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1 Introduction driving force is applied. Derivations for some of the basic Green’s

Functionally graded material&GMs) are an important area of fgnctpns can b_e_found 'E5:6]' Thgre has also been work in the
ﬂl_rectlon of deriving Green’s functions for a general nonhomoge-

materials science research, with potentially many important app us material[7—11]). Steady-state heat conduction with an ar-

cations, e.g., super-heat resistance materials for thermal bar A ! = . .
coatings and furnace liners, vehicle and personal body arm rary spatially varying conductivity has recently been investi-

electromagnetic sensors, and graded refractive index materials ed([12,13) and has generated slome d?bate in the Iltera_ture
4,15). In most cases, exact Green’s functions are only obtained

optical applications. In an ideal FGM, the material properties m . "
nder certain restrictions.

vary smoothly in one dimensiofe.g., are constant ifx, y) but ) )
vary with 2). As an example, having a smooth transition region In the present paper, we derive free space fundamental solutions

between a pure metal and pure ceramic would result in a materig oth the two-dimensional and three-dimensional FGM Laplace
that combines the desirable high temperature properties and tHfgfdation, assuming that the thermal conductivity varies exponen-
mal resistance of a ceramic, with the fracture toughness oftig!ly: The corresponding boundary integral equation formulation,
metal. Comprehensive reviews of current FGM research may W&Ich turns out to be somewhat different from the homogeneous
found in the articles by Hirdil], Markworth et al[2] and Paulino Media case, is also obtained, and numerical results based upon a
et al.[3], and the book by Suresh and Mortengéh Galerkin approximation are presented. Relatlvely little attention
Computational analysis can be an effective method for desigias been paid to obtaining Green’s functions for the special case
ing specific FGM systems, and for understanding FGM behavié graded materials: A Green’s function for a special type of elas-
For homogeneous media, boundary integral equation methd@gynamics problem was obtained by Vret{d$], and exponen-
(e.g.,[5]) have been used extensively. However, the reformulatidi#l grading was also considered ji1]. The two-dimensional
in terms of integral equations relies upon having, as either @een’s function results have appeared in conjunction with a con-
closed form or a computable expression, a fundamental solutig@ctive heat transfer problem in #&omogeneousmaterial
(Green’s functioh of the partial differential equation. Application ([17,18)), and moreover{19] essentially contains the Green’s
of the boundary integral technique has therefore been limitdginctions derived hereiobtained in a different mannerHow-
almost exclusively, to homogeneous, or piecewise homogeneogger, the analysis employed in this paper for heat conduction in an
media. exponential FGM will carry over to the important case of elastic-
The fundamental solutions traditionally employed in boundargy ([20]), and thus it is deemed useful to present this alternate
integral analysis for homogeneous materials are “free spacdeérivation in detail.
Green’s functions: They satisfy the appropriate differential equa-This paper is organized as follows. The three-dimensional
tion everywhere in space, except at the site where a point loedplace equation is treated in Section 2.1, and the two-
dimensional case in Section 2.2. Section 3 discusses some test
To whom correspondence should be addressed. results from a Galerkin numerical implementation of the boundary
e e wasox ooz, Inlegral formulaion, and Section 4 contans some concluding re-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 14['_narks. Finally, in the APpe”d'x Itis Sh‘?W” that th_e_ integral equa-
2000; final revision, Oct. 30, 2001. Associate Editor: M.-J. Pindera. Discussion &©ns and Green’s functions can be suitably modified to allow for
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, DepagtSymmetric-Galerkin implementation. Complete formulas for the
ment of Mechanical and Environmental Enginegring University of‘California—SanEﬁree_dimensiona| reformulated fundamental solutions and their
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after s
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2 Green’s Functions

Steady-state isotropic heat conduction in a solid is governed by
the equation

V-(kV¢)=0. 1

Here ¢=d¢(Xx,y,z) is the temperature function, and we
assume the functionally graded material is defined by the thermal
conductivity

k(x,y,2)=k(z)=koe ™27, @

where« is real. This assumption of a purely imaginary exponent
is apparently necessary for the derivation that follows. However,
once the solution is obtained, it is readily seen to be valid for any
complexa. Substituting Eq(2) into Eq. (1), one obtains that the
temperature satisfies

