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Abstract

A multipole algorithm for plane elasticity based on the direct boundary element method (BEM) is presented. The kernels in the BEM are
approximated as truncated Taylor series with expansion points taken from a uniform grid. The algorithm replaces the usual BEM elemental
summations with correlation sums on the regular grid in terms of the sampled kernel data and density moments. Far field influences are
rapidly computed in the frequency domain using the fast Fourier transform (FFT). The resultant linear system of equations is solved with
GMRES. The multipole method is extended to whole-body regularized forms of the standard displacement-BIE and the stress-BIE. Free-term
coefficients which arise from regularization in the far field are also rapidly computed as correlation sums with the FFT. The algorithm is
shown to be faster than the traditional BEM for models with over 400 quartic elements while maintaining an acceptably high level of

accuracy. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is generally recognized that the boundary element
method (BEM) can offer significant computational savings
compared to numerical methods which involve domain
discretizations. In addition to the obvious reduction in
dimensionality of the discretized geometry, increased effi-
ciency in the BEM is also largely due to the fact that, for a
given level of accuracy, BEM models can successfully
employ discretizations, which are much coarser than discre-
tizations required in domain methods. However, for the
class of problems in which the discretization level is predo-
minantly determined by the presence of many fine surface
details, there is a large expense for computing and solving
the dense matrices associated with BEM systems. Nonethe-
less, the BEM is still likely to be the preferred modeling
choice over several alternative approaches since the method
can offer key advantages even for large systems. In particu-
lar, the superior accuracy of the BEM for linear elastic
fracture modeling and its obvious advantages for problems
which require numerous mesh updates make it desirable to
find ways to extend the effective range of the BEM.

Methods used to extend the BEM to large scale systems
may be considered as either modeling strategies or algorith-
mic strategies. The primary modeling strategy is the multi-
zone method [1]. In the multi-zone method, virtual interior
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surfaces are introduced so that the original domain is
decomposed into some number of subdomains. The BEM
is then applied to each subdomain using coupled boundary
conditions between adjacent subdomains. Early applications
of the method served as a means to extend the system size
which could be handled effectively [2,3]. More recent algo-
rithms have used parallel implementation [4], an adaptation
for which the approach is particularly well-suited. The
multi-zone method results in a blocked-sparse system of
increased rank compared to the traditional BEM. When
the increase in system size is not too great and the maximum
block size is small enough, multi-zone methods offer large
computational savings over traditional BEM approaches. A
possible drawback to the use of multi-zones is the need to
reconstruct the virtual surfaces in dynamic simulations,
which is similar to the local re-discretization incumbrance
associated with domain methods.

The algorithmic strategies used to extend the BEM to
large scale problems are based on some type of fast summa-
tion method (FSM) [5]. Physical systems described through
the use of a potential often require a calculation of the
interaction between each component of the system and the
remaining components in the system. The method some-
times referred to as the naive approach [6] generates a
system of equations by computing N — 1 influences for
each of N components, resulting in an operation count
which scales as O(Nz). An FSM is able to compute the
O(Nz) system interactions in less than 0(N2) operations.
The computational savings is typically gained through
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some grouping of influences or decoupling method, which
allows some of the source point and field point data to be
processed separately.

One of the early FSM algorithms [7] was based on
grouped influences for systems of particles and used a
recursive domain subdivision technique in which cells at
each level used a single particle to represent the center of
mass of the enclosed particles. A more recent strategy
used to model problems from the electronics industry
[8] has been to employ a local collocation scheme to
approximate enclosed charges as point charges on a regu-
lar grid to facilitate rapid summation with the fast Fourier
transform (FFT).

The class of FSM techniques which has come to be
known as the fast multipole method (FMM) forms the
basis for the present work. The FMM was developed for
large-scale discretizations for integral equations in potential
theory [9] and later extended to particle simulations [10].
Subsequent researchers have refined and merged aspects of
the earlier FSM algorithms. Some two-dimensional applica-
tions include algorithms for Stokes flow [11,12], electro-
statics in heterogeneous media [13], and fracture
simulations for granular assemblies [14]. Three-dimen-
sional multipole algorithms have been developed for poten-
tial theory and include the extension of the original FMM
[15] and an algorithm for insulated cracks in conducting
media [16].

The algorithm described herein belongs to a class of FSM
algorithms which comprise the spectral multipole method
(SMM) [14,17]. The essence of these algorithms is that
elemental summations in the BEM are first written using
truncated Taylor series expansions for the kernel functions
centered on expansion points from a uniform grid. Elemen-
tal sums are expressed as grid summations involving the
sampled kernel data and density moments which are either
convolution or correlation sums depending on the forms
chosen for the kernels. Elemental influences in the far
field are then rapidly computed using the FFT and the appro-
priate theorem for discrete transforms. The computational
efficiency stems from the fact that the kernel data and
density moments are decoupled, processed separately, and
then efficiently summed. The O(Nz) effort to compute the
system matrix is replaced by the computation of only the
near field influences, an effort which scales nearly as O(N).
The O(N?) operations for matrix-vector multiplications are
reduced to O(NlogN) using the FFT. Finally, for large
systems, iterative solvers may be expected to be faster
than direct solvers.

The present work is an extension of the SMM to the
direct BEM approach. The algorithm is based on
whole-body regularized BIEs and computes all free-
term coefficients using O(NlogN) operations. A basic
description of the algorithm follows after which a
pair of examples from two-dimensional linear elasticity
will be given to demonstrate the accuracy and efficiency
of the method.

