
Submitted July, 2002 to Annals of Software Engineering: Distributed and Mobile Software Engineering

Extending Message Sequence Charts for Performance Analysis in Möbius

Frederick T. Sheldon1 and Zhihe Zhou

Software Engineering for Dependable Systems Laboratory©
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington 99164-2752, USA

sheldon@acm.org | zzhou@wsu.edu

Abstract: Message Sequence Chart (MSC) is a formal language to describe the communication behavior between

the components of a system. In this paper, we propose a new version of MSC, Stochastic MSC (SMSC), which is a

stochastic extension to the traditional MSC. SMSC is suitable for performance analysis of distributed and mobile

systems. Such systems are often modeled by a number of components that exchange information by passing

messages. SMSC is integrated into the Möbius framework, which is an extensible multi-formalism modeling

framework that facilitates interactions between models from different formalisms. Not only can SMSC models be

solved using the Möbius built-in solvers, SMSC formalism also provides an atomic formalism for the Möbius users

and can be used as building blocks for larger hybrid models.

1. Introduction

In the past two decades, much research has been conducted in the area of formal methods. Various formalisms have

been studied and the corresponding tools developed [Sheldon, Xie et al. 2002]. The use of formal methods has

evolved as the choice for developing software and hardware systems, for achieving higher performance and

dependability. Performance evaluation is an important branch of formal analysis of system properties [Molloy 1982;

Ciardo, Marie et al. 1990; Couvillion, Freire et al. 1991; Magott 1992; Haverkort and Niemegeers 1996; Rupe and

Kuo 2001]. It concerns the quality of service a system can provide. However, not all formalisms are suitable for

performance evaluation. For example, the original formulations of Petri Nets [Murata 1989] and Process Algebras

[Baeten 1994] cannot be used for performance evaluation and were originally useful for evaluating properties such

as system liveness, deadlock free, and other static properties.2

Message Sequence Chart (MSC) [ITU-T 1998; ITU-T 1999] is a Specification Description Language (SDL)

widely used in industry for requirement and design specification as well as test case description. As a formal

language, MSC has a well-defined syntax and semantics. MSC models are decomposed into a number of

independent message passing instances. System behavior is evaluated through a series of charts indicating

interactions between those instances. However, MSC cannot be used for performance evaluation.

1 Sheldon (+49 711 174 1339 Office | +49 179 6675 9316 Handy) is currently on leave at DaimlerChrysler Research and Technology in System
Safety, Stuttgart.
2 Stochastic PNs and PAs do, however, provide such capabilities.

 2

 Consequently, the first problem addressed in this research is how we can make MSC suitable for performance

evaluation. This can be accomplished in a similar fashion as was done for Stochastic Petri Nets (SPNs) and

Generalized SPNs (GSPNs) [Ciardo 1989; Marsan, Balbo et al. 1994], where transitions are associated with

stochastic timing information. This extension of Petri Net can be used to evaluate system performance and SPN

models are widely used for this purpose. Similarly, there is an extension to Process Algebra, Stochastic Process

Algebra (SPA) [Hilston and Hermanns 1994], in which events are associated with random time information. SPA is

also used for system performance evaluation. Based on the same idea, we have extended MSC to Stochastic MSC

(SMSC). The SMSC formalism can be used for performance analysis. Although much research has transpired

[Cunter, Muscholl et al. 2001; Damm and Harel 2001; Finkbeiner and Kruger 2001] since MSC was proposed, no

one so far has tried to extend it with stochastic properties.

The second problem addressed here concerns how to create an analysis tool (i.e., how to solve SMSC models).

To address this problem, SMSC is integrated into the Möbius framework [Daly, Deavours et al. 2000]. Möbius is a

well-defined framework for multi-formalism modeling that includes several formalisms (SAN: Stochastic Activity

Network [Sanders 1995], PEPA: Performance Evaluation Process Algebra [Hillston 1996], etc.), which have been

successfully integrated [Clark and Sanders 2001; Zhou and Sheldon 2001]. Therefore SMSC can be integrated into

Möbius to enable such models to interact with other built-in Möbius formalisms. By implementing the interfaces

required by Möbius, we need not to provide analyzers or solvers for the SMSC models. The Möbius provided

solvers are applicable to solving all SMSC models. The SMSC formalism, together with others available within

Möbius, can be used for dependability analysis (i.e., performance, availability and reliability or performability

analysis).

2. Background

This section covers the basics of MSC and Möbius.

2.1 Message Sequence Charts

The full specification of the Message Sequence Charts language can be found at [ITU-T 1999]. Here, we briefly

introduce the MSC formalism and provide some basic concepts that are necessary to understand our work. These

concepts include the basic constructs of MSCs, event ordering rules, the composition of MSCs and High-level

MSCs.

The MSC formalism describes a system using a series of charts, each specifies part of the system behavior. These

charts are combined together to depict the whole system. Inside each chart, there are several independent instances

 3

that represent components of the system and these instances exchange messages and perform actions. MSCs are

always placed within the context of some encompassing environment. Instances in MSCs can send messages to or

receive messages from their environment. An MSC can be represented graphically or textually. Figure 1 shows an

example of a basic MSC with its graphical and textual representations.

A Message Sequence Chart is

composed of interacting instances,

which are the primary entities in an

MSC. An instance may represent a

system component, for example, a

process or a service. Within the

instance body the ordering of events is

specified. Graphically, an instance is

drawn as a vertical line starting with the instance head symbol and ending with the instance end symbol. The

instance head symbol is a rectangular box, and the instance end symbol is a solid rectangular box. These symbols

describe the beginning and ending of the instance within the MSC.

Instances in an MSC interact with each other by exchanging messages. The graphical description of a message is

an arrow that starts at the sending instance and ends at the receiving instance. An arrow starting from the sending

instance to the surrounding frame represents a message sent to the environment. If the message is sent but never

consumed (i.e., lost), the arrow ends at a black dot, which denotes a “black hole.” Symmetrically, a message can be

found, meaning it originates from nowhere. In this case, the arrow starts at an open dot (“white hole”). A lost or

found message is called incomplete message because there is either no sending instance or receiving instance

associated with the message.

In addition to messages, local actions of an instance may be specified in MSCs. A local action describes an

internal atomic activity of an instance and contains either an informal description of the activity, or a formal

statement that defines operations on some data. Graphically, a local action is denoted by an action symbol on an

instance with the action string inside (i.e., a box placed on and obscuring the instance axis). See local action a in

Figure 1.

An MSC also specifies a partial order for the events inside the MSC using two basic ordering rules. The first rule

concerns the ordering of events of the same instance. This rule says that the events of an instance are executed in

Figure 1. An example of a basic MSC.

 msc example1

 i1 i2 i3

 m0
 m1

 m2

 m3
a

msc example1;
i1: out m0 to env;
i1: out m1 to i2;
i2: in m1 from i1;
i2: out m2 to i3;
i3: in m2 from i2;
i1: action a;
i2: out m3 to i1;
i1: in m3 from i2;
endmsc;

 4

the same order as they are given on the vertical axis from top to bottom. The second rule concerns the order

imposed by messages. The key idea for defining this rule is that a message must be sent before it can be consumed.

Therefore, the second rule is, the event of sending a message must happen prior to the event of receiving the

same message.

To enable the description of unordered events along an instance axis, the MSC formalism introduces the

coregion construct. A coregion is drawn as a dashed vertical line that replaces part of the instance axis. Events in a

coregion may happen in any order. A general ordering is used to explicitly specify the ordering of two events

whose ordering is otherwise undefined.

Message exchanges and local actions may be restricted by conditions. Conditions are an MSC construct that

specifies the system states. There are setting conditions (i.e., set the system to certain state) and guarding

conditions. A guarding condition precedes messages and local actions to further restrict their execution. When the

condition holds, the message(s)/action(s) that follow the guard may execute.