Fig. 1 Spherical coordinate system for evaluating the ®
integral

V2¢p—2ia¢,=0, (3)

where ¢, denotes the derivative with respectzo
The Green’s function equation can be derived by constructi%erewz

the integral equation corresponding to Egj. Following the stan- = w-. Applying the inverse transform, one obtains

dard procedure, Eq(3) is multiplied by an arbitrary function 1 gl @(Q-P)
f(x,y,2)=1(Q) and integrated over a bounded voluie Inte- G(P,Q)= B )3f 775 dw, 9)
grating by parts, and denoting the boundaryMoby X, one ob- R a0z
tains wheredw is shorthand for the three-dimensional differential ele-
ment, i.e..dw=do,dw,dw,. Changing variables
0= fvf(QxVZ«b(Q)—zia¢Z<Q>>va. 0y a (10)

g g and settingR=Q—P, R,=Q,—P,, we obtain
=L[f(Q)a—n¢(Q)—¢(Q)ﬁ—nf(Q)

1 eiw-R
— —iaR,
G(P,Q)= (277)3e waz_azdw, (11)
—2ian,(Q)p(Q)f(Q) dQ+f d(Q)(V?H(Q) which can be conveniently split into two terms,
v —iaR, eiw-R eiw-R
. e e o €t
+2iaf,(Q))dVqy, 4) G(P,Q) 2 fRS - do+a Lﬁwz(wziaz) dw}.
where n(Q)=(n,,ny,n,) is the unit outward normal fok. If (12)
f(Q)=G(P,Q) satisfies the Green’s function equati¢the ad- _ . . ) )
joint to Eq. (3)) The first integral is Eq(9) with =0, and is therefore recognized
as the Green’s function for the Laplace equatioonstant k, the
V2G(P,Q)+2iaG,(P,Q)=—8(Q—P), (5) point source potential:
wheredis the Dirac delta function, the remaining volume integral e iR, gleR e iR,
becomes simply- ¢(P). Thus we obtain the governing boundary 2n) f o de= 7 (13)
R

integral equation
5 wherer =||R||=|/Q—P| is the distance between the source point
7 ; P and the field poinQ.
¢(P)+L¢(Q)((9n G(P.Q)+2ian,G(P.Q)|dQ To evaluate the second term in E@.2), it is convenient to
employ spherical coordinatép,6,), with, however, the axis de-
_ dJ fining the poley=0 taken as the directioR/r instead of the
—LG(P,Q)&—nqS(Q)dQ, ®) 2 axis (see Fig. 1 The integration limits are @p<w, 0<y
<1, and 0< #<21r; however, for the residue calculations to fol-
which differs in form from the usual integral statements by thkw, it will be much more convenient to havex<p<w and 0
presence of the additional term multiplyirg(Q). With obvious < <m/2. With the standard limits, the residue calculation must
changege.g., line integrals instead of surface integratise above shift half-planes depending upon the sign of @)sfnore impor-
equations are equally valid for two dimensions. We first derive thantly, starting ato=0 would force consideration of contours
Green'’s function for three dimensions. along the imaginary axis, necessary to work with the imaginary
part of the exponential. In comparison gifvaries over the entire

2.1 Three Dimensions. Let f(w) denote the Fourier trans- yq) axis, a simple semicircle in the upper half-plane suffices. To

form of a functionH(Q), this end,if the functionf satisfiesf (p, ) = f(—p,m— ), then
f(w)= f FlQedQ U] J f “f(p.p)dudp
R 0oJo

wherew= (w0, ,w,) is the transform variable and the dot rep- w [l v fa
resents the inner product. Transforming ES). and solving for :f f f(p,l!,)dl/,derf f f(p,y)dydp
G(w) (the transform ofG with respect toQ), yields 0oJo 0 Jar

