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SMSC: A Language for Performance Analysis in Möbius 

Abstract: Message Sequence Chart (MSC) is a formal language to describe the communication 

behavior between the components of a system. In this paper, we propose a new version of MSC, 

Stochastic MSC (SMSC), which is a stochastic extension to the traditional MSC. SMSC is 

suitable for performance. SMSC is integrated into the Möbius framework, which is an extensible 

multi-formalism modeling framework that facilitates interactions between models from different 

formalisms. Not only can SMSC models be solved using the Möbius built-in solvers, SMSC 

formalism also provides an atomic formalism for the Möbius users and can be used as building 

blocks for larger hybrid models.  

1. Introduction 

In the past two decades, much research has been conducted in the area of formal methods. 

Various formalisms have been studied and their corresponding tools developed [1]. The use of 

formal methods has evolved as the choice for developing software and hardware systems and for 

achieving higher performance and dependability. Performance evaluation is an important branch 

of formal analysis of system properties [2-7]. It concerns the quality of service a system can 

provide. However, not all formalisms are suitable for performance evaluation. For example, the 

original formulations of Petri Nets [8] and Process Algebras [9] cannot be used for performance 

evaluation and were originally useful for evaluating properties such as system liveness, deadlock 

free, and other static properties.1 

Message Sequence Chart (MSC) [10, 11] is a Specification Description Language (SDL) 

widely used in industry for requirement and design specification as well as test case description. 

As a formal language, MSC has a well-defined syntax and semantics. An MSC model consists of 

a number of independent message passing instances. System behavior is evaluated through a 

series of charts indicating interactions between those instances. However, MSC cannot be used 

for performance evaluation.  

Consequently, the first problem addressed in this research is how we can make MSC suitable 

for performance evaluation. This can be accomplished in a similar fashion as was done for 

Stochastic Petri Nets (SPNs) and Generalized SPNs (GSPNs) [12, 13], where transitions are 

associated with stochastic timing information. This extension of Petri Net can be used to evaluate 

system performance and SPN models are widely used for this purpose. Similarly, there is an 

                                                 
1 Stochastic PNs and PAs do, however, provide such capabilities. 
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extension to Process Algebra, Stochastic Process Algebra (SPA) [14], in which events are 

associated with random timing information. SPA is also used for system performance evaluation. 

Based on the same idea, we have extended MSC to Stochastic MSC (SMSC). The SMSC 

formalism can be used for performance analysis. Although much research has transpired [15-17] 

since MSC was proposed, no one has yet tried to extend it with stochastic properties. 

The second problem addressed here concerns how to create an analysis tool (i.e., how to solve 

SMSC models). To address this problem, SMSC is integrated into the Möbius framework [18]. 

Möbius is a well-defined framework for multi-formalism modeling. Several formalisms (SAN: 

Stochastic Activity Network [19], PEPA: Performance Evaluation Process Algebra [20], etc.) 

have been successfully integrated [21, 22]. SMSC is integrated into Möbius to enable its models 

to interact with other Möbius built-in formalisms. By implementing the interfaces required by 

Möbius, we even need not provide analyzers or solvers for the SMSC models. The Möbius built-

in solvers are applicable to solving all SMSC models. 

2. Stochastic Message Sequence Charts 

In this section we define stochastic message sequence charts and compare the resulting SMSC to 

MSC in terms of constructs, ordering rules and traces/processes. 

2.1 Definition of SMSC 

We define SMSC based on the language of MSC: 

An SMSC is an MSC where all events are enhanced to behave as real activities by 

associating stochastic time information with them. The stochastic time associated with 

an activity is the time needed to complete the activity.2 

“Event” is used to describe something that occurs to trigger a set of activities. When an event 

is associated with time, we call it an “activity.” Activity means something that takes time to 

complete. 

The stochastic time associated with activities can be deterministic, exponential, beta 

distributed, etc. There is no restriction on what type of distribution a stochastic time can take. 