The MSC formalism also supports structural design composed vertically and/or horizontally. Within one MSC, a

reference can be used to refer to another MSC. Vertical composition connects the common instances that share the

same name in two MSCs. Thus, the event execution trace of common instances in successive MSCs follows the

execution of events in the preceding MSCs. While in horizontal composition, the events of common instances are

interleaved. An MSC can have more than one MSC in

vertical composition. In this case, the succeeding MSCs

are alternatives of each other (i.e., called alternative

composition).

Generally, the way to combine MSCs is to use a High-

level MSC (HMSC), in which MSC references and other

constructs are used to specify their composition. An

HMSC cannot contain instances, messages or local

actions although it can use conditions. HMSCs can only

use MSC references because the goal of HMSC is to

define how the basic MSCs are connected. Figure 2

shows an HMSC example.

Figure 2. Example of High-level MSC.

msc setup

when cond1

set cond2

 mscA mscB

 5

2.2 Möbius Framework

The Möbius framework provides a method by which multiple, heterogeneous models can be composed together,

each representing a different software or hardware module, component, or view of the system [Daly, Deavours et al.

2000]. The composition techniques developed permit models to interact with one another by sharing state, events, or

results. This framework also supports multiple modeling languages and multiple model solution methods, including

both simulation and analysis. The Möbius framework is extensible, in the sense that it is possible to add new

modeling formalisms, composition and connection methods, and model solution techniques to the software

environment that implements the Möbius framework without changing existing tool components.

The Möbius framework defines three basic Möbius entities: state variables, actions, and action groups (or

groups). State variables hold the state of the model, or the state of the modeled system. The type of state variables

could be a simple type such as integer, Boolean, or double, or a complicated structure type. The value of a state

variable could also depend on the value of another state variable (i.e., the value of the state variable is a function of

another state variable). Actions are the only Möbius entities that can change the values of state variables, thus the

state of the model or the system. Actions could be instantaneous or timed. An instantaneous action takes no time,

while a timed action is usually associated with some random times, which is called time-to-complete. Only after this

period of time can the action complete or fire. Actions are enabled under certain system state and the firing of an

action often changes the system state to a new state. Groups contain one or more actions called group members. A

group is enabled when at least one group member is enabled. However, not all enabled group members can fire. At

any time, only one enabled group member is elected as the representative that can fire. Other enabled group

members are ignored. The way to select its representative must be defined on a group.

All formalisms integrated into the Möbius framework must use the Möbius entities to specify their model. But

this by no means implies different formalisms are translated into some universal modeling language because the

Möbius entities are not fully defined modeling components. For example, actions can be enabled and can fire. But

how to decide the enabling condition and what to do when they fire are left undefined. These issues are specific to

the formalism and must be dealt with when implementing that formalism into the Möbius framework. The Möbius

entities, together with the formalism specific information, are used to describe the model built on the formalism

[Doyle 2000].

The Möbius framework defines an Abstract Functional Interface (AFI). The AFI is the core of the Möbius

framework because it enables models to exchange information with other models and different solvers. The AFI also

 6

enables the Möbius solvers to solve a model without the knowledge of the underlying formalism. Thus, hybrid

models that consist of models from different formalisms are solvable.

The Möbius AFI consists of functions that are implemented as C++ virtual methods within the implementation of

the C++ classes for Möbius entities. Virtual methods can be redefined in the derived class so that the formalism

specific behavior can be defined in terms of the Möbius entities for a given formalism. In the implementation of the

Möbius tool, state variables are not simple variables, instead, they are implemented as an abstract C++ class:

BaseStateVariableClass. Actions and action groups are implemented as BaseActionClass and BaseGroupClass,

respectively. One additional class BaseModelClass is defined as the container for Möbius entities. Each class

contains several virtual methods that are part of the AFI. The virtual methods and their corresponding classes are

summarized in Table 1.

Class AFI functions Function description

int StateSize() Determine the number of bytes needed to
store the state

void SetState(void *p) Sets the value of the state variable BaseStateVaribleClass

void CurrentState(void *p) Writes the state to the memory location p.

Bool Enabled() Determines whether the action is enabled in
the current model state

double SampleDistribution() Returns the action’s time-to-completion BaseActionClass

Fire() Defines how the action changes the state of
the model

(All functions defined in the
BaseActionClass)

BaseGroupClass
SelectAction () Selects the action to represent the group

int StateSize() Determine the number of bytes needed to
store the model state

void SetState(void *p) Sets the state of the model

void CurrentState(void *p) Writes the model state to the memory
location p.

void ListActions() Lists actions in the model

void ListGroups() Lists groups in the model

BaseModelClass

void ListSVs Lists state variables in the model

The formalism in the Möbius framework must derive its own classes from these basic abstract classes and

implement the AFI, i.e., provide their own implementation for those virtual methods.

Table 1 Möbius classes and AFI functions.

 7

The Möbius framework uses a

hierarchical model construction

method, as is shown in Figure 3.

First, atomic models are built from

single formalisms. Second, two or

more atomic models form a

composed model by sharing state

variables. Then, reward variables are

defined for atomic or composed

models to form a solvable model.

One or more solvable models,

together with reward variables, can

form a connected model. The solvable models are solved using the Möbius simulators or analytical/numerical

solvers.

3. Stochastic Message Sequence Charts

In this section we define stochastic message sequence charts.

3.1 Why Stochastic MSC?

The MSC formalism defined in the ITU (International Telecommunication Union) standard [ITU-T 1999] is

commonly used to specify the behavior of systems by constructing a series of MSCs. Each MSC is a description of a

part of system behavior. The system-wide behavior description is achieved by combining these MSCs using the

composition operators. But what kind of information about the system can we get given that the system is modeled

as MSCs?

First, since an MSC describes a series of instances exchanging message(s) or performing some action(s), we can

determine (1) how many objects the system is made up of, (2) what messages are exchanged, (3) between which

objects they are exchanged, and (4) what actions are performed and by what object (note: Instances in an MSC

actually represent objects of a real system). Second, certain properties of system behavior can be specified (i.e., the

possible orderings of actions and messages are defined). An MSC not only contains entities for specifying system

Figure 3 The Möbius framework.

State variables Actions Action groups

Atomic Model

AFI

State space
generator

Simulator Analytic
solvers

Reward
Variables

Solvable Models

Composed Model

 8

objects and their actions, but it also imposes a partial order on the events. Only a partial order is implied because

there can be events without a defined execution order.3

In a summary, MSCs tell us what the system is, what the system does, and how the system should do it and

therefore known as a Specification Description Language (SDL).

The event ordering specified by MSCs is only one aspect. Other properties regarding how the system behaves,

i.e. the performance of the system cannot be ascertained from plain MSCs. This limitation is mainly due to the

assumption that all events are instantaneous. Under this assumption, MSC events cannot capture the performance

characteristics of real system activities that do require time or, that have some relationship with time.

As a scenario description language, MSC is a good candidate for performance modeling since a performance

model also describes the system behavior. In the paradigm of performance modeling, stochastic process theory is

dominant. A system is first modeled as a stochastic process. The behavior of the system is assumed to be the same as

the behavior of the stochastic process. A well-developed theory for stochastic processes can be used to analyze the

system model and evaluate the system performance. Therefore, we relaxed the assumption that all events in MSC

are instantaneous and enable events to be associated with random time. The random time denotes the time required

to complete the event. In most cases, the random time is assumed to have exponential distribution. The new

language is a stochastic extension to MSC we call Stochastic MSC (SMSC).

3.2 Definition of SMSC

We define SMSC based on the language of MSC:

An SMSC is an MSC where all events are enhanced to behave as real activities by associating stochastic

time information with them. The stochastic time associated with an activity is the time needed to

complete the activity.4

“Event” is used to describe something that occurs to trigger a set of activities. When an event is associated with

time, we call it an “activity.” Activity means something that takes time to complete.