. e*iw'P % (/2 o (72

G(w)= o 2awm,’ (8) = jo Jo f(p,¢)dydp+ Jo fo f(p,m—¢)dydp
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Imp @Bolr +Ry)

G(P‘Q):W

(21)
as the Green’s function fdt(z) = e?#0?,

In the derivation of the boundary integral equation, a splsere
of radiuse centered at the interior poiRtwould be removed from
V, and the integration ove¥, would include the surface of this
sphere. The limit ag— 0 of the integral

J J
— L f [G(P,Q)&—n¢(Q)—¢(Q)5—nG(P,Q)
. s
o o Rep ¢
—2ia(¢(Q)G(P,Q))n,1dQ (22)
must therefore be considered. However, ifes 0,
Fig. 2 Contour in the complex plane used to compute the p
integration iG(P Q)~ 9 1 23)
an ’ an 4ar

and thes =0 limit does indeed produce the correct value(P).

% a2 0 w2 Finally, it is useful to note that Eq18) can, from the point of

= f f f(p,yp)dydp+ f f f(—p,m— )dydp view of the singularity at =0, be considered as a remainder term.
oJo -=Jo That is, the singularity for the FGM Green’s function is entirely
o (mi2 contained within Eq(13), the homogeneous steady-state solution,

:f J f(p,p)dydp. (14) as Eq.(18) is regular atr =0.

—»J0

2.2 Two Dimensions. The Green’s function
It will turn out that the function to be integrated satisfies the abov®(Xq ,2q ;Xp ,Zp) for the two-dimensional equation,
constraint, and thus the modified limits of integration foand )
can be employed. As mentioned above, this greatly simplifies the Pxxt o~ 2iap,=0, (24)
residu_e procedures for theintegration. . is expected to behave as log(and as this function does not die
. Notlng_ thatm-Rf_pr COS(’/'). and t?at’ ot_her than this EXPONEN-5¢t o infinity, the above Fourier transform approach is doomed to
tial, the integrand is a function ab“ and independent of, this fail. However, this fundamental solution can be viewed as the
second term therefore becomes response seen at the poiniy(0,25) to a uniform distribution of
ale iR, (a2 = gipr cogy) charge along theg-axis. This response should be the result of
Wf sin( lﬁ)dlﬁf Tazdp. (15) integrating the three-dimensional Green’s function over this axis,
—= P which for the homogeneous case takes the form
Using the contour shown in Fig. 2, the integration is a 1 (= d

straightforward exercise in residue calculus, yielding _f ZyP ) (25)

4m —x((XQ_XP)2+yP+(ZQ_ZP)Z)l/Z

o eipl’ cog i)
wa p’—a? dp=-— Esm(ar cody)). (16)  The fact that the integral doesn't exist is a minor inconvenience
o _ that is remedied by doing the analysis #@G/dxq ([21]). The
The final integration, integral of this function with respect tgp, does exist, and fol-
o [ lowed by an integration ovexg, the correct log( result is ob-
— _f sin( ) sin( ar cog ))d, (17) tained, where is now the two-dimensional distance.
@ Jo With this framework in mind, we observe that the three-
Hnensional functionally graded materigfGM) Green's func-
on, in the form of Eq.(20), is e '*Rz times the fundamental
_ solution for the Helmholtz Eq3). Since this prefactor is indepen-
zcoar) e 'R dent of yp, integrating out this coordinate as in E@5), we
ype yp—. (18)  expect that the two-dimensional EGM Green’s function is given

by

follows from a simple change of variables, and thus the secoﬁ
term is seen to be :

e*iaR

Including Eq.(13), we find the simple result

e "*Rzcoqar
6(p.)= g

Although this result was derived assuming thats real, it is a Here,Hg is the zeroth-order first kind Hankel functi¢i22]), well
simple matter to check by direct calculation that Etp) satisfies Known to be the solution of the Helmholtz equation in two dimen-
Eq. (5) for any complexa. It is useful, especially for the discus-Sions. This expectation can be established simply by differentiat-
sion of the two-dimensional case that follows, to observe that iNg Ed.(26) and checking that

e ' (20) Oxxt 9z, +2i@g,=0, (27)
4y

i )
(19) 9(XqZgiXp Zp)= 7€ FeHg(ar). (26)

