
Timed Sequence Diagrams and Tool-Based
Analysis – A Case Study

Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke?, and
Ursula Goltz

Institut für Software, Abteilung Programmierung,
Technische Universität Braunschweig

{firley,huhn,diethers,gehrke,goltz}@ips.cs.tu-bs.de

Abstract. We use UML timed Sequence Diagrams to specify the real-
time behaviour of a communication protocol of audio/video components.
The Sequence Diagrams build the requirements specification against
which an implementation of the protocol developed by the Bang & Oluf-
sen company is proven correct.
To obtain a complete requirements specification, we have to mark the
UML Sequence Diagrams as optional or mandatory behaviour. Then the
Sequence Diagram interactions with their timing constraints and periods
are transferred to a setting of timed automata. We use the Uppaal tool
for verification. In particular, we show that the implementation of the
protocol conforms to the Sequence Diagram specification concerning the
correct data transfer on the bus.

1 Introduction

Approaches like Realtime UML [Dou98], the ROOM method [SGW94], or the
ACCORD approach [LGT98] aim to introduce the advantages of object-orienta-
tion, in particular reusability and evolutivity of the designs, into the develop-
ment of real-time systems. Several of these real-time extensions are already sup-
ported by commercial tools like Rhapsody, ObjecTime (ROOM), and Object-
Geode (UML-RT) [Enc96].

However, the development of real-time systems remains a complex and error-
prone task even if object-oriented concepts are used. Therefore one is interested
in validation techniques which allow to analyse the behaviours of a design already
in early phases. As a first step, nearly all tools provide some basic consistency
checks for object-oriented designs: For instance, warnings indicate the states
which cannot be entered or left.

Recently, also formal verification techniques have been considered for the
validation of more complex requirements on the designs. In [LH99], a graphi-
cal interface for (a variant of) the ROOM model to the widely accepted SPIN
model checker [HP96] is presented. In [AHP96] the timing consistency of Mes-
sage Sequence Charts is investigated. A similar analysis for Sequence Diagrams
is mentioned in [SvG98].
? This author was supported by the DFG project EREAS

Frederick Sheldon
@inproceedings{FHDGG1999, author = {Thomas Firley and Michaela Huhn and Karsten Diethers and Thomas Gehrke and Ursula Goltz}, title = {Timed Sequence Diagrams and Tool-Based Analysis -- A Case Study}, booktitle = {The Second International Conference on		 The Unified Modeling Language, 		 Beyond the Standard (UML'99)}, series = LNCS, volume = 1723, pages = {645--660}, ISBN = {3-540-66712-1}, url = {http://www.cs.tu-bs.de/ips/firley/docs/FHDGG1999-abstract.shtml}, publisher = {Springer}, year = 1999, month = oct, keywords = {UML, Sequence Diagrams, Real-Time, Model Checking, Timed Automata, Observer, Uppaal}, language = {english}, bibdate = {Wed Dec 1 12:04:17 MET 1999}}

Here we consider formal analysis on the basis of timed Sequence Diagrams,
but take the timing consistency within one Sequence Diagram for granted. Our
starting point is the common use of Sequence Diagrams as attachments to use
cases, where they describe the dynamic aspects of certain scenarios [BjRJ99]. If
in later design phases the behaviour of the system is modelled in more detail,
one may ask whether the design is able to perform a sequence of interactions
according to the Sequence Diagram specification. In that sense our approach
can be regarded as a check on the timing consistency between different dynamic
models used in the object-oriented design of real-time systems. From a slightly
different viewpoint, we consider timed Sequence Diagrams as a requirements
specification which should be satisfied by other dynamic models of the system
that are closer to implementation.

To check if scenarios described in timed Sequence Diagrams can be performed
by a system, we have to indicate which Sequence Diagrams describe mandatory
or optional behaviour, and in which order the Sequence Diagrams shall occur.
Harel and Damm extended Message Sequence Charts by a similar classification
in [DH99].

To perform the formal analysis we transfer timed Sequence Diagrams as
defined in [SvG98] to a timed automata setting [AD94]. Timed automata are
well-suited for our purposes since the real-time constraints of the diagrams can
be translated directly to clock conditions of timed automata. The transformation
has to be directed by the designer who has to provide the connection between the
different dynamic models: The designer has to associate the messages from the
diagrams to transitions in the state-based models of the real-time design. Then
the transformation to the timed automata setting can be done automatically.

We show the feasibility of our approach by investigating a medium size case
study taken from a real-time protocol of the Bang & Olufsen company [HSLL97].
The interactions of the audio/video components with the single bus are modelled
as timed Sequence Diagrams. Using the Uppaal tool [LPW95,LPW97] we prove
that an implementation of the protocol performs the data transfers correctly.

The paper is structured as follows: In Section 2 we briefly describe timed
Sequence Diagrams. Section 3 is concerned with the transformation of Sequence
Diagrams to timed automata. In Section 4 the verification of the case study is
described. Section 5 concludes.

