
Submitted June 2002 to the Special issue of the Requirements Engineering Journal
Model-based Requirements Engineering: "Pragmatic reasoning over incomplete system models"

Testing Software Requirements with Z and Statecharts Applied to
an Embedded Control System1

Hye Yeon Kim

Software Engineering for Dependable Systems Laboratory*

School of Electrical Engineering and Computer Science
Washington State University

EME 102 Spokane Street
Pullman, WA 99164-2752

http://www.eecs.wsu.edu/seds
hyekim@ieee.org

Frederick T. Sheldon

Research Information and Communication, System Safety
DaimlerChrysler, HPC T728, 70546

Stuttgart Germany
sheldon@acm.org

Abstract

Software development starts from specifying the requirements. A Software Requirements

Specification (SRS) describes what the software must do. Naturally, the SRS takes the core

role as the descriptive documentation at every phase of the development cycle. To avoid

problems in the latter development phases and reduce life-cycle costs, it is crucial to ensure

that the specification be reliable. In this paper, we describe how to model and test (i.e.,

check, examine, verify and prove) the SRS using two formalisms (Z and Statecharts).

Moreover, these formalisms were used to determine strategies for avoiding design defects

and system failures. We introduce a case study performed to validate the integrity of a

Guidance Control Software SRS in terms of completeness, consistency, and fault-tolerance.

Keywords: Z; Statecharts; Requirements specification validation; Completeness;

Consistency; Fault-tolerance

1 INTRODUCTION

The trend of using software in embedded real-time systems and the fact that software

1 The appendix gives a total system architecture (see Figure A-1) and all the Statecharts. It is included as
background material only. We do not plan to include it in the final version. The final proved Z schemas can be
obtained from http://www.eecs.wsu.edu/seds/hkim_thesis_final_ilogix.pdf or the http://www.ilogix.com
university page.
* We would like to thank Kshamta Jerath (SEDS) for her valuable critique and Markus Degen (DaimlerChrysler)
for reinforcing the need for a reliable software requirement specification especially in mission/safety critical
applications.

requirements are often complex necessitate the use of formal and rigorous approaches in the

specification and validation of requirements. Requirements validation is concerned with

checking the requirements document (i.e., SRS [Software Requirements Specification]) for

consistency, completeness and accuracy [1]. In other words, validation ensures the

specification represents a clear description of the system for design and implementation and

is a final check that the requirements meet stakeholders’ needs. This process should be

complete prior to design and implementation. In this paper, the SRS of an embedded real-

time software - the Viking Mars Lander Guidance Control Software [2]- is validated.

The notations selected to express requirements or designs can have a very important

impact on the construction time, correctness, efficiency, and maintainability of the target

system. One desirable property for these notations is that they be precise and unambiguous,

so that clients and implementers can agree on the required behaviors and observe them

through some means of simulations. The notation should make it possible to state and prove

properties of a system before it is built; then, if the system is constructed according to the

specifications, there will be a high level of confidence that the system will exhibit certain

properties and behaviors. This implies that the selected notation is not only formally defined

but is also amenable to mathematical/logical manipulation. Observation of behaviors is

particularly convenient if the specification language is executable. Executable specifications

are also useful for clarifying and refining requirements and designs [3].

The term ‘formal methods’ applies to a variety of methods that are used to ensure

correctness of the software, and their common characteristic being a mathematical foundation

that make it possible to prove correctness. The approach chosen combines a model-based FM

which uses the theory of sets, propositional and predicate logic with a state-based

diagrammatic formalism to visualize and simulate the specification (including fault

injection). The Z is employed to prove correctness of the SRS while the behavior of

executable specifications is gauged through visualization and simulation using Statecharts.

1.1 Definitions

Reliability, as applied to the SRS, investigates the questions: (1) is the specification correct,

unambiguous, complete, and consistent; (2) can the specification be trusted to the extent that

design and implementation can commence while minimizing the risk of costly errors; and (3)

how can the specification be defined to prevent the propagation of errors into the downstream

activities?

The completeness of a specification is defined as a lack of ambiguity in the

implementation. The specification is incomplete if the system behavior is not specified

precisely because the required behavior for some events or conditions is omitted or is subject

to multiple interpretations [4]. Consistency, the presence of a lack of ambiguity in

requirements, means the specification is free from conflicting requirements and undesired

nondeterminism [5].

Typically, fault-tolerance is considered as an implementation methodology that provides

for (1) explicit or implicit error detection for all fault conditions, and (2) backup routines for

continued service to critical functions in case errors arise during operation of the primary

software [6]. For the SRS, it can be defined as (1) existence of specified requirements to

detect errors for all fault conditions, and (2) presence of specified requirements that support

the system robustness, software diversity, and temporal redundancy for continuing service of

critical system functions in the case of failure.

2 RELATED RESEARCH

In this section, several categories of analysis methods are introduced for the safety/mission

critical system software requirements. In addition, a number of studies are presented that aim

to find a way to verify the consistency and completeness of SRSs. Numerous other case

studies are reviewed that use Z and other formal methods, to gain benefit from visualization

and/or dynamical assessment.

2.1 Formal Methods

Formal methods are a collection of techniques, rather than a single technology, most notably

for specifying a software system. The sole objective is to provide a way to eliminate

inconsistency, incompleteness, and ambiguities. Because formal methods have an underlying

mathematical basis, they provide valid analysis of a system better than ad hoc reviews. There

are several classes of distinguishable formal specification techniques. They are property-

oriented specifications, model-oriented specifications, and operational specifications [7].

In the property-oriented approaches, known as constructive techniques, one declares a

name list of functions and properties. These approaches provide notations that can depict a

series of data, and use equations to describe the system behaviors rather than building a

model. These property-oriented approaches can be broken into algebraic and axiomatic

specifications [8]. The algebraic specification describes a system consisting of a set of data

and a number of functions over this set [9]. The axiomatic specification has its origin in the

early work on program verification. It uses first-order predicate logic in pre- and post-

conditions to specify operations [8].

The objective of the model-oriented approach, known as declarative techniques, is to

build a unique model from a choice of built-in data structures and construction primitives

provided by the specification language [7]. This approach provides a direct way of describing

system behaviors. The system is specified in terms of mathematical structures such as sets,

sequences, tuples, and maps [8]. Model behaviors are compared against the specified

functionality as a measure of correctness [7]. Vienna Development Method (VDM), B, and Z

belong to this category.

The operational/executable specification is another category of formal specification

techniques. It provides sets of actions that describe the sequence of the system behavior and

computational formulas that describe the performance calculation. Petri nets, process algebra,

and state/activity charts in the STATEMATE2 environment [3] are within this category [7].

2.2 SRS Analysis/Evaluation/Assessment Studies

There have been numerous studies with the goal of improving the integrity, identifying

defects, and removing ambiguities (completeness and consistency). Fabbrini et al., proposed

an automatic evaluation method called “Quality Analyzer of Requirements Specification

(QuARS)” to evaluate quality. They define testability, completeness, understandability, and

consistency as properties of a high quality SRS [10]. The QuARS tool parses requirement

2 STATEMATE Magnum – product of i-Logix, was used to conduct the research for this thesis.

sentences written in natural language (NL) to detect potential sources of errors. This is a

linguistic, informal evaluation approach rather than a formal method but it shows that

informal systematic methods are useful for revealing errors. The authors claim this approach

can be used for any domain based on the tool’s ability to customize its dictionaries.

Heitmeyer et al., used the Software Cost Reduction (SCR) tabular notation to identify

inconsistencies in SRSs. They describe, using this notation/method, how a safety violation is

exposed. Typically, the enormous state space of practical software specifications renders

direct analysis impractical [11]. They used the “Two Pushbutton” abstraction method to

reduce a system state space from infinite to finite. Two redundant specifications represent the

required system behavior using both Petri-net and TRIO specification logic. They abstracted

and analyzed their SRS with Spin and a simulator that was developed to support the SCR

method.

