
1

PCX: A Translation Tool from PROMELA/Spin to the C-Based Stochastic Petri Net Language

Abstract: Stochastic Petri Nets (SPNs) are a graphical tool for the formal description of systems with the
features of concurrency, synchronization, mutual exclusion and conflict. SPN models can be described with
an input language called CSPL (C-based SPN language). Spin is a generic verification system that supports
the design and verification of software systems. PROMELA (Protocol or Process Meta Language) is Spin’s
input language. This work provides the translation rules from a subset of PROMELA constructs to CSPL, and
also offers an experimental tool PCX (PROMELA to CSPL Translator) and approach to explore the
specification and analysis of stochastic properties for systems. The PCX tool translates the formal
description, written in PROMELA, into an SPN, represented by CSPL. The approach requires users to add
stochastic property information, during (or after) the translation. Translation of the PROMELA model to a
CSPL specification will allow the analysis of non-functional requirements such as reliability, availability, and
performance through SPNP (Stochastic Petri Net Package), a stochastic analysis tool. This is useful in the
design and validation of performance where parameters such as failure rate or throughput are available.
Moreover, certain structural and architectural features of software can be evaluated and considered within the
context of Spin-verifiable properties. This approach provides additional flexibility to the PROMELA
specification-modeling paradigm to include stochastic analysis of structural and non-functional properties.
Thus, PCX provides a practical bridge between system verification and system validation. Keywords: Petri
Nets, Spin, PROMELA, translation tool, verification and validation analysis

1 Introduction

Ideally verification and validation of a software design specification would be possible before any

code was generated. Indeed, in a perfect world we would know that the implementation was correct

because we could trust the class libraries, the development tools, verification tools and simulations

etc. These features would provide the confidence needed to know that all aspects (complexity,

logical and timing correctness) of the design were fully satisfied (i.e., everything was right). Right

in the sense that we built it right (its correct with respect to its specification) and it solves the right

problem. Unfortunately, our ability to ensure the correctness has not kept pace with the growth in

system complexity [1].

Although verification and validation methods have fallen behind the increasing complexity of

new and evolving systems, there have been several developments that may close the gap. One of

these developments has been in the field of formal methods. Such methods, typically given by a

2

formal specification language, provide frameworks within which people can specify, develop, and

verify (and/or validate) systems in a systematic manner. These techniques use mathematical logics to

explore the state space of complex systems and to verify their correctness against carefully stated

correctness properties or to derive analytic performance measures [2-4]. These properties/measures

can be either functional requirements (communications, control, redundancies) or non-functional

requirements (performance, reliability, execution deadlines). Tools based on these techniques can be

used to show that systems will behave as expected for all possible cases. Naturally the precision of

such results depends on how closely the model represents the actual system under study (e.g., an

existing or proposed system).

1.1 Petri nets are used to assess non-functional characteristics

Petri Nets (PNs) are a graphical tool for validating the formal description of systems (typically

distributed systems) that possess the characteristics of concurrency, synchronization, mutual

exclusion and conflict [5]. The stochastic Petri Net (SPNs) is a PN augmented with stochastic

attributes, such as a rate or probability of a transition firing. Techniques that utilize SPNs are good

for evaluating the performability, but they may be too abstract and cumbersome from the standpoint

of specifying and evaluating functional behavior. Therefore, one major objective of this work is to

provide an integrated approach to assist the user in specifying both functional and non-functional

requirements.

1.2 PROMELA/Spin used to assess logical functional properties

Spin is a generic system that supports the design and verification of distributed software systems.

