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Abstract 

Software development starts from specifying the requirements. A Software Requirements 

Specification (SRS) describes what the software must do. Naturally, the SRS takes the core 

role as the descriptive documentation at every phase of the development cycle. To avoid 

problems in the latter development phases and reduce life-cycle costs, it is crucial to ensure 

that the specification be reliable.  In this paper, we describe how to model and test (i.e., 

check, examine, verify and prove) the SRS using two formalisms (Z and Statecharts). 

Moreover, these formalisms were used to determine strategies for avoiding design defects 

and system failures. We introduce a case study performed to validate the integrity of a 

Guidance Control Software SRS in terms of completeness, consistency, and fault-tolerance. 

Keywords: Z; Statecharts; Requirements specification validation; Completeness; 

Consistency; Fault-tolerance 

1 INTRODUCTION 

The trend of using software in embedded real-time systems and the fact that software 
                                                 
1 The appendix gives a total system architecture (see Figure A-1) and all the Statecharts. It is included as 
background material only.  We do not plan to include it in the final version.  The final proved Z schemas can be 
obtained from http://www.eecs.wsu.edu/seds/hkim_thesis_final_ilogix.pdf or the http://www.ilogix.com 
university page. 
* We would like to thank Kshamta Jerath (SEDS) for her valuable critique and Markus Degen (DaimlerChrysler) 
for reinforcing the need for a reliable software requirement specification especially in mission/safety critical 
applications. 



 

requirements are often complex necessitate the use of formal and rigorous approaches in the 

specification and validation of requirements. Requirements validation is concerned with 

checking the requirements document (i.e., SRS [Software Requirements Specification]) for 

consistency, completeness and accuracy [1]. In other words, validation ensures the 

specification represents a clear description of the system for design and implementation and 

is a final check that the requirements meet stakeholders’ needs. This process should be 

complete prior to design and implementation. In this paper, the SRS of an embedded real-

time software - the Viking Mars Lander Guidance Control Software [2]- is validated.  

The notations selected to express requirements or designs can have a very important 

impact on the construction time, correctness, efficiency, and maintainability of the target 

system. One desirable property for these notations is that they be precise and unambiguous, 

so that clients and implementers can agree on the required behaviors and observe them 

through some means of simulations. The notation should make it possible to state and prove 

properties of a system before it is built; then, if the system is constructed according to the 

specifications, there will be a high level of confidence that the system will exhibit certain 

properties and behaviors. This implies that the selected notation is not only formally defined 

but is also amenable to mathematical/logical manipulation. Observation of behaviors is 

particularly convenient if the specification language is executable. Executable specifications 

are also useful for clarifying and refining requirements and designs [3].  

The term ‘formal methods’ applies to a variety of methods that are used to ensure 

correctness of the software, and their common characteristic being a mathematical foundation 

that make it possible to prove correctness. The approach chosen combines a model-based FM 

which uses the theory of sets, propositional and predicate logic with a state-based 

diagrammatic formalism to visualize and simulate the specification (including fault 

injection). The Z is employed to prove correctness of the SRS while the behavior of 

executable specifications is gauged through visualization and simulation using Statecharts.  

1.1 Definitions 

Reliability, as applied to the SRS, investigates the questions: (1) is the specification correct, 



 

unambiguous, complete, and consistent; (2) can the specification be trusted to the extent that 

design and implementation can commence while minimizing the risk of costly errors; and (3) 

how can the specification be defined to prevent the propagation of errors into the downstream 

activities? 

The completeness of a specification is defined as a lack of ambiguity in the 

implementation. The specification is incomplete if the system behavior is not specified 

precisely because the required behavior for some events or conditions is omitted or is subject 

to multiple interpretations [4]. Consistency, the presence of a lack of ambiguity in 

requirements, means the specification is free from conflicting requirements and undesired 

nondeterminism [5].   

Typically, fault-tolerance is considered as an implementation methodology that provides 

for (1) explicit or implicit error detection for all fault conditions, and (2) backup routines for 

continued service to critical functions in case errors arise during operation of the primary 

software [6]. For the SRS, it can be defined as (1) existence of specified requirements to 

detect errors for all fault conditions, and (2) presence of specified requirements that support 

the system robustness, software diversity, and temporal redundancy for continuing service of 

critical system functions in the case of failure.  

2 RELATED RESEARCH 

In this section, several categories of analysis methods are introduced for the safety/mission 

critical system software requirements. In addition, a number of studies are presented that aim 

to find a way to verify the consistency and completeness of SRSs.  Numerous other case 

studies are reviewed that use Z and other formal methods, to gain benefit from visualization 

and/or dynamical assessment. 

2.1 Formal Methods 

Formal methods are a collection of techniques, rather than a single technology, most notably 

for specifying a software system. The sole objective is to provide a way to eliminate 

inconsistency, incompleteness, and ambiguities. Because formal methods have an underlying 

mathematical basis, they provide valid analysis of a system better than ad hoc reviews. There 



 

are several classes of distinguishable formal specification techniques.  They are property-

oriented specifications, model-oriented specifications, and operational specifications [7].  

In the property-oriented approaches, known as constructive techniques, one declares a 

name list of functions and properties. These approaches provide notations that can depict a 

series of data, and use equations to describe the system behaviors rather than building a 

model. These property-oriented approaches can be broken into algebraic and axiomatic 

specifications [8]. The algebraic specification describes a system consisting of a set of data 

and a number of functions over this set [9]. The axiomatic specification has its origin in the 

early work on program verification. It uses first-order predicate logic in pre- and post-

conditions to specify operations [8]. 

The objective of the model-oriented approach, known as declarative techniques, is to 

build a unique model from a choice of built-in data structures and construction primitives 

provided by the specification language [7]. This approach provides a direct way of describing 

system behaviors. The system is specified in terms of mathematical structures such as sets, 

sequences, tuples, and maps [8]. Model behaviors are compared against the specified 

functionality as a measure of correctness [7]. Vienna Development Method (VDM), B, and Z 

belong to this category. 

The operational/executable specification is another category of formal specification 

techniques. It provides sets of actions that describe the sequence of the system behavior and 

computational formulas that describe the performance calculation. Petri nets, process algebra, 

and state/activity charts in the STATEMATE2 environment [3] are within this category [7]. 

