
 1

SMSC: A Language for Performance Analysis in Möbius

Abstract: Message Sequence Chart (MSC) is a formal language to describe the communication

behavior between the components of a system. In this paper, we propose a new version of MSC,

Stochastic MSC (SMSC), which is a stochastic extension to the traditional MSC. SMSC is

suitable for performance. SMSC is integrated into the Möbius framework, which is an extensible

multi-formalism modeling framework that facilitates interactions between models from different

formalisms. Not only can SMSC models be solved using the Möbius built-in solvers, SMSC

formalism also provides an atomic formalism for the Möbius users and can be used as building

blocks for larger hybrid models.

1. Introduction

In the past two decades, much research has been conducted in the area of formal methods.

Various formalisms have been studied and their corresponding tools developed [1]. The use of

formal methods has evolved as the choice for developing software and hardware systems and for

achieving higher performance and dependability. Performance evaluation is an important branch

of formal analysis of system properties [2-7]. It concerns the quality of service a system can

provide. However, not all formalisms are suitable for performance evaluation. For example, the

original formulations of Petri Nets [8] and Process Algebras [9] cannot be used for performance

evaluation and were originally useful for evaluating properties such as system liveness, deadlock

free, and other static properties.1

Message Sequence Chart (MSC) [10, 11] is a Specification Description Language (SDL)

widely used in industry for requirement and design specification as well as test case description.

As a formal language, MSC has a well-defined syntax and semantics. An MSC model consists of

a number of independent message passing instances. System behavior is evaluated through a

series of charts indicating interactions between those instances. However, MSC cannot be used

for performance evaluation.

Consequently, the first problem addressed in this research is how we can make MSC suitable

for performance evaluation. This can be accomplished in a similar fashion as was done for

Stochastic Petri Nets (SPNs) and Generalized SPNs (GSPNs) [12, 13], where transitions are

associated with stochastic timing information. This extension of Petri Net can be used to evaluate

system performance and SPN models are widely used for this purpose. Similarly, there is an

1 Stochastic PNs and PAs do, however, provide such capabilities.

 2

extension to Process Algebra, Stochastic Process Algebra (SPA) [14], in which events are

associated with random timing information. SPA is also used for system performance evaluation.

Based on the same idea, we have extended MSC to Stochastic MSC (SMSC). The SMSC

formalism can be used for performance analysis. Although much research has transpired [15-17]

since MSC was proposed, no one has yet tried to extend it with stochastic properties.

The second problem addressed here concerns how to create an analysis tool (i.e., how to solve

SMSC models). To address this problem, SMSC is integrated into the Möbius framework [18].

Möbius is a well-defined framework for multi-formalism modeling. Several formalisms (SAN:

Stochastic Activity Network [19], PEPA: Performance Evaluation Process Algebra [20], etc.)

have been successfully integrated [21, 22]. SMSC is integrated into Möbius to enable its models

to interact with other Möbius built-in formalisms. By implementing the interfaces required by

Möbius, we even need not provide analyzers or solvers for the SMSC models. The Möbius built-

in solvers are applicable to solving all SMSC models.

2. Stochastic Message Sequence Charts

In this section we define stochastic message sequence charts and compare the resulting SMSC to

MSC in terms of constructs, ordering rules and traces/processes.

2.1 Definition of SMSC

We define SMSC based on the language of MSC:

An SMSC is an MSC where all events are enhanced to behave as real activities by

associating stochastic time information with them. The stochastic time associated with

an activity is the time needed to complete the activity.2

“Event” is used to describe something that occurs to trigger a set of activities. When an event

is associated with time, we call it an “activity.” Activity means something that takes time to

complete.

The stochastic time associated with activities can be deterministic, exponential, beta

distributed, etc. There is no restriction on what type of distribution a stochastic time can take.

However, to simplify the description, we use the exponential distribution as the default

distribution in the rest of this section (naturally this fits well with the Markov solvers available in

Möbius). Figure 1 shows an example.