Spin verification models are focused on proving the correctness of process interactions, and they

attempt to abstract as many states as possible from internal sequential computation [6]. PROMELA

3

(Protocol or Process Meta Language) is the input language for Spin [7]. This work provides

translation rules from PROMELA to Stochastic Petri Nets, and also offers an experimental tool PCX

(PROMELA to CSPL Translator) and approach codified by the PCX tool to explore the specification

and analysis of stochastic properties. In this way, the merits of a powerful modeling technique for

performability analysis (using SPNs) can be combined with a well-defined formal specification

language (PROMELA) for logical analysis (i.e. verification). By doing this, we can come closer to

providing a formal approach to designing a functionally correct system that meets the reliability and

performance goals [8, 9]. In the following sections we provide a brief description of the overall

PCX translation strategy and related work. We address the question of just how faithful (i.e.,

equivalent) are the different formalisms in terms of their underlying state space (i.e., comparing the

state space generated for the same model represented using both PROMELA and SPNs). Section 3

describes the implementation of PCX. Section 4 and 5 present the experimental results, conclusions

and future research directions respectively. The appendix gives the basic set of canonical

translations.

2 Translation tool from PROMELA to CSPL

The PROMELA/Spin to PN translations were designed to facilitate automatic decomposition of the

PROMELA/Spin model (construct-by-construct) into PN sub-components, and then the sub-

components are linked together to form a complete system Petri Nets.

2.1 Related work

The PCX tool abstracts the control flow (i.e., structural characteristics and dynamic aspects) from

the PROMELA model and translates the flow control into a Stochastic Petri Net model, represented

using CSPL. During or after the translation, the tool allows users to add stochastic properties that the

4

PROMELA models do not provide.

Holzmann presented an approach for the translation of Petri Nets into a PROMELA model [10].

The approach uses the idea that Petri Nets can easily be represented with a small subset of

PROMELA constructs. Grahlmann has developed the PEP tool (Programming Environment based

on Petri Net) that incorporates a feature that translates PNs into PROMELA for analysis using Spin

based on the same idea [11]. In their approach the resulting PROMELA models have the same state

space as the Petri Net model does. However, their method only translates from Petri Nets (i.e., not

Stochastic Petri Nets) to PROMELA. The state space is the same for the translation from PNs to

PROMELA using the PEP tool. Using the PCX tool translation, the state space of PROMELA model

is different from that of the PN model because the PCX translation rules utilize a simple abstraction

method. Intuitively, the expressive power of PROMELA is much greater than that of PNs (which

only have places. transitions, arcs and tokens). This constitutes the major reason for the difference.

The general approach used for the PCX tool is abstraction. PCX captures the control flow of the

PROMELA input language as the basis for the non-functional structural (stochastic) analysis.

Sheldon presented the CSPN tool (Communicating Sequential Processes (CSP): CSP-to-Stochastic

Petri Nets) that enables designers to investigate functional and non-functional requirements by

translating CSP to Stochastic Petri Net while assigning stochastic properties [12]. From a

methodological point of view, our work was mainly inspired by the experience of the CSPN tool.

The main differences between PCX and CSPN are the input language. The back-end part of the PCX

tool is similar to that of the CSPN tool.

2.2 Methodology

This work offers an approach to verify system correctness (against logical assertions or systems

requirements) using model checking and validate system behavior (reliability and performance)

based primarily on the structural

characteristics of a formal specification.

The PCX tool provides a notion of

refinement that allows the designers to

describe a system at an appropriate

abstract level.

Figure 1 shows how this approach involves abstraction from the requirements specification into

a design specification and then further evaluations based on stochastic analysis of the system

models. First the user develops the PROMELA model based on the requirement specification that

can be verified by

the Spin model

checker. Then the

verified model,

written in

PROMELA, is

translated into SPN

model, written in CSPL. During or af

parameters that can be based on the

model for stochastic properties usin

model does not meet both functional

until the user requirements are satisfi

Table 1. Each step in Table 1 also is m

Step Desc

1 PRO

2 Trans

3 Assig

4
Anal
and r

5 Final

Final Design
Model
(5)

CSPL/SPNP
Model
(4)

Refine and
verify

Refine and
validate

PROMELA/Spin
Model
(1)