Heimdahl and Leveson used their Requirements State Machine Language (RSML) to

verify requirements specifications for completeness and consistency [12]. RSML is a state-

based language suitable for the specification of reactive systems. It includes several features

developed by Harel for Statecharts. In RSML, the transitions are represented as relationships

between states (i.e., hierarchical, next-state mappings). The functional framework defined in

[12] is used to check the model against every possible input to find conflicting requirements

(i.e., to verify whether the model is deterministic). They used a textual-representation-based

simulator developed for RSML to execute the specification. One advantage is the ability to

analyze subparts of the whole system without the need to generate a global reachability

graph.

2.3 Related Z Case Studies

Numerous studies have been conducted that combine Z with other formal methods. A hybrid

formal method called PZ-nets is proposed by Xudong He. PZ-nets combine Petri nets and Z

[13]. PZ-nets provide a unified formal model for specifying the overall system structure,

control flow, data types and functionality. Sequential, concurrent and distributed systems are

modeled using a valuable set of complementary compositional analysis techniques. However,

modular and hierarchical facilities are needed to effectively apply this approach to large

systems.

Hierons, Sadeghipour, and Singh present a hybrid specification language µSZ [14]. The

language uses Statecharts to describe the dynamical system behavior and Z to describe the

data and their transformations. In µSZ, Statecharts define sequencing while Z is used to

define the data and operations. They abstracted data from the Z specifications to produce an

Extended Finite State Machine (EFSM) represented with Statecharts. EFSM features can be

utilized for test case generation. These features automate setting up the initial state and

checking the final state for each test. The dynamic system behaviors specified in Statecharts

are checked using these features.

Bussow and Weber present a mixed method consisting of Z and Statecharts [15]. Each

method was applied to a separate part of the system. Z was used to define the data structures

and transformations. Statecharts were used to represent the overall system and reactive

behavior. The Z notations were type checked with the ESZ type-checker but the Statecharts

semantics were not fully formalized. In addition, several other case studies utilized Z for

defining data while Statecharts were used as a behavioral description method [16-18].

Castello developed a framework for the automatic generation of Statecharts layouts from

a database that contains information abstracted from an SRS [19]. The framework centerpiece

is the “statecharts layout” tool. The tool’s output is then transformed into Z schemas. Data is

abstracted from the SRS to generate a database that provides the basis from which to

automatically generate “statecharts layout.” Statecharts are translated one-by-one into Z

schemas to validate the correctness. The Z schemas are exact replicas of the Statecharts (i.e.,

the Z schema is the text version of the Statecharts). Both the method and the criteria for the

SRS abstraction are not explained [19].

2.4 Contribution from this study

In this study, Statecharts depend on the Z specification. The natural language based (NL-

based) SRS components are translated completely into Z and then the Z specification is

completely translated into State/Activity charts. The Z specification is type checked and

proved using Z/EVES3 with reduction/refinement prior to the translation. The State/Activity

charts are tested to determine consistency and completeness using simulations and model

checking. The transformed SRS is evaluated for fault-tolerance by injecting faults into the

Statecharts model. Details of the tests and fault injections are described in Sections 3 and 4.

Z and Statecharts do have different precision for revealing inherent SRS flaws. In general,

it is believed that Z is more suitable for defining data types while Statecharts are better for

describing the dynamic behavior (i.e., state transitions) [16-18]. When one uses conjoined

methods like other case studies, the consistency between the joined methods is difficult to

verify. Instead, we abstracted the SRS into Z schemas (method one) and then from Z to

Statecharts (method 2). In this way a higher confidence in their consistency can be achieved.

For example, the consistency of Z is verifiable using type-checking and proofs. The

consistency and completeness of the Statecharts model are verifiable using the model checker

and simulations. Refinement between these two different formalisms gives in-depth

understanding of requirements, and reveals different flaws that exist in the SRSs. The

usefulness of this approach was assessed in our case study by applying it to critical parts of

the SRS.

3 APPLIED METHODS

A two-step process using Z/Statecharts is employed. First, the NL-based SRS is transformed

using Z. Z is used because it provides a concrete way to transform the requirements into

state-based models using schematic structuring facilities. The transformation elucidates

assumptions and provides mechanisms for refining specifications by clarifying data and

functional definitions. This compositional process helped to clarify ambiguities. For

example, an ambiguity associated with the Altitude Radar Counter was uncovered during

schema construction.

The variable AR_COUNTER is specified in two different sections (Table 1) in the SRS.

The Processing Unit describes the AR_COUNTER modification rules and the value ranges.

One can conclude from the first two sentences that the AR_COUNTER increases after the

3 Z/EVES is a tool developed by ORA, Canada. It provides theorem proving, domain checking, type checking,
precondition calculation, and schema expansion for Z specifications.

radar pulse is transmitted. However, this indicates that the AR_COUNTER value is a positive

number when the radar pulse is transmitted irrespective of whether an echo has arrived or not.

Furthermore, this conflicts with the last sentence that states that the AR_COUNTER will

contain sixteen one bits representing a negative one (-1) according to the definition in the

data dictionary.

Table 1. NL-based specification for AR_COUNTER [2]
Processing Unit Data Dictionary

A digital counter (AR_COUNTER) is
started as the radar pulse is transmitted. The
counter increments AR_FREQUENCY
times per second. If an echo is received, the
lower order fifteen bits of AR_COUNTER
contain the pulse count, and the sign bit will
contain the value zero. If an echo is not
received, AR_COUNTER will contain
sixteen one bits.

NAME: AR_COUNTER
DESCRIPTION: counter containing elapsed
time since transmission of radar pulse
USED IN: ARSP
UNITS: Cycles
RANGE: [-1, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

Second, the Schemas are manually transformed into State/Activity charts and

symbolically executed to assess the model’s behavior based on the GCS specified mission

profile. Developing State/Activity charts from the Z schema is not a direct/mechanical

transformation process and requires an in-depth knowledge of Z. One can specify a countably

infinite number of system states using Z. To develop Statecharts from the Z specification, one

must refine the infinite number down to a finite number. Simulations are then performed to

verify the Statecharts have no nondeterministic state/activity transitions (i.e., inconsistencies).

After checking for inconsistencies, in a second step, all data and transition-conditions are

specified (i.e., added in). Simulations are performed again to verify the second step. In this

second step, some function/data items improperly defined in Z were discovered. These items

agreed in ranges and types in both Z and Statecharts; however, they generated incorrect

output during the simulations. This (kind of) information is then carried back to refine the Z

schemas.

In a third step, after the simulation, faults are injected into the state/activity charts. This is

done by changing state variable values while running a simulation. The output from the

simulation using injected faults is compared with the expected output. The expected output

values are obtained based on the formulae given in the SRS. Using fault-injection enables one

to evaluate the system’s ability to cope with unexpected system failure.

3.1 Z (Zed)

Z is classified as a model-based specification language that is equipped with an underlying

theory that enables nondeterminism to be removed mechanically from abstract formulations

to result in more concrete specifications. In combination with natural language, it can be used

to produce a formal specification [20].

An axiom is a common way of defining global objects in Z. It consists of two parts:

declaration and predicate as shown in Figure 1. The predicate constrains the objects

introduced in the declaration. Schemas model system states and are the main structuring

mechanism used to create patterns, objects, and operations. A schema consists of two parts

(Figure 1): a declaration of variables; and a predicate constraining their values. The name of a

schema is optional; however, for compositional purpose, it is convenient to give a name that

can be referred to other schemas. These facilities are useful and essential in clarifying

ambiguities and solidifying one’s understanding of the requirements.