However, to simplify the description, we use the exponential distribution as the default 

distribution in the rest of this section (naturally this fits well with the Markov solvers available in 

Möbius). Figure 1 shows an example. 

                                                 
2 An immediate or instantaneous event is an activity associated with zero time. 
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In the MSC language, 

there are two types of events: 

message passing events and 

local action events. Hence, 

there are also two types of 

activities: message activities 

and local action activities or 

simply local activities. 

A message in the SMSC 

language consists of two 

activities: the activity of sending the message and the activity of receiving it. A message is 

represented the same way as in MSC except the message name is now followed by two 

parameters. The first parameter specifies the time for the sending activity and the second defines 

the time for the receiving activity. For example, message m1 in Figure 1 has two parameters: r3 

and r4. The parameter r3 specifies the rate of an exponentially distributed random variable that 

gives the amount of time needed to send the message. r4 assigns time to the message receiving 

activity. The textural representation of messages is defined by adding a new keyword withrate 

as shown in Figure 1. Also, a new keyword smsc is defined to distinguish SMSC from MSC and 

is used in both the graphical and textural representations. Finally, local activities are assigned 

random times in the same way as for messages using only one parameter.  

2.2 Comparing MSC with SMSC 

The SMSC language is different from the MSC language because SMSC activities are non-

instantaneous. SMSC models provide more information about the system behavior. However, the 

SMSC language has many things in common with the MSC language. 

2.2.1 Constructs 

All constructs (instances, messages, local actions, conditions, etc.) defined on MSC are used by 

SMSC. The graphical representation of a SMSC looks the same as an MSC except for the 

additional parameters needed to specify time. As for the textual representations, all the keywords 

defined in MSC are still valid in SMSC. Although new keywords are defined for SMSC, the 

method and grammar for describing SMSC is the same as for MSC. 

Figure 1. An SMSC example. 

 smsc example1 

i1 i2 i3 

m0(r1, r2)

m1(r3, r4)

m2(r5, r6)

m3(r7, r8) 

a(r0)

smsc example1; 
i1: out m0 to env withrate r1; 
i1: out m1 to i2 withrate r3; 
i1: action a withrate r0; 
i1: in m3 from i2 withrate r8; 
i2: in m1 from i1 withrate r4; 
i2: out m2 to i3 withrate r5; 
i2: out m3 to i1 withrate r7; 
i3: in m2 from i2 withrate r6; 
endmsc; 
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SMSC and MSC have all the same composition operators and  maintain the same semantics. 

High-level SMSC (HSMSC) is defined in the same way as HMSC. HSMSC organizes SMSC 

references using the same nodes defined on HMSC and the organizational interpretation is also 

the same. 

Most new keywords deal with time specification except for the keyword smsc, which simply 

replaces the keyword msc. For example, if an activity is associated with exponentially 

distributed random time, the keyword withrate is used in the description and is followed by a 

parameter that specifies the rate of the exponential distribution. Other distributions may be 

specified by defining the corresponding keywords and providing the required parameters. 

2.2.2 Ordering Rules 

SMSC and MSC have different ordering rules. Under the new ordering rules, an SMSC 

imposes a partial order on its activities just as an MSC does on its events. This partial order is the 

same as that imposed by the corresponding MSC, which can be derived from the SMSC by 

associating all activities with zero delay. MSC has the following ordering rules: 

1) Events defined on an instance are executed in the order they are specified on the vertical 

instance axis from top to bottom. 

2) The event of sending a message must happen before the event of receiving the same 

message. 

3) Events in a coregion can happen in any order. 

4) The event from which a general ordering symbol originates must happen before the event 

to which the same general ordering symbol ends. 

Under these rules, the execution of events forms a trace that describes system behavior. 

 In SMSC, we relax the assumptions made in MSC that events are instantaneous and no two 

events can happen at the same time. As a result, activities in SMSC do take time to complete and 

can start or finish at the same time.  