G(P,Q)=e 'R

for Q# P (this is the two-dimensional analogue of the Green’s
is an equally valid solution of Eq(5) for « real. Moreover, the function equation, Eq(5)). That this differentiation also yields a
added singr)/r term is regular as— 0, and thus does not alter thedelta function atQ=P follows from the known behavior df-l(l)
delta function aQ=P. Replacinga by i B, wherepg, is real, we for the Helmholtz equation. Finally, it should be noted that the
obtain two-dimensional boundary integral equation becomes
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9 It should also be noted that, unlike the Green’s function
¢(P)+J ¢(Q)(%Q(P,Q)+2ianzg(P,Q) dQ 1/(4mr) for the Laplace equatiothomogeneous problemnei-
2 ther Eq.(20) nor Eq.(26) is a symmetric function oP andQ. It
p would therefore appear impossible to have a symmetric-Galerkin
:f g(P,Q) — ¢(Q)dQ, (28) approximation([24—28§), as this formulation demands a symmet-

) an ric Green’s function. However, as shown in the Appendix, a slight
reworking of the equations and the kernel functions restores all of
the necessary symmetry properties. This Appendix also provides
formulas for all of the kernel functions: temperature and flux

2.3 Extensions. As it may be useful to have the materialequations in two and three dimensions.
properties vary in more than one compon@#3)), it is worth
noting that the above analysis extends to a more general expongn-
tial variation for k,

which corresponds to Eq6) with G(P,Q) (three-dimensional
case replaced byg(P,Q) (two-dimensional case

Numerical Examples
The three-dimensional steady-state fundamental solution has

K(x,y,z)=koe 2'*%, (29)  been incorporated into a boundary element mett®EM) algo-
where a=(ay @, ,a,). The three-dimensional Green's function/ithm. As noted above, the integral B) is numerically approxi-
is now given by mated via the(nonsymmetrig Galerkin method(see Eq.(39)),
) together with standard six-node isoparametric quadratic triangular
e '“Recog(a-a)r) elements to interpolate the boundary and boundary functions. For
CxydP.Q)= At ' (30)  the numerical examples, the conservation @gwill be taken as

energy conservation in a functionally graded media under the con-
dition of steady-state heat conduction without volumetric genera-
tion. To validate the numerical implementation, solutions to two

test problems are presented below: In the first, the domain is a

P simple cube and the exact solution is known; the second involves

OxAXq:2qiXp,Zp) = Ze"“'RHé((wa)r). (31) a curved geometry which may be more representative of an actual

systems component.
2.4 Galerkin Approximation. The numerical results pre- 31  Unit Cube: Linear Heat Flux.

sented in the next section utilize the Galerkin approximaiél)  hroplem, the geometry is a unit cube with the origin of a Cartesian
to reduce the integral equation to a finite system of equationg,siem fixed at one corner. The thermal conductivity in this ex-
Here we briefly review this technique, starting by rewriting anmple is taken to be

(6) as

Comparing this with Eq(19), it is not surprising that the two-
dimensional result in this casdagain dropping out the
y-coordinaté becomes

For the first example

k(z) =kqe?F?=5e%, (36)

J
P(P)E¢(P)+J ¢(Q)(%G(P,Q)+2ianZG(P,Q))dQ The cube is insulated on the facg=0] and [y=1], while
= uniform heat fluxes of 500)POWER/AREA| are added and re-
P moved, respectively, at tHex=1] and[x=0] faces. In addition,
_f G(P,Q) — ¢(Q)dQ=0. (32) the[z=0] face is specified to have andependent temperature
s an distribution T=1000x deg and afz=1] a normal heat flux of

As is usual, basis shape functio{Q) are used to interpolate g=15000x is removed. The analytic solution for this problem is
the boundary from the element nodal coordinates, and to approxi- T=100ke™ %
mate the surface potential and flux in terms of nodal values, i.e., R .
g=—5000 + 15000k 37)

2(77'§):2. (X}2Y,2) i(7,€) wherei is a unit vector in the-direction.
. The results of the numerical simulations for the temperature
distributions along an edge are shown in Fig. 3. The plot also
#(Q)= 2 ¢i¢;(Q) (33) includes the results obtained from a finite element metiFdM)
! simulation using a commercial package. In the FEM simulation,
dep dep
(=2 (an)jlm(Q).