The stochastic time associated with activities can be deterministic, exponential, beta, etc. There is no restriction

on what type of distribution a stochastic time can take. However, to simplify the description, we use the exponential

distribution as the default distribution in the rest of this section. Figure 4 shows an example.

3 A total order requires that all events can be ordered, directly or indirectly. This is not the case for MSCs.
4 An immediate or instantaneous event is an activity associated with zero time.

 9

In the MSC language, there

are two types of events: the

events in message passing and

the events for local actions.

Hence, there are also two

types of activities: message

activities and local action

activities or simply local

activities.

A message in the SMSC language consists of two activities: the activity of sending the message and the activity

of receiving it. A message is represented the same way as in MSC except the message name is now followed by two

parameters. The first parameter specifies the time for the sending activity and the second defines the time for the

receiving activity. For example, message m1 in Figure 4 has two parameters: r3 and r4. r3 specifies the rate of an

exponentially distributed random variable that gives the amount of time needed to send the message. r4 assigns time

to the message receiving activity. Both r3 and r4 may be global variables so that their values can be easily modified

later. The textural representation of messages is defined by adding a new keyword withrate as shown in Figure 4.

Also, note a new keyword smsc is defined to distinguish SMSC from MSC and is used in both the graphical and

textural representations. Finally, local activities are also assigned random time in the same way as message using

only one parameter.

3.3 Comparing MSC with SMSC

The SMSC language is different from the MSC in that SMSC activities are allowed to be non-instantaneous.

Therefore, SMSC models provide more information about a system than the MSC model. However, one may ask the

question “Can SMSC provide the information regarding the modeled system that MSC provides?” or “Is the partial

order of events imposed by MSCs still applicable to SMSC activities?” The answer to those questions is YES

because the MSC ordering rules also hold for SMSC (there are additional rules defined for SMSC).

3.3.1 Constructs

All constructs (instances, messages, local actions, conditions, etc.) defined on MSC are used by SMSC. The

graphical representation of a SMSC looks the same as an MSC except for the additional parameters mandatory to

Figure 4. An SMSC example.

 smsc example1

i1 i2 i3

m0(r1, r2)

m1(r3, r4)

m2(r5, r6)

m3(r7, r8)

a(r0)

smsc example1;
i1: out m0 to env withrate r1;
i1: out m1 to i2 withrate r3;
i1: action a withrate r0;
i1: in m3 from i2 withrate r8;
i2: in m1 from i1 withrate r4;
i2: out m2 to i3 withrate r5;
i2: out m3 to i1 withrate r7;
i3: in m2 from i2 withrate r6;
endmsc;

 10

specify time. As for textual representations, all the keywords defined in MSC are still valid in SMSC. Although new

keywords are defined for SMSC, the method and grammar for describing SMSC is the same as that of MSC.

SMSC and MSC have the same composition operators all of which maintain the same semantics. High-level

SMSC (HSMSC) is defined in the same way as HMSC. HSMSC organizes SMSC references using the same nodes

defined on HMSC and organizational interpretation is also the same.

Most new keywords deal with time specification except for the keyword smsc, which simply replaces the

keyword msc. For example, if an activity is associated with exponentially distributed random time, the keyword

withrate is used in the description and is followed by a parameter that specifies the rate of the exponential

distribution. We only need to provide one such parameter because the exponential distribution requires only one

parameter. Other distributions may be specified by defining the corresponding keywords and providing the required

parameters. In this paper, we focus on the exponential distribution only.

3.3.2 Ordering Rules

SMSC has different ordering rules. Under the new ordering rules, a SMSC imposes a partial order on its activities.

This partial order is the same as that imposed by an MSC. If all activities are associated with zero delay, then the

SMSC model is an MSC model.

There are two assumptions made in MSC for precisely ordering events. The assumption of instantaneous events

is obvious. If events can last for a period of time, it would be quit possible that another events starts before the

already started event finishes. In this case, what is the order of these two events? The assumption that no two events

can be executed at the same time requires that any two events have a specific order. An event either happens before

or after the other. Consequently, the execution of events forms a trace that describes system behavior. In SMSC, we

relax the first assumption. As a result, the second assumption does not hold and is also relaxed and activities in

SMSC can start or finish at the same time.

We have mentioned that activities cannot be ordered. But if we decompose an activity into two events, one for

the starting of the activity and the other for it’s ending, then we will find a new way to order activities. The order of

activities can be defined as either the order of starting events or that of the ending events. By this definition, the

order of activities may not be unique for an execution of these activities.

Since instances are independent in SMSC, activities are executed concurrently. Even if the starting times are

different, two activities may finish at the same time because the execution time is a random variable. Therefore, it is

 11

possible that two events happen at the same time. If two events happen at the same time, they must be treated as if

they can be in any order. We will show later that these ambiguities in ordering activity events will not prevent us

from defining the partial order the same as that defined in MSC.

There are five rules for the ordering of activities and activity events:

1) The event of starting an activity must happen before the event of finishing the same activity.

2) Activities attached to an instance are executed sequentially in the same order as they are given on

the vertical axis from top to bottom. An activity can only start after the previous one has finished.

3) The activity of sending a message must finish before the activity of receiving the same message can

begin.

4) Activities in a coregion can happen in any order, but their execution must abide by rule 1.

5) If general orderings are used, they are treated as messages in terms of ordering these activities. In

other words, the activity pointed to by a general ordering symbol can only start after the activity

from which the general ordering originates has finished.

The first rule describes how to order the two events (start and finish) in an activity. Obviously, the starting event

should always happen before the ending event. The second rule covers the ordering of activity events associated

with the same instance. If each activity is treated as two consecutive events, the ordering of these events is the same

as that defined for MSC.

The third rule is for ordering events in a message. The order of activities of different instances can be derived

from this rule. A message includes two activities, and hence four events: the event of starting to send the message,

the event of starting to receive the message, the event of finishing the sending of the message, and the event of

finishing the receiving of the message. The precise restriction for their order is that the event of starting to send a

message must happen before the event of starting to receive the message, while the event of finishing the receiving

of the message must happen after the event of finishing the sending of the message. In other words, a message must

be sent before it can be received, and the sending of the message must have finished before the receiving of it can

finish. However, we define a stricter rule: the sending of a message must have finished before the receiving of it can

start. This rule is to prevent a message from being completely received before the end of sending the message has

not occurred. If we allow the activity that receives a message to start before the completion of the activity that sends

the message, we cannot guarantee that the end of receiving the message occurs after the completion of sending the

message because both activities are associated with random time.

 12

The fourth and fifth rules are defined for ordering events in a coregion or for being controlled by general

orderings. The interpretation is straightforward. Under these rules, whether using the order of starting or ending

events as the order of activities, the order imposed by an SMSC is sure to comply with the partial order imposed by

the corresponding MSC if timing information is removed. Therefore, an SMSC imposes the same partial order on its

activities as an MSC does on its events. This result is mainly due to the strict ordering rules defined for messages

and general orderings in SMSC. Although we may have two different orderings for activities’ starting events and

ending events, both of the orderings will comply with the partial order imposed by the corresponding MSC. Any two

activities that can be ordered differently must correspond to the events that have undefined order in the

corresponding MSC.

3.3.3 Traces versus Processes

An MSC specifies a set of valid traces that the system can take. If we define the sequence of activities as a trace, an

SMSC specifies a set of valid traces the same as an MSC. In addition, an SMSC also specifies a stochastic process.

The main difference between the MSC and SMSC languages is that SMSC defines a stochastic process while MSC

does not. SMSC can describe the system behavior more precisely than MSC by providing users with more

information about the system. The stochastic process enables users to do performance analysis about the system.

This is the reason that we extend MSC to SMSC.

4. Integrating SMSC into the Möbius Framework

The SMSC language is capable of performance modeling. We need to provide a tool to analyze the SMSC models.

