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Melting in Two-Dimensional Lennard-Jones Systems:
Observation of a Metastable Hexatic Phase
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Large scale molecular dynamics simulations of two-dimensional melting have been carried out using
a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state
is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400
atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of
Kosterlitz, Thouless, Halperin, Nelson, and Young.

PACS numbers: 64.70.Dv, 02.70.Ns, 05.70.Fh, 61.20.Ja
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Two-dimensional (2D) melting has been intensivel
studied for the past two decades, but it remains not w
understood to date [1,2]. It has been established that a
crystalline system is characterized by two types of orde
translational and orientational. In the solid phase th
system has quasi-long-range translational order and t
long-range orientational order. In the liquid phase the
is no long-range order of either kind. A defect-mediate
melting theory by Kosterlitz, Thouless, Halperin, Nelson
and Young (KTHNY) [3–6] predicts that a third phase
called the hexatic, can exist between solid and liquid
a portion of the phase diagram; the system in the hexa
phase has no long-range translational order but does re
quasi-long-range orientational order. Melting can occ
via two continuous transitions with the first from solid
to hexatic due to dislocation unbinding and the seco
from hexatic to liquid due to disclination unbinding
However, the theory does not rule out the possibilit
of a first-order melting transition. Competing theorie
[7,8], on the other hand, propose that the melting is
single first-order transition from solid to liquid. Over the
years a large number of experiments and simulations ha
been performed to test the KTHNY and other theorie
unfortunately, results are sometimes contradictory and f
to provide unambiguous evidence [1,2].

The Lennard-Jones system is one of the most stu
ied in computer simulations of 2D melting. Frenke
and McTague [9] carried out an isothermal-isochor
molecular-dynamics (MD) simulation of a 256-atom
system and observed the existence of a hexatic ph
in accordance with the KTHNY theory. In contrast
Abraham [10,11] concluded that the melting transition
first order in his isothermal-isobaric Monte Carlo (MC
simulations of 256- and 529-atom systems and in h
isothermal-isobaric MD simulations of a 576-atom system
Because of these conflicting results, more simulatio
were performed on larger systems with longer runs f
equilibration. In isothermal-isochoric MC simulations o
a 1024-atom system, Tobochnik and Chester [12] fou
that the nature of the melting transition cannot be unam
biguously determined from their data, but later Strandbur
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Zollweg, and Chester [13] argued the transition is first o
der. In isothermal-isochoric MD simulations, a first-orde
transition was reported by Toxvaerd [14] for systems wit
up to 3600 atoms and by Bakker, Bruin, and Hilhorst [15
for a system of 10 864 atoms. However, using finite-siz
scaling to analyze their data on a 12 480-atom syste
Udink and van der Elsken [16] found that their results a
in reasonably good agreement with the KTHNY theory.

The above-mentioned controversy is not unique to th
Lennard-Jones system. Similar results have been fou
for other systems; among those the hard disk system
an excellent example where most recent computer simu
tions still give contradictory conclusions [17–19]. Evi
dently, there are several factors that contribute to t
confusion. The first is the size of the system, becau
finite-size effects blur the distinction between first-orde
and continuous transitions. Long-wavelength fluctuatio
play a key role in the KTHNY theory, but they are cu
off in a finite system. The second is the time scale
the simulations. It is absolutely necessary to run syste
long enough to reach equilibrium, especially if phase tra
sitions are continuous and critical slowing down occur
and this becomes crucial when system size increases.
third factor is the choice and implementation of the sta
tistical ensemble used. The coexistence region of so
and liquid appearing in isochoric simulations mimics th
hexatic phase and it is difficult to distinguish one from
the other. Such a region does not occur in isobar
simulations. In addition, there are technical difficultie
in equilibrating systems and generating correct ensem
distributions [1,20–23].

