
Tom Chen
SMU, Dept of Electrical Engineering

Dallas, Texas 75275
tchen@engr.smu.edu

www.engr.smu.edu/~tchen

Early Detection and 
Containment of Worm 

Epidemics



TC/5-15-07/CSIIRW SMU Engineering p. 

• Worm outbreaks can spread quickly, e.g., 
Slammer

• Early detection and warning systems correlate 
observations from distributed sensors to 
automatically detect new worm outbreaks, even 
unknown worms 
- Symantec’s DeepSight Threat Management System

- Internet Storm Center operated by SANS and 
Incidents.org

• Worm detection depends mostly on signatures

Early Detection Systems

2



TC/5-15-07/CSIIRW SMU Engineering p. 

• Signatures allow accurate detection but
- Worms without signatures may evade detection

- Signatures for a new worm can take hours to 
develop

• Behavior-based (anomaly) detection is useful for 
detecting unknown worms

• After detection, outbreaks can be contained by 
quarantine (blocking) or rate throttling (slowing 
down)

• Outbreak behavior can be studied by epidemic 
modeling and simulation

Early Detection and Containment

3



TC/5-15-07/CSIIRW SMU Engineering p. 

Community-of-Households Model

4

• Population consists of m households 
(autonomous systems)
- Hosts are initially susceptible (S) state, then change 

to infective (I) state and removed (R) state

- βij = infectious contact rate from household i to 
household j (different than intra-household rates)

Household

Household
j

Household

Household
i

router R1 Ri

Rj router Rm

βji
βij

Subnetwork



TC/5-15-07/CSIIRW SMU Engineering p. 

Web-based Simulator

• In addition to mathematical analysis, we are 
developing Web-based worm simulator
- Several existing worm simulators are written as 

applications, requiring users to download and 
compile

- Simulators are platform dependent

- Each copy of simulator and simulation results are 
tied to a physical machine

- Users are responsible for maintaining and updating

5



TC/5-15-07/CSIIRW SMU Engineering p. 

Web-based Simulator

6

Simulation 
parameters

Results

Database

Web serverWeb client

Program
logic

Client-server architecture separates GUI from program logic

- Web browser provides 
familiar, consistent, 
user-friendly GUI
- Users do not have to 
download and maintain 
their own simulators

- Web server provides location-
independent and platform-
independent simulation
- Simulation results can be 
shared easily



TC/5-15-07/CSIIRW SMU Engineering p. 7

High Level Design

CGI Script 

Load Parameters 

Generate Topology 

Generate Population 

Generate Bandwidths 

Deploy Countermeasures 

Run Simulation 

Load Applet 

Enter Parameters 

Validate Parameters 

Run

Send HTTP POST 

Receive Response 

Graphical Output 

HTTP POST

Reply 

Front-EndBack-End

Fig. 1. High-Level Design

A. Web-Based Front-End

The front-end is an interactive GUI application provided by
a Java applet and is shown in Fig. 2. It has provisions for
data entry, data validation, context-based help, execution, and
graphical display of the simulator’s output.

The user-provided parameters have been divided into four
categories; basic parameters, outbound rate control, inbound
rate control, and quarantining. The basic parameters help
specify the framework through which the worm would be
simulated; the number of Autonomous Systems (AS) in the
topology, algorithm for populating these nodes, link-capacities,
and queue length. They also specify the worm vector, whether
it is a uniformly spreading worm or a local-preferential one,
and if the later then the percentage of probes targeting hosts
of the same node.

The parameters relating to worm countermeasures can be
activated on a per-group basis. The parameters for outbound
rate control specify the percentage of households (AS) that
would have this capability, the selection algorithm for such
households, and the severity of throttling the worm traffic.
The parameters for inbound rate throttling specify similar
deployment criteria and throttle factor. In addition, they also
specify the trigger-type and threshold for activating this coun-
termeasure. Quarantining is the most severe countermeasure
where all incoming and outgoing worm traffic is blocked. This
measure will have its own deployment and triggering criteria.

Every parameter value is validated upon entry. If the valida-
tion fails, the field is highlighted in red color and positioning
the mouse over the field would display a pop-up message
explaining why the validation failed. When the Run button
is clicked, a quick check is made to ensure that all fields have
been successfully validated. If there are no validation errors,
then the parameters are encoded into an HTTP POST message
and sent to the applet’s web-server.

B. CGI Back-End

The CGI script at the back-end is a python program which
receives the simulation request containing the user-specified
parameters. It imports the python core simulator and passes

Fig. 2. Front-end of the NaSim simulator

these parameters to it along with a unique request-ID. It then
invokes the core simulation function. When the simulation is
complete the data is stored on the server using a file-name
based on the unique request-ID and a response is sent back to
the front-end. Upon receipt, the front-end reads the data file
on the server and displays it in graphical form.

C. Topology Generation
By design, the simulator does not have its own topology

generator. The aim is to take advantage of existing work in this
area and use data from one of the available topology generators
[7]. The simulator would then use this data to construct the
topology in its own object space and simulate the flow or
worms through it. Alternatively, one of the available data sets
for Internet topology may also be used.