Declaration
Predicate

Schema name
Declaration
Predicate

Figure 1. Forms of an axiom and a schema

3.2 Statecharts

Statecharts constitute a state-based formal diagrammatic language that provide a visual

formalism for describing states and transitions in a modular fashion, enabling cluster

orthogonality (i.e., concurrency) and refinement, and supporting the capability to move

between different levels of abstraction. The kernel of the approach is the extension of

conventional state diagrams by AND/OR decomposition of states together with inter-level

transitions, and a broadcast mechanism for communication between concurrent components.

The two essential ideas enabling this extension are the provision for depth (level) of

abstraction and the notation of orthogonality. In other words, Statecharts = State-diagrams +

depth + orthogonality + broadcast-communication [21].

Statecharts provide a way to specify complex reactive systems both in terms of how

objects communicate and collaborate and how they conduct their own internal behavior.

Together, Activity charts and Statecharts are used to describe the system functional building

blocks, activities, and the data that flows between them. These languages are highly

diagrammatic in nature, constituting full-fledged visual formalisms, complete with rigorous

semantics providing an intuitive and concrete representation for inspecting and checking for

conflicts [22]. The State/Activity charts are used to specify conceptual system models for

symbolic simulation. Using these facilities, assumptions were verified, faults were injected,

and hidden errors were identified that represent inconsistencies or incompleteness in the

specification.

A GCS project was created within the Statemate environment. Graphical editors were

used to create State/Activity charts. Once the graphical forms were characterized, state

transition conditions and data items were defined within the “data dictionary” of the project.

The Activity chart and Statecharts reflect all variables/conditions defined in the Z

formulation. During simulation, we observed the sequence of state changes that occur to

validate the system against its specified structure (based on Schema declarations) and

constraints (based on Schema predicates). Initial (and current) values and conditions were

changed while rerunning and/or resuming the simulation in the process of verifying

consistency and completeness against the Statecharts specification.

3.3 Specification Tests

The Statecharts model is examined in two different ways. First, the State/Activity charts are

tested as finite state machines (ensuring state transition conditions and activity triggers are

deterministic). Next, their functionality is tested. The actual outputs (values generated by the

State/Activity charts simulations) are compared with the expected output.

3.3.1 Finite State Machine Approach

This approach assures against absorbing States/Activities as well as nondeterministic

State/Activity transitions. Bogdanv and Holcombe have discussed how to test Statecharts for

an aircraft control system [23] by examining the underlying finite state machine(s). We

extend their method to evaluate if the Statecharts are behaviorally equivalent to the SRS. In

other words, every activity and state transition is exercised as described in the SRS.

3.3.2 Data Item Approach

In the data item approach, the state/activity charts are treated like a software program (i.e.,

black-box testing). Test cases are generated to evaluate if the Statecharts model produces the

correct data outputs. Input and expected output values are determined based on the

information from the data dictionary and according to the SRS/Z schemas. This test assures

that there are no inconsistent or unspecified data driven operations.

3.4 Fault Injection

Fault injection is used to observe how the software system behaves under experimentally-

controlled anomalous circumstances. Voas et al., claim that system anomalies are caused by

either faulty code or corrupted input, or some combination of both [24]. Their approach

injects faulty codes into the software and then observes the software behavior. Conversely,

we injected faults (i.e., by altering the correct values of system variables) into an executable

model of the SRS while it is being run (i.e., at various stages of execution).

After injecting faults into the model, we observe the behavior to detect if there are any

incorrect state transitions and/or outputs. The choice of test cases is based on a functional

analysis of the submodules. Submodules are evaluated to determine if they could cause a

critical failure. Fault injection is not performed on non-critical submodules. In this way, the

SRS is evaluated for the fault-tolerance.

4 APPLICATION EXAMPLE

In this section, an example is presented to explain how to apply the method described

above[25, 26]. This section shows one small part (i.e., ARSP submodule) of the larger NL-

based GCS SRS that was transformed.

The selected Altitude Radar Sensor Processing (ARSP) submodule specification shows

inputs, outputs, and subsystem processing descriptions. The SRS provides a data dictionary

with variable definitions, type, and units, and a brief description of variables and functions.

This module specification was abstracted into Z, preserving the variable names, operations

(i.e., functionality), dependency and scope. Figure 2 provides an example using the

FRAME_COUNTER input variable that illustrates the complete translation from the SRS to

Z and Statecharts. The top box in the Figure 2 represents the SRS. The box in the middle of

the Figure 2 represents the Z Specification while the bottom box shows a part of the

Statecharts model. In the SRS, the FRAME_COUNTER is defined as an integer with range

[1,231-1]. In Z, the FRAME_COUNTER is declared as a set of natural numbers in the

declaration part, and the range of the variable is represented in the predicate part (lower half

of the schema). The Statecharts representation of the FRAME_COUNTER variable is

presented with the direction of data transfer from EXTERNAL into the ARSP Module. Its

type and value range are defined in the Statemate data dictionary.

In translating from the SRS to Z, four different ambiguous requirements were identified.

The first ambiguity committed leaves the rotational direction (i.e., left/right array shifting)

because it only specifies “rotate.” Second, an undefined third order polynomial was revealed

that is used to estimate the AR_ALTITUDE value. The third ambiguity concerns the use of

the AR_COUNTER variable for two different purposes, which implies that it has two

different types. Finally, there is uncertainty regarding the scope of the AR_COUNTER

variable that brings into question which module should modify this variable.

Given these various issues, two scenarios were considered. The first scenario assumes the

AR_COUNTER is updated within the ARSP module while the second scenario assumes that

the AR_COUNTER is updated outside of the module. Both scenarios were constructed

separately and compared to understand how Z could be useful in clarifying ambiguity and

avoiding conflicts.

In this first scenario (Scenario One) to properly update AR_COUNTER within the ARSP,

the two different purposes of the variable should be separated. Accordingly, the Z

specification of the ARSP was defined to account for two separate variables (AR_COUNTER

and Echo). This implies that the AR_COUNTER represents only the pulse counter while

Echo represents whether the radar echo pulse is received on time. The Z specification is

consistent with the SRS as long as the newly introduced variable (Echo) does not cause a side

effect. The Echo was treated as an additional ARSP input. Obtaining the input value requires

changes of the SRS outside of the ARSP module. This in turn requires the specification to be

revised to satisfy the data decoupling principle [27]. Therefore, the interpretation of Scenario

One is inconsistent with the SRS.

ARSP_RESOURCE
1 FRAME_COUNTER? : N
2 AR_ FREQUENCY? : R
3 AR_COUNTER? : Z
4 K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW : {0,1}

5 AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
AR_ALTITUDE_NEW: R

6 AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,
AR_STATUS_NEW : {0,1}

7 K_ALT: K_ALT_NEW x K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4
8 AR_STATUS: AR_STATUS_NEW x AR_STATUS_1 x AR_STATUS_2 x

AR_STATUS_3 x AR_STATUS_4
9 AR_ALTITUDE: AR_ALTITUDE_NEW x AR_ALTITUDE_1 x AR_ALTITUDE_2 x

AR_ALTITUDE_3 x AR_ALTITUDE_4
 AR_COUNTER? e -1..32767
 AR_FREQUENCY? e 1..2450000000
 FRAME_COUNTER? e 1..2147483647
 AR_ALTITUDE_1 == 1..2000 ¶ AR_ALTITUDE_2 == 1..2000 ¶
AR_ALTITUDE_3 == 1..2000 ¶ AR_ALTITUDE_4 == 1..2000 ¶
AR_ALTITUDE_NEW ==1..2000

INPUT
AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT
AR_ALTITUDE AR_STATUS

K_ALT

PROCESS:
It is only necessary that this functional module …

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none
RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

Module Specification Data Dictionary

Z Specification

Statecharts

NL-Based SRS

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER

GUIDANCE_STATE

SENSOR_OUTPUT
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE

AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

Figure 2. Translation example from NL-based to Statecharts

Conversely, in Scenario Two (details described in Section 4.1) no additional variables

were defined. Only the variables defined in the SRS were modeled (as well as covering the

required ARSP behaviors). Therefore, this reformulation of the SRS in Z was considered

complete and consistent. The Statecharts were developed based on Scenario Two.