2.2 SRS Analysis/Evaluation/Assessment Studies 

There have been numerous studies with the goal of improving the integrity, identifying 

defects, and removing ambiguities (completeness and consistency). Fabbrini et al., proposed 

an automatic evaluation method called “Quality Analyzer of Requirements Specification 

(QuARS)” to evaluate quality. They define testability, completeness, understandability, and 

consistency as properties of a high quality SRS [10]. The QuARS tool parses requirement 

                                                 
2 STATEMATE Magnum – product of i-Logix, was used to conduct the research for this thesis. 



 

sentences written in natural language (NL) to detect potential sources of errors. This is a 

linguistic, informal evaluation approach rather than a formal method but it shows that 

informal systematic methods are useful for revealing errors. The authors claim this approach 

can be used for any domain based on the tool’s ability to customize its dictionaries.  

Heitmeyer et al., used the Software Cost Reduction (SCR) tabular notation to identify 

inconsistencies in SRSs. They describe, using this notation/method, how a safety violation is 

exposed. Typically, the enormous state space of practical software specifications renders 

direct analysis impractical [11]. They used the “Two Pushbutton” abstraction method to 

reduce a system state space from infinite to finite. Two redundant specifications represent the 

required system behavior using both Petri-net and TRIO specification logic. They abstracted 

and analyzed their SRS with Spin and a simulator that was developed to support the SCR 

method.  

Heimdahl and Leveson used their Requirements State Machine Language (RSML) to 

verify requirements specifications for completeness and consistency [12]. RSML is a state-

based language suitable for the specification of reactive systems. It includes several features 

developed by Harel for Statecharts. In RSML, the transitions are represented as relationships 

between states (i.e., hierarchical, next-state mappings). The functional framework defined in 

[12] is used to check the model against every possible input to find conflicting requirements 

(i.e., to verify whether the model is deterministic).  They used a textual-representation-based 

simulator developed for RSML to execute the specification. One advantage is the ability to 

analyze subparts of the whole system without the need to generate a global reachability 

graph. 

2.3 Related Z Case Studies  

Numerous studies have been conducted that combine Z with other formal methods.  A hybrid 

formal method called PZ-nets is proposed by Xudong He. PZ-nets combine Petri nets and Z 

[13]. PZ-nets provide a unified formal model for specifying the overall system structure, 

control flow, data types and functionality. Sequential, concurrent and distributed systems are 

modeled using a valuable set of complementary compositional analysis techniques. However, 



 

modular and hierarchical facilities are needed to effectively apply this approach to large 

systems.  

Hierons, Sadeghipour, and Singh present a hybrid specification language µSZ [14]. The 

language uses Statecharts to describe the dynamical system behavior and Z to describe the 

data and their transformations. In µSZ, Statecharts define sequencing while Z is used to 

define the data and operations. They abstracted data from the Z specifications to produce an 

Extended Finite State Machine (EFSM) represented with Statecharts. EFSM features can be 

utilized for test case generation. These features automate setting up the initial state and 

checking the final state for each test. The dynamic system behaviors specified in Statecharts 

are checked using these features.   

Bussow and Weber present a mixed method consisting of Z and Statecharts [15]. Each 

method was applied to a separate part of the system.  Z was used to define the data structures 

and transformations. Statecharts were used to represent the overall system and reactive 

behavior. The Z notations were type checked with the ESZ type-checker but the Statecharts 

semantics were not fully formalized.  In addition, several other case studies utilized Z for 

defining data while Statecharts were used as a behavioral description method [16-18]. 

Castello developed a framework for the automatic generation of Statecharts layouts from 

a database that contains information abstracted from an SRS [19]. The framework centerpiece 

is the “statecharts layout” tool. The tool’s output is then transformed into Z schemas. Data is 

abstracted from the SRS to generate a database that provides the basis from which to 

automatically generate “statecharts layout.” Statecharts are translated one-by-one into Z 

schemas to validate the correctness. The Z schemas are exact replicas of the Statecharts (i.e., 

the Z schema is the text version of the Statecharts). Both the method and the criteria for the 

SRS abstraction are not explained [19].  

2.4 Contribution from this study 

In this study, Statecharts depend on the Z specification. The natural language based (NL-

based) SRS components are translated completely into Z and then the Z specification is 

completely translated into State/Activity charts. The Z specification is type checked and 



 

proved using Z/EVES3 with reduction/refinement prior to the translation. The State/Activity 

charts are tested to determine consistency and completeness using simulations and model 

checking. The transformed SRS is evaluated for fault-tolerance by injecting faults into the 

Statecharts model. Details of the tests and fault injections are described in Sections 3 and 4. 

Z and Statecharts do have different precision for revealing inherent SRS flaws. In general, 

it is believed that Z is more suitable for defining data types while Statecharts are better for 

describing the dynamic behavior (i.e., state transitions) [16-18]. When one uses conjoined 

methods like other case studies, the consistency between the joined methods is difficult to 

verify. Instead, we abstracted the SRS into Z schemas (method one) and then from Z to 

Statecharts (method 2). In this way a higher confidence in their consistency can be achieved. 

For example, the consistency of Z is verifiable using type-checking and proofs. The 

consistency and completeness of the Statecharts model are verifiable using the model checker 

and simulations. Refinement between these two different formalisms gives in-depth 

understanding of requirements, and reveals different flaws that exist in the SRSs. The 

usefulness of this approach was assessed in our case study by applying it to critical parts of 

the SRS. 

3 APPLIED METHODS 

A two-step process using Z/Statecharts is employed. First, the NL-based SRS is transformed 

using Z.  Z is used because it provides a concrete way to transform the requirements into 

state-based models using schematic structuring facilities. The transformation elucidates 

assumptions and provides mechanisms for refining specifications by clarifying data and 

functional definitions.  This compositional process helped to clarify ambiguities. For 

example, an ambiguity associated with the Altitude Radar Counter was uncovered during 

schema construction.   

The variable AR_COUNTER is specified in two different sections (Table 1) in the SRS.  

The Processing Unit describes the AR_COUNTER modification rules and the value ranges. 

One can conclude from the first two sentences that the AR_COUNTER increases after the 
                                                 
3 Z/EVES is a tool developed by ORA, Canada. It provides theorem proving, domain checking, type checking, 
precondition calculation, and schema expansion for Z specifications.  



 

radar pulse is transmitted. However, this indicates that the AR_COUNTER value is a positive 

number when the radar pulse is transmitted irrespective of whether an echo has arrived or not. 

Furthermore, this conflicts with the last sentence that states that the AR_COUNTER will 

contain sixteen one bits representing a negative one (-1) according to the definition in the 

data dictionary.  

Table 1. NL-based specification for AR_COUNTER [2] 
Processing Unit Data Dictionary 

A digital counter (AR_COUNTER) is 
started as the radar pulse is transmitted.  The 
counter increments AR_FREQUENCY 
times per second.  If an echo is received, the 
lower order fifteen bits of AR_COUNTER 
contain the pulse count, and the sign bit will 
contain the value zero.  If an echo is not 
received, AR_COUNTER will contain 
sixteen one bits. 

