the convention is

that Q1 = P2 and Q2 = P1. Denoting the coordinates of Q3 by Q3 = (x∗
3, y

∗
3 , z

∗
3), the

normal for Q is JQn = (0, z∗3x2, −y∗3x2).
From (17) and the comment below (26), the divergent term for the coincident

integral takes the form

J2
P

∫ π

0

sin(Ψ)

( acc cos(Ψ)2 − acs cos(Ψ) sin(Ψ) + ass sin(Ψ)2 )
3/2

dΨ ,(48)

and for the shifted geometry,

acc =
1

4
x2

2,

acs =
√

3x2 (2x3 − x2) /6,(49)

ass =
(
x2

2 + 4x2
3 + 4 y2

3 − 4x3 x2

)
/12.(50)

After substituting q = cotan(Ψ), (48) becomes

−J2
P

∫ ∞

−∞

1

( accq2 − acsq + ass )
3/2

dq ,(51)

and carrying out the integration, we find that the coincident divergent term becomes
simply

J2
P

∫ π

0

sin(Ψ)

a3
dΨ = x2 .(52)

Thus, as expected, the divergent term does not depend upon P3.
The evaluation of the edge integral divergent term is somewhat more involved.

Although symbolic computation will eventually execute all of the required calculus
and algebra, some manipulation is required to modify the forms of the expressions,
and care is required to keep the size of the expressions from exceeding the available
memory. The discussion below will therefore only outline the procedure. As a function
of Ψ, the coefficient b2 defined in (38) takes the form

b2 = c2 cos2(Ψ) + c1 cos(Ψ) sin(Ψ) + c0 sin2(Ψ),(53)

where the cj are functions of cos(θ) and sin(θ). Thus, as with Lc
kj , substituting

q = cotan(Ψ) is convenient, resulting in an integral of the form

∫ ∞

0

[
α1

q2

( c2q2 + c1q + c0 )
5/2

+ α2
q

( c2q2 + c1q + c0 )
3/2

]
dq .(54)
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The function of θ that results from this integration once again benefits from the
substitution p = cotan(θ), and the θ integral becomes∫ ∞

−∞

h1(p)

( s2p2 + s1p + s0 )
2 dp+

∫ ∞

−∞

h2(p)√
(t2p2 + t1p + t0) ( s2p2 + s1p + s0 )

2 dp ,(55)

where h1(p) and h2(p) are quadratic and cubic polynomials, respectively. The coeffi-
cients {sj} and {tj} are now just functions of the nodal coordinates. The first integral
is found to be 0, while the second is, as desired, −x2.

7. Test calculations. To confirm that the above procedures are successful, re-
sults obtained using the symmetric-Galerkin approximation are presented in this sec-
tion. The first two calculations are relatively simple standard test problems having
known analytic solutions. The first is a mixed boundary value problem on the unit
cube, and the second is a pressurized penny-shaped crack in an infinite medium. The
third example is a thermal analysis in a nonhomogeneous medium, a functionally
graded material. The purpose of this example is to demonstrate the singular inte-
gration techniques for a hypersingular kernel that is substantially more complicated
than that for the Laplace equation. In symmetric-Galerkin, the hypersingular flux
equation is employed on the Neumann surface (the equation for surface potential, (4),
is used on the Dirichlet surface), so all problems will have boundary data specifying
the normal derivative.

All singular integrals in (4) and (7) are computed using the algorithms described
herein. For the singular integration, the parameter space integrals that remain after
the analytic integration are evaluated using a one-dimensional twelve-point Gauss
quadrature formula. The nonsingular integrals are computed using a two-dimensional
twelve-point Gauss rule for the equilateral triangle.

7.1. Unit cube. The purpose of the unit cube, 0 ≤ x, y, z ≤ 1, example is to test
the adjacent edge and vertex algorithms in situations where the adjacent elements are
far from being coplanar. The boundary conditions on x = 0 and x = 1 were values for
potential, and the flux was specified on the remaining faces. The values were taken as
the boundary potential and flux from the harmonic function φ(x, y, z) = x2+y2−2z2,
so the exact solution is known. The cube was uniformly discretized using M elements,
for various values of M . As noted above, the hypersingular equation is employed on
the Neumann surface, and thus these equations are associated with the unknown
potentials.