Instead of creating a new tool for solving SMSC models, the SMSC formalism is integrated into the Möbius

framework. Since the Möbius tool supports multi-formalism modeling, integrating SMSC into the Möbius

framework not only provides a tool for solving SMSC models, but also enables SMSC model to interact with

models from other formalisms that are made available by Möbius so that SMSC can be used for multi-formalism

modeling.

4.1 Problem Definition

To analyze an SMSC model, we can use one of the following two ways:

1) Develop a tool specifically for solving SMSC models.

2) Integrate SMSC into the Möbius framework and use the Möbius tool to analyze the SMSC model.

 13

We reject the first method and decide to adopt the second method for several reasons. First, the Möbius tool

provides discrete event simulators and analytical solvers that are capable of solving any models within the Möbius

framework. Once a new formalism is integrated in the framework, the existing solvers are ready to solve models

expressed in the new formalism. It is not necessary to develop solvers for the new formalism. All we need to do is to

express our models using the Möbius entities.

Second, the most important advantage from the Möbius framework is that the SMSC formalism can be used for

multi-formalism modeling. SMSC models may be joined with models from other formalisms (available within the

Möbius tool) and form large heterogeneous models. Integrating the SMSC formalism into the Möbius framework

enables the SMSC formalism to use the full features of the Möbius toolkit.

The Möbius framework requires that any formalism in the Möbius must implement the AFI and describes its

model based on the basic Möbius entities. To build the SMSC formalism into the Möbius tool would require that

SMSCs be decomposed into a set of state variables and a set of actions. The state change and the ordering of action

firings are determined by the structure of the SMSC model.

Therefore, before we can use the Möbius tool to solve a SMSC, the following three problems must be solved:

1) How to define SMSC states and the corresponding state variables.

2) How to define SMSC actions, and

3) How to organize state variables and actions to represent the same model structure as defined for SMSC.

The following three sections will answer these questions.

4.2 Identifying State Variables in SMSCs

To define the state of an SMSC, we must examine its components to see what information is necessary to specify the

system state. An SMSC contains a number of independent instances. The instances send messages to each other

and/or perform some local activities. SMSC may contain conditions that govern the execution of some activities.

Local activities can also perform operations on local or global data. These constructs are used to model a system and

contain the information that describes the system state.

Instance state

The state of an instance should reflect which activity has been executed. Since an instance imposes a sequential

execution order of its activities, it is important to keep the information about the execution of activities to ensure the

 14

sequential order. Initially, the instance is in a state that no activity has been executed. After executing the first

activity, the state of the instance evolves to a new state that reflects the fact that the first activity has been executed.

This process goes on until the last state has been reached, which shows all activities have finished.

The number of states that an instance can have depends on the number of activities associated with the instance.

First, if an instance has no coregion defined on it, the number of states is given by the following equation:

 NumInstanceStates = NumInstanceActivites + 1 (4.1)

where NumInstanceStates is the number of states, and NumInstanceActivites denotes the number of activities on the

instance. An instance that has no coregion specifies a strict sequential process. Activities can only be executed in the

order they are given from top to bottom along the vertical instance axis. The execution of a later activity implies that

all previous activities have finished. Therefore we can represent the instance state using an integer variable that

holds the value of how many activities have been executed. Initially, the value is 0, meaning no activity is executed.

The value increments by 1 after each activity is executed. From the value of this variable, we can immediately know

which activity has finished and which activity is the next one to execute. It gives us no less information than a large

number of Boolean variables. Furthermore, it uses less memory and is easy to manage. As long as the number of

activities is within the range of integer values (as is always the case), the state of an instance can be kept simply by

using an integer variable.

Second, if a coregion exists in an instance, equation (4.1) no longer holds. Activities in a coregion can be

executed in any order. A coregion brings additional states to the instance. To represent the state of a coregion, we

have to associate each activity in the coregion with a Boolean variable. The “true” value denotes the finish of the

execution of the activity, while the “false” value denotes the activity has not been started. The number of additional

states brought by a coregion is at most

 2NumCoregionActivites (4.2).

If we exclude the coregion activities from the instance activities, equation 4.1 can be used to calculate the

number of instance states. The total number of the states is the sum of this number and the number of states

contributed by the coregion. Furthermore, if more than one coregion appears in an instance, and then each coregion

contributes at most the number of additional states given by (4.2).

 15

Conditions

As defined in the MSC language, conditions represent system state. Therefore, conditions are good candidates

for state variables. Depending on how many states a condition represents, the type of the state variable for a

condition can be either Boolean, integer, or double.

Data

SMSC can also perform operations on data just as MSC does. Data defined on SMSC are also state variables.

The change of the data value represents a state change in the model. The type of the state variable for a data member

is the same as the type of the data member.

Special Entities

Some special entities are defined in the MSC language that are capable of sending or receiving messages. These

entities include the environment, lost and found. Messages can be sent to or received from the environment. There

is no order defined on environment. Therefore, we cannot consider the environment as an instance. Messages that

are sent but not received by an instance are called incomplete messages. Incomplete messages are considered as

directed to the entity: lost. Similarly, a found message is the one that no instance sends and is considered to originate

from the entity: found.

To represent these special entities in the Möbius framework, we define one state variable for each. The state of

the environment may contain the number of messages sent and received. So we can define a structure that contains

two integers each of which represents the number of messages sent/received. The state of lost can be used to count

how many messages are lost. Thus, an integer is used to represent its state. The state of found is actually fixed. It

must act as if the sending of the message has finished and enable the activity of receiving the found message.

Shareable vs. Non-shareable State Variables

The Möbius framework uses the concept of state sharing to join models from the same or different formalisms. If

a state variable is shared with other models then they can also change the value of the state variable. The change of

value represents the state change. Therefore, the behavior of the model is affected by the behavior of other models.

Not all the state variables we defined are shareable. For example, if the state variable defined for an instance is

shared with other models, the increase of the state variable’s value by other models may cause some actions to be

considered finished even though they have not been executed. This is referred as state jump. Whether the state

 16

jumps ahead or back, the sequential execution order will be disturbed. Therefore, state variables from instances are

not shareable. Conditions and data will not affect the sequential order and hence these state variables are shareable.

There is no need to share the special state variables for environment, lost and found because they are special state

variables used only for SMSC.

4.3 Identifying Actions in SMSCs

By definition in the Möbius framework, actions are the only entities that can change the system state by changing

the values of state variables. Thus any components in SMSC that can change the value of state variables will give us

actions. These components include local activities, message activities, and setting conditions. Although data

operations change the value of state variables that represent the data, data operations are not considered as actions

because they are performed by local activities or message activities.

Local Activities

Local activities can perform data operations and the completion of an activity must also increment the state

variable that represents the instance to which the activity is attached. Thus, local activities are Möbius actions. If

data operations are defined on the local activity, the execution of this local activity must also change the state

variable representing the data. The execution time distribution for the action coming from a local activity takes the

same distribution function as that of the local activity.

Message Activities

A message consists of two activities. The sending activity is performed by the instance that sends the message,

and the one that receives the same message performs the receiving activity. Data operations can also be defined for

message exchange. When the activity of sending the message completes, it must adjust the state variable to reflect

the fact that the message has been sent. Likewise, the completion of receiving a message should change the state of

the instance that receives the message. Therefore, a message can be represented by two Möbius actions.

Setting Conditions

Conditions have two forms: setting conditions and guarding conditions. Setting conditions set the system to some

particular state. Guarding conditions control the system behavior by restricting the execution of certain activities.

The setting conditions are Möbius actions since they change the system state.

 17

Figure 5 shows an example of an SMSC and its corresponding state variables and actions. Action rm1

corresponds to the activity of

sending the message m1, and

sm1 corresponds to the receiving

of message m1. Action la is for

the local activity a. The same

naming rules apply to other

action names. The state variables

s1, s2 and s3 represent the state

of instances i1, i2, and i3,

respectively. In summary, the

SMSC constructs and their corresponding Möbius entities are shown in Table 2.