NAME:  AR_COUNTER 
DESCRIPTION:  counter containing elapsed 
time since transmission of radar pulse 
USED IN:  ARSP 
UNITS:  Cycles 
RANGE:  [-1, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 

Second, the Schemas are manually transformed into State/Activity charts and 

symbolically executed to assess the model’s behavior based on the GCS specified mission 

profile. Developing State/Activity charts from the Z schema is not a direct/mechanical 

transformation process and requires an in-depth knowledge of Z. One can specify a countably 

infinite number of system states using Z. To develop Statecharts from the Z specification, one 

must refine the infinite number down to a finite number. Simulations are then performed to 

verify the Statecharts have no nondeterministic state/activity transitions (i.e., inconsistencies). 

After checking for inconsistencies, in a second step, all data and transition-conditions are 

specified (i.e., added in). Simulations are performed again to verify the second step. In this 

second step, some function/data items improperly defined in Z were discovered. These items 

agreed in ranges and types in both Z and Statecharts; however, they generated incorrect 

output during the simulations. This (kind of) information is then carried back to refine the Z 

schemas. 

In a third step, after the simulation, faults are injected into the state/activity charts. This is 

done by changing state variable values while running a simulation. The output from the 

simulation using injected faults is compared with the expected output. The expected output 



 

values are obtained based on the formulae given in the SRS. Using fault-injection enables one 

to evaluate the system’s ability to cope with unexpected system failure. 

3.1 Z (Zed) 

Z is classified as a model-based specification language that is equipped with an underlying 

theory that enables nondeterminism to be removed mechanically from abstract formulations 

to result in more concrete specifications. In combination with natural language, it can be used 

to produce a formal specification [20].  

An axiom is a common way of defining global objects in Z. It consists of two parts: 

declaration and predicate as shown in Figure 1. The predicate constrains the objects 

introduced in the declaration.  Schemas model system states and are the main structuring 

mechanism used to create patterns, objects, and operations. A schema consists of two parts 

(Figure 1): a declaration of variables; and a predicate constraining their values. The name of a 

schema is optional; however, for compositional purpose, it is convenient to give a name that 

can be referred to other schemas. These facilities are useful and essential in clarifying 

ambiguities and solidifying one’s understanding of the requirements. 

Declaration 
Predicate  

Schema name 
Declaration 
Predicate  

Figure 1.  Forms of an axiom and a schema 

3.2 Statecharts 

Statecharts constitute a state-based formal diagrammatic language that provide a visual 

formalism for describing states and transitions in a modular fashion, enabling cluster 

orthogonality (i.e., concurrency) and refinement, and supporting the capability to move 

between different levels of abstraction. The kernel of the approach is the extension of 

conventional state diagrams by AND/OR decomposition of states together with inter-level 

transitions, and a broadcast mechanism for communication between concurrent components. 

The two essential ideas enabling this extension are the provision for depth (level) of 

abstraction and the notation of orthogonality. In other words, Statecharts = State-diagrams + 

depth + orthogonality + broadcast-communication [21]. 



 

Statecharts provide a way to specify complex reactive systems both in terms of how 

objects communicate and collaborate and how they conduct their own internal behavior. 

Together, Activity charts and Statecharts are used to describe the system functional building 

blocks, activities, and the data that flows between them. These languages are highly 

diagrammatic in nature, constituting full-fledged visual formalisms, complete with rigorous 

semantics providing an intuitive and concrete representation for inspecting and checking for 

conflicts [22]. The State/Activity charts are used to specify conceptual system models for 

symbolic simulation.  Using these facilities, assumptions were verified, faults were injected, 

and hidden errors were identified that represent inconsistencies or incompleteness in the 

specification. 

A GCS project was created within the Statemate environment.  Graphical editors were 

used to create State/Activity charts. Once the graphical forms were characterized, state 

transition conditions and data items were defined within the “data dictionary” of the project. 

The Activity chart and Statecharts reflect all variables/conditions defined in the Z 

formulation. During simulation, we observed the sequence of state changes that occur to 

validate the system against its specified structure (based on Schema declarations) and 

constraints (based on Schema predicates). Initial (and current) values and conditions were 

changed while rerunning and/or resuming the simulation in the process of verifying 

consistency and completeness against the Statecharts specification.  

3.3 Specification Tests 

The Statecharts model is examined in two different ways. First, the State/Activity charts are 

tested as finite state machines (ensuring state transition conditions and activity triggers are 

deterministic). Next, their functionality is tested. The actual outputs (values generated by the 

State/Activity charts simulations) are compared with the expected output. 

3.3.1 Finite State Machine Approach 

This approach assures against absorbing States/Activities as well as nondeterministic 

State/Activity transitions. Bogdanv and Holcombe have discussed how to test Statecharts for 

an aircraft control system [23] by examining the underlying finite state machine(s). We 



 

extend their method to evaluate if the Statecharts are behaviorally equivalent to the SRS. In 

other words, every activity and state transition is exercised as described in the SRS.  

3.3.2 Data Item Approach 

In the data item approach, the state/activity charts are treated like a software program (i.e., 

black-box testing). Test cases are generated to evaluate if the Statecharts model produces the 

correct data outputs. Input and expected output values are determined based on the 

information from the data dictionary and according to the SRS/Z schemas. This test assures 

that there are no inconsistent or unspecified data driven operations. 

3.4 Fault Injection 

Fault injection is used to observe how the software system behaves under experimentally-

controlled anomalous circumstances.  Voas et al., claim that system anomalies are caused by 

either faulty code or corrupted input, or some combination of both [24].  Their approach 

injects faulty codes into the software and then observes the software behavior. Conversely, 

we injected faults (i.e., by altering the correct values of system variables) into an executable 

model of the SRS while it is being run (i.e., at various stages of execution).  

After injecting faults into the model, we observe the behavior to detect if there are any 

incorrect state transitions and/or outputs. The choice of test cases is based on a functional 

analysis of the submodules.  Submodules are evaluated to determine if they could cause a 

critical failure. Fault injection is not performed on non-critical submodules.  In this way, the 

SRS is evaluated for the fault-tolerance. 

4 APPLICATION EXAMPLE 

In this section, an example is presented to explain how to apply the method described 

above[25, 26]. This section shows one small part (i.e., ARSP submodule) of the larger NL-

based GCS SRS that was transformed.   

The selected Altitude Radar Sensor Processing (ARSP) submodule specification shows 

inputs, outputs, and subsystem processing descriptions. The SRS provides a data dictionary 

with variable definitions, type, and units, and a brief description of variables and functions. 