Functional
Specification

PCX
Translator
(2) & (3)

Spin model
checking

Non-Functional
Specification

User
Needs
User

Specification

Petri Nets model
checking

Figure 1. The PCX approach for the system model analysis
Table 1. Methodology: steps for specification and analysis

ription of steps used in the approach

MELA/Spin model for analyzing the logical consistency

late from PROMELA to Stochastic Petri Nets.

n performance and reliability parameters among subsystem components.

yze the SPN for stochastic properties [using SPNP] (validate performance
eliability goals using stochastic system models).

 design based on results from Spin and SPNP tool analysis
5

ter this translation, the PCX tool allows users to add stochastic

 system requirement specification. The user analyzes the SPN

g SPNP to obtain the final design model. If the final design

 and non-functional requirements, the above steps are repeated

ed. The PCX tool is used in the context of the 5 steps listed in

arked in Figure 1 with same step number.

6

The PROMELA-to-SPN translation rules used for process decomposition and composition are

codified in the PCX tool. PCX decomposes individual PROMELA constructions into PN structures.

The elemental structures are linked together in a hierarchical fashion according to their adjacency

and nesting within the PROMELA specification. Having created this net of linked structures, PCX

traverses and expands sub-SPNs into the complete system described by a PN. Also, while PCX

decomposes the PROMELA constructions, the service and failure rate annotations are added via user

inputs for being incorporated later into the CSPL specification file. After the preliminary structure of

the SPN is complete, PCX must reconcile synchronization points because the PROMELA message

channel must rendezvous at a particular point in which the message is sent/received. PCX finally

generates an SPN graphic specification file and a CSPL specification file. The user can view the

SPN's distribution of places and transitions as a graph after the translation is accomplished. The

resultant PN models (CSPL file) with the different stochastic parameters can be analyzed using the

SPNP tool. This entire process occurs at various levels of user controllable interaction. In essence,

the approach provides for systematic and automatic translation and subsequent augmentation (e.g.,

failure rates, service rates, and deadlines) of the PROMELA model into an SPN model for

evaluating both functional and non-functional properties.

2.3 Mapping from PROMELA to SPN

An initial set of translation rules from the PROMELA specification language into the SPN was

defined by Chuck Rodacker [13]. The general principle behind the translation is the following. In

PROMELA, each statement can be viewed as a condition (or event), which are represented by a

place. After execution of one statement, another statement can execute, while these actions

themselves are viewed as transitions (i.e., SPNs provide the mechanism to analyze the system

performance based in structural characteristics). Therefore it is appropriate to abstract control flow

7

information from the

PROMELA model. The control

flow then provides the basis for

analyzing performance. This is

the essential information that is

needed and PCX captures the

control flow information of an

entire PROMELA specified

model. This translation

approach is similar to the methods in [11]. Moreover, PCX focuses on abstracting control flow

information and therefore the content of a statement is not needed in the resulting SPN model. PCX

allows users to assign rates to each timed transition for the basis of performability analysis,

otherwise a default value of 1.0 is assigned.

PCX allows the user to set probability parameters to PROMELA models (such as if_fi

Example 1
Sequence:
stmnt P;
stmnt Q;
stmnt R

Example 2
do_od:
do
::stmnt P->stmnt Q;

stmnt Q
:: stmnt M->stmnt N

od

Example 3
do_break:
do
::stmnt M->stmnt N
:: stmnt P->break

od

Example 4
if_fi:
if
::stmnt P->stmnt Q
:: stmnt M->stmnt N

fi

p1

p4

p3

p2

p1

p2

p3

p4

p1 p1

p2
p2

p3

p3p4

p4

P P P P

Q Q

Q
R R

M M M

N N
Nbreak

Figure 2. The examples of the translation from PROMELA to PN

state2=state2-state1

sdt1

state2=state2 +state1

sdt2

state2=state2-state1

state2=state2-state1

p01

p02 p03

p00

p04

p06

p05

Figure 3. The if-fi translation example

short state1 = 1, state2=10;
proctype A()
{
 state2=state2-state1;
 if
 ::state2=state2+state1
 ::state2=state2-state1
 fi;
 state2=state2-state1
}