SMSC Constructs Möbius Entities
Instances State Variables
Messages Actions
Local Activities Actions
Conditions State Variables
Setting Conditions Actions
Data State Variables
Special Components (env, lost, and found) State Variables
General Orderings Taken care of by Actions

4.4 Implementing SMSC in Möbius Framework

To express SMSC in Möbius, we must define state variables and actions. State variables represent the model state.

Actions can change the state variables’ value and hence the state of the model. Since SMSC imposes a partial order

on the execution of activities, the firing of actions must comply with this partial order. Therefore, these state

variables and actions must be organized in a way that the partial order is ensured.

Based on the Möbius BaseStateVariableClass, we derived state variables classes for SMSC models. These state

variable classes include SMSCInst, and SMSCCond. The C++ class SMSCInst is defined to represent SMSC

instances. The class SMSCCond is to represent SMSC conditions, which are sharable state variables. The class

SMSCInst contains all the information necessary to describe an instance including its state, its coregion, activities

associated with it, and especially the order of its activities.

Figure 5. State variables and actions from an SMSC.

Table 2. Mapping SMSC constructs to Möbius entities.

smsc example2

i1 i2 i3

 m0(r1, r2)
m1(r1, r2)

 m2(r1,r2)

 m3(r1,r2)
a(r)

State variables:
s1: int; 0 to 4; 0
s2: int; 0 to 3; 0
s3: int; 0 to 1; 0

Actions:

sm0(r1), sm1(r1), la(r),
rm3(r2)
rm1(r2), sm2(r1), rm3(r1)
rm2(r2)

 18

The SMSCActivity class is derived from the Möbius BaseActionClass. Although there are three different

activities in SMSC: local activity, message activity, and the activity of setting conditions, we only need to define one

activity class. Two important properties regarding an activity are under what condition it is enabled and what state

change it causes after it is executed. The activity class must contain information necessary to specify its enabling

condition and its firing effect. For a local activity, it can only be enabled if the activity that precedes it has finished

and its guarding conditions are met. For message activities, the sending activity’s enabling condition is the same as a

local activity. While the enabling of the receiving activity depends on not only the previous activity of the same

instance but also the state of the sending activity of another instance. Only after those two activities have finished

can the receiving activity be enabled. Again, the guarding condition must be met if there is one. The setting

condition activity has the same restriction as a local activity. Therefore it is not necessary to distinguish message

activities from local activities or setting condition activities if we include enough information in the SMSCActivity.

The SMSCModelClass is derived from the Möbius BaseModelClass. The SMSCModelClass is used to organize

the state variables and activities for an SMSC model. The structural information of an SMSC is kept in the

SMSCActivity class and SMSCInst class rather than in the SMSCModel class. The SMSCModel class acts as a

container of state variables and activities. In addition, the SMSCModel class also provides methods of composing

two or more SMSC models.

The default methods of combining two models by joining the shared state variable in the Möbius framework do

not work when specifying the composition of two SMSCs. The reason is that the state variable defined based on an

SMSC instance is not sharable (there are sharable state variables, such as state variable for conditions, which can be

used in Möbius for multi-level modeling). Therefore, it cannot be used in the Möbius joining operations. SMSCs can

be joined vertically, horizontally, or alternatively. This is beyond what can be expressed by the Möbius joining

operations. The SMSC formalism defines its own model composition methods. The SMSCModel class can be used

to specify these compositions.

4.5 Solving SMSC Models

Once the SMSC models are described using classes derived from the Möbius base classes, we can then solve the

models using Möbius built-in solvers.

4.5.1 Analytical Solvers versus Simulators

If all activities are associated with exponentially distributed random time, the underlying process is a Markov

 19

process. The Möbius analytical solvers can be used to quickly solve the model. Before using any analytical solvers,

the state space must be explicitly generated. This implies that the model has to have finite states and if so, then the

Möbius utility State Space Generator can be used to generate the state space.

The Möbius simulators can be used to solve any model regardless of the type of distribution associated with

activities. If the underlying process is not Markov, then discrete event simulators are the only choice when solving

the model for performance measures. Before solving the model, performance variables must be defined for

measuring the desired system properties.

4.5.2 State Space Generation Algorithm

The Möbius State Space Generator consists of several libraries, which contain precompiled functions. These

functions are linked with user-defined models, such as SMSC models, to generate an executable model, which is

then used to generate the model state space. The State Space Generator only uses the Möbius AFI to interact with

the model. The details of the state space generation algorithm can be found at [Clark, Courtney et al. 2001]. Once

the state space is generated, various analytical solvers are applied to solve the model for the desired performance

measures. The state transition and the reward calculations are recorded in the data structure that represents the

SMSC model state space.

4.5.3 Model Complexity versus Solving Time

The complexity of an SMSC model depends not only on the number of instances, messages and conditions, but also

on the structure of the model. The structure of the model is the way that instances, messages, conditions and other

model constructs are organized together to represent a certain system. Naturally, if the SMSC model contains a large

number of instances and messages, this implies a higher complexity. However, sometimes the structure of the SMSC

model plays a more important role in deciding the model complexity. The size of state space is used to measure the

complexity given that the model is to be solved analytically and has a finite number of states.

There are two types of constructs that affect the number of the states. The first type of construct can increase the

number of states, while the second can cause a reduction. The SMSC coregion construct belongs to the first type. A

coregion specifies a number of activities that can run in parallel or in any sequential order and all possible

interleaving must be considered (giving rise to many more states). The second type of construct includes messages

and general orderings. Messages and general orderings impose restrictions on the sequential order in which the

activities can take place, which effectively eliminated certain interleaving resulting in fewer states.

 20

(b) (a)

smsc two_inst_1

i1

a1(r0)

a2(r1)

a3(r2)

i2

b1(r0)

b2(r1)

b3(r2)

smsc two_inst_2

i1

a1(r0)

a2(r1)

a3(r2)

i2

b1(r0)

b2(r1)

b3(r2)

(b) (a)

smsc one_inst_1

i1

a1(r0)

a2(r1)

a3(r2)

smsc one_inst_2

 i1

a1(r0)

a2(r1)

a3(r2)

For example, Figure 6(a) shows an SMSC with one instance and three local activities. This SMSC has 4 states:

the initial state and 3 additional states that

represent the completion of activities a1,

a2, and a3, respectively. Since activities

a1, a2, and a3 can only happen in the

given order, the completion of a later

activity implies the completion of the

earlier activities, i.e., the finish of a2

means the finish of a1 and the finish of a3

implies the finish of both a1 and a2. If we

add a coregion, illustrated in Figure 6(b),

to encapsulate these activities, then

activities a1, a2, and a3 can execute in

parallel. The result SMSC gives 8 states

because there is no imposed order and

thus, activities can happen in any order.

Therefore, coregions increase the number

of states.

To show that messages or general

orderings can reduce the state space size,

we first construct the SMSC shown in

Figure 7(a). We define two instances,

each of which has three local activities. No message is exchanged between them. No general ordering is defined to

restrict the execution order between activities on different instances. Although activities of each instance must take

place in the specified sequential order, activities between the two instances can actually execute in parallel. The

execution of activities on instance i1 does not affect the execution of those on i2. For each instance, the state

variable can take four different values; therefore it has 4 states. Thus, two such instances yield 16 states. Now we

define a general ordering between the first activities of both instances i1 and i2 (see Figure 7 (b)). This new SMSC

shown in Figure 7 (b) will have fewer states than the one shown in Figure 7 (a).

Figure 6. State space without/with coregions.

Figure 7. State space without/with general orderings.