4.1 Z Specification

Scenario Two is described here. This scenario assumes that the AR_COUNTER value is

updated outside of the ARSP module (i.e., ready for immediate use). When the

AR_COUNTER value is –1 this indicates that the echo of the radar pulse has not yet been

received. If the AR_COUNTER value is a positive integer, this means that the echo of the

radar pulse arrived at the time indicated by the value of the counter.

The ARSP_RESOURCE schema (Figure 3) defines the ARSP module input and output

variables. The FRAME_COUNTER? (Signature [Sig] 1) is an input variable giving the

present frame number and its type is a natural number. AR_FREQUENCY? (Sig2)

represents the rate at which the AR_COUNTER? is incremented and its type is a real number.

The AR_COUNTER? (Sig3) is an input variable that is used to determine the

AR_ALTITUDE value and its type is an integer. The K_ALT_1, K_ALT_2, K_ALT_3,

K_ALT_4, and K_ALT_NEW (Sig4) variables are defined as sets of binary elements. The

K_ALT value is updated in the ARSP to be used in the Guidance Processing (GP) module to

determine the correction term value of GP_ALTITUDE variable. The AR_ALTITUDE_1,

AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4, and AR_ALTITUDE_NEW

(Sig5) are defined as a set of real numbers to represent the altitude that is determined by

altimeter radar. AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4, and

AR_STATUS_NEW (Sig6) are defined as binary values that represent the health status for

various elements of the altimeter radar. The AR_STATUS, AR_ALTITUDE, and K_ALT

(Sigs7-9) arrays hold the previous 4 values and the current value of their elements

respectively.

These variables were defined as a 5-element array in the SRS. Z does not have a specific

array construct so these variables are designed as 5-element Cartesian products. The array

can also be represented as a 5-element sequence. The Cartesian product method was chosen

because this composition assumes that any element can be accessed directly without having

to search though the sequence. The predicates , , and represent the variables ranges.

The predicate restricts the values for the sets in the Signature 5.

ARSP_RESOURCE
1 FRAME_COUNTER? : N
2 AR_ FREQUENCY? : R
3 AR_COUNTER? : Z
4 K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}
5 AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,

AR_ALTITUDE_NEW: R
6 AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4, AR_STATUS_NEW: {0,1}
7 K_ALT: K_ALT_NEW x K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4
8 AR_STATUS: AR_STATUS_NEW x AR_STATUS_1 x AR_STATUS_2 x AR_STATUS_3 x

AR_STATUS_4
9 AR_ALTITUDE: AR_ALTITUDE_NEW x AR_ALTITUDE_1 x AR_ALTITUDE_2 x

AR_ALTITUDE_3 x AR_ALTITUDE_4
 AR_COUNTER? e -1..32767
 AR_FREQUENCY? e 1..2450000000
 FRAME_COUNTER? e 1..2147483647
 AR_ALTITUDE_1 == 1..2000 ¶ AR_ALTITUDE_2 == 1..2000 ¶
AR_ALTITUDE_3 == 1..2000 ¶ AR_ALTITUDE_4 == 1..2000 ¶
AR_ALTITUDE_NEW ==1..2000

Figure 3. ARSP_RESOURCE schema

The ARSP schema (Figure 4) is the main functional schema of the ARSP module. The

ARSP_RESOURCE schema is imported (and is modified) in the Sig1. The

Altitude_Polynomial function (Sig2) obtains the AR_ALTITUDE as input and estimates the

current altitude by fitting a third-order polynomial to the previous value of the

AR_ALTITUDE. AR_STATUS_Update (Sig3), K_ALT_Update (Sig4), and

AR_ALTITUDE_Update (Sig5) update AR_STATUS, K_ALT, and AR_ALTITUDE array

with their _NEW values respectively. The expression “FRAME_COUNTER? mod 2” is used

on 7 occasions in the predicates to determine if the FRAME_COUNTER? is odd or even.

Predicate requires that the current AR_ALTITUDE, AR_STATUS, and K_ALT

element values be the same as the predecessors when FRAME_COUNTER? is even.

Predicate constraints the AR_ALTITUDE update. The update takes the current value when

FRAME_COUNTER? is odd and AR_COUNTER? is greater than or equal to zero. Predicate

 states that the AR_ALTITUDE value is updated (i.e., estimated) by the

Altitude_Polynomial function. This is done when FRAME_COUNTER? is odd,

AR_COUNTER? is -1, and all the AR_STATUS elements are healthy.

ARSP
1 D ARSP_RESOURCE
2 Altitude_Polynomial: AR_ALTITUDE f R
3 AR_STATUS_Update: AR_STATUS_NEW x AR_STATUS f AR_STATUS
4 K_ALT_Update: K_ALT_NEW x K_ALT f K_ALT
5 AR_ALTITUDE_Update: AR_ALTITUDE_NEW x AR_ALTITUDE f AR_ALTITUDE

 FRAME_COUNTER? mod 2 = 0 ¤
AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_NEW, AR_ALTITUDE) ¶
AR_STATUS’ = AR_STATUS_Update (AR_STATUS_NEW, AR_STATUS) ¶ K_ALT’ =
K_ALT_Update (K_ALT_NEW, K_ALT)

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0 ¤ AR_ALTITUDE’=
AR_ALTITUDE_Update ({AR_COUNTER? * 300000000 div AR_FREQUENCY div 2},
AR_ALTITUDE)

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS = (_, 0, 0, 0, 0) ¤
AR_ALTITUDE’ =
AR_ALTITUDE_Update ({Altitude_Polynomial AR_ALTITUDE}, AR_ALTITUDE)

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS Î (_, 0, 0, 0, 0) ¤
AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_1, AR_ALTITUDE)

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0 ¤ AR_STATUS’ =
AR_STATUS_Update(0, AR_STATUS) ¶ K_ALT’ = K_ALT_Update(1, K_ALT)

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS = (_, 0, 0, 0, 0) ¤
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(1, K_ALT)

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS Î (_, 0, 0, 0, 0) ¤
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(0, K_ALT)

Figure 4. ARSP schema

Predicate requires that the current value in AR_ALTITUDE be the same as the

previous values when FRAME_COUNTER? is odd, AR_COUNTER? is -1 and any of the

elements in AR_STATUS are not healthy. Predicate requires that the updates to

AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd and the

AR_COUNTER? is -1. Predicate requires that the updates to AR_STATUS and K_ALT

occur when FRAME_COUNTER? is odd, the AR_COUNTER? is -1, and all of the

AR_STATUS elements are healthy. Predicate requires that the updates to AR_STATUS

and K_ALT occur when FRAME_COUNTER? is odd, AR_COUNTER? is -1, and any of the

elements in AR_STATUS is not healthy.

4.2 Statecharts

The state/activity charts, derived from the Z specification are described in here. The ARSP

Activity-chart (Figure 5) shows the data flow between the data stores (dotted line boxes) and

the ARSP module. The data flow directions reflect what is specified in the data dictionary of

the SRS. The “@INIT” control state in the ARSP activity chart represents the link to the

INIT Statechart (Figure 6). Each activity is allowed to have only one control state. The

control state can be a superstate or an AND/OR decomposed state.