This module specification was abstracted into Z, preserving the variable names, operations 



 

(i.e., functionality), dependency and scope. Figure 2 provides an example using the 

FRAME_COUNTER input variable that illustrates the complete translation from the SRS to 

Z and Statecharts. The top box in the Figure 2 represents the SRS. The box in the middle of 

the Figure 2 represents the Z Specification while the bottom box shows a part of the 

Statecharts model. In the SRS, the FRAME_COUNTER is defined as an integer with range 

[1,231-1]. In Z, the FRAME_COUNTER is declared as a set of natural numbers in the 

declaration part, and the range of the variable is represented in the predicate part (lower half 

of the schema). The Statecharts representation of the FRAME_COUNTER variable is 

presented with the direction of data transfer from EXTERNAL into the ARSP Module. Its 

type and value range are defined in the Statemate data dictionary.  

In translating from the SRS to Z, four different ambiguous requirements were identified. 

The first ambiguity committed leaves the rotational direction (i.e., left/right array shifting) 

because it only specifies “rotate.”  Second, an undefined third order polynomial was revealed 

that is used to estimate the AR_ALTITUDE value.  The third ambiguity concerns the use of 

the AR_COUNTER variable for two different purposes, which implies that it has two 

different types. Finally, there is uncertainty regarding the scope of the AR_COUNTER 

variable that brings into question which module should modify this variable.  

Given these various issues, two scenarios were considered. The first scenario assumes the 

AR_COUNTER is updated within the ARSP module while the second scenario assumes that 

the AR_COUNTER is updated outside of the module. Both scenarios were constructed 

separately and compared to understand how Z could be useful in clarifying ambiguity and 

avoiding conflicts. 

In this first scenario (Scenario One) to properly update AR_COUNTER within the ARSP, 

the two different purposes of the variable should be separated. Accordingly, the Z 

specification of the ARSP was defined to account for two separate variables (AR_COUNTER 

and Echo). This implies that the AR_COUNTER represents only the pulse counter while 

Echo represents whether the radar echo pulse is received on time. The Z specification is 

consistent with the SRS as long as the newly introduced variable (Echo) does not cause a side 

effect. The Echo was treated as an additional ARSP input.  Obtaining the input value requires 



 

changes of the SRS outside of the ARSP module. This in turn requires the specification to be 

revised to satisfy the data decoupling principle [27]. Therefore, the interpretation of Scenario 

One is inconsistent with the SRS. 

 

ARSP_RESOURCE 
1  FRAME_COUNTER? : N  
2  AR_ FREQUENCY? : R 
3  AR_COUNTER? : Z  
4  K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW : {0,1} 

5  AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4, 
AR_ALTITUDE_NEW: R  

6  AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4, 
AR_STATUS_NEW : {0,1} 

7  K_ALT: K_ALT_NEW  x  K_ALT_1 x  K_ALT_2 x  K_ALT_3 x  K_ALT_4  
8  AR_STATUS: AR_STATUS_NEW  x  AR_STATUS_1 x  AR_STATUS_2 x  

AR_STATUS_3 x  AR_STATUS_4 
9  AR_ALTITUDE: AR_ALTITUDE_NEW  x  AR_ALTITUDE_1 x  AR_ALTITUDE_2 x  

AR_ALTITUDE_3 x  AR_ALTITUDE_4 
 AR_COUNTER? e -1..32767 
 AR_FREQUENCY? e  1..2450000000 
 FRAME_COUNTER? e  1..2147483647 
 AR_ALTITUDE_1 == 1..2000 ¶  AR_ALTITUDE_2 == 1..2000 ¶   
AR_ALTITUDE_3 == 1..2000 ¶  AR_ALTITUDE_4 == 1..2000 ¶   
AR_ALTITUDE_NEW ==1..2000 

INPUT 
AR_ALTITUDE AR_COUNTER 
AR_FREQUENCY AR_STATUS 
FRAME_COUNTER K_ALT 

OUTPUT 
AR_ALTITUDE AR_STATUS 

K_ALT  

PROCESS:   
It is only necessary that this functional module … 

NAME:  FRAME_COUNTER 
DESCRIPTION:  Counter containing the number of 
the present frame 
USED IN:  AECLP, ARSP, CP, GP, TDLRSP 
UNITS:  none 
RANGE:  [1, 231-1] 
DATA TYPE:  Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 

Module Specification Data Dictionary 

Z Specification 

Statecharts  

NL-Based SRS 

 

RUN_PARAMETER 

EXTERNAL 

ARSP

@INIT 

CALCULATE 

@ALTIMETER 

GUIDANCE_STATE 

SENSOR_OUTPUT 
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE

AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

 

Figure 2.  Translation example from NL-based to Statecharts 



 

Conversely, in Scenario Two (details described in Section 4.1) no additional variables 

were defined.  Only the variables defined in the SRS were modeled (as well as covering the 

required ARSP behaviors).  Therefore, this reformulation of the SRS in Z was considered 

complete and consistent.  The Statecharts were developed based on Scenario Two.  

4.1 Z Specification 

Scenario Two is described here.  This scenario assumes that the AR_COUNTER value is 

updated outside of the ARSP module (i.e., ready for immediate use). When the 

AR_COUNTER value is –1 this indicates that the echo of the radar pulse has not yet been 

received.  If the AR_COUNTER value is a positive integer, this means that the echo of the 

radar pulse arrived at the time indicated by the value of the counter.  

The ARSP_RESOURCE schema (Figure 3) defines the ARSP module input and output 

variables. The FRAME_COUNTER? (Signature [Sig] 1) is an input variable giving the 

present frame number and its type is a natural number. AR_FREQUENCY? (Sig2) 

represents the rate at which the AR_COUNTER? is incremented and its type is a real number.  

The AR_COUNTER? (Sig3) is an input variable that is used to determine the 

AR_ALTITUDE value and its type is an integer. The K_ALT_1, K_ALT_2, K_ALT_3, 

K_ALT_4, and K_ALT_NEW (Sig4) variables are defined as sets of binary elements.  The 

K_ALT value is updated in the ARSP to be used in the Guidance Processing (GP) module to 

determine the correction term value of GP_ALTITUDE variable. The AR_ALTITUDE_1, 

AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4, and AR_ALTITUDE_NEW 

(Sig5) are defined as a set of real numbers to represent the altitude that is determined by 

altimeter radar. AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4, and 

AR_STATUS_NEW (Sig6) are defined as binary values that represent the health status for 

various elements of the altimeter radar. The AR_STATUS, AR_ALTITUDE, and K_ALT 

(Sigs7-9) arrays hold the previous 4 values and the current value of their elements 

respectively.  