2 Real-Time extensions to Sequence Diagrams

2.1 Sequence Diagrams

UML contains several diagram types to model dynamic behaviour. The UML
Interaction Diagrams can be attached to use cases to show the interactions of
the system and some actors, or different subsystems or classes by indicating a
sequence of messages which is exchanged between the participating instances.
There are two different forms of Interaction Diagrams: The focus of Collabo-
ration Diagrams is on the relationship between the instances participating in

a communication. To accentuate the temporal aspects of the communication
process, Sequence Diagrams are used. They can either express one possible run
(instance form) or they define all possible sequences by using loops and branches
(generic form). In a Sequence Diagram the instances are horizontally arranged
and represented by named rectangles. Below the rectangle of an instance a lifeline
is attached. The flow of time is displayed in vertical direction. Arrows between
the lifelines of two instances represent messages which are sent in the direction
of the arrow. The stick arrow is deployed to specify a flat flow of control and
concurrent objects. In the case study, messages are synchronous. The position
of the instances in horizontal direction has no semantic relevance.

2.2 Syntax of Real-Time Extensions

To define timing constraints in standard UML, labels can be attached at the
beginning and the end of a message arrow. The labels are interpreted as time
stamps and can be used in timing constraints, e.g., to specify the minimum
or maximum time gap between two marked points in the diagram or to define
the duration of a periodic sequence. We will only deal with specific constraints
(see Section 3.1). We adopt the notation of [SvG98] which extends the Sequence
Diagrams of UML to express loops. In this notation, a sequence of messages
which is repeated several times is surrounded by a rectangle. The loop condition
can be placed at the top or at the bottom of the rectangle. We use the notation
LOOP N TIMES {expr}. The constraint at the right side of LOOP defines
the set of possible values for N . If the constraint is missing, N is an arbitrary
natural number. To deal with different occurrences of a labelled event in loops, we
introduce the following convention: Before a loop, afirst can be used in constraints
to refer to the first occurrence time of an event with time stamp a in the loop.
After a loop, alast refers to the last occurrence of the tagged event in the loop.
Within a loop, anext denotes the time of the event occurrence in the following
iteration. Figure 1 (a) shows examples of this notation.

3 Tool-based Verification

We aim to formally check whether a real-time design behaves according to a
collection of timed Sequence Diagram scenarios. Therefore, we have to transfer
the problem to an appropriate formalism which is able to handle real-time con-
straints. A further restriction is imposed by the fact that verification of practical
examples is only feasible if tool support is available. Thus we selected timed
automata as our design representation [AD94] and the Uppaal tool [LPW97].

3.1 Timed Automata

Timed automata were introduced by Alur and Dill [AD94] for formal reasoning
on real-time systems. They extend finite automata by real-time clocks and ac-
ceptance conditions. The transitions of a timed automaton may be labelled with
actions, reset operations for clocks and guards containing timing constraints

zero

zero

one

zero

LOOP N TIMES {1 <= N <= 4}

zero

zero

Sender

{d - c = 12}

{e - d = 42}

{b - a =10}

{c_first - b = 15}

{f - e_last = 2}

b

a

c

d

e

f

Bus

{c_next - e = 2}

x<2, b

a, x:=0

s1 s2

Fig. 1. (a) Loops and timing constraints (b) Example of a timed automaton

on clocks. However, to keep the verification problems decidable, the timing con-
straints and acceptance conditions are restricted to simple arithmetic expressions
and comparisons: Only constraints of the form c1 ≈ x ≈ c2 and c1 ≈ x− y ≈ c4
are permitted where the cis are non-negative constants or ∞ (infinity), x, y de-
note clocks, and ≈ denotes a comparison, i.e., ≈ ∈ {=,≤, <}.

Figure 1 (b) shows an example of a timed automaton. The automaton has
two states s1 and s2 and it may perform the actions a and b toggling between
the states. Additionally, the automaton has a clock x. A run of the automaton
is an infinite sequence of timed transitions which obey to the timing constraints.
Every time a is performed the clock is reset. The automaton may stay in both
of the states and let time elapse. But it must leave s2 within 2 time units after
entering, because the transition back to s1 may only be taken while the value of
the clock is less than 2. If staying longer in s2 the execution gets stuck, which is
not a valid behaviour.

In this paper, we work with networks of the extended version of timed au-
tomata which are used in the Uppaal-tool [LPW95,LPW97]. In addition to
clocks, integer variables are available1. Communication is possible on shared
memory (i.e., via global variables) or by output and input actions via channels.
Input and output actions are synchronized by a synchronization function. Fur-
thermore, a special kind of states is introduced. While a process may stay in a
regular state while time is elapsing, in so-called committed states time must not
elapse. Moreover, a process must leave a committed state in the next step of the
system.

1 The admissible constraints on integer variables are restricted in an analogous manner
as those on clocks.

3.2 The Verification Process

In this paper, we consider timed Sequence Diagrams as requirements specifica-
tion. We assume that the real-time design under consideration is already repre-
sented as a collection of Uppaal timed automata.

||

UPPAAL requirements

observer

UPPAAL system model

timed Sequence Diagram scenarios

+requirement status, ordering verification
in UPPAAL

ok

error trace

Fig. 2. The verification process

To be able to verify the requirements specified within the timed Sequence Dia-
grams the following steps are necessary.