INIT Statechart (Figure 6) shows the initialization of the ARSP module and a portion of

the ARSP operational schema (Figure 4). The default transition activates the

CURRENT_STATE when the ARSP activity (in the ARSP activity chart) is begun. The

transition from the CURRENT_STATE state to KEEP_PREVIOUS_VALUE state describes

predicate of Figure 4. The KEEP_PREVIOUS_VALUE state is one of the module

termination states. The termination states are marked with “>” at the end of the state name.

The transition from the CURRENT_STATE to the CALCULATION state represents a

condition where the value of FRAME_COUNTER is odd, described by the statement

“FRAME_COUNTER mod 2 = 1” in Figure 4.

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER

GUIDANCE_STATE

SENSOR_OUTPUT
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE

AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

Figure 5. ARSP activity-chart

INIT

[MOD(FRAME_COUNTER, 2)=1]/
st!(CALCULATE)

CURRENT_STATE

KEEP_PREVIOUS_VALUE> CALCULATION

[MOD(FRAME_COUNTER, 2)=0]/
AR_ALTITUDE(4):=AR_ALTITUDE(3);
AR_ALTITUDE(3):=AR_ALTITUDE(2);
AR_ALTITUDE(2):=AR_ALTITUDE(1);
AR_ALTITUDE(1):=AR_ALTITUDE(0);
AR_STATUS(4):=AR_STATUS(3);
AR_STATUS(3):=AR_STATUS(2);
AR_STATUS(2):=AR_STATUS(1);
AR_STATUS(1):=AR_STATUS(0);
K_ALT(4):=K_ALT(3);
K_ALT(3):=K_ALT(2);
K_ALT(2):=K_ALT(1);
K_ALT(1):=K_ALT(0)

Figure 6. INIT statechart

The Altimeter Statechart (Figure 7) is represented by the “@ALTIMETER” control

activity in the ARSP activity chart (Figure 5). The ODD state is activated by the default

transition when the CALCULATION activity (in the ARSP activity chart) is begun. The

transition from the ODD state to the ESTIMATE_ALTITUDE state occurs when the

AR_COUNTER value is set to -1 and all the elements of the AR_STATUS array are set to

“healthy.” When this transition begins the AR_STATUS and K_ALT values are updated as

described by predicate of Figure 4. The 0 (zero) value of the AR_STATUS means

“healthy” which corresponds to the value given in the SRS data dictionary [2].

The transition from the ODD state to the CALCULATE_ALTITUDE state begins when

the AR_COUNTER is positive, which is equivalent to predicate of Figure 4. The

transition from the ODD to the KEEP_PREVIOUS state is triggered when the

AR_COUNTER value is set to -1 and at least one of the AR_STATUS elements is not

healthy. This transition has the same meaning as predicate in Figure 4. The transition from

the ESTIMATE_ALTITUDE state to the DONE state happens when the

ESTIMATION_FINISHED event occurs. This process is represented as an event because the

transaction is described as an undefined third-order polynomial estimation in the SRS. The

transaction from the CALCULATE_ALTITUDE state to the DONE state denotes predicate

 (Figure 4). The transaction from the KEEP_PREVIOUS state to the DONE state denotes

the predicate (Figure 4) operation.

ALTIMETER

DONE>

[AR_COUNTER=-1]
and [AR_STATUS(1)=0]
and [AR_STATUS(2)=0]
and [AR_STATUS(3)=0]
and [AR_STATUS(4)=0]
/AR_STATUS(0):=1;
K_ALT(4) := K_ALT(3);
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 1

/AR_ALTITUDE(4) := AR_ALTITUDE(3);
AR_ALTITUDE(3) := AR_ALTITUDE(2);
AR_ALTITUDE(2) := AR_ALTITUDE(1);
AR_ALTITUDE(1) := AR_ALTITUDE(0)

ESTIMATION_FINISHED

/AR_ALTITUDE(4) := AR_ALTITUDE(3);
AR_ALTITUDE(3) := AR_ALTITUDE(2);
AR_ALTITUDE(2) := AR_ALTITUDE(1);
AR_ALTITUDE(1) :=
(AR_COUNTER /AR_FREQUENCY)* 300000000/2

[AR_COUNTER=-1]
and ([AR_STATUS(1)=1]
or [AR_STATUS(2)=1]
or [AR_STATUS(3)=1]
or [AR_STATUS(4)=1]
/AR_STATUS(4) := AR_STATUS(3);
AR_STATUS(3) := AR_STATUS(2);
AR_STATUS(2) := AR_STATUS(1);
AR_STATUS(1) := AR_STATUS(0);
AR_STATUS(0):=1;
K_ALT(4) := K_ALT(3);
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 0

[AR_COUNTER>=0]
/AR_STATUS(4) := AR_STATUS(3);
AR_STATUS(3) := AR_STATUS(2);
AR_STATUS(2) := AR_STATUS(1);
AR_STATUS(1) := AR_STATUS(0);
AR_STATUS(0):=0;
K_ALT(4) := K_ALT(3);
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 1

ODD

CALCULATE ALTITUDEESTIMATE_ALTITUDE KEEP_PREVIOUS

Figure 7. ALTIMETER statechart

4.3 Specification Tests

The statechart models described here and in the appendix are validated for completeness and

consistency using symbolic simulation. Two specification test results (based on approaches

described in Section 3.3) are presented in this section.

4.3.1 Finite State machine approach

There are four possible paths for activity/state transitions in the ARSP Statecharts model.

Path 1 represents the ARSP module’s processing when the FRAME_COUNTER is even. Path

2 represents the condition when the updated FRAME_COUNTER is an odd number, the radar

echo pulse is not yet received, and all the AR_STATUS elements’ values are healthy. Path 3

is taken when the updated FRAME_COUNTER is an odd value, the radar echo pulse has been

received, and all the AR_STATUS elements’ values are healthy. Path 4 describes the

condition when the updated FRAME_COUNTER value is odd, the echo has not arrived, and

one or more of the AR_STATUS elements’ values are not healthy.

The simulation results in Table 2 show the order of the activities/states entered for each

path. One can conclude that the ARSP Statecharts model does not have any absorbing states

or activities and the module is complete indicating that the SRS is complete (at least for the

ARSP submodule).

Table 2. ARSP specification simulation result

Activity/State Transition Paths Name of Chart Activity / State Name
1 2 3 4

ARSP E1 E1 E1 E1
@INIT E2 E2 E2 E2
CALCULATE - E5 E5 E5

ARSP

@ALTIMETER - E6 E6 E6
CURRENT_STATE E3 E3 E3 E3
KEEP_PREVIOUS_VALUE> E4 - - - INIT
CALCULATION - E4 E4 E4
ODD - E7 E7 E7
ESTIMATE_ALTITUDE - E8 - -
CALCULATE_ALTITUDE - - E8 -
KEEP_PREVIOUS - - - E8

ALTIMETER

DONE> - E9 E9 E9
 Ei entered in ith order, - not activated.

4.3.2 Data Item approach

Five test cases (Case 1-5) as shown in Table 3 were defined to test the Statecharts. They

represent the way the Z schemas were visualized and evaluated. The input and output values

were calculated based on the equations in the SRS. The AR_FREQUENCY variable is used

to determine the AR_ALTITUDE value (represented as a state transition from the

“CALCULATE_ALTITUDE” state to the “DONE>” state in Figure 7). The

AR_FREQUENCY variable is defined as a real number with a large range. Consequently, it

is not used as a system state variable in the Statecharts model. Instead, its value is fixed as a

constant. To calculate the expected output value of AR_ALTITUDE, the AR_FREQUENCY

value is fixed at 1.5e9 for all test cases. Table 3 and 4 show how each of the conditions was

evaluated and this should help to convince the reader that the ARSP subunit (one of six

different sensor units which make up the complete GCS platform) is significantly complex.