2 An immediate or instantaneous event is an activity associated with zero time.

 3

In the MSC language,

there are two types of events:

message passing events and

local action events. Hence,

there are also two types of

activities: message activities

and local action activities or

simply local activities.

A message in the SMSC

language consists of two

activities: the activity of sending the message and the activity of receiving it. A message is

represented the same way as in MSC except the message name is now followed by two

parameters. The first parameter specifies the time for the sending activity and the second defines

the time for the receiving activity. For example, message m1 in Figure 1 has two parameters: r3

and r4. The parameter r3 specifies the rate of an exponentially distributed random variable that

gives the amount of time needed to send the message. r4 assigns time to the message receiving

activity. The textural representation of messages is defined by adding a new keyword withrate

as shown in Figure 1. Also, a new keyword smsc is defined to distinguish SMSC from MSC and

is used in both the graphical and textural representations. Finally, local activities are assigned

random times in the same way as for messages using only one parameter.

2.2 Comparing MSC with SMSC

The SMSC language is different from the MSC language because SMSC activities are non-

instantaneous. SMSC models provide more information about the system behavior. However, the

SMSC language has many things in common with the MSC language.

2.2.1 Constructs

All constructs (instances, messages, local actions, conditions, etc.) defined on MSC are used by

SMSC. The graphical representation of a SMSC looks the same as an MSC except for the

additional parameters needed to specify time. As for the textual representations, all the keywords

defined in MSC are still valid in SMSC. Although new keywords are defined for SMSC, the

method and grammar for describing SMSC is the same as for MSC.

Figure 1. An SMSC example.

 smsc example1

i1 i2 i3

m0(r1, r2)

m1(r3, r4)

m2(r5, r6)

m3(r7, r8)

a(r0)

smsc example1;
i1: out m0 to env withrate r1;
i1: out m1 to i2 withrate r3;
i1: action a withrate r0;
i1: in m3 from i2 withrate r8;
i2: in m1 from i1 withrate r4;
i2: out m2 to i3 withrate r5;
i2: out m3 to i1 withrate r7;
i3: in m2 from i2 withrate r6;
endmsc;

 4

SMSC and MSC have all the same composition operators and maintain the same semantics.

High-level SMSC (HSMSC) is defined in the same way as HMSC. HSMSC organizes SMSC

references using the same nodes defined on HMSC and the organizational interpretation is also

the same.

Most new keywords deal with time specification except for the keyword smsc, which simply

replaces the keyword msc. For example, if an activity is associated with exponentially

distributed random time, the keyword withrate is used in the description and is followed by a

parameter that specifies the rate of the exponential distribution. Other distributions may be

specified by defining the corresponding keywords and providing the required parameters.

2.2.2 Ordering Rules

SMSC and MSC have different ordering rules. Under the new ordering rules, an SMSC

imposes a partial order on its activities just as an MSC does on its events. This partial order is the

same as that imposed by the corresponding MSC, which can be derived from the SMSC by

associating all activities with zero delay. MSC has the following ordering rules:

1) Events defined on an instance are executed in the order they are specified on the vertical

instance axis from top to bottom.

2) The event of sending a message must happen before the event of receiving the same

message.

3) Events in a coregion can happen in any order.

4) The event from which a general ordering symbol originates must happen before the event

to which the same general ordering symbol ends.

Under these rules, the execution of events forms a trace that describes system behavior.

 In SMSC, we relax the assumptions made in MSC that events are instantaneous and no two

events can happen at the same time. As a result, activities in SMSC do take time to complete and

can start or finish at the same time.

To define an order for two activities, we first decompose each activity into two events, one for

the starting of the activity and the other for ending the activity. The order of activities can be

defined as either the order of starting events or that of the ending events. By this definition, the

order of activities may not be unique for an execution of these activities. But this will not prevent

us from defining the partial order of activities in an SMSC the same as that defined in the

 5

corresponding MSC were the time information removed. There are five rules for the ordering of

activities and activity events:

1) The event of starting an activity must happen before the event of finishing the same

activity.