– The instances addressed in the Sequence Diagrams have to be associated
with components of the real-time design under development. In our setting,
the instances will be mapped to sets of automata.

– The specification language offered by the Uppaal-tool for the requirements
only allows to express reachability properties like in all reachable states some
predicate is satisfied or dually a state satisfying some predicate is reachable.
Thus, to express complex behaviour like communication sequences as they
occur in timed Sequence Diagrams, we have to construct an observer automa-
ton. The observer monitors the system and is changing its state according to
the Sequence Diagram scenarios. It will eventually reach a final state if the
system conforms to the Sequence Diagram scenario. In case that the system
violates the requirements, the observer will enter an error state.
For the construction of the observer, the designer has to map the messages
occurring in the Sequence Diagrams to actions the observer shall perform.
Additionally, the designer has to declare the requirement status of a Se-
quence Diagram. Thus, it has to be indicated whether a family of Sequence
Diagrams describes mandatory or optional behaviour. Also the order in which
Sequence Diagrams shall be observed has to be given. Afterwards the ob-
server and a proof obligation can be constructed automatically from the
collection of timed Sequence Diagrams. The proof obligation will be that no
error state can be reached and that it is possible to reach a final state.

– The system under development has to be slightly prepared to become observ-
able by an observer. First the designer has to select a set of actions which
shall correspond to messages which occur in the Sequence Diagrams, i.e.,
these actions are candidates for observation. Then the automata modelling
the real-time design can be semi-automatically extended by our techniques
to become observable.

3.3 Translation to Uppaal timed automata

Instances. The real-time system consists of different components communicat-
ing among each other. These components do not necessarily reflect the instances
whose communication we want to consider. Therefore we choose a partition
I1, . . . , Im of the set of components, where each instance Ii corresponds to an
instance in the Sequence Diagram. The internal communication within an in-
stance will not be considered.

Observability of the system. In the general case of timed automata two commu-
nication actions a and b synchronize via a synchronization function that maps
two actions to a new action. For instance a synchronization function f may map
a and b to c = f(a, b). The resulting action may be observed by an observer
automaton. However, the verification tool Uppaal imposes a restriction to this
communication model. The restricted model uses input and output actions over
certain channels to realize synchronous communication. For instance, a! is an
output action over the channel a and a? is the complementary input action. Only
complementary actions may communicate and the result is not visible for other
automata. Hence we have to introduce additional observable actions which must
not change the behaviour of the modelled system. The observer has to know
which communication actions take place in the system and which are the par-
ticipating instances Ii.

We use the following approach to connect the observer to the system: After a
reception on channel a the receiving instance B sends a new action a_receiver_B!.
The observer is synchronized to this action by a_receiver_B?. Moreover, the
sending instance A sets a fresh global variable a_sender := A to enable the
observer to identify A as the source of the communication by the condition
a_sender == A. Figure 3 shows the modification of instance B to make the
reception of a communication action a in the system model observable. The

a?

s1 s2

a? a_receiver_B!

s1 s2c: s2’

Fig. 3. Original and observable transition

new intermediate state s2′ is marked as committed. These committed states are
an Uppaal-specific extension which ensures that neither time elapses nor any
other automaton performs actions while control is in such a state. Note that our
construction only works if the target state of a communication action is not a
committed state since otherwise the observer cannot do some necessary obser-
vation steps. However, in practical examples this does not pose severe problems.
In case this situation occurs, more sophisticated preparation techniques have

to be applied, like pushing communications a transition further or doubling a
state. We did not investigate automatization for these steps, because these cases
occur rarely and cannot be handled uniformly. One has to make sure that the
communication order and timings are not changed.

Formally we introduce the notion Act for the set of communication actions
of the system model which have to be observed and we derive the set Act′ of
actions and assignments which are added to the system to make the communi-
cation observable and the set Act

′
containing the complementary actions and

assignments which are used in the observer to identify a communication action of
Act in the system model and the corresponding sending and receiving instances.

Act′ := { a_receiver_I! | for all instances I and all actions a? ∈ Act} (1)
∪ { a_sender := I | for all instances I and all actions a! ∈ Act}

Act
′

:= { (a_sender == I1, a_receiver_I2?) (2)
| a_sender := I1 ∈ Act′ and a_receiver_I2! ∈ Act′ }

Now we have to define a connection between the observable communication
pairs and the messages of the Sequence Diagram. Let M be the set of considered
messages of the Sequence Diagram, consisting of triples (n, I1, I2), where n is the
name of a message, I1 is the sending instance and I2 is the receiving instance.
Then the injective function m from M to Act

′
is defined as

m(n, I1, I2) := (a_sender == I1, a_receiver_I2?) and n ∼ a (3)

The designer has to associate message names n from the Sequence Diagrams to
communication channels a of the system via the relation ∼.

An example of the relationship between messages and observer actions is shown
in Figure 4. In the left part of the figure we see the message (a,A,B). The

A B

a_sender == A, a_receiver_B?