To define an order for two activities, we first decompose each activity into two events, one for 

the starting of the activity and the other for ending the activity. The order of activities can be 

defined as either the order of starting events or that of the ending events. By this definition, the 

order of activities may not be unique for an execution of these activities. But this will not prevent 

us from defining the partial order of activities in an SMSC the same as that defined in the 
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corresponding MSC were the time information removed. There are five rules for the ordering of 

activities and activity events: 

1) The event of starting an activity must happen before the event of finishing the same 

activity.  

2) Activities attached to an instance are executed sequentially in the order they are 

given on the vertical axis from top to bottom. An activity can only start after the 

previous one has finished. 

3) The activity of sending a message must finish before the activity of receiving the 

same message can begin. 

4) Activities in a coregion can happen in any order, but their execution must abide by 

rule 1. 

5) General orderings are treated as messages in terms of ordering these activities.  

The first rule describes how to order the two events (start and finish) in an activity. The 

second rule covers the ordering of activity events associated with the same instance. If each 

activity is treated as two consecutive events, the ordering of these events is the same as that 

defined for MSC.  

The third rule orders events in a message. The order of activities of different instances can be 

derived from this rule. A message includes two activities, and hence four events: the event of 

starting to send the message, starting to receive the message, finishing the sending of the 

message, and finishing the receiving of the message. The precise restriction for their order 

requires that starting to send a message must happen before starting to receive the message. Also, 

finishing the receiving of the message must happen after finishing the sending of the message. 

However, we define a stricter rule: the sending of a message must have finished before the 

receiving of it can start. This rule prevents a message from being completely received before 

being completely sent. If we allow the activity that receives a message to start before the 

completion of the activity that sends the message, we cannot guarantee that the end of receiving 

the message occurs after the completion of sending the message because both activities are 

associated with a random time.  

The fourth and fifth rules are defined for ordering events in a coregion or for being controlled 

by general orderings. Under these rules, the order imposed by an SMSC is sure to comply with 

the partial order imposed by the corresponding MSC if timing information is removed. 

Therefore, an SMSC imposes the same partial order on its activities as an MSC does on its 
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events. Any two activities that can be ordered differently must correspond to the events that have 

undefined order in the corresponding MSC.  

2.2.3 Traces versus Processes 

An MSC specifies a set of valid traces. If we define the sequence of activities as a trace, an 

SMSC specifies a set of valid traces the same as an MSC. In addition, an SMSC also specifies a 

stochastic process. SMSC defines a stochastic process while MSC does not. The stochastic 

process enables users to do performance analysis about the system.  

3.  Integrating SMSC into the Möbius Framework 

The SMSC language is integrated into the Möbius framework because the Möbius framework 

has a well-defined interface that enables new formalism to be added and supports multi-

formalism modeling. The Möbius framework makes it possible to use the Möbius built-in solvers 

and to interact with models from other formalisms that are made available by Möbius. 

3.1 Essential Möbius Facilities 

The Möbius framework is defined to facilitate multi-formalism modeling and multiple solution 

methods. Three basic entities are defined within the framework. They are state variables, actions, 

and action groups. State variables hold the state of the model. State variables can be as simple as 

integers or complex data structures. Actions change the value of state variables. An action group 

is a collection of actions that coordinate their behavior in some special way. In addition to these 

entities, an Abstract Functional Interface (AFI) is defined to enable the interaction of models 

from different formalism as well as different solvers. The Möbius entities are implemented as 

C++ classes and the AFI as virtual methods defined on the classes. 

Any formalism in Möbius must implement the AFI and describe its language constructs using 

the basic Möbius entities. Thus, the main problem is to decompose SMSC models into a set of 

state variables and a set of actions. The state changes and the activity orderings are determined 

by the structure of the SMSC model.  