D. Core Simulator
After the topology is determined, the CGI script invokes

the core simulation program which is a topological worm
simulator. It simulates the behavior of the specified worm as
it traverses the specified topology, subject to a combination of
countermeasures deployed and invoked per user specification.

After topology generation, the core simulator populates the
AS nodes with hosts and specifies the bandwidths for all the
links. It then deploys the countermeasures among a percentage
of the total nodes, selecting the nodes based on a user-specified
criterion (random, ascending, or descending in terms of the
node population). The deployed counter measures would then
be triggered at a certain point in the simulation process when
the triggering threshold is crossed. Each measure has its own
parameters for deployment and triggering. After this step the
core simulator starts the simulation.

CGI Script 

Load Parameters 

Generate Topology 

Generate Population 

Generate Bandwidths 

Deploy Countermeasures 

Run Simulation 

Load Applet 

Enter Parameters 

Validate Parameters 

Run

Send HTTP POST 

Receive Response 

Graphical Output 

HTTP POST

Reply 

Front-EndBack-End

Fig. 1. High-Level Design

A. Web-Based Front-End

The front-end is an interactive GUI application provided by
a Java applet and is shown in Fig. 2. It has provisions for
data entry, data validation, context-based help, execution, and
graphical display of the simulator’s output.

The user-provided parameters have been divided into four
categories; basic parameters, outbound rate control, inbound
rate control, and quarantining. The basic parameters help
specify the framework through which the worm would be
simulated; the number of Autonomous Systems (AS) in the
topology, algorithm for populating these nodes, link-capacities,
and queue length. They also specify the worm vector, whether
it is a uniformly spreading worm or a local-preferential one,
and if the later then the percentage of probes targeting hosts
of the same node.

The parameters relating to worm countermeasures can be
activated on a per-group basis. The parameters for outbound
rate control specify the percentage of households (AS) that
would have this capability, the selection algorithm for such
households, and the severity of throttling the worm traffic.
The parameters for inbound rate throttling specify similar
deployment criteria and throttle factor. In addition, they also
specify the trigger-type and threshold for activating this coun-
termeasure. Quarantining is the most severe countermeasure
where all incoming and outgoing worm traffic is blocked. This
measure will have its own deployment and triggering criteria.

Every parameter value is validated upon entry. If the valida-
tion fails, the field is highlighted in red color and positioning
the mouse over the field would display a pop-up message
explaining why the validation failed. When the Run button
is clicked, a quick check is made to ensure that all fields have
been successfully validated. If there are no validation errors,
then the parameters are encoded into an HTTP POST message
and sent to the applet’s web-server.

B. CGI Back-End

The CGI script at the back-end is a python program which
receives the simulation request containing the user-specified
parameters. It imports the python core simulator and passes

Fig. 2. Front-end of the NaSim simulator

these parameters to it along with a unique request-ID. It then
invokes the core simulation function. When the simulation is
complete the data is stored on the server using a file-name
based on the unique request-ID and a response is sent back to
the front-end. Upon receipt, the front-end reads the data file
on the server and displays it in graphical form.

C. Topology Generation
By design, the simulator does not have its own topology

generator. The aim is to take advantage of existing work in this
area and use data from one of the available topology generators
[7]. The simulator would then use this data to construct the
topology in its own object space and simulate the flow or
worms through it. Alternatively, one of the available data sets
for Internet topology may also be used.

D. Core Simulator
After the topology is determined, the CGI script invokes

the core simulation program which is a topological worm
simulator. It simulates the behavior of the specified worm as
it traverses the specified topology, subject to a combination of
countermeasures deployed and invoked per user specification.

After topology generation, the core simulator populates the
AS nodes with hosts and specifies the bandwidths for all the
links. It then deploys the countermeasures among a percentage
of the total nodes, selecting the nodes based on a user-specified
criterion (random, ascending, or descending in terms of the
node population). The deployed counter measures would then
be triggered at a certain point in the simulation process when
the triggering threshold is crossed. Each measure has its own
parameters for deployment and triggering. After this step the
core simulator starts the simulation.

Web client Web server

HTTP post

Reply



TC/5-15-07/CSIIRW SMU Engineering p. 

Simulated Network Example

8



TC/5-15-07/CSIIRW SMU Engineering p. 

Prototype GUI

9

Model 
parameters

Rate 
throttling 
parameters

Quarantine 
parameters

Plot of 
infections 
per time

Sliders to 
adjust plot

Status and 
help 
window



TC/5-15-07/CSIIRW SMU Engineering p. 

Prototype Current Features

10

• GUI is Java applet for data entry, data validation, 
context-based help, graphical display of results

• CGI script is python program to pass input 
parameters to core simulator program running 
on server back end

• Core simulator uses U. Michigan’s Inet 3.0 to 
generate network topology

• Simulation results are stored on server (with 
unique identifiers) for later retrieval or sharing



TC/5-15-07/CSIIRW SMU Engineering p. 

Issues and Future Features

• Topology generation and simulation time slows 
down drastically with model size (number of 
households)

• Server can keep track of multiple simultaneous 
simulations (by job scheduling) but number is 
currently limited to prevent overwhelming

• Currently static routing (shortest routes 
computed by Dijkstra’s algorithm) but dynamic 
routing more realistic

• Rate throttling not fully implemented yet

11