The numerical results reported herein employ a six-noded qua- 10000 ¢
dratic triangular element, defined using the right triangle param- -‘g:_
eter s%ace(n, &), n=0, £=0, »+ é<1. The shape functions are 8000 -
given by E | '\( _—
(7,6 =(1=n=8(1-27-28) a(n,&)=4n(1-n—§) g o000 - FEM
Yol(7,6)=n(27—1) Us(n.o)=4nt (34 B ' BEM
= 4000 -
(7, €)=£(26—-1) (1, £)=4E(1—n—§). ' _
In a Galerkin approximation, these shape functions are employed 6o | ﬂ-_\\
as weighting functions for enforcing E(B2) “on average,” i.e., = S,
L %'“""M !
gy
— i1y L i . . L i L . !
L'ﬁk(P)LP(P)dP 0. (35) 0.1) 0.2 4 .6 iR 1.0

. . . . . . z
When the approximations in E433) are incorporated into this
equation, the resulting finite system of equations can be disy. 3 Temperature distribution in the functionally graded
cretized and solved numerically. material (FGM) unit cube along the edge [x=1,y=1]
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¥ Pyl oo models of the rotor
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Fig. 4 Geometry of the functionally graded rotor

40 homogeneous layers were used to approximate the continu {
grading; the conductivity of each layer was computed from Ei /N
(36) wherez was taken as thecoordinate of the layer’s centroid. /] \
The FEM elements used were 20-node quadratic brick eleme K
and each of the 40 layers contained 400 brick elements, result (] K
in a total of 69,720 nodes. In the boundary element methc ' P‘V
(BEM) solution, a uniform grid consisting of isosceles right tri- AR )
angles, with each leg having length 0.1, was employed, resulti

in a total of 1200 elements and 2646 nodes. \\Vy&gssﬂh%i&

3.2 Functionally Graded Material (FGM) Rotor. The z QQ&X%&%‘AA"

second numerical example is a rotor with eight mountin§
holes. Due to the eightfold symmetry, only one-eighth of th
rotor is modeled, as drawn in Fig. 4. The grading direction for t )
rotor is parallel to its line of symmetry, which is taken a é?éj Surface mesh employed on the functionally graded
the zaxis, and the thermal conductivity for the rotor varies

according to T T T T T T T
W AA%ANAAVAAVAANAAV
k(z)= 20633°ZW. (38) 2000 - fay 1
4
A schematic for the thermal boundary conditions is shown i | g R
Fig. 5. The temperature is specified along the inner and outer r _ o
and a uniform heat flux of §10° W/m? is added on the bottom £ ~
surface where=0. All other surfaces are insulated as shown. g 1500 [ °®° o, % 1
The BEM solution is compared with an FEM solution obtaine: £ con e,
from the same package used in the previous example using tg L A .
L OO
& > FEM (graded) ‘o N
Insulated 1000 F © BEM (graded) e |
surfaces A FEM (homogeneous) %,
v BEM (homogeneous) © o R
o o
T=150+1.25x10 (z-.01)°
50.0 : : : ' ! : !
0 n/4 /2 3n/4 n
0

interior corner
Fig. 8 Temperature distribution around the hole on the
z=0.01 surface

node tetrahedral elements to handle the geometric complexity of
the rotor. Due to resource limitations, the FEM model was limited
to 12 layers which resulted in the rather crude conductivity profile
Fig. 5 Thermal boundary conditions on the rotor shown in Fig. 6. Even so, the FEM mesh required 95,880 nodes,
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' ' : ' individual elements, as demonstrated recently by Kim and Paulino
1.0e+06 - . [29] using a generalized isoparametric formulation.