2. Regularized boundary integral equations

The Somigliana displacement identity (SDI) and the
Somigliana stress identity (SSI) are the bases for integral
representations of problems in linear elasticity [18]. The
identities give the displacement vector u; and the stress
tensor oy, at interior points p as integrals involving the
tractions #; and displacements over the bounding surface
denoted by the points Q. The SDI and the SSI can be respec-
tively written in the following forms.
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In a slight departure from traditional forms of the SDI and
SSI, the surface normal vector 7;(Q) is isolated from two of
the kernel functions as part of the formulation required for
use with the present multipole scheme. Also based on
computational considerations, the ordering of the indices
in the same two kernels has been chosen so that the second
and third indices in these kernels are summed with the
displacement and normal vectors, respectively. The kernel
Uj; is a tensor of displacements corresponding to the Kelvin
solution for an orthogonal set of point loads and the strongly
singular kernel & ; is the fundamental stress associated with
the Kelvin solution and appears in both the SDI and the SSI.
The kernel V;; follows from differentiation of the strongly
singular kernel and is therefore hypersingular. The singular
and hypersingular integrals must be given special interpre-
tations as an interior point approaches the boundary p — P.
The interpretation may use direct limit procedures [19,20],
finite parts [21,22], or regularization [23,24,25] (see also the
recent compilation [26]). The present strategy is to base the
BEM on regularized forms of the BIE [24] so that the algo-
rithm can exclusively employ numerical integration.

States of constant stress equal to the boundary stress at P
can be used to regularize the integral equations [25]. The
displacements and tractions associated with the constant
stress states have the following form,

up (P, Q) = u(P) + 1y, (P)[x,,(Q) — x,,(P)] 3)

%P, Q) = 0, (P)n,,(Q) 4)

and are denoted with the superscript L to indicate their
association with a linear displacement field. A rigid body
stress-free translation is included in the linear state displace-
ment field. Subtraction of the BIE representations for the
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linear states yields the following weakly-singular BIEs.

0= — L 1P, Q)[u;(Q) — u (P, Q)Ini(Q) dS(Q)
+ j _Ui(P.QII(Q) ~ 1f(P.Q) dSQ) )
0=— L Vi (P, Q[u(Q) — ui (P, Q)Ini(Q) dS(Q)

- L & (P, QI1(Q) — 7 (P, Q)] dS(Q). (6)

As discussed in [25] the previous results are only meaning-
ful at boundary points where the stress tensor is continuous.
It should be recognized that the weakly singular equations
given as Eqgs. (5) and (6) are based on an O(rz) displacement
field as the regularizing state is extended over the entire
surface. The key computational difference between the
whole-body regularized BIE’s and other BIE forms will
be discussed briefly in Section 4.1.

The whole-body regularized BIE’s have some attractive
features for use in BEM algorithms. Since analytic integration
is not required, the extension to three dimensions and the
incorporation of any differentiable interpolation into the
algorithm are trivial. The BEM implementation requires no
special consideration for corners subjected to continuous stress
[27]. Finally, the fact that the standard BIE and its gradient
appear in nearly similar forms is particularly convenient for
programming.

In order to use the weakly singular BIE’s within a multi-
pole scheme, the integrals need to be rewritten to isolate the
three types of terms to be computed, near field integrals,
remote integrals, and free terms involving the boundary
data which arise from the regularization. Isolating a local
portion of the surface denoted as S;, the weakly singular
displacement-BIE may be rearranged as follows.
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The term representing the sum of the integrals on S; is
denoted with a superscript ‘L.C’ in the last line of the equa-
tion to denote a local contribution. The usual integrals over
the non-local surface S — S;, are denoted with a superscript
‘RI’ in the final line of the equation to indicate that they
represent a remote influence. It is these remote influence
integrals which are to be computed indirectly through the
use of multipoles. The integrals which multiply the free-
term displacement, displacement gradient, and stress are
respectively denoted as FI;;, FII,,;, and FIII,,; in the final
line of Eq. (7). The free-term coefficient tensors can be
rapidly computed for the entire surface using the FFT as
will be described in Section 4.3, avoiding the O(N?) opera-
tional expense for computing these same terms directly.
The analogous form for the weakly singular stress-BIE is,
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Fig. 1. Multipole expansion point Q, for a surface element with the source
point located at p.

One of the redundant indices in the stress-BIE is removed
through multiplication with the surface normal at P as is
typically done to produce a traction-BIE.

0=1[oi"(P) + ok (P) + u;(PYFIVyyy + tt; y(PYFV i

* i (PYF VL1 (P). ©))

Egs. (7) and (9) are the bases for the present spectral multi-
pole BEM algorithm depending on which form of the BIE is
chosen for the solution. A general description of the compu-
tational treatment for each of the three types of terms in Egs.
(7) and (9) is given in Section 4 following a description of
the multipole discretization in the next section.

3. Multipole representation of integral identities

In the present algorithm, only remote influences are
conveyed through the multipole grid so the interior integral
identities, Eqs. (1) and (2), can serve as a paradigm for the
calculation of all remote integrals. The objective is to use
the FFT as previously suggested [8,14,17] to avoid the
computational expenses associated with computing a
dense system matrix as well as subsequent matrix-vector
multiplications as part of an iterative solution. The use of
a uniform multipole grid to express integrals in the spectral
BEM follows a previous algorithm [14]. Since multipole
algorithms have certain nuances which differ from more
traditional BEM algorithms, a brief description of the
method follows in the remainder of this section and in the
following section.

As is typically done in multipole schemes, a point Q,
which need not be part of any surface element is used to
convey the influence of one or more surface elements in the
system of equations as shown in Fig. 1. The kernels in the
Somigliana identities are functions of the vector F(p, Q)
which can be expanded in the following way.

HQ—p) =7F(Q —p) +(Q—Ql (10)
Expressing the vector 7(p, Q) in the expanded form allows

any general kernel function K(7) to be written as follows for
Q, inside some radius of convergence.