init
{
 run A()
}

The set of reachable states for the
if-fi construct

State

Token in
place

M0 P00
M1 P01
M2 P02
M3 P03
M4 P04
M5 P05

M6 P06

8

constructs, do_od constructs). In Example 4 of Figure 2,

PCX assigns stochastic rate parameters for transition P

and transition Q which in turn determines the ratio of

time a token is flowed to either p2 or p3.

The PROMELA to SPN translation is designed to

facilitate automatic decomposition of the PROMELA

constructs into SPN sub-components and their

subsequent compositions into a complete system SPN.

Some example translations are given in Figure 2.

3 Results

Example A contains an if_fi construct. There is one state

The resulting SPN shows that a conflict transition occurs fr

PCX tool can allow users to set probability parameters (or

the SPN model (from places p01 to p04) represents if_fi c

Figure 3 represent timed transitions for which rates must be

M0, M1, M2, M3, M4, M5 and M6 when a token is

respectively. The reachability graph of the resulting SPN m

with the reachablity graph obtained directly from the PRO

state S_0 which is initialized in Figure 4(a) for run A(), ca

does not provide a new state in this case. Also, the state S

end process, do not provide new states. During the translat

probability parameters, so the state M2 and state M3 in F

1 Again, the PCX tool allows users to set these rates (or use default val

e1

e1

te1
(b)(a)

state2=state2-state1

end

state2=state2 +state1

run A()

state2=state2-state1

state2=state2-state1

S_1

S_2

S_3

S_0

S_4

S_5

state2=state2-stat

dt1

state2=state2 +state1

state2=state2-stat

state2=state2-sta

M1

M3

M4

M0

M5

M6

M3

sdt
1

sdt
1

Figure 4. The reachability graph of the if-fi
example
ment each before and after this construct.

om place p01. For conflict transitions, the

 use default values). The parallel part of

onstruct in PROMELA. The light bars in

 assigned1. There are 7 reachability states

 in p00, p01, p02, p03, p04, p05, p06

odel is shown in Figure 4(b). Compared

MELA model shown in Figure 4(a), the

n be combined with S_1 because run A()

_5, S_6 in Figure 4(b) that represent the

ion, sdt1 and sdt2 are provided for adding

igure 4(b) are added compared with the

ues).

9

reachability graph in Figure 4(a).

In example B we see the if_fi, do_od, and sequential construct used. The resulting SPN is shown in

Figure 5. The SPN model displays a sequential operation (from state p00 to state p11), a parallel

operation (from place p02 to place p11, and from place p8 to place

p11), and a repeating loop (from place p01, then p02… then to place

p01). There are 12 reachability states M0, M1, M2, M3, M4, M5, M6,

M7, M8, M9, M10, M11 which corresponds to a token is in places p00,

p01, p02, p03, p04, p05, p06, p07, p08, p09, p10, p11 respectively.

4 Conclusion and future study

The objective of this work was to show the feasibility of translating

sdt1

state2=state2 +state1

sdt2

state2=state2-state1

state2=state2-state1

p03 p05

p04
p00

p02

p01

p08

p11

p06

state2=state2+state1

p09 p10

sdt4

state2=state2-state1

sdt3

dt:MuXX1

state2=state2 +state1 state2=state2-state1

p07

state2=state2-state1

dt1

Figure 5. The do_od translation example

short state1 = 1, state2=10;

proctype A()

{

state2=state2-state1

do

::state2=state2+state1;

 state2=state2+state1

::state2=state2-state1;

 state2=state2-state1;

 state2=state2-state1

 if

 state2=state2-state1

 state2=state2+state1

 fi

od

}

init

{

run A()