As a final test, Fig. 10 displays a comparison between the FEM
interior temperature values, and corresponding values computed
from the BEM solution(in a post-processing calculatipnThe
values are shown for a line of points on the rzidz=0.005)

. plane in the radial direction, passing through the middle of the
hole. Again, the BEM and FEM results agree quite well.

-1.0e+06
-3.0e+06

-5.0e+06 .
4 Conclusions

—7.00406 — o BEM N The _primary conclusion _of _this work i§ that bo_undar_y integral
® analysis, for the most part limited to applications involving homo-
geneous or piecewise homogeneous media, can be successfully
—9.0e+06 O — applied to exponentially graded materials. Although the simplest
0.000 0002  0.004 0006 0.008 0010 case, namely the Laplace equation, has been treated herein, it is
z (m) expected that other applications, including transient diffusion
([30]) and elasticity([20]), can also be addressed. Note that a
specific elastodynamics problem has already been addressed by
Vrettos[16].
The numerical results presented in this paper have shown that it
o8° is simple to implement the functionally graded matefaGM)
o@@)wo@doo Green’s function in a standard boundary integi@hlerkin ap-
proximation, and that accurate results are obtained. For graded
1500 ¢ o FEM 1 materials, this offers the possibility of efficient and accurate solu-
o BEM (interior) tion of those types of problems for which a boundary integral
analysis is particularly advantageous, such as shape optimization,
moving boundaries, and small-scale structures.

Radial Heat Flux (W/m’)

Fi

g. 9 Radial heat flux along the inside corner

200.0 T T T T

100.0 R

Temperature ‘c)
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Appendix

ymmetric Kernels. The symmetric-Galerkin metho@25—

) is a highly effective numerical technique for boundary inte-
gral analysis. As the name implies, it utilizes the Galerkin ap-
cR'roximation to induce a symmetric coefficient matrix. The

symmetry for the geometry and the center line of the hole. Thou Mmmetry comes about_ because of the symmetry properties of the
surface nodal positions in the two models were not coincident rnel functions in the integral equations for surface temperature

general, the plot shows a strong agreement in the two solutiogd for surface flux. Note that for the homogeneous Laplace equa-

whereas the BEM mesh employed 3252. The mesh employed
the boundary integral analysis is shown in Fig. 7.

The temperature distribution around the hole is shown in Fig.
The angled is measured from a line passing through the line

To see the effects of the grading upon the solution, the cor on, the funqlamental solution is symmetr@(P,Q):G(_Q,P),
sponding results for themg%aded?oto? B=0 (k(z)=20), are Put the functionally graded materigfGM) Green’s function, Eqg.
also shown ! ! (21), is not. Thus it would appear that a symmetric-Galerkin ap-

The radial heat flux along the line shown as the interior com@foximation is not possible. . .
in Fig. 5 is plotted in Fig. 9. The negative sign indicates that t In this section, the FGM bou_ndary mt_egra_l equations are re-
flow of heat is toward the interior of the rotor. A limitation on the OV”?F“ated to allow a symmetric ”“me“ca' |mplementat|or_1. In
use of piecewise constant conductivities in FEM models may dition, formulas for all of the required FGM kernel functions
evident in the plot where the FEM nodal valuezat0.01 seems or k(2) real,
to fall out of line with the other values on the curve. The behavior k(z) = koe?$?, (39)
should be fully expected, however, given the local error associated . .
with the piecewise constant approximation seen mea.01 in &€ conveniently summarized. . .
Fig. 6. As should also be expected, the nodal flux values from the 10 Obtain a symmetric matrix, the equations have to be written
BEM solution seem to fall onto a single curve even in the regioh t€rms of the surface flux,
of the steepest conductivity gradient. Thisist to say that BEM 9
is necessarily better than FEM for graded analysis: The finite el- FHQ)=—k(z0) %db(Q) (40)
ement method is not restricted to using the discontinuous piece-
wise constant approximation presently available in existing pactather than the normal derivative. The equation for surface tem-
ages. It is possible to incorporate continuous grading withiperatureg(P) is therefore
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