S Ga

Fig. 4. Sequence Diagram and simple observer

message name a corresponds to the communication on channel a. Therefore
Act equals {a!, a?}. If we consider the two instances A and B, we get the set
Act′ = {a_sender := A, a_sender := B, a_receiver_A!, a_receiver_B!}.
The system is modified accordingly. The set Act

′ which is important for the

observer construction is defined as

{(a_sender == A, a_receiver_A?), (a_sender == A, a_receiver_B?),

(a_sender == B, a_receiver_A?), (a_sender == B, a_receiver_B?)}

As the set M contains only (a,A,B) the basic part of the observer only reads
the communication (a_sender == A, a_receiver_B?). The basic automaton is
shown as the right part of Figure 4.

Construction of the Observer. The observer automaton is constructed according
to the visual order of messages in the Sequence Diagram [AHP96]. For every
instance I there is a local total order ≤I over the input and output events
which corresponds to the order in which the events are displayed. The relation

≤v := (
⋃
≤I) ∪ (4)

{(eo, ei)| eo and ei are output and input events of the same message}

is called the visual order, which is a partial order. For simplicity we will consider
only Sequence Diagrams in which the messages are totally ordered. The general
case can be treated by adding all interleavings accordingly.

First we construct an automaton which observes the desired behaviour but
ignores the timing contraints. Suppose that there are N0 messages msgi ∈
M, (1 ≤ i ≤ N0) in the Sequence Diagram. Then the observer consists of a
starting state S = I0 and a successful final state G = IN0 , the goal, and inter-
mediate states Ii with i ∈ {1, . . . , N0 − 1} between them. Transitions labelled
with m(msgj) lead from Ij−1 to Ij .

Then we have to add transitions to the automaton, which are used when
observing a behaviour not according to the Sequence Diagram.

We introduce an error state F , which is entered if a behaviour is recognized
that is not according to the Sequence Diagram specification. For each state Ij
with j ≥ 1 we calculate a set of transitions

Tj := { t ∈ Act′ | t 6= m(msgj) } (5)

All transtions of Tj lead from Ij to F . Additionally we introduce transitions for
any element of Act

′
from F to itself. Once we observe a faulty behaviour the

observer gets stuck in F .
The construction so far yields an automaton which enters G if the system has

the same behaviour as described in the Sequence Diagram. The state F is entered
if a wrong behaviour is observed. If the observer is in one of the intermediate
states I1, . . . , In−1, an incomplete behaviour has been observed, which may be
extended to a correct run.

Timing Constraints. We now add the timing constraints to the basic observer
automaton. For each timing constraint we introduce a realtime clock xi, 1 ≤ i ≤
k, where k is the number of timing constraints. Each timing constraint compares

a

b

b

BA

g

e

f

b_sender == A,
b_receiver_B?

x1 := 0

b_receiver_A?
b_sender == B,

E1
x1 ≥ 20

c: I ′2I1 I2

x1 < 20
a_sender == A,
a_receiver_B?

G

F

{f − e < 20}

S

Fig. 5. Observer with timing constraints

the duration of a set of actions with a constant. In the construction we reset the
clock to 0 if the first of these actions occurs. Directly after the final action
concerned with the timing constraint, we introduce a new state in the observer.
If the original transition of the basic observer, which should observe the final
action, leads to Ij , then the inserted state is called c: I ′j . Thus it is a committed
state where no time delay is allowed. We add two transitions with source c: I ′j.
The first is labelled with the timing constraint and leads to the original state
Ij. The second is labelled with the negation of the timing constraint and leads
to the new error state Ei. This construction allows to state, that whenever the
state Ei is entered, the timing constraint i is violated. If Ei cannot be entered
the constraint is always fulfilled.

Figure 5 shows a simple example with three messages and the constraint
that the delay between the first two messages must not exceed 20 time units.
In the timed automaton we introduce the clock x1, which is reset when the first
message is observed. Immediately after the second message, we decide if the
contraint is fulfilled and change the state accordingly. Note that we omitted all
labels of transitions to F in Figure 5 for clarity reasons.

Loops. Observing loops is slightly more difficult, because we want to allow con-
straints concerning more than one cycle. The technique is exemplified in Figure 6.
Suppose that four messages are in the Sequence Diagram. The message m1 pre-
cedes the loop, the messages m2 and m3 are cycled within the loop and m4

follows the loop.
In Figure 6, action s may set a counter for the loop. The loop condition l is

checked after leaving the loop. Note that this is only possible if the actions m2

and m4 are different. If they are not different, the automaton is nondeterministic
which poses a restriction to the requirements which may be checked, because the
observer might choose the wrong transition and end up in an error state.

In order to distinguish between the actionm2 in the first interation andm2 in
any of the following iterations, we double this action. Constraints that refer to the

m2

-l

m4

m3

m2

LOOP {l}

m1

B

m1 c: s
m4

c: l

E
m4m3

m2

A

Fig. 6. Observer for a loop

first iteration cycle may be added to the upper m2-transition, while constraints
referring to one of the following iterations and the counter incrementation has to
be added to the lowerm2-transition. Constraints that only refer to actions within
one iteration cycle do not pose any problem. If a time stamp in a loop is indexed
with first or next which is not the first message in the loop, the automaton has
to split the first cycle and the following ones up to this transition as it is done
here for the message m2.