These variables were defined as a 5-element array in the SRS. Z does not have a specific 

array construct so these variables are designed as 5-element Cartesian products.  The array 



 

can also be represented as a 5-element sequence.  The Cartesian product method was chosen 

because this composition assumes that any element can be accessed directly without having 

to search though the sequence. The predicates , , and  represent the variables ranges. 

The predicate  restricts the values for the sets in the Signature 5.  

ARSP_RESOURCE 
1 FRAME_COUNTER? : N 
2 AR_ FREQUENCY? : R 
3 AR_COUNTER? : Z 
4 K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1} 
5 AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4, 

AR_ALTITUDE_NEW: R 
6 AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4, AR_STATUS_NEW: {0,1} 
7 K_ALT: K_ALT_NEW x K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4  
8 AR_STATUS: AR_STATUS_NEW x AR_STATUS_1 x AR_STATUS_2 x AR_STATUS_3 x 

AR_STATUS_4  
9 AR_ALTITUDE: AR_ALTITUDE_NEW x AR_ALTITUDE_1 x AR_ALTITUDE_2 x 

AR_ALTITUDE_3 x AR_ALTITUDE_4  
 AR_COUNTER? e -1..32767 
 AR_FREQUENCY? e 1..2450000000 
 FRAME_COUNTER? e 1..2147483647 
 AR_ALTITUDE_1 == 1..2000 ¶ AR_ALTITUDE_2 == 1..2000 ¶  
AR_ALTITUDE_3 == 1..2000 ¶ AR_ALTITUDE_4 == 1..2000 ¶  
AR_ALTITUDE_NEW ==1..2000 

Figure 3.  ARSP_RESOURCE schema 

The ARSP schema (Figure 4) is the main functional schema of the ARSP module. The 

ARSP_RESOURCE schema is imported (and is modified) in the Sig1.  The 

Altitude_Polynomial function (Sig2) obtains the AR_ALTITUDE as input and estimates the 

current altitude by fitting a third-order polynomial to the previous value of the 

AR_ALTITUDE. AR_STATUS_Update (Sig3), K_ALT_Update (Sig4), and 

AR_ALTITUDE_Update (Sig5) update AR_STATUS, K_ALT, and AR_ALTITUDE array 

with their _NEW values respectively. The expression “FRAME_COUNTER? mod 2” is used 

on 7 occasions in the predicates to determine if the FRAME_COUNTER? is odd or even.  

Predicate  requires that the current AR_ALTITUDE, AR_STATUS, and K_ALT 

element values be the same as the predecessors when FRAME_COUNTER? is even.  

Predicate  constraints the AR_ALTITUDE update. The update takes the current value when 



 

FRAME_COUNTER? is odd and AR_COUNTER? is greater than or equal to zero. Predicate 

 states that the AR_ALTITUDE value is updated (i.e., estimated) by the 

Altitude_Polynomial function. This is done when FRAME_COUNTER? is odd, 

AR_COUNTER? is -1, and all the AR_STATUS elements are healthy. 

ARSP 
1 D ARSP_RESOURCE 
2 Altitude_Polynomial: AR_ALTITUDE f R 
3 AR_STATUS_Update: AR_STATUS_NEW x AR_STATUS f AR_STATUS 
4 K_ALT_Update: K_ALT_NEW x K_ALT f K_ALT 
5 AR_ALTITUDE_Update: AR_ALTITUDE_NEW x AR_ALTITUDE f AR_ALTITUDE 

 FRAME_COUNTER? mod 2 = 0 ¤  
AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_NEW, AR_ALTITUDE) ¶ 
AR_STATUS’ =  AR_STATUS_Update (AR_STATUS_NEW, AR_STATUS) ¶ K_ALT’ = 
K_ALT_Update (K_ALT_NEW, K_ALT) 

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0 ¤ AR_ALTITUDE’= 
AR_ALTITUDE_Update ({AR_COUNTER? * 300000000 div AR_FREQUENCY div 2}, 
AR_ALTITUDE) 

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS = (_, 0, 0, 0, 0) ¤ 
AR_ALTITUDE’ =  
AR_ALTITUDE_Update ({Altitude_Polynomial AR_ALTITUDE}, AR_ALTITUDE)  

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS Î (_, 0, 0, 0, 0)  ¤ 
AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_1, AR_ALTITUDE) 

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0  ¤  AR_STATUS’ = 
AR_STATUS_Update(0, AR_STATUS) ¶ K_ALT’ = K_ALT_Update(1, K_ALT) 

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS = (_, 0, 0, 0, 0) ¤ 
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶  
K_ALT’ = K_ALT_Update(1, K_ALT) 

 FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS Î (_, 0, 0, 0, 0)  ¤ 
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶  
K_ALT’ = K_ALT_Update(0, K_ALT)

Figure 4.  ARSP schema 

Predicate  requires that the current value in AR_ALTITUDE be the same as the 

previous values when FRAME_COUNTER? is odd, AR_COUNTER? is -1 and any of the 

elements in AR_STATUS are not healthy.  Predicate  requires that the updates to 

AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd and the 

AR_COUNTER? is -1.  Predicate  requires that the updates to AR_STATUS and K_ALT 

occur when FRAME_COUNTER? is odd, the AR_COUNTER? is -1, and all of the 

AR_STATUS elements are healthy. Predicate  requires that the updates to AR_STATUS 



 

and K_ALT occur when FRAME_COUNTER? is odd, AR_COUNTER? is -1, and any of the 

elements in AR_STATUS is not healthy.  

4.2 Statecharts 

The state/activity charts, derived from the Z specification are described in here. The ARSP 

Activity-chart (Figure 5) shows the data flow between the data stores (dotted line boxes) and 

the ARSP module. The data flow directions reflect what is specified in the data dictionary of 

the SRS.  The “@INIT” control state in the ARSP activity chart represents the link to the 

INIT Statechart (Figure 6). Each activity is allowed to have only one control state. The 

control state can be a superstate or an AND/OR decomposed state.  

INIT Statechart (Figure 6) shows the initialization of the ARSP module and a portion of 

the ARSP operational schema (Figure 4).  The default transition activates the 

CURRENT_STATE when the ARSP activity (in the ARSP activity chart) is begun.  The 

transition from the CURRENT_STATE state to KEEP_PREVIOUS_VALUE state describes 

predicate  of Figure 4.  The KEEP_PREVIOUS_VALUE state is one of the module 

termination states. The termination states are marked with “>” at the end of the state name. 