The rapid advance of parallel supercomputing technol
gies has made it possible to push further the limits o
system sizes and times. Recently, equations of moti
were devised for an exact isothermal-isobaric MD simul
tion and extended to Parrinello-Rahman (PR) MD [24] b
Melchionna, Ciccotti, and Holian [25]. Unlike the origi-
nal Parrinello-Rahman equations, these new equations
invariant under cell-basis transformation [26–28]. By in
tegrating these equations numerically on a sequence
powerful massively parallel supercomputers, we have p
© 1995 The American Physical Society 4019
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formed large scale simulations with millions of time step
on 2D Lennard-Jones systems of up to 102 400 atoms.
comparison with previous studies, this work has two im
portant features: (i) we employ an exact MD scheme
generate a correct isothermal-isobaric statistical ensem
which allows unequivocal testing of the KTHNY theory
and (ii) our largest simulations are about one order
magnitude larger in terms of both system size and tim
Our studies reveal the existence of a metastable hexa
state in the two largest of the five system sizes simulate

In our isothermal-isobaric PRMD simulations we use
a shifted Lennard-Jones 12-6 potential

V srd ­

Ω
4efssyrd12 2 ssyrd6g 1 Vc , r , rc ,
0 , r $ rc ,

(1)

where e and s are parameters,r is the interatomic
distance,rc is the cutoff radius, and

Vc ­ 24efssyrcd12 2 ssyrcd6g . (2)

Our systems consisted of 576, 4096, 16 384, 36 864, a
102 400 atoms which were confined inside a varyin
parallelogram with periodic boundary conditions impose
along the edges. In most cases these atoms were initia
located at sixfold-coordinated triangular-lattice points an
assigned random velocities. The velocities were th
properly scaled so that the total linear momentum of th
system was zero and the total kinetic energy matched
desired external temperature. Other initial configuratio
were also used for double-checking the equilibratio
Equations of motion [25] were solved via the five-valu
Nordsieck-Gear predictor-corrector method [29]. A linea
shift in the constant of motion was observed and th
amount of shift was controlled to about 0.002% ever
106 steps by using a proper time step. Typically th
time stepDt was in the range from 0.0005 to 0.001 with
the potential cutoffrc ­ 4, all in reduced units in which
potential parameterse ands, the Boltzmann constantkB,
and the mass of atomm are equal to 1.

In order to determine phase boundaries and pro
the possible hexatic state, we systematically scanned
phase space for different system sizes up to 36 864 ato
The pair distribution functions and orientational correla
tion functions were computed directly by definition [1,29
for individual configurations and used to identify differ-
ent states. For all systems, solid and liquid were the on
two apparent equilibrium states found and an abrupt jum
in the enthalpy was seen at the transition. These are
first sight consistent with the first-order transition sce
nario described by Abraham [10,11]. A metastable he
atic state, however, was observed for the first time in th
36 864-atom system. Figure 1 demonstrates the evolut
of the enthalpyH in the 36 864-atom system at the exter
nal pressurep ­ 20 and three different temperatures. In
these particular simulations the initial configurations ha
the same perfect lattice structure and density but diffe
4020
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FIG. 1. Evolution of the enthalpyH in Lennard-Jones systems
of 36 864 atoms atp ­ 20 andT ­ 2.15, 2.16, and 2.17, where
n is the number of time steps with time stepDt ­ 0.0005.

ent random velocity distributions and the time steps we
all equal to 0.0005. The pair distribution functions an
orientational correlation functions for typical equilibrium
solid and liquid configurations are given in Fig. 2. At the
temperatureT ­ 2.17, the system approaches equilibrium
directly and stays in the liquid state where the oscillation
in the pair distribution function die off rapidly and the ori-
entational correlation function decays exponentially. A
T ­ 2.15, the system relaxes quickly and remains in th
solid state where the oscillations in the pair distributio
function persist over the entire range and the orientation
correlation function decays to a constant. In betwee
at T ­ 2.16, the system enters a seemingly intermedia
state in about0.75 3 106 time steps and remains there fo
about0.5 3 106 time steps before it finally settles down
in the liquid state.