3.4 Verification

In addition to the observer we need proof obligations, expressed in a simple
branching time temporal logic, which are verified automatically by the tool.

Besides the regular logical operators the Uppaal temporal logic has got
temporal operators and path quantifiers. The temporal operators, 2 (always)
and 3 (eventually), allow to refer to particular moments in an execution. The
path quantifiers ∃ (there exists a run) and ∀ (for all runs) allow to refer to a
specific run or to regard all possible executions at once. Only two combinations
of these operators are allowed. ∀2P means in all reachable states predicate P
holds and ∃3P means a state satisfying predicate P is reachable.

Sequence Diagrams show either an instancious view of a system or a generic
one. We formulate three different kinds of interpretations for Sequence Diagrams.
For each of them requirements and in two cases additional transitions in the
observer are necessary.

Mandatory Behaviour. When the behaviour of a Sequence Diagram is regarded
as mandatory, no other behaviour of the system is allowed than the behaviour
given in the diagram. The following obligations describe this condition:

∀2¬F (6)
∀2¬Ei for every timing constraint i (7)

∃3G (8)

These requirements consider the state F as an error state. Besides the timing con-
straints an exact correspondence to the communication structure is demanded.

Optional Behaviour. The behaviour described in a Sequence Diagram is optional,
if it may happen at an arbitrary point in the run of the system. In this case, we
have to ignore the behaviour not described in the Sequence Diagram. Therefore
we add transitions from the starting state S to itself for all actions of Act

′
.

Thus we get a nondeterministic automaton. We cannot guarantee that we will
not enter an error state. The only requirement that we can formulate is:

∃3G (9)

If-Then Behaviour. If we require that whenever the behaviour of a first Sequence
Diagram α has been observed, the system will immediately behave as described
in a second diagram β, then the observers for both have to be connected by
introducing a new transition from Gα to the start of β, Sβ. The state Gα has
to be marked as committed. The state Sα needs transitions to itself for all
elements of Act′. The requirement α is optional, but whenever its behaviour
has been observed, the requirement β gets mandatory. The obligations for this
interpretation are

∀2¬Fβ (10)
∀2¬Eiβ for every timing constraint i (11)

For the requirement α is eventually observed followed by β, we add the proof
obligation

∃3Gβ. (12)

4 Case Study: Protocol for Audio/Video Components

To illustrate our approach, we specify the audio/video protocol described in
[HSLL97] by a set of Sequence Diagrams. The company Bang & Olufsen uses
this protocol to define in which way the components of a stereo system may
access a common bus to communicate. In particular, the protocol distinguishes
the phases of initialization of the communication process, the transmitting of a
data frame and the detection and handling of collisions. Due to the lack of space
we only consider the transmission of messages here.

4.1 The Protocol

Frames. Communication between the components of a stereo system takes place
by the transmission of data frames. Each frame consists of at least 17 so called
T -messages. The protocol considers 5 different T -messages: A T5-message marks
the beginning of a frame and a T4-message signals the end of a frame. Inbetween,
a sequence of at least 15 messages (T1-T3) occurs which encode the information
to transfer. After sending a frame, a component waits 50000µs before initializing
the next communication.

T -messages. T -messages are subdivided in protocol periods. Two T -messages are
separated by a zero-signal of one period. A message Ti, 1 ≤ i ≤ 5, is encoded
by a one-signal of 2 ∗ i periods. Figure 7 (a) shows the Sequence Diagram of
the transmission of a data frame. The diagram shows only the messages which
change the state of the bus. All constraints refer to microseconds.

Periods. A protocol period has a duration of 1562µs. Additional sampling of
the bus is required at the beginning (S1) and at the middle of a period (S2) to
detect collisions. For physical reasons, the sender has to put its message on the
bus at W (0µs < (W − S1) < 600µs) (see Figure 7 (b)). In the implementation,
W is arbitrarily set to 40µs after S1. The message m2 has the value zero in
the first and the last iteration, otherwise the value one. If no collision occurs
the values of m1 and m3 result from the previous setting of the bus at W . The
Sequence Diagram in Figure 8 contains all messages which are exchanged during
the transmission of a frame.

Bus

one

zero

zero

one

zero

one

Sender

one

Sender Bus

zero

h
{h-g = 1562}

g

c
{c-b = 5*2*1562}

b
{b-a = 1562}

a

LOOP N TIMES {N>=15}

d

e

{d_first-c = 1562}

{d_next-e = 1562}

{f-e_last = 1562}
f

{g-f = 4*2*1562}

T5

T4

{e-d = i*2*1562,
1<=i<=3}

T1|T2|T3

S2

W

S1 m1

m2

m3{S2-S1 = 781}

LOOP N TIMES {N = 2*i+2}Ti

{S1_next-S2 = 781}

{0 < W-S1 < 600}

Fig. 7. (a) Transmission of a data frame (b) Bus sampling for collision detection

4.2 The Implementation

Our case study was already modelled as a set of Uppaal timed automata in
[HSLL97]. The system consists of several automata, three for each sending unit.
In addition one automaton, modelling the global bus, is present. Only the sending
is verified since the listening involves the same techniques. As the sending units
are symmetric, it is sufficient to consider one of them. For a complete verification,
however, a second sender for the modelling of collisions would be necessary.