}

The set of reachable states for the
do-od construct

State Token in
place

M0 P00
M1 P01
M2 P02
M3 P03
M4 P04
M5 P05

M6 P06
M7 P07
M8 P08
M9 P09

M10 P10
M11 P11

state2=state2-state1

state2=state2 +state1

state2=state2-state1

state2=state2-state1

M8

M9

M11

M7

M5

M6

M10

sdt4sdt3

M2
sdt2sdt1

M4

M3

M1

M0

d:Muxx1

state2=state2-state1

state2=state2+state1

state2=state2-state1

Figure 6. The SPN model

of the do_od construct

10

PROMELA into SPNs for the purpose of reliability and performability analysis. Such translations

can give insight (1) into the feasibility of meeting non-functional requirements, (2) help to identify

the best candidate design based on a formal description of the system, and (3) help to identify failure

modes and fault handling mechanisms. This approach enables the stochastic properties of the

system specification to be ascertained while allowing the parameters used in the analysis to be

formally captured in the PROMELA/Spin model. Subsequent analyses can be run without having to

rewrite all of the pertinent values. Only those parameters that are identified as critical in terms of

their impact to the integrity of the overall system (i.e., sensitivity analysis) need be perturbed.

PCX combines the power of two other tools namely dot (for viewing the graphical PN

representation) and SPNP. PCX offers a selection of command line options. Most of PCX's current

features are driven by the SPNP functionality. An interactive menu is used to control run parameters

related to the type of analysis (e.g., precision, iterations, generating a reachability graph, running

continuous time versus discrete time Markov analysis, etc.). PCX also allows the designer to

parameterize and control the characteristics of the system under study (e.g., setting priorities, rates or

probabilities among transitions, etc.). In general, the PCX tool provides a new level of abstraction

and basis for understanding interactive concurrent process algebraic specifications by leveraging the

power of dot and SPNP.

In the future, it will be necessary to define additional PROMELA/PN canonical translation rules

for a larger set of the PROMELA language. In addition, we plan to develop more examples that

demonstrate the usefulness of this approach.

5 References

1. Pressman, R.S., Software Engineering: A Practitioner's Approach. Fourth ed. 1997: The

McGraw-Hill Companies, Inc.

11

2. Craigen, D. Formal Methods Adoption: What's working, What's not! in The 6th International

SPIN Workshop on Practical Aspects of Model Checking. 1999. Toulouse, France.

3. Gerhart, S.L., Application of Formal Method: Developing Virtuous Software. IEEE

Software, 1990(Sept. 1990): p. 7-10.

4. Reisig, W. Combining Petri Nets and Other Formal Methods. in 13th International

Conference on Application and Theory of Petri Nets. 1992.

5. Marsan, M.A., Balbom, G., Gonte, G., Donatelli, S., Franceschinis, G., Modeling With

Generalised Stochastic Petri Nets. 1995, New York, NY 10158, USA: John Wiley And Sons.

6. Holzmann, G.J., The Model Checker SPIN. IEEE Transactions on Software Engineering,

1997: p. 279-295.

7. Holzmann, G.J., Design and Validation of Protocols: A tutorial, in Computer Networks and

ISDN Systems. p. 981-1017.

8. Wang, C., Trivedi, K.S., Integration of specification for Modeling and Specification for

System Design. 1994.

9. Wang, C., Some Problems in the Specification and Analysis of Computers and Networks.

1995.

10. Holzmann, G.J., SPIN Verification Examples and Exercises., http://cm.bell-

labs.com/cm/cs/wat/spin/Man/Exercises.html.

11. Grahlmann, B. and C. Pohl. Profiting from Spin in PEP. in The 4th International SPIN

Workshop. 1998. Paris, France.

12. Sheldon, F.T., Specification and Analysis of Stochastic Properties for Concurrent Systems

using CSP, in Department of Computer Science and Engineering. 1996, The University of

Texas at Arlington: Arlington, Texas.