3.2 Identifying State Variables in SMSCs  

An SMSC contains a number of independent instances. The instances send messages to each 

other and/or perform local activities. SMSC conditions may govern the execution of some 

activities. Local activities can also perform operations on local or global data. These constructs 

are used to model a system and contain the information that describes the system state, and hence 
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are potential candidates for state variables. 

Instance state 

The state of an instance should reflect which activity has been executed. Since an instance 

imposes an ordering of its activities, we must preserve this information to ensure proper 

ordering. The number of states of an instance depends on the number of activities associated with 

the instance. If an instance has no coregion, the number of states is given by the following 

equation: 

                            NumInstanceStates = NumInstanceActivites + 1                  (3.1) 

where NumInstanceStates is the number of states, and NumInstanceActivites denotes the number 

of activities in the instance. An instance that has no coregion specifies a strict sequential process. 

The execution of a later activity implies that all previous activities have finished. Therefore we 

can represent the instance state using an integer variable that holds the value of how many 

activities have been executed.  

If a coregion exists in an instance, equation (3.1) no longer holds. Activities in a coregion can 

be executed in any order and thus brings additional states to the instance. To represent the state 

of a coregion, we have to associate each activity in the coregion with a Boolean variable. The 

“true” value denotes that the execution has finished, while “false” denotes the activity has not 

started. The number of additional states brought by a coregion is at most  

                                                      2NumCoregionActivites                                                             (3.2). 

Conditions 

In the MSC language conditions represent system state and thus are good candidates for state 

variables. Depending on how many states a condition represents, the type of the state variable for 

a condition can be either Boolean, integer, or double. 

Data 

SMSC can also perform operations on data just as MSC does. Data defined on SMSC are also 

state variables. The change of the data value represents a state change in the model. The type of 

the state variable is the same as the type of the data member. 
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Shareable vs. Non-shareable State Variables 

The Möbius framework uses the concept of state sharing to join models from the same or 

different formalisms [23]. If a state variable is shared with other models then they can also 

change the value of the state variable. The change of value represents the state change. 

Therefore, the behavior of the model is affected by the behavior of other models.  

Not all the state variables we defined are shareable. For example, if the state variable defined 

for an instance is shared with other models, the increase of the state variable’s value by other 

models may cause some actions to be falsely considered finished even though they have not been 

executed. This is referred as state jump. Therefore, state variables from instances are not 

shareable. Conditions and data do not affect the sequential order and hence these state variables 

are shareable.  

3.3 Identifying Actions in SMSCs 

In Möbius, actions are the only entities that can change the system state. Thus, any components 

in SMSC that can change the value of state variables will give us actions. These components 

include local activities, message activities, and setting conditions (i.e., conditions that set the 

system to certain states). 

Local Activities 

Local activities can perform data operations and the completion of an activity must also 

increment the state variable that represents the instance to which the activity is attached. Thus, 

local activities are Möbius actions. Data operations defined by local activities must also change 

the state variable representing the data. The execution time distribution for the action resulting 

from a local activity takes the same distribution function as that of the local activity.  

Message Activities 

A message consists of two activities. The sending activity is performed by the instance that 

sends the message, and the one that receives the same message performs the receiving activity. 

Data operations can also be defined for message exchange. When a message is sent, the state 

variable must reflect this fact. Likewise, the completion of receiving a message should change 

the state of the instance that receives the message. Therefore, a message is represented by two 

Möbius actions. 
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Setting Conditions 

Conditions have two forms: setting conditions and guarding conditions. Setting conditions set 

the system to some particular state, while guarding conditions restrict the execution of certain 

activities. The setting conditions are Möbius actions because they change the system state. 

3.4 Implementing SMSC in Möbius Framework 

The Möbius framework provides three base C++ classes: BaseStateVaribleClass, 

BaseActionClass and BaseGroupClass. Each corresponds to a basic Möbius entity. One 

additional class, BaseModelClass, acts as a container of the Möbius entities. Implementing the 

SMSC formalism in the Möbius framework includes three steps: 1) deriving the SMSC classes 

from the Möbius base classes; 2) implementing the AFI functions; and 3) building a SMSC 

model editor.  