Each sender consists of three automata, which communicate internally. The
interesting communication is that with the bus. Reading is done through the

zero

zero

zero

one

one

one

zero

zero

zero

Sender

one

one

one

zero

zero

zero

Sender Bus

one

one

one

zero

zero

zero

one

one

BusSender

one

BusT5

{b-a = 40}

{c-b = 741}

{d-c = 781}

{i-h = 741}

{j-i = 781}

a

b

c

d

e

f

g

h

i

{e_first-d= 40}

{f-e = 741}

{g-f = 781}

{e_next-g = 40}

{h-g_last = 40}

LOOP 10 TIMES

j

k

l

m

n

o

p

q

r

s

t

u

w

x

y

v

LOOP M TIMES {M >= 15}

LOOP N TIMES {N = 2|4|6}

LOOP 8 TIMES

{k_first-j = 40}

{m-l = 781}

{k_next-m = 40}

{l-k = 741}

{n-m_last = 40}

{o-n = 741}

{p-o = 781}

{k_next-p = 40}

{r-q = 741}

{s-r = 781}

{q_next-s = 40}

{y-x = 50781}

{x-w = 741}

{w-v = 40}

{v-u = 781}

{u-t = 741}

{t-s_last = 40}

{q_first-p_last = 40}

T4T1-T3

Fig. 8. Communication within one frame

channels zero and one and writing on the bus is done via variables which are in
the scope of one sender and the bus. Every sender has got its own variables to
communicate, e.g.,. instance A uses the variable Pn_A. The actions in Act are
thus {zero?, one?, Pn_A := 0, Pn_A := 1}. Since we only consider instances,
one sender and the bus, we need not introduce variables to identify the partic-
ipating instances of a communication. The following table shows the mapping
from Act to Act′:

Act Act′

zero? zero_rec_A!
one? one_rec_A!

Act Act′

Pn_A := 0 zero_send_A!
Pn_A := 1 one_send_A!

Using the techniques described in Section 3.3, the system can be semi-
automatically made observable.

4.3 The Observer Automaton

We build an observer which verifies that a whole frame according to the Se-
quence Diagram in Figure 8 can be transmitted. We interpret the behaviour as
mandatory, since with one sender there must not be a collision on the bus.

The observer is built straightforward following the construction rules of sec-
tion 3.3 and is shown in Figure 9. We had to introduce 29 clocks for the timing
constraints. Each of them got an own error state. We also introduced 4 integer
variables as counters for the loop iterations. Although it is possible to reuse
clocks, we decided not to do that with regard to an automatic generation of the
observer automaton.

We proved all the timing properties of the Sequence Diagram by verifying
∀2¬Observer.Ei for all i. We also proved that the first loop cycles exactly 8
times, and that the second loop (the inner one of the nesting) cycles either 2,
4, or 6 times. The requirement for this is ∀2¬Observer.ELi. However, we could
not prove the number of cycles of the other two loops. The reason is that the
observer has to decide nondeterministically how to proceed after the third loop.
Choosing the wrong alternative yields a wrong number of cycles and a thus a
deadlock in the corresponding error state. Furthermore we proved that the state
G is reachable ∃3Observer.G and that it is also reachable when the sender is in
its final state ∃3(Observer.G∧ Sender_A.stop).

The Uppaal-tool is additionally looking for deadlocks. The only deadlocks
found were those, in which the observer is either in state EL3 or in state EL4.

5 Conclusions

We investigated verification based on UML timed Sequence Diagrams. The Se-
quence Diagram scenarios were transferred to timed automata to allow for an
automated check whether an implementation conforms to the real-time con-
straints specified in the diagrams. We validated the approach in a case study on
a real-time protocol using the Uppaal tool.

We have started to implement the transformation from Sequence Diagrams
to Uppaal timed automata to provide tool support for verification of timed

ObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserver

SSSSSSSSSSSSSSSSS I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1

c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2c:I2_2

E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1E1

I2I2I2I2I2I2I2I2I2I2I2I2I2I2I2I2I2

c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1c:I3_1

I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3

c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1c:I4_1

I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4

c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1c:I5_1

I5I5I5I5I5I5I5I5I5I5I5I5I5I5I5I5I5

c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2c:I6_2

E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2E2 E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3 E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4E4 E5E5E5E5E5E5E5E5E5E5E5E5E5E5E5E5E5

c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1c:I6_1
I6I6I6I6I6I6I6I6I6I6I6I6I6I6I6I6I6

c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1c:I7_1

I7I7I7I7I7I7I7I7I7I7I7I7I7I7I7I7I7
c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2c:I7_2

c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1c:I8_1

I8I8I8I8I8I8I8I8I8I8I8I8I8I8I8I8I8

E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7

c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1c:I9_1

I9I9I9I9I9I9I9I9I9I9I9I9I9I9I9I9I9

E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8

c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2c:I10_2 c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1c:I10_1

E10E10E10E10E10E10E10E10E10E10E10E10E10E10E10E10E10 EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1EL1