Trying to stabilize this intermediate state, we took th
configuration ofT ­ 2.16 at the one millionth time step
and ran it as the initial condition for a slightly lower
temperatureT ­ 2.154. Figure 3 shows the evolution
of the enthalpy. The system is again found to be in
metastable state for about106 time steps, longer than that
at T ­ 2.16. The pair distribution functions and orienta
tional correlation functions for a typical configuration in
the metastable state are given in Fig. 2. Note that this
termediate state has all the characteristics of the hexa
phase—long-range translational ordering does not ex
and the orientational ordering decays algebraically with a
exponent of 0.21(2), which is less than1

4 , the upper limit
predicted by the KTHNY theory. The existence of thi
metastable state is confirmed by a different run startin
from the perfect lattice structure as also shown in Fig.
although it took more than5 3 106 time steps for the sec-
ond run to reach the similar state.

Although an inhomogeneous solid-liquid coexistenc
region is unlikely to persist in an isobaric simulation
we checked the metastable state for this possibilit
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FIG. 2. (a) Pair distribution functionsgsrd ­ sV yN2d 3
k
P

i,jfii dsr 2 rijdl (see Ref. [29]) and (b) orientational corre-
lation functions g6srd ­ kc6srdcp

6 s0dl with c6srld ­ s1ynld 3Pnl
j e6iulj srl d (see Ref. [1]) for equilibrium solid, liquid, and

metastable hexatic configurations in Lennard-Jones systems
36 864 atoms atp ­ 20 and T ­ 2.15, 2.17, and 2.154. Top
two curves in (a) were shifted upward for clarity. The straigh
line in (b) has a slope of2 1

4 and is a guide to the eye.

We divided the 36 864-atom system into 36 864, 921
2304, and 576 grids and computed the nearest-neigh
bond-angular susceptibility [13] for all subsystems whic
contain 1, 4, 16, and 64 atoms on the average. For t
solid and liquid phases, distributions of the susceptibilitie
are qualitatively the same as observed by Strandbu
Zollweg, and Chester [13]. The distribution of the
susceptibilities for the metastable state, however, sho
no qualitative change in its shape with subsystem siz
confirming that the state is homogeneous.

Because much longer simulations on systems conta
ing less than 36 864 atoms did not reveal any interm
diate states, the system size seems responsible for
metastable state. Fundamentally this may reflect the i
portance of long-wavelength fluctuations to the existen
of the hexatic phase and hence the necessity of larger s
tem size for the stabilization of the state. A single lon
run of more than5 3 106 time steps has been made fo
of
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FIG. 3. Evolution of the enthalpyH in Lennard-Jones systems
of 36 864 atoms atp ­ 20 and T ­ 2.154 with two different
initial conditions, wheren is the number of time steps with
time stepDt ­ 0.0005. The shorter run started from a hexatic
configuration obtained atT ­ 2.16 and the longer one from the
perfect lattice structure.

a 102 400-atom system atp ­ 20 andT ­ 2.16. Results
obtained were similar to those of the 36 864-atom syste
but the equilibration time increased significantly. Thi
suggests that the stabilization of the phase could be v
difficult involving simulations of very large systems for
very long times.

A brief comment on the importance of massivel
parallel supercomputer resources for such simulations
appropriate. The largest simulations were carried out
the Intel Paragon XPyS 35 at the Oak Ridge National
Laboratory. This machine has 512 nodes with 32 MBy
node and a peak performance of 35 G-flops. A millio
steps for the 102 400-atom system on 128 nodes tak
approximately 150 h.

In summary, a metastable hexatic state between so
and liquid phases was observed for the first time
two-dimensional Lennard-Jones systems of 36 864 a
102 400 atoms in our isothermal-isobaric molecular d
namics simulations. While this result falls short of con
firming the complete KTHNY theory, it does provide very
strong evidence of the hexatic phase predicted. The s
pression of the metastable state in smaller systems ma
previous simulations suspect.
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