K@Q - p)=K[(Qy—p) +(Q — Q]
=K(Qo —p) +[Q; — Q] K;(Qy — p)
+ 21Q; — QullQx — QulKx(Qy — p) + - (11)

The surface bounding the domain may be broken into .#
elements and each element may be allowed to have a
different point for the Taylor series expansion Qg,,. For
suitable choices of Qg,, inside a radius of convergence,
the Somigliana identities may be expressed in the
following forms.
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Restriction of the index M in the previous equations to
points which lie in the far field allows the remote influ-
ence contributions in Egs. (7) and (9) to be expressed in
similar form. This is accomplished through grid blanking
as described in Section 4.2.

By relating each density moment to its multipole expan-
sion point Q, the remote influences can be expressed as a
sum over all the multipole expansion points,

N,

u(p) = Z [ = ;(Qo — PIDHQy) + Uu(Qy — p)DH(Qyp)
Q=1

— 0 15.(Qo — PIDH(Qp) + Uyix(Qp — P)D(Qp) + -+ ],

(14)
No,

%@=%l—%mrm%@w

— &5(Qo — PD(Qy) — Vigitn(Qo = PID}y(Qo)

—&MAQm—mHMQ0+~], (15)

where the density moments of various order for displace-
ments and tractions have been written as D" and D', respec-
tively. When the multipole expansion points are organized
as a regular grid, the resultant two-dimensional correlation
sum can be rapidly computed by multiplication in the
frequency domain with the FFT [14]. The use of the FFT
and a regular grid can also be used as a post-processor for
BEM solutions to provide various contour plots from the
interior identities.

4. Direct spectral multipole BEM algorithm

Essential features of spectral multipole algorithms which
use the FFT to convey remote influences include a blanking
method to remove local influences from the grid data, an
interpolation algorithm to express the remote influences at
points not on the grid and an iterative solver for the resultant
system of equations. Additionally, the grid data needs to be
sampled in such a way so that the remote influences are
suitable for evaluation as a Fourier correlation sum. The
following sections describe how each of the three types of
terms in Eqs. (7) and (9) are computed along with a descrip-
tion of the blanking that establishes whether elemental influ-
ences are calculated directly or through the multipole grid.

It is recognized [11,12] that iterative solvers do not
perform as well on systems resulting from direct BEM
applications as they do on systems arising from indirect
methods [8,14]. Following a thorough study of iterative
BEM solution techniques [1], the algorithm GMRES

[28,29] has been chosen to solve the systems resulting
from Egs. (7) and (9).

4.1. Discretization and near field elements

In the present algorithm, the standard isoparametric
representation is used with Lagrangian interpolation.

5
X&) = > Niéxi, (16)

i=1

5
(& = > Ni(@uj,
i=1

5 .
w(® = > N
i=1

The summations extend over five nodal values for the
quartic shape functions used,

5 — &.
No=-T]=%,  j=i a7
j=1 gi §j

Previous experience with an 0(r2) stress-BEM has shown
that quartic interpolations are required to yield comparable
accuracy with other BEM algorithms using comparable
degrees of freedom. It has been postulated [27] that the
interpolation refinement which is necessary for whole-
body regularized algorithms stems from the fact that inte-
grals involving o) density functions require a much
better fit of the boundary data than integrals involving
O(1) density functions. Since the BEM system is typically
dense, there appears to be little computational penalty for
using high order elements [30] unlike in the finite element
method where their use leads to an increase in bandwidth.
An additional attractive feature of the quartic elements is
that the derived quantities, stress and strain, which involve
derivatives of the shape functions, are nearly as accurate as
the boundary displacements and tractions [27].

The first terms in Egs. (7) and (9) are the local contribu-
tion integrals. Since the near field integrals could be
described as the conventional portion of the algorithm, the
computational treatment of these terms is straightforward.
All near field integrals in the reported examples are directly
computed with Gaussian integration. The relaxed regulari-
zation [31,32] is used at nodes shared between two elements
to remove all unbounded terms in the weakly singular
stress-BIE. The relaxed regularization is also employed in
the weakly singular displacement-BIE, though its use is a
matter of convenience rather than one of necessity due to the
reduced continuity requirement in the displacement-BIE.
Further discussion of the regularizing states is given in
Section 4.3. Direct integration over some fraction of the
elements for each collocation point leads to a sparse coeffi-
cient matrix which is stored in compressed form.

When possible, the local contributions to the effective



302 J.D. Richardson et al. / Engineering Analysis with Boundary Elements 25 (2001) 297-311

system diagonal are used to precondition the system. The
influences of the free terms described in Section 4.3 would
also contribute to the diagonal in conventional BEM algo-
rithms so that the method is not the usual point Jacobi
preconditioning. It should also be noted that the strongly
singular kernel corresponding to the fundamental stress
exhibits antisymmetry with compressive stresses in front
of the point load and tensile stresses behind the point
load. In the instance that all of the near field elements are
flat and aligned with one of the coordinate axes, the local
weakly singular integrals involving the fundamental stress
in Egs. (7) and (9) may be zero or zero to within a small
roundoff error. Similar algorithms should make provisions
in such cases to use an alternate form for the relevant term in
the preconditioner. In the present algorithm, the relevant
term on the diagonal of the preconditioner is taken as
unity in the instances when the local contribution to the
linear system is nearly zero.

4.2. Remote influences

The second terms in Egs. (7) and (9) are the remote influ-
ences which, for large systems, comprise the majority of the
computational effort. Fig. 2 illustrates the multipole
sampling scheme for a model problem which will later be
taken as the first numerical example. A 32 X 32 multipole
grid is used with a 3 X3 blanking area. The algorithm
centers the kernel source point sampling patch on the grid
point located at the position (NV,/2 + 1, N,/2 + 1) as shown.

For grid-based FSM’s arising from singular integral equa-
tions, the near field influences conveyed through the grid are
grossly inaccurate. For schemes in which the near field
contributions can be expressed in closed form in terms of
finite quantities, some pre-corrections may be made to the
grid data to remove the inaccurate near field influences [8].
However, due to the algebraic complexity of the local
mapping of the density moment data to the grid for the
present approach and the fact that the kernel functions are
not finite at the source point on the grid, the strategy which
has been chosen is the kernel blanking scheme [14] which
insures that local influences are never part of the grid
summations. Inside the blanking region indicated by the
square of unfilled circles shown in Fig. 2 the kernel data
are not computed, but rather, are set to zero.