The values of the ARSP input/output variables are given in Table 3. The contents of

Table 4 represent the highlighted column of Table 3 in detail. In Case1, for example, input

variables for ARSP submodule are FRAME_COUNTER, AR_STATUS, and

AR_COUNTER and their values are 2, “Don’t care”, and -1. “Don’t care” means that the

AR_STATUS variable can take any value in its range. The output variables of the ARSP

submodule are AR_STATUS, K_ALT, and AR_ALTITUDE. The expected values of each of

the output variables depend on the module inputs and their value before the execution. The

expected values of the output variables are determined prior to the simulation. The “After the

execution” values (shown in Table 4) represent the actual outputs from the Statecharts model

simulation. The test results are correct when the expected values and the after execution

values match. The actual output values for all the test cases match the expected output values

(as shown in Table 3). Therefore, the result of this simulation shows that the Z specification

was developed correctly.

Table 3. ARSP specification test input and output

 Variable Case 1 Case 2 Case 3 Case 4 Case 5
FRAME_COUNTER 2 2 1 1 3
AR_STATUS - - [0, 0, 0, 0, 0] - [0, 0, 1, 0, 0]Input
AR_COUNTER -1 19900 -1 20000 -1
AR_STATUS KP KP [1, 0, 0, 0, 0] [0, -, -, -, -] [1, 0, 0, 1, 0]
K_ALT KP KP [1, 1, 1, 1, 1] [1, -, -, -, -] [0, 1, 1, -, 1]Expected

Output
AR_ALTITUDE KP KP [*, -, -, -, -] [2000,-,-,-,-] KP
AR_STATUS KP KP [1, 0, 0, 0, 0] [0, -, -, -, -] [1, 0, 0, 1, 0]
K_ALT KP KP [1, 1, 1, 1, 1] [1, -, -, -, -] [0, 1, 1, -, 1]Actual

Output
AR_ALTITUDE KP KP [*, -, -, -, -] [2000,-,-,-,-] KP

- Don’t care, KP Keep Previous value, * An estimated value.

Table 4. Detailed testing results – Case 1 example

Case 1
 Variable

Before the execution Expected values After the execution
FRAME_COUNTER 2 2 2

AR_STATUS - - - Input
AR_COUNTER -1 -1 -1
AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1,1,0,0,0]

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1] Output
AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [2000, 2000, -, -, -]

- Don’t care.

4.4 Fault Injection

Simulation of the specification is used for discovering hidden faults and their location. To

accomplish this, faults are injected into the model to simulate memory corruption (i.e.,

expected due to the harsh environment.) For example, one can alter a system state variable

(e.g., FRAME_COUNTER) at a certain state (e.g., CURRENT_STATE) during the

simulation for Case 1. Table 5 gives the fault injection results of the FRAME_COUNTER

alteration at CURRENT_STATE. The expected values of the output variables are not the

same as the actual values of the output due to the state variable change (depicted as the

highlighted x mark in Table 6).

Table 5. Detailed fault injection results – Case 1 example

Case 1
 Variable

Before the execution Expected values After the execution
FRAME_COUNTER 2 2 2

AR_STATUS - - - Input
AR_COUNTER -1 -1 -1
AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1/0,1,0,0,0]

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1] Output
AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [*, 2000, -, -, -]

- Don’t care, * An estimated value.

Table 6. Fault injection simulation result
Altered state variable

FRAME_COUNTER AR_COUNTER AR_STATUS
Case Case Case

Fault injected State

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
CURRENT_STATE x x x x x x x x x x x x x x x

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
CALCULATION b b b b b b b x x x b b x b x

ODD b b b b b b b x x x b b x b x
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b
x incorrect outputs, b no defect, N/A not applicable.

Table 6 shows 120 fault injection results. The “CURRENT_STATE” does not tolerate

any of the injected faults. In addition, fault injection in the CALCULATION and ODD

system states produces erroneous outputs. Therefore, one can conclude that these three

system states are the most vulnerable.

The Statecharts approach has a better chance of predicting possible faults in the system.

The Z specification cannot provide a way to predict the transitions from state to state. (i.e., Z

is not executable.) Three new issues arose during the fault injection process. (1) Some correct

inputs produced incorrect outputs; (2) Some weak points were found where faults were

hidden (e.g., errors described in Appendix C in [26]); (3) During the execution of the model,

some errors such as memory overflow were uncovered. Finding the correct formulation is a

process of refinement and validation, which was facilitated using this approach.

4.5 Reformulated Requirements

The result of this analysis revealed that it is possible to construct a complete and consistent

specification using this method (Z-to-Statecharts). Ambiguous statements in the SRS were

revealed during the construction of Z schemas. When a misinterpreted specification in Z was

uncovered during the execution of the Statecharts model, Z specification was refined using

the test results.

Based on the simulation results using fault injection, the SRS was discovered to be

incomplete. To remedy the situation, the AR_FREQUENCY value must be bounded to

prevent the AR_ALTITUDE value from exceeding its limit. Thus, one of the following

conditions should be included: 1¯AR_FREQUENCY¯AR_COUNTER * 75000, or

AR_COUNTER = -1 v (0 ¯ AR_COUNTER ¯ AR_FREQUENCY/75000). In other words,

one of these two relational expressions must evaluate as true.

5 CONCLUSION

This paper discusses the methods and results as they relate to the ARSP submodule which

was part of a larger system specification. The actual study covered additional submodules as

well as the overall structure of the GCS. The other submodules specified and analyzed

include the ARSP (Altimeter Radar Sensor Processing), GP (Guidance Processing), RECLP

(Roll Engine Control Law Processing), and CP (Communication Processing). The choice of

these submodules for specification was made based on the GCS run-time schedule.

Z was used first to detect and remove ambiguity from this portion of the NL-based GCS

SRS. Next, Statecharts, Activity-charts, and Module charts were constructed to visualize the

Z description and make it executable. Using executable models, the system behavior was

assessed under normal and abnormal conditions. Faults were seeded into the executable

specification to probe how the system would perform. Missing or incorrectly specified

requirements were found during the process. The integrity of the SRS was assessed in this

manner. This approach can help avoid the problems that result when incorrectly specified

artifacts (i.e., in this case requirements) force corrective work.

The results of this analysis indicated that the portion of the GCS SRS under study was

inconsistent, incomplete and not completely fault-tolerant. The findings indicate that one can

better understand the implications of the system requirements using this approach (Z-

Statecharts) as the basis for their specification and analysis. The time involved generating the

Z specification (considering all variables and functional specifications) is a major concern.

Naturally, the amount of time necessary for generating a formalization of a NL-based

specification will vary based on the inherent complexity of the SRS.

In the long run we envision this approach will be useful in a more general sense as a

means to avoid incompleteness and inconsistencies. Undoubtedly, the dynamic behavioral

analysis is useful in avoiding major design flaws. Refinement between these two formalisms

gives pertinent analysis of the problem – i.e., operational errors between states, functional

defects, lack of such properties such as fault tolerance, etc.

6 REFERENCES

1. Kotonya G, Sommerville I. Requirements Engineering: Process and Techniques. Wiley,

1998.

2. NASA. Software Requirements - Guidance and Control Software Development

Specification Ver 2.2 with the formal mods 1-8. NASA, Langley Research Ctr 1993.

3. Shaw AC. Real-Time Systems and Software. Wiley, 2001.

4. Leveson N. Safeware - system safety and computers. Addison Wesley, 1995.

5. Czerny B. Integrative Analysis of State-Based Requirements for Completeness and

Consistency. PhD dissertation in Computer Science, Michigan State University. 1998.