The transition from the CURRENT_STATE to the CALCULATION state represents a 

condition where the value of FRAME_COUNTER is odd, described by the statement 

“FRAME_COUNTER mod 2 = 1” in Figure 4.  
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Figure 5.  ARSP activity-chart  



 

 
INIT 

[MOD(FRAME_COUNTER, 2)=1]/ 
st!(CALCULATE)

CURRENT_STATE 

KEEP_PREVIOUS_VALUE> CALCULATION 

[MOD(FRAME_COUNTER, 2)=0]/ 
AR_ALTITUDE(4):=AR_ALTITUDE(3); 
AR_ALTITUDE(3):=AR_ALTITUDE(2); 
AR_ALTITUDE(2):=AR_ALTITUDE(1); 
AR_ALTITUDE(1):=AR_ALTITUDE(0); 
AR_STATUS(4):=AR_STATUS(3); 
AR_STATUS(3):=AR_STATUS(2); 
AR_STATUS(2):=AR_STATUS(1); 
AR_STATUS(1):=AR_STATUS(0); 
K_ALT(4):=K_ALT(3); 
K_ALT(3):=K_ALT(2); 
K_ALT(2):=K_ALT(1); 
K_ALT(1):=K_ALT(0) 

 
Figure 6.   INIT statechart  

The Altimeter Statechart (Figure 7) is represented by the “@ALTIMETER” control 

activity in the ARSP activity chart (Figure 5).   The ODD state is activated by the default 

transition when the CALCULATION activity (in the ARSP activity chart) is begun.  The 

transition from the ODD state to the ESTIMATE_ALTITUDE state occurs when the 

AR_COUNTER value is set to -1 and all the elements of the AR_STATUS array are set to 

“healthy.”  When this transition begins the AR_STATUS and K_ALT values are updated as 

described by predicate  of Figure 4. The 0 (zero) value of the AR_STATUS means 

“healthy” which corresponds to the value given in the SRS data dictionary [2].  

The transition from the ODD state to the CALCULATE_ALTITUDE state begins when 

the AR_COUNTER is positive, which is equivalent to predicate  of Figure 4.  The 

transition from the ODD to the KEEP_PREVIOUS state is triggered when the 

AR_COUNTER value is set to -1 and at least one of the AR_STATUS elements is not 

healthy. This transition has the same meaning as predicate  in Figure 4. The transition from 

the ESTIMATE_ALTITUDE state to the DONE state happens when the 

ESTIMATION_FINISHED event occurs.  This process is represented as an event because the 

transaction is described as an undefined third-order polynomial estimation in the SRS. The 

transaction from the CALCULATE_ALTITUDE state to the DONE state denotes predicate 



 

 (Figure 4). The transaction from the KEEP_PREVIOUS state to the DONE state denotes 

the predicate  (Figure 4) operation. 

 
ALTIMETER 

DONE> 

[AR_COUNTER=-1] 
and [AR_STATUS(1)=0] 
and [AR_STATUS(2)=0] 
and [AR_STATUS(3)=0] 
and [AR_STATUS(4)=0] 
/AR_STATUS(0):=1; 
K_ALT(4) := K_ALT(3); 
K_ALT(3) := K_ALT(2); 
K_ALT(2) := K_ALT(1); 
K_ALT(1) := K_ALT(0); 
K_ALT(0) := 1 

/AR_ALTITUDE(4) := AR_ALTITUDE(3); 
AR_ALTITUDE(3) := AR_ALTITUDE(2); 
AR_ALTITUDE(2) := AR_ALTITUDE(1); 
AR_ALTITUDE(1) := AR_ALTITUDE(0) 

ESTIMATION_FINISHED 

/AR_ALTITUDE(4) := AR_ALTITUDE(3); 
AR_ALTITUDE(3) := AR_ALTITUDE(2); 
AR_ALTITUDE(2) := AR_ALTITUDE(1); 
AR_ALTITUDE(1) :=  
(AR_COUNTER /AR_FREQUENCY)* 300000000/2 

[AR_COUNTER=-1]  
and ([AR_STATUS(1)=1] 
or [AR_STATUS(2)=1] 
or [AR_STATUS(3)=1] 
or [AR_STATUS(4)=1] 
/AR_STATUS(4) := AR_STATUS(3);
AR_STATUS(3) := AR_STATUS(2); 
AR_STATUS(2) := AR_STATUS(1); 
AR_STATUS(1) := AR_STATUS(0); 
AR_STATUS(0):=1; 
K_ALT(4) := K_ALT(3); 
K_ALT(3) := K_ALT(2); 
K_ALT(2) := K_ALT(1); 
K_ALT(1) := K_ALT(0); 
K_ALT(0) := 0 

[AR_COUNTER>=0] 
/AR_STATUS(4) := AR_STATUS(3); 
AR_STATUS(3) := AR_STATUS(2); 
AR_STATUS(2) := AR_STATUS(1); 
AR_STATUS(1) := AR_STATUS(0); 
AR_STATUS(0):=0; 
K_ALT(4) := K_ALT(3); 
K_ALT(3) := K_ALT(2); 
K_ALT(2) := K_ALT(1); 
K_ALT(1) := K_ALT(0); 
K_ALT(0) := 1 
 

ODD

CALCULATE ALTITUDEESTIMATE_ALTITUDE KEEP_PREVIOUS 

 

Figure 7.  ALTIMETER statechart  

4.3 Specification Tests 

The statechart models described here and in the appendix are validated for completeness and 

consistency using symbolic simulation.  Two specification test results (based on approaches 

described in Section 3.3) are presented in this section. 

4.3.1 Finite State machine approach 

There are four possible paths for activity/state transitions in the ARSP Statecharts model. 

Path 1 represents the ARSP module’s processing when the FRAME_COUNTER is even. Path 

2 represents the condition when the updated FRAME_COUNTER is an odd number, the radar 

echo pulse is not yet received, and all the AR_STATUS elements’ values are healthy. Path 3 

is taken when the updated FRAME_COUNTER is an odd value, the radar echo pulse has been 

received, and all the AR_STATUS elements’ values are healthy. Path 4 describes the 

condition when the updated FRAME_COUNTER value is odd, the echo has not arrived, and 

one or more of the AR_STATUS elements’ values are not healthy.  



 

The simulation results in Table 2 show the order of the activities/states entered for each 

path. One can conclude that the ARSP Statecharts model does not have any absorbing states 

or activities and the module is complete indicating that the SRS is complete (at least for the 

ARSP submodule).  