Elemental grid point associations which are based on
proximity to the element centroids determine, for each
collocation point, whether the influence of each non-local
element is computed directly or through the multipole grid.
Another key association in the algorithm is established
between each collocation point P and its closest grid point
G®. Those elements which have a closest grid point Qg lying
inside the blanking region centered at G” for the given node
are blanked out of the correlation sums in Egs. (14) and (15)
since the corresponding kernel entries are set to zero. The
direct local influences described in the previous section for
each node P are the integrals over all elements having

closest grid points Q, which lie inside the blanking region
centered at G.

The sampling of the kernel data and density moments in
the manner described allows the elemental summations to
be rapidly computed as Fourier correlation sums [33]. In the
present notation, the kernels are written as functions of
Q) — p and the density moments are written as functions
of Q. Introducing a new variable, T = Q, — p, the remote
sums in Eqs.(14) and (15) take the forms,

N, N,
wey= > > [ — 6 (T)D(T + p)
Qu=1 Q=1

+ U(T)DI(T + p) = G x(T)Di(T + p) + - ] (18)

Nx NV
ou®= > > [ — Viga(T)D(T + p)
Q,=1 Q=1

= Gi(DD{T + p) = Vigjin(T)Dyy(T + p) + - ] 19)

where the summation over the points Qg has been expressed
as a double sum over the rows and columns of all multipole
grid points.

For any general data set u(m,n) sampled on a uniform
grid, its discrete Fourier transform [33] is given by the
following.

DFT[u(m,n)] = U(r,s)

1 Ne_y Ny ) )
— Z Z u(m, n)e(72mrm/Nx)e(72msn/Ny) ) (20)
NxNy m=0 n=0

As previously noted [14], the correlation sums in Eqgs. (18)
and (19) can be rapidly computed with the discrete trans-
form using the correlation property,

Neoq Ny—y
DFT[u(m,n)] = DFT[ S D H)DMm A o0+ s)]

m=0 n=0

=AH(r,)DM"(r,s), 21

where J# (r, s) is the transform of the general kernel function
and 2.4 (r, s) is the complex conjugate of the transform of
the general density moment. The FFT algorithm [34] can be
used so that the total operation count required to transform
the data, compute the correlation, and invert the result is
O(N,N,log|N.N,|). For BEM models of highly porous
media, the product NNV, would be proportional to the number
of elements. The operational expense of the matrix-vector
multiplication is O(NlogN) where N is the system size. As
part of an iterative process, transformation of the kernel
functions is only performed once so that the remaining
operations only involve updates to the density moments.
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Fig. 2. 32 X 32 multipole grid representation of the Kirsch problem with blanking set at 3 X 3.

As seen in Fig. 2, the kernel functions are sampled at the
grid points (r, s) corresponding to the point T = Q — p with
the source points placed near the center of the grid. The
density moments at (m + r,n + s) are sampled as shown
by the dashed region outlined in the upper right portion of
the grid. The data are structured so that the correlation
influence at the (m,n) position corresponding to the point
p is in the physical location shown in the lower left of the
grid. The physical domain occupies the lower left (N,,) X
(Nyp) portion of the grid and the sampling location for
density moments falls in the upper (N,;) X (N,;,) portion
of the grid.

At internal grid points far from any boundary, the grid
data naturally show the same variation with position as
the interior solutions since the remote influences are the
BEM approximations for internal stresses and displace-
ments. For grid points which are close enough to the
boundary so that the blanking region intersects the bound-
ary, spatial variation in the remote influences is also
significant. The quartic serendipity patch element [35] is
used to resolve spatial variation in the remote influences.
The remote influences at the collocation points which are
not typically on the regular grid are approximated with the
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e ® = Y Ni(& D, (22)
i=1
17 )
ai (®) = D Ni(& Do)’ (23)

i=1

The translationally invariant kernel functions are sampled
over the unblanked portions of the grid with the source
point placed at each of the nodal positions on the seren-
dipity patch element shown in Fig. 3. Computing the
correlation with each translation of the kernel data gives
the nodal values used in the interpolation, (ufl)i and
(ofY. The width of the interpolation patch is equal to
the grid spacing and the patch boundaries lie halfway
between adjacent grid points. The coordinates of the
collocation node relative to its closest grid point x,l-) —
x,-G are mapped to the intrinsic coordinates (£, {) on the
serendipity patch.
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Fig. 3. Serendipity kernel patch element near the center of the multipole
grid.

4.3. Regularizing boundary data

The final type of terms which need to be evaluated for the
regularized multipole algorithm are comprised of products
of the boundary data and integrals of various kernel func-
tions over the non-local elements. The regularizing states
require an expression for displacement gradients in terms of
the BEM interpolations for boundary displacements and
tractions. The BEM approximation for displacement gradi-
ents follows from the tangential derivatives of the displace-
ments, the surface form of Hooke’s law, and the strain-
displacement relations. Tractions are related to displace-
ment gradients through,

2uv

= mum,maijni + wluyy + i n; (24)

and surface tangential derivatives of the displacement are
related to the displacement gradients through,

5
ZNi(g)M]l == —anuj,l + Jnluj,z, (25)
i=1

where N(&) represents the derivatives of the interpolation
function with respect to the intrinsic coordinate, J is the
Jacobian of the transformation to the standard element, n;
are the components of the surface normal vector, and u and
v are the shear modulus and Poisson’s ratio, respectively.
Though the expression in Eq. (25) is a two-dimensional
result, the analogous result for three-dimensional problems
simply follows from application of the chain rule of partial
differentiation.