6. Pradhan DK. Fault-Tolerant Computer System Design. Prentice Hall. 1996. pp 428-477.

7. Gaudel M-C, Bernot G. The Role of Formal Specifications. In: Astesiano E, et al. (eds).

IFIP State-of-the-Art Report: Algebraic Foundations of Sys Spec. Springer. 1999.

8. Vliet HV. Software Engineering: Principles and Practice. Wiley, 2000.

9. Sannella D, Tarlecki A. Algebraic Preliminaries. In: Astesiano E, et al. (eds). IFIP State-

of-the-Art Reports: Algebraic Foundations of Sys Spec. Springer. 1999.

10. Fabbrini F, et al. An Automatic Quality Evaluation for Natural Language Requirements.

7th Int. Workshop on Req. Eng.: Foundation for SW Quality (REFSQ) 2001. Accessed

from: www.ifi.uib.no/conf/refsq2001/papers/p3.pdf. Accessed on: Mar. 25, 2002.

11. Heitmeyer C, et al. Using Abstraction and Model Checking to Detect Safety Violations

in Requirements Specification. IEEE Trans on SW Eng 1998; 24 (11): 927-948.

12. Heimdahl MPE, Leveson NG. Completeness and consistency in Hierarchical State-Based

Requirements. IEEE Trans on SE 1996; 22 (6): 363-377.

13. He X. PZ nets - a formal method integrating Petri nets with Z. Info and SW Tech 2001;

43: 1-18.

14. Hierons RM, Sadeghipour S, Singh H. Testing a system specified using Statecharts and

Z. Info and SW Tech 2001; 43 (2001): 137-149.

15. Bussow R, Weber M. A Steam-boiler Control Specification with Statecharts and Z.

LNCS 1165. 1996.

16. Grieskamp W, Heisel M, Dorr H. Specifying Embedded Systems with Statecharts and Z:

An Agenda for Cyclic Software Components. LNCS 1382. 1998.

17. Damm W, et al. Statecharts - Using Graphical Specification Languages and Symbolic

Model checking in the Verification of a Production Cell. LNCS 891. 1995.

18. Bussow R, Geisler R, Klar M. Specifying Safety-Critical Embedded Systems with

Statecharts and Z: A Case Study. LNCS 1382. 1998.

19. Castello R. From Informal Specification to Formalization: an Automated Visualization

Approach. PhD dissertation in Computer Science, University of Texas at Dallas. 2000.

20. Woodcock J, Davies J. Using Z: Specification, Refinement, and Proof. Series of Comp

Sci. Prentice Hall Int, 1996.

21. Harel D. Statecharts: A Visual Formalism for Complex Systems. Sci of Comp Prog

1987; 8: 231-274.

22. Harel D, Politi M. Modeling Reactive Systems with Statecharts. McGraw-Hill, 1998.

23. Bogdanov K, Holcombe M. Statechart testing method for aircraft control systems.

Software Testing, Verification & Reliability 2001; 11 (1): 39-54.

24. Voas J, et al. A Crystal Ball for Software Liability. IEEE Computer 1997; 30 (6): 29-36.

25. Sheldon FT, Kim HY, Zhou Z. A Case Study: Validation of the Guidance Control

Software Requirements for Completeness, Consistency, and Fault Tolerance. Proc of

IEEE 2001 Pacific Rim Intl Symp on Dependable Comp. 2001. Seoul, Korea. IEEE

Computer Society. pp 311-318.

26. Sheldon FT, Kim HY. Validation of Guidance Control Software Requirements

Specification for Reliability and Fault-Tolerance. Proc of Annual Reliability and

Maintainability Symp. 2002. Seattle, WA. USA. IEEE. pp 312-318.

27. Sommerville I. Software Engineering. 6th edn. Addison-Wesley, Reading, MA 2000.

APPENDIX4

4 The appendix gives the total system architecture. The statecharts are included as background material. We do
not plan to include this appendix in the final version. The final proved Z schemas can be obtained from
http://www.eecs.wsu.edu/seds/hkim_thesis_final_ilogix.pdf or the http://www.ilogix.com university page.

The Guidance and Control Software (GCS) principally provides control during the terminal

phase of descent for the Viking Mars Lander. The lander has three accelerometers, one

Doppler radar with four beams, one altimeter radar, two temperature sensors, three

gyroscopes, three pairs of roll engines, three axial thrust engines, one parachute release

actuator, and a touch down sensor. After initialization, the GCS starts sensing the vehicle

altitude. When a predefined engine ignition altitude is sensed, the GCS begins guidance and

control of the vehicle. The purpose of this software is to maintain the vehicle along a

predetermined velocity-altitude contour. Descent continues along this contour until a

predefined engine shut off altitude is reached or touchdown is sensed.

Figure A-1 shows the overall system architecture of the GCS software. The circled parts

are the subunits consisting of the partial specification for this case study. The partial

specification that was examined includes one sensor processing unit, one actuator unit, and

the two core subunits of the GCS system (circled units in Figure A-1). All other subunits are

ignored in this case study except the data stores. Control and data flows between the

excerpted modules are the same as they are represented in the Module chart (Figure A-2).

The choice of parts for this study is made based on its run-time schedule (Table A-1). The

GCS has a predetermined running time frame that consists of three subframes. Each subframe

has specific submodules to run. The partial specification in this study consists of one

submodule from each subframe and a submodule that runs every subframe. ARSP (Altimeter

Radar Sensor Processing) is running in the first subframe, GP (Guidance Processing) is

running in the second subframe, and RECLP (Roll Engine Control Law Processing) is

running in the third subframe. CP (Communication Processing) is running in every subframe.

In SRS, CP is specified as the last submodules to run for every subframe. The order of the

submodules in the same subframe is not declared except CP must run last.

The ARSP (Altimeter Radar Sensor Processing) is a sensor processing submodule of the

GCS. This functional unit reads the altimeter counter provided by the altimeter radar sensor

and converts the data into a measure of distance to the surface of Mars. The CP is a

submodule that converts the sensed data into a data packet appropriate for radio

transformation. The data packets are relayed back to the orbiting platform for relay to Earth.

The GP (Guidance Processing) is the core-processing submodule of the GCS. This module

gathers the information from the entire sensor processing subunits and the previous

computational results. Then, it manages the vehicle’s state during the descent by controlling

the actuators. The RECLP (Roll Engine Control Law Processing) is an actuator unit that

computes the value settings for three roll engine. The roll engine value settings are calculated

to fix the difference between the vehicle’s measured values during operation and the

designated trajectory values.

Table A-1. Functional unit schedule [2]

SCHEDULING
Sensor Processing Subframe (Subframe 1)
ARSP 1
ASP 1
GSP 1
TDLRSP 1
TDSP 5
TSP 2
CP 1
Guidance Processing Subframe (Subframe 2)
GP 1
CP 1
Control Law Processing Subframe (Subframe 3)
AECLP 1
CRCP 5
RECLP 1
CP 1

SENSOR_OUTPUT

GUIDANCE_STATE

CRCP AECLP RECLP

CONTROL AND
TELEMETRY

OUTPUTS
CP

SENSOR DATA

ASP GSP TSP ARSP TDLRSP ASP

GP RUN_PARAMETERS

PACKET

Figure A-1. GCS system structure

The module chart presented in the Figure A-3 is the correct version of the module chart.

The difference between two figures is because the NL-based SRS provides incomplete data

transition directions with the Figure A-1.