The SMSC state variables classes are implemented using the Mobius BaseStateVaribleClass 

(including SMSCInst and SMSCCond). The SMSCInst class represents SMSC instances and is 

not sharable. The SMSCCond class represents sharable SMSC conditions. The class SMSCInst 

contains all the information necessary to describe an instance including state, coregion, activities, 

and their ordering. 

The SMSCActivity class is derived from the Möbius BaseActionClass. Although there are 

three different activities in SMSC: local activity, message activity, and the activity of setting 

conditions, we need only to define one activity class. Two important activity properties are under 

what condition the activity is enabled and what state change it causes after execution. The 

activity class must contain information necessary to specify its enabling condition and its firing 

effect. For a local activity, it can only be enabled if the activity that precedes it has finished and 

its guarding conditions are met. For message activities, the sending activity’s enabling condition 

is the same as a local activity. The enabling of the receiving activity depends on the previous 

activity of the same instance, the state of the sending activity, and the guarding conditions. The 

setting condition activity has the same restriction as a local activity. Therefore it is not necessary 

to distinguish message activities from local activities or setting condition activities. 

The SMSCModel class is derived from the Möbius BaseModelClass and is used to organize 

the state variables and activities for an SMSC model. However, the SMSC structural information 

is kept in the SMSCActivity and SMSCInst classes rather than in the SMSCModel class. The 

SMSCModel class acts as a container of state variables, activities and also provides methods for 
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composing two or more SMSC models. AFI functions are declared within the base classes and 

have been implemented in the derived SMSC classes. The SMSC model editor is pending 

implementation, and will be used to translate the graphical or textual model description into the 

Möbius-compatible form that is described by SMSC classes. 

3.5 Solving SMSC Models 

Once the SMSC models are described using classes derived from the Möbius base classes, we 

can then solve the models using the Möbius solvers. 

3.5.1 Analytical Solvers versus Simulators 

Before solving the model, performance variables must be defined for measuring the desired 

system properties. If all activities are associated with exponentially distributed random time, the 

underlying process is Markov and the Möbius analytical solvers can be used to quickly solve the 

model. However, before using any analytical solvers, the state space must be explicitly 

generated. If the model is finite, the Möbius State Space Generator (SSG) can be used. 

Incidentally, if the underlying process is not Markov, then the Möbius discrete event 

simulators are the only choice when solving the model for performance measures.  

3.5.2 State Space Generation Algorithm 

The Möbius SSG consists of several libraries which contain precompiled functions. These 

functions are linked with user-defined models to generate an executable model, which is then 

used to generate the state space. The SSG uses the Möbius AFI to interact with the model [24]. 

Once the state space is generated, various analytical solvers are applied to determine the desired 

performance measures. The state transitions and reward calculations are recorded in the data 

structure that represents the SMSC model state space. 

3.5.3 Model Complexity versus Solving Time 

The complexity of an SMSC model depends not only on the number of instances, messages and 

conditions, but also on the structure of the model. The structure characterizes how instances, 

messages, conditions and other model constructs are organized together to represent a certain 

system. Naturally, if the SMSC model contains a large number of instances and messages, this 

implies a higher complexity. The size of state space is usually used to measure the complexity 

given that the model is to be solved analytically and has a finite number of states. However, 



 11

 
 

smsc A 

   i1 

a1(r0) 

  i2 

when buf >0 

 
 

smsc B 

    i1    i2 
 
 

smsc C 

   i1 

a2(r7) 

   i2 
err = true 

err = false 

  m1(r1, r2) 

  m2(r3, r4) 
m3(r5, r6) 

sometimes the structure of the SMSC model plays a more important role in determining the 

model complexity.  

There are two types of constructs that affect the number of the states. The first type, coregion, 

can increase the number of states, while the second, messages and general orderings, can cause a 

reduction. Coregions specify the number of activities that can run in parallel or in any sequential 

order (i.e., all possible interleaving must be considered giving rise to many more states). 