2) Activities attached to an instance are executed sequentially in the order they are

given on the vertical axis from top to bottom. An activity can only start after the

previous one has finished.

3) The activity of sending a message must finish before the activity of receiving the

same message can begin.

4) Activities in a coregion can happen in any order, but their execution must abide by

rule 1.

5) General orderings are treated as messages in terms of ordering these activities.

The first rule describes how to order the two events (start and finish) in an activity. The

second rule covers the ordering of activity events associated with the same instance. If each

activity is treated as two consecutive events, the ordering of these events is the same as that

defined for MSC.

The third rule orders events in a message. The order of activities of different instances can be

derived from this rule. A message includes two activities, and hence four events: the event of

starting to send the message, starting to receive the message, finishing the sending of the

message, and finishing the receiving of the message. The precise restriction for their order

requires that starting to send a message must happen before starting to receive the message. Also,

finishing the receiving of the message must happen after finishing the sending of the message.

However, we define a stricter rule: the sending of a message must have finished before the

receiving of it can start. This rule prevents a message from being completely received before

being completely sent. If we allow the activity that receives a message to start before the

completion of the activity that sends the message, we cannot guarantee that the end of receiving

the message occurs after the completion of sending the message because both activities are

associated with a random time.

The fourth and fifth rules are defined for ordering events in a coregion or for being controlled

by general orderings. Under these rules, the order imposed by an SMSC is sure to comply with

the partial order imposed by the corresponding MSC if timing information is removed.

Therefore, an SMSC imposes the same partial order on its activities as an MSC does on its

 6

events. Any two activities that can be ordered differently must correspond to the events that have

undefined order in the corresponding MSC.

2.2.3 Traces versus Processes

An MSC specifies a set of valid traces. If we define the sequence of activities as a trace, an

SMSC specifies a set of valid traces the same as an MSC. In addition, an SMSC also specifies a

stochastic process. SMSC defines a stochastic process while MSC does not. The stochastic

process enables users to do performance analysis about the system.

3. Integrating SMSC into the Möbius Framework

The SMSC language is integrated into the Möbius framework because the Möbius framework

has a well-defined interface that enables new formalism to be added and supports multi-

formalism modeling. The Möbius framework makes it possible to use the Möbius built-in solvers

and to interact with models from other formalisms that are made available by Möbius.

3.1 Essential Möbius Facilities

The Möbius framework is defined to facilitate multi-formalism modeling and multiple solution

methods. Three basic entities are defined within the framework. They are state variables, actions,

and action groups. State variables hold the state of the model. State variables can be as simple as

integers or complex data structures. Actions change the value of state variables. An action group

is a collection of actions that coordinate their behavior in some special way. In addition to these

entities, an Abstract Functional Interface (AFI) is defined to enable the interaction of models

from different formalism as well as different solvers. The Möbius entities are implemented as

C++ classes and the AFI as virtual methods defined on the classes.

Any formalism in Möbius must implement the AFI and describe its language constructs using

the basic Möbius entities. Thus, the main problem is to decompose SMSC models into a set of

state variables and a set of actions. The state changes and the activity orderings are determined

by the structure of the SMSC model.

3.2 Identifying State Variables in SMSCs

An SMSC contains a number of independent instances. The instances send messages to each

other and/or perform local activities. SMSC conditions may govern the execution of some

activities. Local activities can also perform operations on local or global data. These constructs

are used to model a system and contain the information that describes the system state, and hence

 7

are potential candidates for state variables.

Instance state

The state of an instance should reflect which activity has been executed. Since an instance

imposes an ordering of its activities, we must preserve this information to ensure proper

ordering. The number of states of an instance depends on the number of activities associated with

the instance. If an instance has no coregion, the number of states is given by the following

equation:

 NumInstanceStates = NumInstanceActivites + 1 (3.1)

where NumInstanceStates is the number of states, and NumInstanceActivites denotes the number

of activities in the instance. An instance that has no coregion specifies a strict sequential process.

The execution of a later activity implies that all previous activities have finished. Therefore we

can represent the instance state using an integer variable that holds the value of how many

activities have been executed.