Table 2. ARSP specification simulation result 

Activity/State Transition Paths Name of Chart Activity / State Name 
1 2 3 4 

ARSP E1 E1 E1 E1 
@INIT E2 E2 E2 E2 
CALCULATE - E5 E5 E5 

ARSP 

@ALTIMETER - E6 E6 E6 
CURRENT_STATE E3 E3 E3 E3 
KEEP_PREVIOUS_VALUE> E4 - - - INIT 
CALCULATION - E4 E4 E4 
ODD - E7 E7 E7 
ESTIMATE_ALTITUDE - E8 - - 
CALCULATE_ALTITUDE - - E8 - 
KEEP_PREVIOUS - - - E8 

ALTIMETER 

DONE> - E9 E9 E9 
 Ei  entered in ith order, -  not activated. 

4.3.2 Data Item approach 

Five test cases (Case 1-5) as shown in Table 3 were defined to test the Statecharts. They 

represent the way the Z schemas were visualized and evaluated. The input and output values 

were calculated based on the equations in the SRS. The AR_FREQUENCY variable is used 

to determine the AR_ALTITUDE value (represented as a state transition from the 

“CALCULATE_ALTITUDE” state to the “DONE>” state in Figure 7). The 

AR_FREQUENCY variable is defined as a real number with a large range. Consequently, it 

is not used as a system state variable in the Statecharts model. Instead, its value is fixed as a 

constant. To calculate the expected output value of AR_ALTITUDE, the AR_FREQUENCY 

value is fixed at 1.5e9 for all test cases. Table 3 and 4 show how each of the conditions was 

evaluated and this should help to convince the reader that the ARSP subunit (one of six 

different sensor units which make up the complete GCS platform) is significantly complex.  

The values of the ARSP input/output variables are given in Table 3. The contents of 

Table 4 represent the highlighted column of Table 3 in detail. In Case1, for example, input 



 

variables for ARSP submodule are FRAME_COUNTER, AR_STATUS, and 

AR_COUNTER and their values are 2, “Don’t care”, and -1. “Don’t care” means that the 

AR_STATUS variable can take any value in its range. The output variables of the ARSP 

submodule are AR_STATUS, K_ALT, and AR_ALTITUDE. The expected values of each of 

the output variables depend on the module inputs and their value before the execution. The 

expected values of the output variables are determined prior to the simulation. The “After the 

execution” values (shown in Table 4) represent the actual outputs from the Statecharts model 

simulation. The test results are correct when the expected values and the after execution 

values match.  The actual output values for all the test cases match the expected output values 

(as shown in Table 3). Therefore, the result of this simulation shows that the Z specification 

was developed correctly. 

Table 3. ARSP specification test input and output 

 Variable Case 1 Case 2 Case 3 Case 4 Case 5 
FRAME_COUNTER 2 2 1 1 3 
AR_STATUS - - [0, 0, 0, 0, 0] - [0, 0, 1, 0, 0]Input 
AR_COUNTER -1 19900 -1 20000 -1 
AR_STATUS KP KP [1, 0, 0, 0, 0] [0, -, -, -, -] [1, 0, 0, 1, 0]
K_ALT KP KP [1, 1, 1, 1, 1] [1, -, -, -, -] [0, 1, 1, -, 1]Expected 

Output 
AR_ALTITUDE KP KP [*, -, -, -, -] [2000,-,-,-,-] KP 
AR_STATUS KP KP [1, 0, 0, 0, 0] [0, -, -, -, -] [1, 0, 0, 1, 0]
K_ALT KP KP [1, 1, 1, 1, 1] [1, -, -, -, -] [0, 1, 1, -, 1]Actual 

Output 
AR_ALTITUDE KP KP [*, -, -, -, -] [2000,-,-,-,-] KP 

- Don’t care,  KP  Keep Previous value, *  An estimated value. 

Table 4. Detailed testing results – Case 1 example 

Case 1 
 Variable 

Before the execution Expected values After the execution 
FRAME_COUNTER 2 2 2 

AR_STATUS - - - Input 
AR_COUNTER -1 -1 -1 
AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1,1,0,0,0] 

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1] Output 
AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [2000, 2000, -, -, -] 

- Don’t care. 

4.4 Fault Injection 

Simulation of the specification is used for discovering hidden faults and their location. To 

accomplish this, faults are injected into the model to simulate memory corruption (i.e., 



 

expected due to the harsh environment.) For example, one can alter a system state variable 

(e.g., FRAME_COUNTER) at a certain state (e.g., CURRENT_STATE) during the 

simulation for Case 1. Table 5 gives the fault injection results of the FRAME_COUNTER 

alteration at CURRENT_STATE. The expected values of the output variables are not the 

same as the actual values of the output due to the state variable change (depicted as the 

highlighted x mark in Table 6).  

Table 5. Detailed fault injection results – Case 1 example 

Case 1 
 Variable 

Before the execution Expected values After the execution 
FRAME_COUNTER 2 2 2 

AR_STATUS - - - Input 
AR_COUNTER -1 -1 -1 
AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1/0,1,0,0,0] 

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1] Output 
AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [*, 2000, -, -, -] 

- Don’t care, *  An estimated value. 

Table 6. Fault injection simulation result 
Altered state variable 

FRAME_COUNTER AR_COUNTER AR_STATUS 
Case Case Case 

Fault injected State 
 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
CURRENT_STATE x x x x x x x x x x x x x x x 

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
CALCULATION b b b b b b b x x x b b x b x 

ODD b b b b b b b x x x b b x b x 
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b
x  incorrect outputs, b no defect,  N/A not applicable. 

Table 6 shows 120 fault injection results. The “CURRENT_STATE” does not tolerate 

any of the injected faults. In addition, fault injection in the CALCULATION and ODD 

system states produces erroneous outputs. Therefore, one can conclude that these three 

system states are the most vulnerable.  

The Statecharts approach has a better chance of predicting possible faults in the system. 

The Z specification cannot provide a way to predict the transitions from state to state. (i.e., Z 

is not executable.) Three new issues arose during the fault injection process. (1) Some correct 

inputs produced incorrect outputs; (2) Some weak points were found where faults were 



 

hidden (e.g., errors described in Appendix C in [26]); (3) During the execution of the model, 

some errors such as memory overflow were uncovered. Finding the correct formulation is a 

process of refinement and validation, which was facilitated using this approach.  

4.5 Reformulated Requirements 

The result of this analysis revealed that it is possible to construct a complete and consistent 

specification using this method (Z-to-Statecharts).  Ambiguous statements in the SRS were 

revealed during the construction of Z schemas. When a misinterpreted specification in Z was 

uncovered during the execution of the Statecharts model, Z specification was refined using 

the test results.  