Figure 5 plots the maximum absolute error in the computed surface potential as
a function of M . For comparison purposes, the maximum error obtained by solving
the problem by means of the potential equation alone is also displayed. The improved
accuracy with symmetric-Galerkin is possibly due to the fact that the kernel functions
die off faster with increasing r; as a consequence, the singular integrations (evaluated
partly analytically) in this calculation are more influential than those for the potential
equation.

7.2. Pressurized crack. As one of the main applications of hypersingular equa-
tions is fracture analysis [5, 7, 58], the second test case is a simple crack problem.
The geometry is a “penny-shaped” crack x2 + y2 ≤ R0 =

√
2/10, z = 0, embedded

in an infinite medium, with boundary condition [ ∂φ/∂n ] = 1. The square bracket
notation denotes the sum of the fluxes,[

∂φ

∂n

]
(P ) =

∂φ

∂n
(P+) +

∂φ

∂n
(P−) ,(56)
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Fig. 5. The maximum absolute error in the computed potential is plotted as a function of the
number of elements discretizing the unit cube.

where P+ and P− are at the same location but on opposite sides of the crack. The
quantity to be determined is the jump in potential across the crack

[φ ] (P ) = φ(P+) − φ(P−) ,(57)

and setting r2 = x2 + y2, the exact solution is [35, p. 144]

[φ] (x, y) =
2R0

π

(
1 − r2

R2
0

)1/2

.(58)

The crack was discretized with 214 nodes and 382 elements, but without a special
crack tip element [2, 28, 52] to capture the

√
R2

0 − r2 behavior at r = R0. Thus
error near the crack front is to be expected. The exact jump in potential from (58) is
plotted against the computed solution in Figure 6. Although the inappropriate linear
element at the front causes some error, this solution is generally quite accurate.

7.3. Graded material. As mentioned in the introduction, one motivation for
pursuing a direct method is that this approach is expected to be applicable to any
boundary integral formulation, i.e., any Green’s function. To bolster this contention
and, moreover, to present a calculation in an area of significant current interest in
materials science and engineering [48], a thermal analysis in a functionally graded
material (FGM) is briefly described below. More complete details about the boundary
integral implementation for this application can be found in [61].

The Laplace equation for a general thermal conductivity κ(x, y, z) is

∇ •(κ∇φ) = 0 .(59)

In an FGM, the grading is most often only in one direction, and generally modeled as

κ(x, y, z) = κ(z) = κ0e
2βz ,(60)
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Fig. 6. The solution for [φ ] for the pressurized penny-shaped crack; r is the distance from the
center of the disk.

where β denotes the material grading parameter. The Green’s function for this expo-
nential grading has been derived [19, 36],

G(P,Q) =
eβ(−r+Rz)

4πr
(61)

(Rz = Qz − Pz is the z-coordinate of Q − P ), and the governing (interior limit)
boundary integral equation is

φ(P ) +

∫
Σ

[
φ(Q)

(
∂

∂n
G(P,Q) − 2βnzG(P,Q)

)
−G(P,Q)

∂

∂n
φ(Q)

]
dQ = 0 .(62)

Note, however, that G(P,Q) is not a symmetric function of Q and P , and this pre-
cludes a symmetric-Galerkin implementation. As discussed in [61], this can be reme-
died by writing (62) in terms of the surface flux, −κ(Q) ∂

∂nφ(Q), rather than the
normal derivative. The appropriate symmetric Green’s function is then

GS(P,Q) = −G(P,Q)

κ(zQ)
= − 1

4κ0π

eβ(−r−Qz−Pz)

r
.(63)

The corresponding integral equation for surface flux is obtained by differentiating
(62) in the direction N, and then multiplying by −κ(zP ). The hypersingular kernel
function that results is given by the lengthy expression

κ0

4π
eβ(−r+Qz+Pz)

(
3
(n •R)(N •R)

r5
+ 3β

(n •R)(N •R)

r4

+
β2(n •R)(N •R) − β(Nzn − nzN) •R − n •N

r3
(64)

− β
β(Nzn − nzN) •R + n •N

r2
− β2Nznz

r

)
.
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A Stokes formulation for the Galerkin integral of this function is likely to be possible,
but equally likely to be quite complicated. The boundary limit formulation applies
with almost no change, the only new aspect being the use of simple one- and two-term
Taylor expansions to handle the exponential factor [61]. The analytic integrations
and limit will obviously involve lengthier expressions, but otherwise the analysis is
basically no more complicated than for β = 0. Moreover, it is possible to automate
this work using symbolic computation. Thus, the evaluation of the Galerkin integral
of (64), while not entirely trivial, does proceed in a straightforward fashion.