If a coregion exists in an instance, equation (3.1) no longer holds. Activities in a coregion can

be executed in any order and thus brings additional states to the instance. To represent the state

of a coregion, we have to associate each activity in the coregion with a Boolean variable. The

“true” value denotes that the execution has finished, while “false” denotes the activity has not

started. The number of additional states brought by a coregion is at most

 2NumCoregionActivites (3.2).

Conditions

In the MSC language conditions represent system state and thus are good candidates for state

variables. Depending on how many states a condition represents, the type of the state variable for

a condition can be either Boolean, integer, or double.

Data

SMSC can also perform operations on data just as MSC does. Data defined on SMSC are also

state variables. The change of the data value represents a state change in the model. The type of

the state variable is the same as the type of the data member.

 8

Shareable vs. Non-shareable State Variables

The Möbius framework uses the concept of state sharing to join models from the same or

different formalisms [23]. If a state variable is shared with other models then they can also

change the value of the state variable. The change of value represents the state change.

Therefore, the behavior of the model is affected by the behavior of other models.

Not all the state variables we defined are shareable. For example, if the state variable defined

for an instance is shared with other models, the increase of the state variable’s value by other

models may cause some actions to be falsely considered finished even though they have not been

executed. This is referred as state jump. Therefore, state variables from instances are not

shareable. Conditions and data do not affect the sequential order and hence these state variables

are shareable.

3.3 Identifying Actions in SMSCs

In Möbius, actions are the only entities that can change the system state. Thus, any components

in SMSC that can change the value of state variables will give us actions. These components

include local activities, message activities, and setting conditions (i.e., conditions that set the

system to certain states).

Local Activities

Local activities can perform data operations and the completion of an activity must also

increment the state variable that represents the instance to which the activity is attached. Thus,

local activities are Möbius actions. Data operations defined by local activities must also change

the state variable representing the data. The execution time distribution for the action resulting

from a local activity takes the same distribution function as that of the local activity.

Message Activities

A message consists of two activities. The sending activity is performed by the instance that

sends the message, and the one that receives the same message performs the receiving activity.

Data operations can also be defined for message exchange. When a message is sent, the state

variable must reflect this fact. Likewise, the completion of receiving a message should change

the state of the instance that receives the message. Therefore, a message is represented by two

Möbius actions.

 9

Setting Conditions

Conditions have two forms: setting conditions and guarding conditions. Setting conditions set

the system to some particular state, while guarding conditions restrict the execution of certain

activities. The setting conditions are Möbius actions because they change the system state.

3.4 Implementing SMSC in Möbius Framework

The Möbius framework provides three base C++ classes: BaseStateVaribleClass,

BaseActionClass and BaseGroupClass. Each corresponds to a basic Möbius entity. One

additional class, BaseModelClass, acts as a container of the Möbius entities. Implementing the

SMSC formalism in the Möbius framework includes three steps: 1) deriving the SMSC classes

from the Möbius base classes; 2) implementing the AFI functions; and 3) building a SMSC

model editor.

The SMSC state variables classes are implemented using the Mobius BaseStateVaribleClass

(including SMSCInst and SMSCCond). The SMSCInst class represents SMSC instances and is

not sharable. The SMSCCond class represents sharable SMSC conditions. The class SMSCInst

contains all the information necessary to describe an instance including state, coregion, activities,

and their ordering.

The SMSCActivity class is derived from the Möbius BaseActionClass. Although there are

three different activities in SMSC: local activity, message activity, and the activity of setting

conditions, we need only to define one activity class. Two important activity properties are under

what condition the activity is enabled and what state change it causes after execution. The

activity class must contain information necessary to specify its enabling condition and its firing

effect. For a local activity, it can only be enabled if the activity that precedes it has finished and

its guarding conditions are met. For message activities, the sending activity’s enabling condition

is the same as a local activity. The enabling of the receiving activity depends on the previous

activity of the same instance, the state of the sending activity, and the guarding conditions. The

setting condition activity has the same restriction as a local activity. Therefore it is not necessary

to distinguish message activities from local activities or setting condition activities.