Through inversion of the relations in Egs. (24) and (25),
the displacement gradients in the BEM take the following
form:

5
U (P) = A (E0)1,(€7) + Bun(€N) D Ni(E . (26)
i=1

In the previous expression, £” is the intrinsic coordinate at
P, tm(fp) is the traction at the source point, u’, are the nodal
values of displacement and the elemental summation
extends over the five nodes in the two-dimensional quartic

element. The terms in the tensors Ay, and By, involve the
elastic constants, the surface normal vector and the Jaco-
bian. The BEM estimate for stresses is formed from the
displacement gradients using Hooke’s law and the strain-
displacement relations. Following the standard relaxed
regularization approach [36,37], the regularizing state on
each source point element is given in terms of the interpola-
tion on that element. In the case that the source point is
shared between elements, the value of the regularizing
state in the far field is taken as an elemental average [25,27].

The integrals F1; and FIII,,;; which multiply the free-term
displacement and stress, respectively, in Eq. (7), involve
products of the kernels & ; and Uj; and the normal vectors.
The forms for FI;; and FIII,,; are easily obtained using the
same computational architecture since the normal vector
density moments are the standard displacement density
moments for the particular case of unit displacements. By
forming the appropriate correlation sums, the resulting free-
term coefficients are rapidly computed for all nodes using
the FFT. The same blanking method used to isolate the
remote influences of the boundary data only on § — §; are
used to similarly isolate the remote influences of the regu-
larizing states on S — S;. The analogous terms FIV,; and
FV1,,;;; in Eq. (9) are treated in the same manner. Calcula-
tion of the displacement gradient free term coefficient
tensors FII,; and FV,;; may also be performed with the
multipole approximation. Taking the former as an example,
the tensor can be written as follows.

F1L,;

J o Q) = x5 (P, Q)r;(Q) dS(Q)
- J’57 S &ZU(P’ Q)xm(Q)nj(Q) dS(Q)

“n® | aRon@EQ. @)

The first integral in the second line of the previous expres-
sion is easily computed as a correlation sum involving a
constant strain density moment and the other integral is of
the same form as FI; multiplying the rigid-body term. The
vector x,,(P) which appears outside the second integral is
included as part of the product with the displacement gradi-
ent after the remote influence at the source point is
computed involving only O(N) multiplications.

5. Numerical results

The computational savings which may be gained through
multipole methods are well-documented [8,10,11,14,16].
Since multipole schemes are only practical for use with
relatively large systems that require substantial computa-
tional effort, it is impractical to conduct numerical conver-
gence studies for every simulation. This section will
therefore include a discussion of the parameters required
to obtain accurate BEM solutions as well as a report of
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the computational savings obtained through the present
algorithm.

In addition to the familiar errors associated with trunca-
tion of the Taylor series expansions, other sources of model-
ing error will coexist within the SMM. A small amount of
error may result from the application of iterative solution
methods to poorly conditioned systems. Another inherent
source of error in the SMM will arise from interpolation
of the remote influences. For a fixed grid and blanking,
the remote interpolation error will place a limitation on
the accuracy which can be obtained in the effective
matrix-vector multiplication which will be independent of
the multipole expansion order. Without refinement of the
multipole grid, the remote interpolation error will also ulti-
mately limit the increased solution accuracy which would
otherwise be expected from BEM mesh refinement.

Due to the complex relationship between sources of error
present in the SMM, a formal error analysis will not be
attempted. Rather, the variables influencing solution accu-
racy will simply be reported as they are observed from
numerical experimentation. A dimensionless parameter k
which may provide some indication for modeling error is
defined as

= M (28)

|Vb|

where the numerator represents the maximum distance
between a Gauss point on any element and its elemental
expansion point and r, is half the width of the blanking
square. It should be noted that for a fixed blanking radius,
k will decrease with grid refinement and that for a fixed
grid, k will also decrease for increased blanking so that
smaller values of k should correlate with increased
accuracy.

For all examples, the unrestarted version of GMRES was
used with the initial guess taken as the null vector. Follow-
ing extensive numerical experimentation, no convergence
criterion could be determined based on a unique value for
the residual norm which would not lead to overly conserva-
tive estimates for at least some systems. For the SMM
systems which were not too poorly conditioned, plots of
the logarithm of the residual norm versus iteration number
indicated the common tendency for the residual norm to
decrease very rapidly through the early iterations and then
to abruptly change to a slope which was nearly zero. Accu-
rate solutions were not obtained when GMRES was stopped
while the residual norm was still decreasing in the iterative
process. Numerical experiments seemed to indicate that the
best convergence measure was to stop GMRES just after the
residual curve became flat for a number of iterations. A 3%
decrease in the residual norm over 75 iterations was most
often used as the convergence criterion so that execution did
not terminate prematurely in the few instances in which the
residual norm followed a staircase descent. Additionally,
the preconditioners used for each example will be discussed

in the remainder of this section as well as the scaling which
seemed to be required for the second example.

5.1. Plate with hole subjected to remote tension

Motivation for the development of the present multipole
algorithm is largely based on the need to simulate the evolu-
tion and coalescence of voids in porous media. The multi-
pole solutions for a large plate with a small hole can be used
to gain insight into the expected behavior for large scale
simulations of porous elastic media.

Some background on the two conventional forms of the
stress-BEM and displacement-BEM is first in order. A key
difference between applying the two forms of the BEM
stems from integration of the various kernels around closed
surfaces. The integral of the hypersingular kernel around a
closed surface such as a pore is known to be zero [38]. The
displacement solution resulting from the stress-BEM
applied to geometries containing internal closed surfaces
on which there is no displacement boundary condition
will be arbitrary to within a translation and rotation of the
closed surface. When direct solvers are used for the system
generated using the SSI, the displacement solution on the
pore will include some non-physical rigid body terms. On
the other hand, an iterative method such as GMRES which
builds a Krylov sequence annihilates the null space so that
the rigid body component of the solution on the pore will be
zero to within some small round-off error. The clear indica-
tion that the iterative and direct solutions of the stress-BEM
differ only by stress-free rigid body terms follows from the
fact that the boundary stress algorithm, which requires
differentiation of the displacement field, yields identical
results for the two BEM solutions to within round-off error.