E6E6E6E6E6E6E6E6E6E6E6E6E6E6E6E6E6

E9E9E9E9E9E9E9E9E9E9E9E9E9E9E9E9E9

I10I10I10I10I10I10I10I10I10I10I10I10I10I10I10I10I10 c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1c:I11_1

I11I11I11I11I11I11I11I11I11I11I11I11I11I11I11I11I11

E11E11E11E11E11E11E11E11E11E11E11E11E11E11E11E11E11

c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3c:I12_3

E12E12E12E12E12E12E12E12E12E12E12E12E12E12E12E12E12

c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2c:I12_2 c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1c:I12_1 I12I12I12I12I12I12I12I12I12I12I12I12I12I12I12I12I12

c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1c:I16_1

c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1c:I13_1

I13I13I13I13I13I13I13I13I13I13I13I13I13I13I13I13I13 c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1c:I14_1
I14I14I14I14I14I14I14I14I14I14I14I14I14I14I14I14I14

E14E14E14E14E14E14E14E14E14E14E14E14E14E14E14E14E14

c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1c:I15_1
I15I15I15I15I15I15I15I15I15I15I15I15I15I15I15I15I15

E15E15E15E15E15E15E15E15E15E15E15E15E15E15E15E15E15
c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2c:I13_2

c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2c:I16_2
I16I16I16I16I16I16I16I16I16I16I16I16I16I16I16I16I16 c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1c:I17_1

I17I17I17I17I17I17I17I17I17I17I17I17I17I17I17I17I17

E18E18E18E18E18E18E18E18E18E18E18E18E18E18E18E18E18

c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1c:I18_1 I18I18I18I18I18I18I18I18I18I18I18I18I18I18I18I18I18

E19E19E19E19E19E19E19E19E19E19E19E19E19E19E19E19E19

E17E17E17E17E17E17E17E17E17E17E17E17E17E17E17E17E17

EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2EL2

c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3c:I13_3

E16E16E16E16E16E16E16E16E16E16E16E16E16E16E16E16E16

E20E20E20E20E20E20E20E20E20E20E20E20E20E20E20E20E20

E13E13E13E13E13E13E13E13E13E13E13E13E13E13E13E13E13

c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1c:I19_1
c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2c:I19_2

E21E21E21E21E21E21E21E21E21E21E21E21E21E21E21E21E21 EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3EL3

I19I19I19I19I19I19I19I19I19I19I19I19I19I19I19I19I19
c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3c:I19_3

E24E24E24E24E24E24E24E24E24E24E24E24E24E24E24E24E24

c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1c:I20_1

E22E22E22E22E22E22E22E22E22E22E22E22E22E22E22E22E22

I20I20I20I20I20I20I20I20I20I20I20I20I20I20I20I20I20

c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1c:I21_1

E23E23E23E23E23E23E23E23E23E23E23E23E23E23E23E23E23

I21I21I21I21I21I21I21I21I21I21I21I21I21I21I21I21I21

c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2c:I22_2 c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1c:I22_1

E25E25E25E25E25E25E25E25E25E25E25E25E25E25E25E25E25 EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4EL4

I22I22I22I22I22I22I22I22I22I22I22I22I22I22I22I22I22 c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1c:I23_1

E26E26E26E26E26E26E26E26E26E26E26E26E26E26E26E26E26

I23I23I23I23I23I23I23I23I23I23I23I23I23I23I23I23I23

c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3c:I24_3

E27E27E27E27E27E27E27E27E27E27E27E27E27E27E27E27E27

I24I24I24I24I24I24I24I24I24I24I24I24I24I24I24I24I24 c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1c:I25_1 I25I25I25I25I25I25I25I25I25I25I25I25I25I25I25I25I25

E28E28E28E28E28E28E28E28E28E28E28E28E28E28E28E28E28

c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1c:I26_1 GGGGGGGGGGGGGGGGG

E29E29E29E29E29E29E29E29E29E29E29E29E29E29E29E29E29

one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0

one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0

x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781x1 == 781

x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781x1 > 781
x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781x1 < 781

one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0x3 := 0

x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781x2 > 781
x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781x2 < 781

x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781x2 == 781 zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?
x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0x4 := 0

x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40x3 > 40
x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40x3 < 40

x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40x3 == 40 zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0x5 := 0

x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741x4 > 741
x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741x4 < 741

x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741x4 == 741 zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0x6 := 0

x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781x5 > 781

x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781x5 == 781

x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781x5 < 781

l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1l1 := 1
zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?
x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0

x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40x6 > 40
x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40x6 < 40

x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40x6 == 40
one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0x8 := 0

x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40x9 > 40
x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40x9 < 40

x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40x9 == 40 x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741x7 > 741
x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741x7 < 741

x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741x7 == 741 one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0x9 := 0
x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0x10 := 0

x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781x8 > 781
x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781x8 < 781

x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781x8 == 781

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0x7 := 0
l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1l1 := l1 + 1

zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?
x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0x11 := 0 x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40x10 > 40

x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40x10 < 40

x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40x10 == 40
l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10l1 == 10

l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10l1 > 10
l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10l1 < 10

zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0x12 := 0

x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741x11 > 741
x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741x11 < 741

x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741x11 == 741 zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0x13 := 0

x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781x12 == 781

x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781x12 > 781
x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781x12 < 781

l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1l3 := 1 l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0

zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?
x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0

l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7l2 >= 7

l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3l2 == 3
l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1l2 == 1

l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6l2 == 6

l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2l2 == 2

l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5l2 == 5

l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4l2 == 4x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40x13 > 40

x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40x13 < 40
x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40x13 == 40

one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0x15 := 0

x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741x14 < 741
x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741x14 > 741

x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741x14 == 741
one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0x16 := 0
x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0x17 := 0

x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781x15 < 781
x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781x15 > 781

x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781x15 == 781

zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?
x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0x18 := 0