Messages and general orderings impose restrictions on the sequential order of activities, which 

effectively eliminates certain interleavings. 

The composition of SMSC model components also has an impact on state space. For example, 

if an SMSC M1, which has S1 number of states, is vertically composed with another SMSC M2, 

which has S2 number of states, and the composed SMSC is called M3, the number of states of 

M3 is not necessarily the sum of S1 and S2 (i.e, is usually greater than the sum). Therefore, 

model composition increases the states space. 

The time needed to 

solve a model is directly 

related to the size of the 

state space. Naturally, the 

larger the state space, the 

longer it takes. Two steps 

are needed when using the 

Möbius analytical solvers. 

The first step generates 

the entire state space 

using the SSG. The 

second step chooses one 

analytical solver to solve 

for the desired reward 

variables. Hence, the time 

needed to solve a model 

can be split: state space 

generation time and 

reward variable solving time. 

Figure 2. SMSC model of the Stop-and-Wait transmission protocol. 
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To evaluate how efficiently the Möbius solvers handle SMSC models, we used the example 

SMSCs shown in Figure 2. SMSC-A has two instances, one guarding condition and one local 

activity. SMSC-B is vertically composed with SMSC-A. SMSC-B also has two instances. There 

are two messages exchanged between these two instances: messages m1 and m2. SMSC-C is also 

vertically composed with SMSC-A. Moreover, SMSC-B and C are two alternatives succeeding 

SMSC-A. Inside SMSC-C are two setting conditions, one message and one local activity.  

SMSC-C forms a loop, which means that SMSC-C is vertically composed with itself.  

SMSC-B is also vertically composed with SMSC-C. The whole SMSC model consists of 6 

instances, two conditions, 3 messages and 4 non-message activities (setting conditions are 

considered as activities). Guarding conditions are not activities because they only specify certain 

system states. Using the Möbius SSG, this simple model generates 14 states. 

Based on this simple SMSC model, we build larger models using the Möbius replication/join 

construct. Replication/join enables a simple model to be replicated. Users can specify the number 

of copies to generate. These copies are joined together through some shared state variables to 

form a larger model. 

In our experiment, the basic model is replicated from 1 to 10 times resulting in different 

models with increasing complexity. There is one shared state variable that corresponds to the err 

condition. The number of states generated for each model and the corresponding state space 

generation time and solving time are shown in Table 1.  

The number of states increases exponentially with the number of replications as shown in 

Figure 3. One would expect the number of states to increase even faster if all the copies of the 

                                                 
3 This experiment was carried out on Windows 2000 machine with 128MB memory and one Intel Pentium III CPU running at 500MHz 

Table 1. Experiment result of model complexity and solving time.3 

Number of 
Replication 1 2 3 4 5 6 7 8 9 10 

States 14 91 455 1820 6188 18564 50388 125970 293930 646646 
State space 
generation 
time 

<1s <1s 1s 5s 17s 46s 156s 365s 22m 4h30m 

Solving 
time <1s 1s 10s 70s 416s 27m 1h35m 4h58m 14h46m 52h57m

Total time <1s 1s 11s 75s 433s 27m46s 1h38m 5h04m 15h06m 57h27m
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simple model run in parallel without sharing any state variable. For example, replicating the 

model 5 times without joining them via a shared state variable would give 145 states, which is 

much larger than the 6188 states generated from our model. The state variable shared by those 

models greatly reduces the number of states of the joined model (in this case by a factor of 86). 

The state space generation time, reward variable solving time (i.e., using the Accumulated 

Reward Solver, ARS) and the 

total solution time for the 

various models are shown in 

Figure 3. The state space 

generation time is 

proportional to the number of 

states. However, when the 

state space size increases, we 

noticed a significant rise in 

time for the last model 

(~650,000 states) due to the 

memory constraint of the 

machine used to conduct this 

experiment4.  