A second difference between the stress-BEM and the
displacement-BEM is the integration order which is appar-
ently necessary. As an example, the boundary stresses
computed from applying the conventional forms of the
BEM to the four element model of the pore shown in Fig.
4 will be compared. It should be noted that the requirement
for accurate boundary stresses is more stringent than the
usual requirement for accurate nodal boundary data since
stresses are computed from differentiation of the shape func-
tions. From the preceding discussion, however, a compar-
ison of boundary displacements around the pore is
meaningless. Using the conventional stress-BEM with
eighth-order integration, the extreme stress concentration
factors differ from the exact results [39] of 3 and —1 by
only 0.056% and 0.54%, respectively. The small errors
remain unchanged to at least four significant figures when
the integration is refined from eighth-order to twelfth-order.
The conventional displacement-BEM, however, shows a
significant improvement under refinement from tenth-
order to twelfth-order integration as errors in the same quan-
tities are reduced from 2.8% and 4.0% to —0.91% and
—0.21%, respectively. The fact that the weakly singular
displacement-BIE contains integrands which are very



306

0.1 Dia.

J.D. Richardson et al. / Engineering Analysis with Boundary Elements 25 (2001) 297-311

IAERURRRNERERRERERNNERNRRET]

T

Detail A

IRNSERRNRNRNRRERERARRRNRNE: o

T T

Detail A

| 100 |
| TYP |

Fig. 4. Plate with hole in tension and 132 quartic element BEM model.

small over a larger region seems likely to explain the
requirement for higher order integration in the displace-
ment-BEM. The examples to be presented were therefore
solved using eighth-order integration in the stress-BEM and
twelfth-order integration in the displacement-BEM.

With the conventional BEM solutions for the small hole
subjected to remote tension as a baseline, the 32X 32
multipole grid previously shown in Fig. 2 was used for
the SMM solutions for the problem. As shown, the blank-
ing region for both forms of the SMM was a 3 X 3 array
of gridpoints. The choice to place 128 elements around
the periphery of the plate as shown in Fig. 4 was made to
provide a level of discretization suitable for application of
the SMM. The numerical value for the Young’s modulus
was taken as 3 X 10’ and 0.3 was used for the Poisson’s
ratio. For both the displacement-BEM and stress-BEM,
the kernel expansions were carried out through third
order derivatives. Kernel truncation after second order
derivatives led to an error in the system which produced
traction errors at the corners of the plate which were
around 3% though the remainder of the traction solution
was still highly accurate.

The stress concentration factors from the SMM are shown
in Fig. 5 where the boundary stress was computed from the
surface form of Hooke’s law and then rotated into the
cylindrical system. The choice to compute stresses only at
the nodal positions was arbitrary; the quartic elements
support a highly accurate estimate for stresses at all points
on the element. As seen in Fig. 5, a single quartic element
spanning each arc of m/2 as shown in the detail drawing of
Fig. 4 was sufficient to accurately model the stress variation
along the pore. For this problem, the influence of the remote
loading was conveyed to the nodes on the pore exclusively
through the multipole grid. The errors in the SMM stress-
BEM for the stress concentration factors at /2 and 0 were
0.042% and 0.53% while for the SMM displacement-BEM,
the same errors were —0.95% and —0.27%. By comparison
with the conventional BEM solutions previously described,
errors due to the SMM approximation were slightly less for
the stress-BEM. In both SMM solutions, the tractions
computed on the left were equal to the applied tractions to
at least six significant figures at all places including the
corners. The small difference between the applied and

computed tractions is expected due to the presence of the
hole in the finite geometry.

A test for the level of accuracy which can be expected
from truncation after third order derivatives was conducted
using the SMM stress-BEM by removing the hole from the
plate. The stress-BEM patch test for the third order SMM
showed that the computed tractions were equal to the
applied tractions to at least ten significant figures using
the same grid and blanking scheme.

The nodal displacements should now be interpreted in
light of the previous discussion regarding closed surfaces.
The displacements from the SMM displacement-BEM
along the horizontal and vertical centerlines of the pore
matched the corresponding mid-side plate displacements
to within a small error in the seventh significant figure
along the vertical center line and to eight significant figures
along the horizontal centerline. From the SMM stress-BEM,
the same displacements on the centerlines of the pore were
more than six orders of magnitude smaller than the corre-
sponding mid-side plate displacements as expected in light
of the previous discussion regarding GMRES and the null
space in the stress-BEM system.

With the blanking used in this example, the number of
elements placed in the far field for each collocation point
ranged between 124 and 128, which is between 93.9% and
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Fig. 5. Stress concentration around hole with blanking set at 3 X 3 and
truncation after third order derivatives.
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Fig. 6. Pipe subjected to internal pressure.

97.0% of the total elements in the model. The dimensionless
k factor for the 3 X 3 blanking used with this discretization
was approximately 0.468.

5.2. Pressurized pipe

The second numerical example is a pipe subjected to
internal pressure as shown in Fig. 6. BEM solutions for
this problem are more interesting since the algorithm must
compute tractions on surfaces which have significant stress
gradients. As a reference, basic four element models of the
pipe give maximum traction errors of 2.3% and 1.4%,
respectively, for the conventional implementations of the
stress-BEM and the displacement-BEM using quartic
elements and eighth-order and twelfth-order integration,
also respectively. However, seven elements were used in
the initial discretization as shown in Fig. 6 because it
seemed more convenient to assess blanking requirements
in models with nearly uniform element sizes. Subsequent
mesh refinements were performed by dividing each element
shown in Fig. 6 in half.