As an example, a symmetric Galerkin analysis of a graded compressor has been
carried out. A top view of the full geometry is shown in Figure 7, while the symmetric
section employed in the calculation is shown in Figure 8. The rotor blade is graded
in the z-coordinate, which is the vertical direction in this latter figure. The grading
is given by (60) with κ0 = 5 and β = 0.25,

κ(z) = 5ez/2.(65)

To have an analytic solution (for comparison purposes) for this somewhat compli-
cated geometry, the boundary conditions have been chosen to reduce the problem to
a one-dimensional solution (the goal herein is simply to demonstrate that the hyper-
singular implementation is correct). As shown in Figure 8, the temperatures at the
top z = 3 and bottom z = 0 are held at φ = 200 and φ = 100, respectively. The
remaining surfaces are insulated (zero flux), and consequently the hypersingular flux
equation is employed everywhere except on the top and bottom. The exact solution
for this problem is, with L = 3, given by

φ = 100 + 100
1 − e−2βz

1 − e−2βL
.(66)

As noted above, the solution at corners and edges generally provides a good indication
of whether or not the numerical implementation is correct. Figure 9 plots the analytic
and computed solutions for temperature along the edge labeled [AA] in Figure 8, and
the results are reasonably good. The computed fluxes on z = 0 and z = 3 are also
accurate: the exact values are, respectively, ±321.8, while the calculated values are
±322.8.
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8. Conclusions. Procedures for directly evaluating Galerkin hypersingular (and
singular) integrals have been presented. For the coincident and edge-adjacent cases,
the key is to explicitly identify the divergent terms that appear in the limit to the
boundary. To this end, multiple polar coordinate transformations and analytic inte-
gration were employed. This results in an efficient scheme, as the remaining, reduced
dimension, numerical integration involves only smooth functions. Although the coin-
cident and adjacent-edge integrals were shown to be separately divergent, as expected,
the log(ε) terms cancel when all integrals are added.

As discussed in detail elsewhere [22], a principal benefit of the limit definition of
the hypersingular integral is that it leads to an efficient Galerkin algorithm for com-
puting tangential derivatives (e.g., ∇φ) on the boundary. This postprocessing task is
generally required to compute surface velocities when simulating moving boundaries,
a class of problems for which integral equation methods should be advantageous.

Although the simplest situation—the Laplace Green’s function and a linear ele-
ment approximation—was considered, a second important aspect of this approach is
that it should be generally applicable. As evidence of this, a calculation involving
the Green’s function for an exponentially graded material was presented; a complete
discussion can be found in [61]. In addition, progress towards implementing this
approach for three-dimensional anisotropic elasticity is discussed in [17].

Fracture analysis is an important application of hypersingular equations, and for
this work it is essential to employ higher order elements. The two main complica-
tions not present in the linear element analysis are that the distance function is no
longer quadratic, as in (19) or (16), and that the normal vectors and Jacobians are
no longer constants over the elements. This precludes an analytic integration of the
complete integrands as carried out above. As with more complicated Green’s func-
tions (see, for example, [17]), it will be necessary to split the integrals into two parts:
one that contains all of the singularity but is sufficiently simplified that analytic eval-
uation is possible, plus a remainder that is well-behaved and can be treated entirely
numerically. This can be accomplished using techniques that are similar to those
employed for two-dimensional problems [16]. However, these methods must be modi-
fied somewhat for three dimensions: the powers of the quadratics that will appear in
the denominators are now half-integers instead of integers, and this necessitates some
changes to the procedures for splitting the integrand into singular and nonsingular
components. These needed modifications will be described in a separate publication.

Acknowledgments. The authors are indebted to G. Maier, A. Frangi, and S.
Salvadori for useful discussions, to S. Salvadori for a preprint in advance of publication,
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