The SMSCModel class is derived from the Möbius BaseModelClass and is used to organize

the state variables and activities for an SMSC model. However, the SMSC structural information

is kept in the SMSCActivity and SMSCInst classes rather than in the SMSCModel class. The

SMSCModel class acts as a container of state variables, activities and also provides methods for

 10

composing two or more SMSC models. AFI functions are declared within the base classes and

have been implemented in the derived SMSC classes. The SMSC model editor is pending

implementation, and will be used to translate the graphical or textual model description into the

Möbius-compatible form that is described by SMSC classes.

3.5 Solving SMSC Models

Once the SMSC models are described using classes derived from the Möbius base classes, we

can then solve the models using the Möbius solvers.

3.5.1 Analytical Solvers versus Simulators

Before solving the model, performance variables must be defined for measuring the desired

system properties. If all activities are associated with exponentially distributed random time, the

underlying process is Markov and the Möbius analytical solvers can be used to quickly solve the

model. However, before using any analytical solvers, the state space must be explicitly

generated. If the model is finite, the Möbius State Space Generator (SSG) can be used.

Incidentally, if the underlying process is not Markov, then the Möbius discrete event

simulators are the only choice when solving the model for performance measures.

3.5.2 State Space Generation Algorithm

The Möbius SSG consists of several libraries which contain precompiled functions. These

functions are linked with user-defined models to generate an executable model, which is then

used to generate the state space. The SSG uses the Möbius AFI to interact with the model [24].

Once the state space is generated, various analytical solvers are applied to determine the desired

performance measures. The state transitions and reward calculations are recorded in the data

structure that represents the SMSC model state space.

3.5.3 Model Complexity versus Solving Time

The complexity of an SMSC model depends not only on the number of instances, messages and

conditions, but also on the structure of the model. The structure characterizes how instances,

messages, conditions and other model constructs are organized together to represent a certain

system. Naturally, if the SMSC model contains a large number of instances and messages, this

implies a higher complexity. The size of state space is usually used to measure the complexity

given that the model is to be solved analytically and has a finite number of states. However,

 11

smsc A

 i1

a1(r0)

 i2

when buf >0

smsc B

 i1 i2

smsc C

 i1

a2(r7)

 i2
err = true

err = false

 m1(r1, r2)

 m2(r3, r4)
m3(r5, r6)

sometimes the structure of the SMSC model plays a more important role in determining the

model complexity.

There are two types of constructs that affect the number of the states. The first type, coregion,

can increase the number of states, while the second, messages and general orderings, can cause a

reduction. Coregions specify the number of activities that can run in parallel or in any sequential

order (i.e., all possible interleaving must be considered giving rise to many more states).

Messages and general orderings impose restrictions on the sequential order of activities, which

effectively eliminates certain interleavings.

The composition of SMSC model components also has an impact on state space. For example,

if an SMSC M1, which has S1 number of states, is vertically composed with another SMSC M2,

which has S2 number of states, and the composed SMSC is called M3, the number of states of

M3 is not necessarily the sum of S1 and S2 (i.e, is usually greater than the sum). Therefore,

model composition increases the states space.

The time needed to

solve a model is directly

related to the size of the

state space. Naturally, the

larger the state space, the

longer it takes. Two steps

are needed when using the

Möbius analytical solvers.

The first step generates

the entire state space

using the SSG. The

second step chooses one

analytical solver to solve

for the desired reward

variables. Hence, the time

needed to solve a model

can be split: state space

generation time and

reward variable solving time.

Figure 2. SMSC model of the Stop-and-Wait transmission protocol.

 12

To evaluate how efficiently the Möbius solvers handle SMSC models, we used the example

SMSCs shown in Figure 2. SMSC-A has two instances, one guarding condition and one local

activity. SMSC-B is vertically composed with SMSC-A. SMSC-B also has two instances. There

are two messages exchanged between these two instances: messages m1 and m2. SMSC-C is also

vertically composed with SMSC-A. Moreover, SMSC-B and C are two alternatives succeeding

SMSC-A. Inside SMSC-C are two setting conditions, one message and one local activity.