For this problem, a 64 X 64 multipole grid was used as
plotted in Fig. 7 where only the portion of the grid which
contained the physical location of the pipe is shown. The
plot shows a discretization with 224 elements with the nodes
shared between elements plotted to provide a sense of the
element size. The plot also shows the 5 X 5 blanking region
which seemed to be best suited for this discretization. The
units of the plot are shown in cm as will be explained.

The poor conditioning for BEM problems in elasticity is
largely due to the fact that, for geometries which are O(1) in
size, the unknown tractions and displacements differ by the
order of the elastic modulus. For straightforward boundary
integral discretizations in elasticity, then, the columns of the
system matrix are likely to be poorly scaled which adversely
affects conditioning [40]. While the disparity in magnitude
between the two types of boundary data never seems to pose
any problem for direct solvers, the accuracy and efficiency
of iterative solvers under these conditions is compromised.
For the pressurized pipe example, the process of column
scaling was employed and conditioning of the linear
systems was observed to improve considerably. Since the

SMM never explicitly builds a full system matrix, the
equivalent process of column scaling was based on an
appropriate choice of units taken from dimensional analysis.
The following general scaling argument can be made,

u~ el ~ U—L ~ & 29)

E E

where the omission of indices on the quantities u, #, o and on
the strain € indicates characteristic values for the corre-
sponding vector and tensor quantities and where E and L
are the Young’s modulus and the characteristic length,
respectively. The scaling immediately gives the following

pi group
tL

== (30)

11,
which should be an O(1) term. If the conventional linear
system was to be formed, it should be expected that the
columns of the system matrix are nearly optimally scaled
when the magnitudes of the unknown tractions and
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Fig. 7. A portion of the 64 X 64 multipole grid overlying a 224 element
model of the pressurized pipe shown in its physical location.
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Fig. 8. Tractions from SMM displacement-BEM using 224 elements with
5% 5 blanking and 64 X 64 grid.

unknown displacements are nearly equal. Since II; is O(1),
this will occur when the numerical value of the ratio L/E is
close to unity.

As an example, two systems of units were used with the
SMM models for the pressurized pipe. The outside diameter
of the pipe which was 2 m served as the characteristic length
for the problem. The pressure inside the pipe was taken to be
10° Pa and the Young’s modulus for the pipe was taken as
3% 107 Pa. In the standard SI system, the ratio of character-
istic tractions to displacements was 0(107) corresponding to
an L/E ratio of about 6.7 X 10™%. Under rescaling in terms of
cm, the ratio of characteristic tractions to displacements was
reduced to O(10) which corresponds to a more favorable L/E
ratio of 6.7 X 107>,

The benefits from column scaling are summarized as
follows. When the problem was formulated in the usual SI
system, GMRES routinely gave errors of around 2% for the
computed tractions at the corner nodes as computed from
the stress-BEM, though the tractions computed at all other
nodes were typically accurate to around four significant
figures. Additionally, the number of iterations of GMRES
was required to be as high as 0.9N for some models where N
denotes the system size. By simply rescaling the problem as
described, the errors in the tractions at the corners were
reduced by at least an order of magnitude. Additionally,
using the second system of units, the number of iterations
was reduced to around 0.1N for the larger systems which
was sufficient for the SMM to offer a computational advan-
tage over the conventional BEM. It should be noted that
rescaling of the problem changed the preconditioner
which also may have contributed to the improvement seen
in the stress-BEM.

In order to observe the accuracy of GMRES under the two
scaling schemes without the approximations introduced by
the SMM, a number of runs were made with modified
dimension statements so that the entire grid was blanked
out to recover the conventional linear systems. When the
problem was rescaled in terms of cm for the basic unit of
length, the solution vectors from GMRES matched the
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Fig. 9. Tractions from SMM stress-BEM using 224 elements with 5 X 5
blanking and 64 X 64 grid.

direct solutions in at least the first seven significant figures
with or without preconditioning. When the problem was
formulated in terms of m, GMRES was only able to consis-
tently match the first four significant figures in the solution
vector compared to the direct solution.

A final note on conditioning concerns the displacement-
BEM. Using the inverse of the local contribution to the
system diagonal as a preconditioner for the displacement-
BEM failed as GMRES did not solve the system. Though
the same preconditioner worked for the previous problem,
the results in this section from the displacement-BEM were
obtained without preconditioning.

The numerical results presented in the plots in this section
were again obtained using third order expansions in the
SMM. Third order expansions were chosen because errors
were observed in the solutions obtained with truncation
following the second order derivatives and the solution
vectors were unchanged to four significant figures under
successive refinements from third order through fifth
order. An example of the tractions computed by the SMM
displacement-BEM is shown in Fig. 8, where the tractions
are normalized to the maximum value of traction in the
exact solution [18]. As seen in Fig. 8 the SMM displace-
ment-BEM produced a small traction error in the corner
where x = 100 of about 0.56%. This was due to the far
field approximation since the conventional displacement-
BEM shows an error of only 0.025%. The remainder of
the traction solution was extremely accurate. The tractions
computed by the SMM stress-BEM were much more
accurate as seen in Fig. 9 and show a maximum error of
0.17% which occurred at the corner where x = 200. Plots of
the displacement solution are not given since the displace-
ments were accurate everywhere to at least four significant
figures.

The use of a 5 X5 blanking region on the 64 X 64 grid
produced values of k which ranged from about 0.324 for the
224 element model to around 0.295 for the 896 element
model. For the models ranging in size from 224 elements
to 896 elements, the fraction of elements placed in the far
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field at each collocation point by the 5X 5 blanking was
between 92% and 96%.