3.5.4 System Performance Analysis 

The example shown in Figure 2 is also the model of a system in which two entities (a sender and 

a receiver) exchange data using the Stop and Wait protocol. The sender and receiver are denoted 

by the instance i1, i2, respectively. SMSC-B represents the scenario of a successful exchange. 

SMSC-C describes the scenario where channel errors occur requiring the sender to retransmit the 

data frame after a waiting period determined by the delay parameter r7 in activity a2. We 

defined one reward variable to measure the time that the system spends on handling error data. 

The channel error probability is defined as a global variable err_prob, which govern the 

possibility that the error scenario of SMSC-C occurs. The Möbius Study Editor can be used to 

vary the values assigned to global variables and creates an executable model for each 

                                                 
4 The virtual memory was increased to 400MB and 375MB of it was in use when computing the last model. The greatly decreased performance is 
caused by trashing. The dominant part of the total model solving time is not the state space generation time but the reward variable solving time. 
The latter is more than one magnitude higher than the former. 

Figure 3. Model solving time with different state space sizes. 
 (note axes are lognormal) 
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combination of the variable values. In our experiment, we assigned 7 values to err_prob (0.01, 

0.02, 0.04, 0.08, 0.16, 0.32, 0.64) and 6 values to r7 (0.125, 0.25, 0.5, 1.0. 2.0. 4.0). Other 

parameters are set to 1. The Möbius Study Editor generated 42 executable models.  The result of 

this analysis is shown in Figure 4. 

In Figure 4 we can see that the percentage of time processing errors is roughly proportional to 

the channel error 

probability. The higher the 

error probability, the more 

time that will be spent 

processing error messages. 

Error processing time is also 

affected by the delay time. 

The longer delay time 

means that the sender must 

wait longer to retransmit 

data frames. Thus, the 

longer delay times result in 

a higher percentage of time 

where the system processes errors. Also note, that higher rates mean shorter delay times. 

4. Conclusion and Future Work 

The Message Sequence Chart formalism and the Möbius multi-formalism modeling framework 

were studied. Based on the MSC formalism, we defined the Stochastic Message Sequence Chart, 

which is an extension to the MSC formalism. SMSC can be used to describe the system behavior 

in the same way as the MSC language. Furthermore, SMSC models contain more information 

regarding the system behavior than the corresponding MSC models. By associating with each 

activity a stochastic execution time, the SMSC models specify an underlying stochastic process. 

System performance measures that cannot be derived from MSC models can be studied by using 

SMSC models. In this sense, the SMSC language is more powerful than the MSC language. 

The method of integrating the SMSC formalism into the Möbius framework was investigated. 

On the basis of this investigation, we defined the SMSC formalism in terms of the basic Möbius 

entities. SMSC state variables and SMSC activities are defined based on the Möbius entities: 

actions and state variables. We implemented C++ classes that are used to specify the SMSC 

Figure 4. Error processing time as a function of err_prob and delay. 
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models. Some of the model composition methods specified in the SMSC formalism can be 

realized using the C++ classes, namely, vertical composition and alternative composition. Loop 

is a special vertical composition and is also realized within the Möbius framework. 

The next step in this work would be to implement the user interface within the Möbius 

framework. The user interface should be implemented in Java to make it platform neutral. The 

front-end user interface will enable users to specify SMSC models in the Möbius tool. 

Eventually, the graphical or textural SMSC models are translated to C++ source files, which are 

further complied and linked with the Möbius C++ libraries to generate an executable model tot 

be either simulated or solved analytically.  

Some constructs of the SMSC language, including inline expressions, horizontal 

compositions, and SMSC references, have not been defined within the Möbius framework. 

Further research will reveal how this can be accomplished. Another area of future work is to 

define the action-sharing method for SMSC. Instead of sharing state variables, an SMSC model 

may be composed with other models by sharing activities/actions.  
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