SMSC-C forms a loop, which means that SMSC-C is vertically composed with itself.

SMSC-B is also vertically composed with SMSC-C. The whole SMSC model consists of 6

instances, two conditions, 3 messages and 4 non-message activities (setting conditions are

considered as activities). Guarding conditions are not activities because they only specify certain

system states. Using the Möbius SSG, this simple model generates 14 states.

Based on this simple SMSC model, we build larger models using the Möbius replication/join

construct. Replication/join enables a simple model to be replicated. Users can specify the number

of copies to generate. These copies are joined together through some shared state variables to

form a larger model.

In our experiment, the basic model is replicated from 1 to 10 times resulting in different

models with increasing complexity. There is one shared state variable that corresponds to the err

condition. The number of states generated for each model and the corresponding state space

generation time and solving time are shown in Table 1.

The number of states increases exponentially with the number of replications as shown in

Figure 3. One would expect the number of states to increase even faster if all the copies of the

3 This experiment was carried out on Windows 2000 machine with 128MB memory and one Intel Pentium III CPU running at 500MHz

Table 1. Experiment result of model complexity and solving time.3

Number of
Replication 1 2 3 4 5 6 7 8 9 10

States 14 91 455 1820 6188 18564 50388 125970 293930 646646
State space
generation
time

<1s <1s 1s 5s 17s 46s 156s 365s 22m 4h30m

Solving
time <1s 1s 10s 70s 416s 27m 1h35m 4h58m 14h46m 52h57m

Total time <1s 1s 11s 75s 433s 27m46s 1h38m 5h04m 15h06m 57h27m

 13

simple model run in parallel without sharing any state variable. For example, replicating the

model 5 times without joining them via a shared state variable would give 145 states, which is

much larger than the 6188 states generated from our model. The state variable shared by those

models greatly reduces the number of states of the joined model (in this case by a factor of 86).

The state space generation time, reward variable solving time (i.e., using the Accumulated

Reward Solver, ARS) and the

total solution time for the

various models are shown in

Figure 3. The state space

generation time is

proportional to the number of

states. However, when the

state space size increases, we

noticed a significant rise in

time for the last model

(~650,000 states) due to the

memory constraint of the

machine used to conduct this

experiment4.

3.5.4 System Performance Analysis

The example shown in Figure 2 is also the model of a system in which two entities (a sender and

a receiver) exchange data using the Stop and Wait protocol. The sender and receiver are denoted

by the instance i1, i2, respectively. SMSC-B represents the scenario of a successful exchange.

SMSC-C describes the scenario where channel errors occur requiring the sender to retransmit the

data frame after a waiting period determined by the delay parameter r7 in activity a2. We

defined one reward variable to measure the time that the system spends on handling error data.

The channel error probability is defined as a global variable err_prob, which govern the

possibility that the error scenario of SMSC-C occurs. The Möbius Study Editor can be used to

vary the values assigned to global variables and creates an executable model for each

4 The virtual memory was increased to 400MB and 375MB of it was in use when computing the last model. The greatly decreased performance is
caused by trashing. The dominant part of the total model solving time is not the state space generation time but the reward variable solving time.
The latter is more than one magnitude higher than the former.

Figure 3. Model solving time with different state space sizes.
 (note axes are lognormal)

0.1

1

10

100

1000

10000

100000

1000000

14 91 45
5

18
20

61
88

18
56

4
50

38
8

12
59

70

29
39

30

64
66

46

Number of states

Ti
m

e
(S

ec
on

ds
)

GenerateTime SolveTime TotalTime

 14

combination of the variable values. In our experiment, we assigned 7 values to err_prob (0.01,

0.02, 0.04, 0.08, 0.16, 0.32, 0.64) and 6 values to r7 (0.125, 0.25, 0.5, 1.0. 2.0. 4.0). Other

parameters are set to 1. The Möbius Study Editor generated 42 executable models. The result of

this analysis is shown in Figure 4.