The limitation on the blanking level for this problem is
illustrated by attempts to reduce the blanking to a 3 X3
square. When the blanking was reduced to 3 X3, the
SMM stress-BEM produced traction errors at the corners
which were on the order of 1-2% even though the expan-
sions were carried out through fifth order derivatives. The
corresponding k factors for the 3 X 3 blanking runs were
around 0.5. Therefore, the conservative blanking criterion
observed for the pressurized pipe example is that k should
be equal to or less than 0.3.

The key motivation for the present work lies in the
computational advantage which can be gained through the
SMM for large systems. Benchmarking was performed on a
Sun Microsystems HPC(Enterprise) 450 with 4 UltraSparc
IT 248MHz processors and 1GB of memory to compare run
times for the conventional and SMM forms of the stress-
BEM for the pressurized pipe examples. For the 224
element, 448 element and 896 element models, the conven-
tional BEM gave maximum corner traction errors of
0.054%, 0.024%, and 0.011%, respectively. As should be
expected due to the errors associated with interpolation of
the remote influences which are fixed for a given grid, the
SMM was not able to show a similar convergence trend nor
maintain the same level of accuracy as the conventional
BEM. However, among the same three models, the maxi-
mum corner traction error in the solutions obtained with the
SMM was only 0.19% which should be acceptable in nearly
any practical application. The run times for the two forms of
the stress-BEM are plotted in Fig. 10. For the pressurized
pipe example, the figure indicates a computational advan-
tage for the SMM for BEM models which have more than
about 400 quartic elements.

6. Conclusions

An implementation of the SMM was demonstrated for the
weakly singular forms of the displacement-BIE [41] and the
stress-BIE. Even for problems of moderate size, the SMM
was shown to be faster than the conventional BEM while
maintaining a level of accuracy suitable for engineering
calculations. It should be noted that the computational
advantage of the SMM was observed in the second example
in spite of the heterogeneous spatial distribution of
elements. Since it is recognized [8] that the efficiency of
spectral grid-based methods is highest for element distribu-
tions which are nearly homogeneous in space, it should be
expected that the computational advantage for the SMM
would be even more pronounced for models of highly
porous media.

A guideline for the appropriate blanking radius to estab-
lish whether elemental influences should be conveyed
directly or through the multipole grid may be inferred
from the minimum value of the k ratio which was required
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Fig. 10. Algorithm speed comparison with SMM solution errors maintained
under 0.2%.

in the two example problems. While accurate results were
obtained in the first example with k nearly as high as 0.5, a
similar value of « in the second example was associated
with levels of error which would typically be considered
as unacceptable. Therefore, the requirement from the
second example that k must be less than or about 0.3 should
be taken as the more conservative estimate for the minimum
blanking radius for a given grid and discretization. This is
only slightly more conservative than the definition of well-
separated sets described in early references to the use of
multipoles [6]. The small difference is likely to be due to
the fact that the SMM is additionally limited by errors in the
interpolation of the remote influence grid data.

In each of the two example problems, second order
expansions were found to be insufficient. It was also
observed that the solution vectors were essentially
unchanged under refinements beyond third order expansions
which is consistent with the position that the primary limita-
tion on accuracy in the SMM is the order of interpolation for
the remote influences. Based on the reported examples,
then, Taylor series truncation after the third order deriva-
tives would seem to be preferred in terms of accuracy and
computational expense.

Use of the SMM has provided some unexpected insight
regarding BEM tractions at corner nodes. It is widely recog-
nized that tractions at corners are extremely sensitive to
small amounts of modeling errors in BEM systems. It
should be noted that the SMM and the conventional BEM
share the integrations in the near field which are sufficient to
give traction solutions with errors which are always consid-
erably less than 0.1% in the conventional BEM solutions of
the example problems. Introducing non-local perturbations
to the system of equations by truncating the kernels in the
far field and interpolating remote influences was seen on many
occasions to have a significant effect on the corner tractions
while the remainder of the boundary solution was essentially
unchanged. The implication is that, while tractions at corners
seem to be an excellent indicator for overall system modeling
error, this sensitivity has a strong non-local nature which is
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attributable to factors other than the usual concerns regard-
ing boundary integral equations for external corners.

Some possibilities for improvement to the algorithm
should be suggested. First, a database for kernel tables
could easily be developed where the entries are stored in
the frequency domain. The data could be stored for kernels
sampled on a grid of unit characteristic dimension. Dimen-
sional analysis could be used to reproduce any kernel field
on a geometrically similar grid of arbitrary size by scaling
the kernel data from the basic table.

A second possible improvement might follow from itera-
tively solving an over-determined system of equations
which would be too costly for conventional approaches.
Using the form of the SMM described herein, the option
to compute both the displacement-BIE and the stress-BIE
for each collocation point is actually fairly inexpensive. The
density moments are identical so that one set of transformed
density moments is all that is required in the multipole
expression for the two BIE’s, the expensive matrix-vector
multiplication is largely replaced with the FFT and a
common kernel is shared between the two BIE’s. The
present algorithm which was successful in the benchmark-
ing has not yet been optimized and computes all three kernel
tables regardless of which form of the BEM is chosen. In
addition to the computational advantages which might exist
for rectangular iterative solvers, a heuristic based on
mechanical arguments could be employed which uses both
forms of the BIE so that updates to the unknown boundary
data would be based on the error in the BIE expression for
the known boundary data. The possibility for using such
iterative solvers should be similarly considered for SMM
applications to problems in potential theory.

A final suggestion became apparent through the post-
processing of interior data when it was was noticed that
the midside data from the serendipity nodes were continu-
ous to machine precision. A more efficient approach would
be to extend the multipole grid slightly so that the grid
extends past the domain. With this approach, the kernels
would only need to be sampled with the source point at
the center node, at one corner node, and at the three interior
nodes on one vertical and one horizontal side of the patch
element. The expense for computing the remote influences
both in terms of memory and in the number of required
operations would be reduced to approximately 8/17 of the
expense in the current algorithm while still providing a
quartic interpolation by borrowing from the correlation
influences in adjacent cells.
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