 21

smsc two_inst_3

i1

a1(r0)

a2(r1)

a3(r2)

i2

b1(r0)

b2(r1)

b3(r2)

The general ordering between activities a1 and b1 specifies that activity b1 can only take place after activity a1

finishes its execution. This additional restriction on the execution of activities makes it impossible for activities b1,

b2 or b3 to occur before the completion of the activity a1. As a result, the number of states of the SMSC shown in

Figure 7 (b) is 3 states fewer than the case without the general ordering between a1 and b1. Therefore, general

orderings that provide additional restrictions can reduce the state space size. Note that general orderings have the

same effect in restricting the execution order as messages. In Figure 7 (b), if we replace the general ordering and the

two activities that the general ordering connects with a message that originates from i1 and ends at i2, we have the

same result, i.e., the number of states decreases by 3 compared with the SMSC shown in Figure 7 (a).

We can add even more general orderings to the extent that all activities in the SMSC can be totally ordered, as is

shown in Figure 8. This is a visually more complicated

SMSC that actually has the least number of states, which

roughly equals to the number of activities. Accordingly, a

visually complicated SMSC does not always mean that it

will generate a larger number of states.

 In addition to those constructs, the composition of

SMSC model also has great impact on the size of its state

space. For example, if an SMSC M1, which has S1 number

of states, is vertically composed with another SMSC M2,

which has S2 number of states, and the composed SMSC

is called M3, the number of states of M3 is not necessarily the sum of S1 and S2. Usually, that number is greater

than the sum of S1 and S2. Therefore, model composition increases the number of states that the modeled system

can take.

The time needed to solve a model is directly related to the state space size of the model. Naturally, the larger the

state space, the longer it takes to solve the model. When using the Möbius analytical solvers to solve a model, we

need two steps. The first step is to explicitly generate the entire state space using the state space generator. The

second step is to choose one analytical solver to solve for the desired reward variables. Hence, the time needed to

solve a model can be split into two parts: state space generation time and reward variable solving time. The overall

solving time is the sum of those two parts.

Figure 8. State space with more general orderings.

 22

smsc A

 i1

a1(r0)

 i2

when buf >0

smsc B

 i1 i2

smsc C

 i1

a2(r7)

 i2
err = true

err = false

 m1(r1, r2)

 m2(r3, r4)
m3(r5, r6)

To test how efficient the Möbius solvers can handle SMSC models, we use the following example SMSCs (see

Figure 9.) The SMSC A has two instances, one guarding condition and one local activity. SMSC B is vertically

composed with SMSC A.

The SMSC B also has two

instances. There are two

messages exchanged

between these two instances:

messages m1 and m2.

Another SMSC, SMSC C, is

also vertically composed

with SMSC A. Moreover,

SMSC B and C are two

alternatives succeeding

SMSC A. Inside SMSC C

are two setting conditions,

one message and one local

activity. SMSC C forms a

loop, which means that

SMSC C is vertically

composed with itself.

According to the composition shown in Figure 9, SMSC B is also vertically composed with SMSC C. The whole

SMSC model consists of 6 instances, two conditions, 3 messages and 4 activities that are not messages (we consider

setting conditions as activities). Guarding conditions are not activities because they only specify certain system

states. Using the Möbius state space generator, this simple model generates 14 states. This model is so small that the

Möbius can solve it instantly.

Based on this simple SMSC model, we build larger models using the Möbius replication/join formalism. The

replication/join formalism enables a simple model to be replicated (i.e., copy itself). Users can specify the number of

copies to generate. Usually, this number is defined as a global variable so that assigning different values to the

Figure 9. The solved SMSCs.

 23

global variable can easily specify different number of copies. These copies are joined together through some shared

state variables to form a larger model.

In our experiment, the basic model is replicated from 1 to 10 times and it results in 10 different models with

increasing complexity. There is only one shared state variable which is the one that corresponds to the condition err.

The number of states generated for each model and the corresponding state space generation time and solving time

are shown in Table 3.

Number of
Replication 1 2 3 4 5 6 7 8 9 10

States 14 91 455 1820 6188 18564 50388 125970 293930 646646
State space
generation
time

<1s <1s 1s 5s 17s 46s 156s 365s 22m 4h30m

Solving
time <1s 1s 10s 70s 416s 27m 1h35m 4h58m 14h46m 52h57m

Total time <1s 1s 11s 75s 433s 27m46s 1h38m 5h04m 15h06m 57h27m

Note: s=second, m=minute, h=hour

The number of states with different replication numbers is shown in Figure 10. We can see that the number of

states increases exponentially with

the number of replications. One

would expect the number of states

to increase even faster if all the

copies of the simple model run in

parallel without sharing any state

variable. For example, replicating

the model 5 times without joining

them via a shared state variable

would result in a model with 145

states, or 537842 states. That number is much larger than the number 6188 states from our model. The common state

variable shared by those models greatly reduced the number of states of the joined model (in the case of replication

5 times, state space is reduced by a factor of 86).

5 This experiment was carried out on Windows 2000 machine with 128MB memory and one Intel Pentium III CPU running at 500MHz

Table 3. Experiment result of model complexity and solving time.5

Figure 10. The number of states under different replication times.

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10

Replication times

N
um

be
r o

f s
ta

te
s

 24

The state space generation time, reward variable solving time (i.e., using the Accumulated Reward Solver, ARS)

and the total solution time of

solving the models are shown

in Figure 11. The time needed

to generate the state space is

proportional to the number of

states. However, when the state

space size increases, we notice

a sharp increase in time for the

last model, which contains

~650,000 states. This is due to

the memory constraint of the

machine used to conduct this

experiment. The virtual memory

was increased to 400MB and 375MB of it was in use when computing the last model. The available physical

memory was less than 1MB at the later stage of computation. The greatly decreased performance must be caused by

the disk swap operation in which the operating system consistently swaps data to and from hard disk. The dominant

part of the total model solving time is not the state space generation time but the reward variable solving time. The

latter is more than one magnitude higher than the former.

5. An Example of Multi-formalism Modeling with SMSC

In this section, we provide an example to illustrate how SMSC models are joined with models from other

formalisms, such as SANs, through sharing common state variables. Section 5.1 introduces the example system to

model, which is a communication system using the stop and wait protocol. The stop and wait protocol is modeled as

SMSCs, which are described in section 5.2. While section 5.3 explains the SAN models for the sender and receiver.

The whole system is the combination of the SMSCs and SANs. Section 5.5 gives the result of solving the system

model for one performance measure: time processing errors.

5.1 A Communication System Using the Stop and Wait Protocol

We consider a simple system with two computers connected through a cable. The processes running on one

computer send files to those running on another computer. The communication protocol used by the data link layer

Figure 11. Model solving time with different state space sizes.
 (note y-axis is lognormal)

0.1

1

10

100

1000

10000

100000

1000000

14 91 45
5

18
20

61
88

18
56

4
50

38
8

12
59

70

29
39

30

64
66

46

Number of states

Ti
m

e
(S

ec
on

ds
)

GenerateTime SolveTime TotalTime

 25

is the stop and wait protocol [Tanenbaum 1996]. The sending process first opens a file for transmission. The data in

the file is then broken into small data blocks and each block corresponds to a frame (i.e., the smallest transmission

unit). Data blocks are then handed to a process that creates a frame and stores the frame into a sending buffer.

Whenever there is a frame in the sending buffer, the sending process will try to send the frame over to the other

computer using the stop and wait protocol. The receiving process is the inverse of the sending process. A received

frame is kept in a receiving buffer. If the frame is correctly received, it will be handed up to a data block buffer.

After all the data blocks have been received, they will be combined into a file. The sending and receiving processes

are molded as SANs. The stop and wait protocol is next modeled using our newly extended MSC language, namely

SMSC.

5.2 Model the Stop and Wait Protocol

The stop and wait protocol is the simplest communication protocol that can coordinate the communication between

two entities that run at different speeds and have limited buffer space. The sender sends out a data block and then

waits for the receiver to acknowledge the receipt of the data. Until obtaining the receivers’ acknowledgement, the

sender cannot start sending the next block. This prevents a fast sender from flooding a slow receiver with limited

receiving buffers.