In Figure 4 we can see that the percentage of time processing errors is roughly proportional to

the channel error

probability. The higher the

error probability, the more

time that will be spent

processing error messages.

Error processing time is also

affected by the delay time.

The longer delay time

means that the sender must

wait longer to retransmit

data frames. Thus, the

longer delay times result in

a higher percentage of time

where the system processes errors. Also note, that higher rates mean shorter delay times.

4. Conclusion and Future Work

The Message Sequence Chart formalism and the Möbius multi-formalism modeling framework

were studied. Based on the MSC formalism, we defined the Stochastic Message Sequence Chart,

which is an extension to the MSC formalism. SMSC can be used to describe the system behavior

in the same way as the MSC language. Furthermore, SMSC models contain more information

regarding the system behavior than the corresponding MSC models. By associating with each

activity a stochastic execution time, the SMSC models specify an underlying stochastic process.

System performance measures that cannot be derived from MSC models can be studied by using

SMSC models. In this sense, the SMSC language is more powerful than the MSC language.

The method of integrating the SMSC formalism into the Möbius framework was investigated.

On the basis of this investigation, we defined the SMSC formalism in terms of the basic Möbius

entities. SMSC state variables and SMSC activities are defined based on the Möbius entities:

actions and state variables. We implemented C++ classes that are used to specify the SMSC

Figure 4. Error processing time as a function of err_prob and delay.

0.01%

0.10%

1.00%

10.00%

100.00%

0.01 0.02 0.04 0.08 0.16 0.32 0.64

Error probability (err_prob)

Ti
m

e
in

 p
ro

ce
ss

in
g

er
ro

r
r7=4.0
r7=2.0
r7=1.0
r7=0.5
r7=0.25
r7=0.125

 15

models. Some of the model composition methods specified in the SMSC formalism can be

realized using the C++ classes, namely, vertical composition and alternative composition. Loop

is a special vertical composition and is also realized within the Möbius framework.

The next step in this work would be to implement the user interface within the Möbius

framework. The user interface should be implemented in Java to make it platform neutral. The

front-end user interface will enable users to specify SMSC models in the Möbius tool.

Eventually, the graphical or textural SMSC models are translated to C++ source files, which are

further complied and linked with the Möbius C++ libraries to generate an executable model tot

be either simulated or solved analytically.

Some constructs of the SMSC language, including inline expressions, horizontal

compositions, and SMSC references, have not been defined within the Möbius framework.

Further research will reveal how this can be accomplished. Another area of future work is to

define the action-sharing method for SMSC. Instead of sharing state variables, an SMSC model

may be composed with other models by sharing activities/actions.

5. References

1. F. Sheldon, G. Xie, O. Pilskalns, and Z. Zhou, A Review of Some Rigorous Software
Design and Analysis Tools. Software Focus Journal, 2002. 2(4): p. 140-149.

2. B.R. Haverkort and I.G. Niemegeers, Performability modelling tools and techniques.
Performance evaluation, 1996. 25(1): p. 17 (24 pages).

3. J. Couvillion, R. Freire, R. Johnson, W.D. Obal, M.A. Qureshi, M. Rai, W. Sanders, and
J. Tvedt, Performability Modeling with UltraSAN. IEEE software, 1991. 8(5): p. 69-80.

4. G. Ciardo, R.A. Marie, B. Sericola, and K.S. Trivedi, Performability Analysis Using
Semi-Markov Reward Processes. IEEE transactions on computers, 1990. 39(10): p. 1251-
1264.

5. J. Rupe and W. Kuo, Performability of FMS based on stochastic process models.
International journal of production research, 2001. 39(Part 1): p. 139-156.

6. J. Magott, Performance evaluation of communicating sequential processes (CSP) using
Petri nets. IEE proceedings. E, Computers and digital techniques., 1992. 139(3): p. 237-
241.