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0
l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1l2 := l2 + 1

x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40x16 < 40
x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40x16 > 40

x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40x16 == 40

x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40x17 < 40
x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40x17 > 40

x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40x17 == 40

zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0x19 := 0

x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741x18 < 741
x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741x18 > 741

x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741x18 == 741

zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0x20 := 0
x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0x21 := 0

x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781x19 > 781
x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781x19 < 781

x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781x19 == 781

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0x14 := 0
l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1l3 := l3 + 1
l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1l2 := 1

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0
l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1l4 := 1

x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40x20 < 40
x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40x20 > 40

x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40x20 == 40

l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15l3 >= 15

l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15l3 < 15
x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40x21 < 40
x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40x21 > 40

x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40x21 == 40 one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0x23 := 0

x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40x24 == 40

x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40x24 < 40
x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40x24 > 40

x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741x22 == 741

x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741x22 < 741
x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741x22 > 741

one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?
x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0x24 := 0
x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0x25 := 0

x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781x23 == 781

x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781x23 < 781
x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781x23 > 781

zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?zero_send_A?
x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0x26 := 0

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0x22 := 0
l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1l4 := l4 + 1

x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40x25 == 40

x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40x25 < 40
x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40x25 > 40

l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8l4 < 8
l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8l4 > 8

l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8l4 == 8

zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0x27 := 0

x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741x26 == 741

x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741x26 < 741
x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741x26 > 741

zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?zero_rec_A?
x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0x28 := 0

x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781x27 == 781

x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781x27 < 781
x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781x27 > 781

one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?one_send_A?
x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0x29 := 0

x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40x28 > 40
x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40x28 < 40

x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40x28 == 40 one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?one_rec_A?

x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741x29 > 741
x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741x29 < 741

x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741x29 == 741

Fig. 9. Observer automaton

Sequence Diagrams requirements. In future work, we want to investigate the
transformation of UML behavioural system models, in particular Statechart Di-
agrams containing timing constraints to timed automata. The aim is a formal
analysis of the timing consistency between different dynamic models giving dif-
ferent views on a real-time design.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[AHP96] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for Message
Sequence Charts. In Tiziana Margaria and Bernhard Steffen, editors, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’96),
volume 1055 of LNCS, pages 35–48. Springer-Verlag, 1996.

[BjRJ99] Grady Booch, james Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[DH99] Werner Damm and David Harel. LSCs: Breathing life into Message Sequence
Charts. In 3rd IFIP Int. Conference on Formal Methods for Open Object-
Based Distributed Systems, (FMOODS’99), pages 293–312. Kluwer Academic
Publishers, 1999.

[Dou98] Bruce P. Douglass. Real-Time UML. Addison-Wesley, 1998.
[Enc96] Vincent Encontre. Modeling and implementing correct, scalable and efficient

real-time applications with ObjectGEODE. 1rst Quarter Edition of Real-
Time Magazine, 1996.

[HP96] Gerard J. Holzmann and Doron Peled. The state of SPIN. In 8th Interna-
tional Conference on Computer Aided Verification, volume 1102 of LNCS,
pages 385–389, New Brunswick, NJ, USA, 1996. Springer Verlag.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal
modelling and analysis of an audio/video protocol: An industrial case study
using UPPAAL. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium, pages 2–13, 1997.

[LGT98] Agnès Lanusse, Sébastian Gérard, and Francois Terrier. Real-time modelling
with UML: The ACCORD approach. In UML ’98, volume 1618 of LNCS,
pages 287–296. Springer-Verlag, 1998.

[LH99] Stefan Leue and Gerard Holzmann. v-Promela: A visual, object-oriented
language for SPIN. In Proc. of the 2nd IEEE Intern. Symp. on Object-
Oriented Real-Time Distributed Computing. IEEE Computer Society Press,
1999.

[LPW95] KimG. Larsen, Paul Pettersson, and Wang Yi. Diagnostic model-checking for
real-time systems. In Proc. of the 4th DIMACS Workshop on Verification and
Control of Hybrid Systems, volume 1066 of LNCS, pages 575–586. Springer-
Verlag, 1995.

[LPW97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
Intern. Journal on Software Tools for Technology Transfer, 1(1+2), 1997.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented
Modeling. John Wiley & Sons, 1994.

[SvG98] J. Seemann and J. Wolff von Gudenberg. Extension of UML Sequence Di-
agrams for real-time systems. In UML ’98, volume 1618 of LNCS, pages
225–233. Springer-Verlag, 1998.