If the stop and wait protocol is used on an unreliable channel, i.e., data in transmission may be damaged due to

errors that occur in the channel, then the technique of retransmission must be adopted. The sender starts a timer after

it transmits a data block. If the timer goes off before it receives the acknowledgement, the data is considered lost and

the sender retransmits the same data block. Upon receiving a data block, the receiver first checks if the data is

correct. If correct, a positive acknowledgement is sent back. Otherwise, a negative acknowledgement is sent back.

The receiver may receive duplicated data if the acknowledgement is lost. In our example system, we assume an

unreliable channel is used. To model the stop and wait protocol, we need four SMSCs. Each of them describes a

scenario for their behavior using this protocol. The four SMSC-specified scenarios are shown in Figure 12.

 26

The first SMSC shown in Figure 12 (a) represents the success of the data exchange. The data is correctly

received along with the acknowledgement (i.e., no data got lost in the channel). Figure 12 (b) describes the scenario

where an error occurred during the transmission. In this case, a negative acknowledgement is sent back. The

scenario shown in Figure 12

(c) happens if the data is

completely lost in the channel

(i.e., the receiver gets

nothing). So it can perform no

action. The sender has to

resend the data after a

specified time period

represented by the delay

activity. The delay activity is

used to simulate a timer.

Figure 12 (d) represents the

scenario that an

acknowledgement is lost.

Since the sender did not

receive the

acknowledgement, it will

resend the data after some time.

Figure 13 provides an additional SMSC,

GetFrame, in order to specify how the sender

gets data from the sending buffer. This SMSC

serves as the starter for the stop and wait

protocol. The full behavior of this protocol can be

described by combining these five SMSCs.

Figure 14 shows the composition methods. The

GetFrame SMSC describes the behavior of the

Figure 12. The 4 scenarios of the Stop and Wait protocol.

Figure 13. The GetFrame SMSC.

 smsc done; global int rbuf;

 sender receiver

data(r1, r2)

pack(r3,r4)

 rbuf++

 smsc dataerr;

 sender receiver

data(r1, r2)

nack(r3,r4)

 smsc datalost;

 sender receiver

data(r1, r2)

delay(r5)

 smsc acklost;

 sender receiver

 data(r1, r2)

delay(r5)

(a) (b)

(c) (d)

 smsc getframe; global int sbuf, rbuf;

 sender receiver

getframe
sbuf--;

when sbuf>0

when rbuf<max

 27

sender when it fetches a data frame from the sending buffer. After a data frame is acquired, the execution proceeds

into one of the alternative four

scenarios. The SMSC done

represents the success of data

exchange. If done is chosen

and has finished, the execution

goes back to GetFrame. The

SMSCs done and GetFrame

form a loop. If done is not

selected as the follower of

GetFrame in this execution, the

execution has to loop among the

four scenarios indefinitely until the SMSC done is selected.

5.3 Modeling the Data Sending and Receiving Processes

The data sending and receiving processes are modeled as SANs because SAN is available in the Möbius tool and

suitable for modeling such processes. The SAN model for the sender (i.e., data sending process) is shown in Figure

15. A token in the place sdata represents a large block

of data, for example a file ready to transmit. The SAN

activity depart fires, and the output gate split defines

the number of tokens that are put into the place sblks,

which represents the block buffer of the sender. The

SAN activity CreateFrame can fire if at least one

token exists in sblks and the predicate of the input gate

BufNotFull evaluates to true. This predicate is true if

the sending buffer is not full. Each time

CreateFrame fires, a token is dropped into the place

sbuf. Each token in sbuf represents a data frame that will be sent using the stop and wait protocol (i.e., subf

represents the sending buffer).

Figure 14. The model of the Stop and Wait protocol.

Figure 15. The SAN of the sender.

GetFrame

done dataerr acklost datalost

sbufBufNotFull

depart
sdata

CreateFrame

split sblks

 28

The SAN model for the data receiving process

or the receiver is shown in Figure 16. The

procedure of processing the received frames is the

inverse of what is done by the sending process.

Whenever there is a token in the place rbuf, the

SAN activity DecodeFrame will fire and deposit a

token in the place rblks. When the number of

tokens accumulated reaches a certain value, the

input gate that controls the enabling of the SAN

activity combine may evaluate true on its predicate. Then, combine fires and a token is put in the place rdata. This

token represents the same large block of data as the one in the place sdata.

5.4 A Heterogeneous Model of the Whole System

The heterogeneous model can be constructed using the

Möbius Join and Replicate mechanism as shown in Figure

17. In Figure 17, the sender and receiver refer to the SAN

models of the sender and receiver. The word protocol refers

to the SMSC model for the stop and wait protocol. The

sender and receiver models may be duplicated several times

so that the behavior of a system with several senders and

receivers can be studied without having to build a

complicated network of models where the sender and

receiver models are drawn several times.

Before the models are joined, we must specify the shared state variables. As mentioned before, the Join construct

in Möbius uses the shared state variable to join different models together (either from the same formalism or

different formalisms). In our example, rbuf and sbuf are shared state variables. In the SAN model, places rbuf and

sbuf are defined as state variables in the Möbius representation. The global data rbuf and sbuf in the SMSC are also

defined as state variables. These state variables are shareable. In fact, they represent the same system components in

different models. The SMSC model can see the number of tokens in the place sbuf of the SAN model when it checks

its global data sbuf. The decrement of sbuf in SMSC model means the removal of a token from the place sbuf in the

Figure 16. The SAN of the receiver.

Figure 17. Construct the system model.

rbuf

combine

rdata

rblks
DecodeFrame CanCombine

sender

Replicate Replicate

receiver protocol

join

 29

SAN model. The increment of the global data rbuf in the SMSC model will be interpreted by the SAN model as a

token in put into its place rbuf. Through these shared state variables, the SAN model and the SMSC model can

affect the behavior of each other. Models from both formalisms describe the behavior of the whole system.

5.5 Experiment result

To show that Möbius can solve the SMSC model, we defined one reward variable to measure the time that the

system spends on handling error data. Whenever error occurs in the channel, the sender would have to retransmit the

lost or distorted data frame. The sender may delay for a period of time before it starts to retransmit the data frame if

either the data frame or the acknowledgement frame is lost. This period of time is considered as error processing

time. We are interested in how the channel error probability and the delay time impact the error processing time.

One additional “condition” SysInErr is defined for the SMSC models. Whenever the execution enters one of the

SMSCs that describe the error processing scenarios including the SMSC dataerr, acklost, and datalost, the condition

SysInErr is set to TRUE. The condition SysInErr gets reset to FALSE when the execution leaves that SMSC. The

reward variable ErrTime is a rate reward and will accumulate 1 reward whenever the condition SysInErr is TRUE.

The channel error probability is defined as a global variable err_prob. Another global variable rate_delay is defined,

which is the rate

associated with the

local activity delay.

The Möbius Study

Editor can be used to

vary the values

assigned to global

variables and creates

an executable model

for each combination

of the variable

values. In our

experiment, we assigned 7 values to err_prob (0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64) and 6 values to rate_delay

(0.125, 0.25, 0.5, 1.0. 2.0. 4.0). Therefore, the Möbius Study Editor generated 42 executable models. The result of

this analysis is shown in Figure 18.

Figure 18. Error processing time of the system.

0.01%

0.10%

1.00%

10.00%

100.00%

0.01 0.02 0.04 0.08 0.16 0.32 0.64

Error probability

Ti
m

e
in

 p
ro

ce
ss

in
g

er
ro

r

rate_dealy=4.0
rate_delay=2.0
rate_dealy=1.0
rate_dealy=0.5
rate_delay=0.25
rate_delay=0.125

 30

From Figure 18 we can see that the percentage of time processing errors is roughly proportional to the channel

error probability. The higher the error probability, the more the time will be spent in processing the error messages.