7. M.K. Molloy, Performance Analysis Using Stochastic Petri Nets. IEEE Transactions on
Computers, 1982. C-31(9): p. 913-917.

8. T. Murata, Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
1989. 77(4): p. 541-580.

9. J.C.M. Baeten, Process algebra: special issue editorial. The Computer journal, 1994.
37(5): p. 474.

10. ITU-T, Formal Semantics of Message Sequence Charts. 1998: Geneva.

 16

11. ITU-T, Recommendation Z.120: Message Sequence Chart(MSC). 1999: Geneva.
12. M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with

Generalized Stochastic Petri Nets. 1994: John Wiley and Sons.
13. G. Ciardo, Muppala J., and Trivedi, K.S. SPNP: Stochastic Petri Net Package. in the 3rd

International Workshop on Petri Nets and Performance Models. 1989. Kyoto, Japan:
IEEE Computer Society Press, Los Alamitos, CA.

14. J. Hilston and H.U. Hermanns, Stochastic Process Algebras: Integrating Qualitative and
Quantitative Modeling. 1994, Univ. of Erlangen-Nurnberg: Germany.

15. E.L. Cunter, A. Muscholl, and D.A. Peled, Compositional Message Sequence Charts.
Lecture Notes in Computer Science, 2001(2031): p. 496-511.

16. W. Damm and D. Harel, LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design, 2001. 19(1): p. 45-80.

17. B. Finkbeiner and I. Kruger. Using Message Sequence Charts for Component-based
Formal Verification. in OOPSLA 2001 Workshop on Specification and Verification of
Component-based Systems. 2001. Tampa, FL, USA.

18. D. Daly, D.D. Deavours, A.J. Stillman, P.G. Webster, and W.H. Sanders, Mobius: An
Extensible Tool for Performance and Dependability Modeling. Lecture notes in computer
science, 2000(1786): p. 332-336.

19. W. Sanders, Obal, W., Qureshi, A., and Widjanarko, F., The UltraSAN Modeling
Environment. Performance Evaluation, 1995. 24(1): p. 89-115.

20. J. Hillston, A Compositional Approach to Performance Modelling. 1996: Cambridge
University Press.

21. G. Clark and W.H. Sanders. Implementing a Stochastic Process Algebra within the
Möbius Modeling Framework. in Process Algebra and Probabilistic Methods:
Performance Modelling and Verification: Proceedings of the Joint International
Workshop, PAPM-PROBMIV 2001. 2001. RWTH Aachen, Germany: Berlin: Springer.

22. Z. Zhou and F. Sheldon. Integrating the CSP Formalism into the Mobius Framework for
Performability Analysis. in Proceedings of PMCCS'5. 2001. Erlangen Germany,
Springer-Verlag.

23. J.M. Doyle, Abstract Model Specification Using the Mobius Modeling Tool, in Electrical
Engineering. 2000, University of Illinois at Urbana-Champaign.

24. G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J.M. Doyle, W.H. Sanders, and
P. Webster. The Möbius Modeling Tool. in Proceedings of the 9th International
Workshop on Petri Nets and Performance Models. 2001. Aachen, Germany.

	Introduction
	Stochastic Message Sequence Charts
	2.1 Definition of SMSC
	2.2 Comparing MSC with SMSC
	2.2.1 Constructs
	2.2.2 Ordering Rules
	2.2.3 Traces versus Processes

	Integrating SMSC into the Möbius Framework
	3.1 Essential Möbius Facilities
	3.2 Identifying State Variables in SMSCs
	Instance state
	Conditions
	Data
	Shareable vs. Non-shareable State Variables

	3.3 Identifying Actions in SMSCs
	Local Activities
	Message Activities
	Setting Conditions

	3.4 Implementing SMSC in Möbius Framework
	3.5 Solving SMSC Models
	3.5.1 Analytical Solvers versus Simulators
	3.5.2 State Space Generation Algorithm
	3.5.3 Model Complexity versus Solving Time
	3.5.4 System Performance Analysis

	Conclusion and Future Work
	References