 SENSOR_DATA

CONTROL_TELEMETER_OUTPUT

ARSP

RECLP

GP

CP

SENSOR_OUTPUT

RUN_PARAMETER

GUIDANCE_STATE

Figure A-2. A module chart of GCS excerpt

Figure A-3. Actual module chart of the GCS excerpt

 In a GCS project created in the Statemate, the GCS activity chart is developed. Figure A-

4 shows the GCS activity chart with four data stores which contains the data definitions. The

GCS activity is representing the GCS schemas. The data stores contain the same variable

definitions of Z schemas. The @GCS_CONTROL state represents a link with the

GCS_CONTROL statechart. The @ARSP, @CP, @ GP, and @ RECLP activities are link to

their own activity charts. Every activity requires having only one control state.

Figure A-4. GCS activity chart

The GCS_CONTROL statechart (Figure A-5) represents the GCS_CONTROL schemas.

The default transition represent the moment START_SIGNAL? input for the GCS schema is

set to 1. The INITIALIZATION state is equivalent to the GCS_INIT schema.

@SUBFRAME1, @SUBFRAME2, and @SUBFRAME3 states represent the local state

variable defined in the GCS_RESOURCE schema. Every subframe has its own state charts

(Figure A-6 to A-8) linked to the superstate.

Figure A-5. GCS_CONTROL statechart

Figure A-6. SUBFRAME1 statechart

Figure A-7. SUBFRAME2 statechart

Figure A-8. SUBFRAME3 statechart

Figure A-9. ARSP activity chart

Figure A-10. ARSP_CONTROL state chart

The Figure A-9 and Figure 5 are the equivalent activity charts. Figure A-10 represents the

Z specification of the ARSP submodule shown in Figure 7. The Statecharts model in the

Section 4 has the ARSP activity, the CALCULATE sub-activity and two control states. The

ARSP submodule Statecharts model in this section is consists of one activity and one control

state based on the Z specification presented in the chapter 5 of the thesis (accessible by

downloading from http://www.eecs.wsu.edu/seds/hkim_thesis_final_ilogix.pdf).

This ARSP model has 4 distinctive paths. The simulation results of the state transition

path are as presented in the Table A-2.

Table A-2. ARSP specification simulation results

Activity/State Transition Paths
Name of Chart Activity / State Name

1 2 3 4
ARSP E1 E1 E1 E1 ARSP
@ARSP_CONTROL E2 E2 E2 E2
ARSP_START E3 E3 E3 E3
KEEP_PREVIOUS_VALUE E4 - - -
ESTIMATE_ALTITUDE - E4 - -
CALCULATE_ALTITUDE - - E4 -
KEEP_PREVIOUS - - - E4

ARSP_CONTROL

DONE E5 E5 E5 E5
 Ei entered in ith order, - not activated.

The test results using DIA are the same as shown in the Section 4.3.2. The fault injection

results are described in the Table A-3.

Table A-3. Fault injection simulation result

Altered state variable
FRAME_COUNTER AR_COUNTER AR_STATUS

Case Case Case
Fault injected State

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ARSP_START x x x x x x x x x x x x x x x

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b

Figure A-11. CP activity chart

Figure A-12. CP_CONTROL statechart

Figure A-13. GP activity chart

@SETUP_GP_ROTATION

en (ALL_ROTATED)

en (GP_ROTATION_SET)

CALCULATE_GP_AL_AT_VE
CALCULATION_COMPLETE

@ENGINE_ON_OFF

en (ENGINES_SET)

@DET_VELOCITY_ERROR @CONTROL_CHECK en (ERROR_DONE) @DET_PHASE
en (CONTOUR_CHECKED)

@CLP T

en (PHASE_SET)

en (CLP_SET)

GP_CONTROL
@ROTATION

Figure A-14. GP_CONTROL statechart

Figure A-15. RECLP activity chart

@RE_CMD_UPDATE
T

[RE_SWITCH=1]

/ THETA := THETA + DELTA_T * G_ROTATION(1)

RECLP_START

[RE_SWITCH=0]

/ RE_CMD := 1; RE_STATUS:=0

RECLP_CONTROL

Figure A-16. RECLP_CONTROL statechart

The CP submodule is too inconsistent to develop complete Statecharts model. Moreover,

the bit wise transactions needed to build the packet mask are too complicated to transform

into Statecharts (Covered by CP_PREP_MASK1-3 and CP_MASK schemas in Z). Therefore,

the CP model (Figure A-11 and A-12) is built with events that represent the functional

sequences that CP is required to follow. The CP has only one state transaction path which is

tested using the finite state machine approach (FSMA). The fault injection and data item

approach (DIA) test are not performed for this submodule because CP model did not have

enough data processing functionality and CP is not a submodule that can create catastrophic

failure for the system.

The GP submodule has multiple functions to perform. All the sequences of functions are

transformed into Statecharts model (Figure A-13 and A-14). However, it was impossible to

test all the data input and output with realistic variable values because the initial values of all

the variables are not clearly given. Therefore, FSMA test was performed on the entire GP

model while the data item approach test is performed on some parts of GP model that uses

only the variables processed inside of the GCS excerpt.

The FSMA and DIA test and Fault injections are performed on the RECLP submodule

(Figure A-15 and A-16). The test results are as presented in Table A-4 and A-6 to A-9. Table

A-5 shows the system constants for the simulation.

Table A-4. RECLP submodule simulation result

Activity/State Transition Paths
Name of Chart Activity / State Name

1 2 3 4 5 6 7 8
RECLP E1 E1 E1 E1 E1 E1 E1 E1 RECLP
@RECLP_CONTROL E2 E2 E2 E2 E2 E2 E2 E2
RECLP_START E3 E3 E3 E3 E3 E3 E3 E3 RECLP_CONTROL
@RE_CMD_UPDATE - E4 E4 E4 E4 E4 E4 E4
SET_RE_CMD - E5 E5 E5 E5 E5 E5 E5
RE_CMD1 - E6 - - - - - -
RE_CMD2 - - E6 - - - - -
RE_CMD3 - - - E6 - - - -
RE_CMD4 - - - - E6 - - -
RE_CMD5 - - - - - E6 - -
RE_CMD6 - - - - - - E6 -

RE_CMD_UPDATE

RE_CMD7 - - - - - - - E6

Table A-5. Variable values (constants) used for simulation

Variable name Values
DELTA_T 0.005

P1 0.005
P2 0.010
P3 0.015
P4 0.020

THETA1 0.010
THETA2 0.020

Table A-6. RECLP submodule specification test input and output (1)

 Variable Case 1 Case 2 Case 3 Case 4
G_ROTATION 1 0.016 -0.016 0.01 -0.01

Input
THETA -0.00500 0.005 -0.005 0.01
THETA -0.00492 0.00492 -0.00495 0.00995
RE_CMD 1 1 1 1 Output
RE_STATUS 0 0 0 0

Table A-7. RECLP submodule specification test input and output (2)

 Variable Case 5 Case 6 Case 7 Case 8
G_ROTATION 1 0.001 -0.001 -0.001 0.001 Input
THETA 0.005 -0.005 -0.015 0.015
THETA 0.005005 -0.005005 -0.015005 0.015005
RE_CMD 1 1 2 3 Output
RE_STATUS 0 0 0 0

Table A-8. RECLP submodule specification test input and output (3)

 Variable Case 9 Case 10 Case 11 Case 12
G_ROTATION 1 -0.006 0.006 -0.025 -0.015

Input
THETA -0.01 0.01 0 -0.001
THETA -0.01003 0.01003 -0.000125 -0.001075
RE_CMD 4 5 6 6 Output
RE_STATUS 0 0 0 0

Table A-9. RECLP submodule specification test input and output (4)

 Variable Case 13 Case 14 Case 15 Case 16
G_ROTATION 1 0.01 0.025 0.015 -0.01 Input
THETA -0.021 0 0.01 0.025
THETA -0.02095 0.000125 0.010075 0.02495
RE_CMD 6 7 7 7 Output
RE_STATUS 0 0 0 0