13. Rodacker, C., PCX- A Translation Tool, Master Project, Unpublished Report, in Department

of Computer Science. 1999, University of Colorado Springs: Colorado Springs.

Appendix A: PROMELA to SPN translation rules

The collection of the standard translations from PROMELA to SPNs is provided here. Users can

combine the basic units to form the actual model.

The Sequence Construct

The statement stmnt P, Q, R in PROMELA represents three transitions (transition P, Q and R shown

in SPN model). The sequential execution flows from one place (e.g., p1 shown in the SPN model is

assigned with

one character

and serial

number by the

PCX tool during

the translation)

to another place

(e.g., p2 shown

in the SPN

model). In this

case, the state

space in PROMELA

The do_od constru

The do_od constru

models are represe

transitions (i.e., a
Sequence:
stmnt P;
stmnt Q;
stmnt R

do_od:
do
::stmnt P->stmnt Q;

stmnt Q
:: stmnt M->stmnt N

od

do_break:
do
::stmnt M->stmnt N
:: stmnt P->break

od

if_fi:
if
::stmnt P->stmnt Q
:: stmnt M->stmnt N

fi

p1

p4

p3

p2

p1

p2

p3

p4

p1 p1

p2
p2

p3

p3p4

p4

P P P P

Q Q

Q
R R

M M M

N N
Nbreak

Figure A-1. Sequence statement, do-od statement, do_break statement, fi_fi statement
12

 model is the same as that in SPN model.

ct and the do_break Construct

ct and the do_break construct have conflicting transitions. The resulting SPN

nted either with timed transitions (i.e., a rate parameter is assigned) or immediate

probability parameter is assigned). In the PROMELA model there are various

13

reachable states (depending on the content of statement P, Q, R, M, N), while in the PN model, there

are only 4 states for both constructs. Usually, the state space in PROMELA models is much more

than that in SPN models.

The if_fi Construct and the Condition Construct

The if_fi construct has same SPN representation as the condition construct. IN fact, the if_fi

construct can replace the condition construct. The if_fi construct has conflict transition. The

resulting SPN models are represented either with timed transition or immediate transition. During

this translation PCX tool allows users to assign rates to each timed transitions, otherwise PCX tool

will assign default value to them. The state space in PROMELA model is same as that in SPN

model.

The goto_label Construct and the else Construct

The goto and label construct and the label construct have same situation as do_od construct and

do_break construct.

P1

else

Goto L1

N

Q

M

L1

P3

P4

goto and label:
L1: if

:: guard M->stmnt n->
goto L1

:: guard P->stmnt Q
fi

else:
L1: if

:: guard M->stmnt n->
goto L1

:: else->stmnt Q
fi

P2

P1

P

Goto L1

N

Q

M

L1

P3

P4

P2

p2

p6

p5

Port?msg2
Port!msg1

conditional:
condition->stmnt M:

stmnt N

Send/receive:
send: port!msg1
receive: port?msg2

p1 p4

p3

p1

p2 p3

p4

condition

Figure A-2. Translation rules for goto, label, else, conditional and send/receive statements

14

Message Channel

The message construct in PROMELA transfers messages through the channels. This type of

communication is modeled in a SPN by firing a transition for both of the sender and the receiver to

represent the sending and receiving activity respectively. The resulting SPN models are represented

either with timed transition or immediate transition. The state space in PROMELA model is same as

that in SPN model.

	Introduction
	Petri nets are used to assess non-functional characteristics
	PROMELA/Spin used to assess logical functional properties

	Translation tool from PROMELA to CSPL
	Related work
	Methodology
	Mapping from PROMELA to SPN

	Results
	Conclusion and future study
	References
	Appendix A: PROMELA to SPN translation rules
	
	The Sequence Construct
	The do_od construct and the do_break Construct
	The if_fi Construct and the Condition Construct
	The goto_label Construct and the else Construct
	Message Channel