Error processing time is also affected by the delay time. The longer delay time implies that that the sender would

have to wait for a longer time before it retransmits data frames. So the longer delay time results in a higher

percentage of time in which the system processes errors. Note that rate is defined as the inverse of time. Therefore,

higher rate means shorter delay time.

6. Conclusion and Future Work

The Message Sequence Chart formalism and the Möbius multi-formalism modeling framework were studied. Based

on the MSC formalism, we defined a new formalism – Stochastic Message Sequence Chart, which is an extension to

the MSC formalism. SMSC can be used to describe the system behavior in the same way as the MSC language.

Furthermore, SMSC models contain more information regarding the system than the corresponding MSC models.

By associating with each activity a stochastic execution time, the SMSC models specify an underlying stochastic

process. System performance measures that cannot be derived from MSC models can be studied by using SMSC

models. In this sense, the SMSC language is more powerful than the MSC language.

The method of integrating the SMSC formalism into the Möbius framework was investigated. On the basis of

this investigation, we discovered that the SMSC formalism could be well fitted into the Möbius framework. The key

issue for building the SMSC formalism into the Möbius framework is to specify the SMSC models using the Möbius

entities: actions and state variables. We defined the SMSC state variables and SMSC activities, which correspond to

the Möbius state variables and actions, respectively. The structural information of the SMSC model is retained when

the model is specified in Möbius. We also implemented the C++ classes that are used to specify SMSC models.

Some of the model composition methods specified in the SMSC formalism can be realized using the C++ classes,

namely, vertical composition and alternative composition. Loop is a special vertical composition and is also realized

within the Möbius framework.

The next step in this work would be to implement the user interface within the Möbius framework. This requires

the implementer to collaborate with the Möbius group at University of Illinois at Urbana-Champaign. The user

interface should be implemented in Java in order to make it platform neutral. The front-end user interface will

enable users to specify SMSC models in the Möbius tool. Eventually, the graphical or textural SMSC models are

translated to C++ source files, which are further complied and linked with the Möbius C++ libraries to generate an

executable model and the model is either simulated or solved analytically.

 31

Some constructs of the SMSC language, including inline expressions, horizontal compositions, and SMSC

references, have not been defined within the Möbius framework. Further research will reveal how this can be

accomplished. Another area of future work is to define the action-sharing method for SMSC. Instead of sharing state

variables, an SMSC model may be composed with other models by sharing activities/actions.

7. References

Baeten, J. C. M. (1994). “Process algebra: special issue editorial.” The Computer journal 37,5: 474.

Ciardo, G., R. A. Marie, et al. (1990). “Performability Analysis Using Semi-Markov Reward Processes.” IEEE

transactions on computers 39,10: 1251-1264.

Ciardo, G., Muppala J., and Trivedi, K.S. (1989)." SPNP: Stochastic Petri Net Package".In the 3rd International

Workshop on Petri Nets and Performance Models, Kyoto, Japan, IEEE Computer Society Press, Los

Alamitos, CA.

Clark, G., T. Courtney, et al. (2001)." The Möbius Modeling Tool".In Proceedings of the 9th International

Workshop on Petri Nets and Performance Models, Aachen, Germany.

Clark, G. and W. H. Sanders (2001)." Implementing a Stochastic Process Algebra within the Möbius Modeling

Framework".In Process Algebra and Probabilistic Methods: Performance Modelling and Verification:

Proceedings of the Joint International Workshop, PAPM-PROBMIV 2001, RWTH Aachen, Germany,

Berlin: Springer.

Couvillion, J., R. Freire, et al. (1991). “Performability Modeling with UltraSAN.” IEEE software 8,5: 69-80.

Cunter, E. L., A. Muscholl, et al. (2001). “Compositional Message Sequence Charts.” Lecture Notes in Computer

Science2031: 496-511.

Daly, D., D. D. Deavours, et al. (2000). “Mobius: An Extensible Tool for Performance and Dependability

Modeling.” Lecture notes in computer science1786: 332-336.

Damm, W. and D. Harel (2001). “LSCs: Breathing Life into Message Sequence Charts.” Formal Methods in System

Design 19,1: 45-80.

Doyle, J. M. (2000). Abstract Model Specification Using the Mobius Modeling Tool. Electrical Engineering,

University of Illinois at Urbana-Champaign.

Finkbeiner, B. and I. Kruger (2001)." Using Message Sequence Charts for Component-based Formal

Verification".In OOPSLA 2001 Workshop on Specification and Verification of Component-based Systems,

Tampa, FL, USA.

 32

Haverkort, B. R. and I. G. Niemegeers (1996). “Performability modelling tools and techniques.” Performance

evaluation 25,1: 17 (24 pages).

Hillston, J. (1996). A Compositional Approach to Performance Modelling, Cambridge University Press.

Hilston, J. and H. U. Hermanns (1994). Stochastic Process Algebras: Integrating Qualitative and Quantitative

Modeling. Germany, Univ. of Erlangen-Nurnberg.

ITU-T (1998). Formal Semantics of Message Sequence Charts. Geneva.

ITU-T (1999). Recommendation Z.120: Message Sequence Chart(MSC). Geneva.

Magott, J. (1992). “Performance evaluation of communicating sequential processes (CSP) using Petri nets.” IEE

proceedings. E, Computers and digital techniques. 139,3: 237-241.

Marsan, M. A., G. Balbo, et al. (1994). Modelling with Generalized Stochastic Petri Nets, John Wiley and Sons.

Molloy, M. K. (1982). “Performance Analysis Using Stochastic Petri Nets.” IEEE Transactions on Computers C-

31,9: 913-917.

Murata, T. (1989). “Petri Nets: Properties, Analysis and Applications.” Proceedings of the IEEE 77,4: 541-580.

Rupe, J. and W. Kuo (2001). “Performability of FMS based on stochastic process models.” International journal of

production research 39,Part 1: 139-156.

Sanders, W., Obal, W., Qureshi, A., and Widjanarko, F. (1995). “The UltraSAN Modeling Environment.”

Performance Evaluation 24,1: 89-115.

Sheldon, F., G. Xie, et al. (2002). “A Review of Some Rigorous Software Design and Analysis Tools.” Software

Focus Journal 2,4: 140-149.

Tanenbaum, A. S. (1996). Computer Networks, Prentice-Hall.

Zhou, Z. and F. Sheldon (2001)." Integrating the CSP Formalism into the Mobius Framework for Performability

Analysis".In Proceedings of PMCCS'5, Erlangen Germany, Springer-Verlag.

	Introduction
	Background
	2.1 Message Sequence Charts
	2.2 Möbius Framework

	Stochastic Message Sequence Charts
	3.1 Why Stochastic MSC?
	3.2 Definition of SMSC
	3.3 Comparing MSC with SMSC
	3.3.1 Constructs
	3.3.2 Ordering Rules
	3.3.3 Traces versus Processes

	Integrating SMSC into the Möbius Framework
	4.1 Problem Definition
	4.2 Identifying State Variables in SMSCs
	Instance state
	Conditions
	Data
	Special Entities
	Shareable vs. Non-shareable State Variables

	4.3 Identifying Actions in SMSCs
	Local Activities
	Message Activities
	Setting Conditions

	4.4 Implementing SMSC in Möbius Framework
	4.5 Solving SMSC Models
	4.5.1 Analytical Solvers versus Simulators
	4.5.2 State Space Generation Algorithm
	4.5.3 Model Complexity versus Solving Time

	An Example of Multi-formalism Modeling with SMSC
	5.1 A Communication System Using the Stop and Wait Protocol
	5.2 Model the Stop and Wait Protocol
	5.3 Modeling the Data Sending and Receiving Processes
	5.4 A Heterogeneous Model of the Whole System
	5.5 Experiment result

	Conclusion and Future Work
	References