Based on the simulation results using fault injection, the SRS was discovered to be 

incomplete.  To remedy the situation, the AR_FREQUENCY value must be bounded to 

prevent the AR_ALTITUDE value from exceeding its limit. Thus, one of the following 

conditions should be included: 1¯AR_FREQUENCY¯AR_COUNTER * 75000, or 

AR_COUNTER = -1 v (0 ¯ AR_COUNTER ¯ AR_FREQUENCY/75000). In other words, 

one of these two relational expressions must evaluate as true. 

5 CONCLUSION 

This paper discusses the methods and results as they relate to the ARSP submodule which 

was part of a larger system specification. The actual study covered additional submodules as 

well as the overall structure of the GCS. The other submodules specified and analyzed 

include the ARSP (Altimeter Radar Sensor Processing), GP (Guidance Processing), RECLP 

(Roll Engine Control Law Processing), and CP (Communication Processing). The choice of 

these submodules for specification was made based on the GCS run-time schedule. 

Z was used first to detect and remove ambiguity from this portion of the NL-based GCS 

SRS. Next, Statecharts, Activity-charts, and Module charts were constructed to visualize the 

Z description and make it executable. Using executable models, the system behavior was 

assessed under normal and abnormal conditions. Faults were seeded into the executable 

specification to probe how the system would perform. Missing or incorrectly specified 

requirements were found during the process. The integrity of the SRS was assessed in this 



 

manner. This approach can help avoid the problems that result when incorrectly specified 

artifacts (i.e., in this case requirements) force corrective work. 

The results of this analysis indicated that the portion of the GCS SRS under study was 

inconsistent, incomplete and not completely fault-tolerant. The findings indicate that one can 

better understand the implications of the system requirements using this approach (Z-

Statecharts) as the basis for their specification and analysis. The time involved generating the 

Z specification (considering all variables and functional specifications) is a major concern. 

Naturally, the amount of time necessary for generating a formalization of a NL-based 

specification will vary based on the inherent complexity of the SRS. 

In the long run we envision this approach will be useful in a more general sense as a 

means to avoid incompleteness and inconsistencies. Undoubtedly, the dynamic behavioral 

analysis is useful in avoiding major design flaws. Refinement between these two formalisms 

gives pertinent analysis of the problem – i.e., operational errors between states, functional 

defects, lack of such properties such as fault tolerance, etc. 
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4 The appendix gives the total system architecture.  The statecharts are included as background material.  We do 
not plan to include this appendix in the final version.  The final proved Z schemas can be obtained from 
http://www.eecs.wsu.edu/seds/hkim_thesis_final_ilogix.pdf or the http://www.ilogix.com university page. 



 

The Guidance and Control Software (GCS) principally provides control during the terminal 

phase of descent for the Viking Mars Lander. The lander has three accelerometers, one 

Doppler radar with four beams, one altimeter radar, two temperature sensors, three 

gyroscopes, three pairs of roll engines, three axial thrust engines, one parachute release 

actuator, and a touch down sensor. After initialization, the GCS starts sensing the vehicle 

altitude. When a predefined engine ignition altitude is sensed, the GCS begins guidance and 

control of the vehicle. The purpose of this software is to maintain the vehicle along a 

predetermined velocity-altitude contour. Descent continues along this contour until a 

predefined engine shut off altitude is reached or touchdown is sensed.   

Figure A-1 shows the overall system architecture of the GCS software. The circled parts 

are the subunits consisting of the partial specification for this case study. The partial 

specification that was examined includes one sensor processing unit, one actuator unit, and 

the two core subunits of the GCS system (circled units in Figure A-1). All other subunits are 

ignored in this case study except the data stores. Control and data flows between the 

excerpted modules are the same as they are represented in the Module chart (Figure A-2). 

The choice of parts for this study is made based on its run-time schedule (Table A-1). The 

GCS has a predetermined running time frame that consists of three subframes. Each subframe 

has specific submodules to run. The partial specification in this study consists of one 

submodule from each subframe and a submodule that runs every subframe. ARSP (Altimeter 

Radar Sensor Processing) is running in the first subframe, GP (Guidance Processing) is 

running in the second subframe, and RECLP (Roll Engine Control Law Processing) is 

running in the third subframe. CP (Communication Processing) is running in every subframe. 

In SRS, CP is specified as the last submodules to run for every subframe. The order of the 

submodules in the same subframe is not declared except CP must run last.  

The ARSP (Altimeter Radar Sensor Processing) is a sensor processing submodule of the 

GCS. This functional unit reads the altimeter counter provided by the altimeter radar sensor 

and converts the data into a measure of distance to the surface of Mars. The CP is a 



 

submodule that converts the sensed data into a data packet appropriate for radio 

transformation. The data packets are relayed back to the orbiting platform for relay to Earth. 

The GP (Guidance Processing) is the core-processing submodule of the GCS. This module 

gathers the information from the entire sensor processing subunits and the previous 

computational results. Then, it manages the vehicle’s state during the descent by controlling 

the actuators. The RECLP (Roll Engine Control Law Processing) is an actuator unit that 

computes the value settings for three roll engine. The roll engine value settings are calculated 

to fix the difference between the vehicle’s measured values during operation and the 

designated trajectory values.   

 

Table A-1.  Functional unit schedule [2] 

SCHEDULING 
Sensor Processing Subframe (Subframe 1)  
ARSP 1 
ASP 1 
GSP 1 
TDLRSP 1 
TDSP 5 
TSP 2 
CP 1 
Guidance Processing Subframe (Subframe 2)  
GP 1 
CP 1 
Control Law Processing Subframe (Subframe 3)  
AECLP 1 
CRCP 5 
RECLP  1 
CP 1 

 



 

 
 

SENSOR_OUTPUT 

GUIDANCE_STATE 

CRCP AECLP RECLP 

CONTROL AND 
TELEMETRY 

OUTPUTS 
CP 

SENSOR DATA 

ASP GSP TSP ARSP TDLRSP ASP 

GP RUN_PARAMETERS 

PACKET 

 
Figure A-1. GCS system structure 

The module chart presented in the Figure A-3 is the correct version of the module chart. 

The difference between two figures is because the NL-based SRS provides incomplete data 

transition directions with the Figure A-1.  
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Figure A-2. A module chart of GCS excerpt 

 
Figure A-3. Actual module chart of the GCS excerpt 

 In a GCS project created in the Statemate, the GCS activity chart is developed. Figure A-



 

4 shows the GCS activity chart with four data stores which contains the data definitions. The 

GCS activity is representing the GCS schemas. The data stores contain the same variable 

definitions of Z schemas. The @GCS_CONTROL state represents a link with the 

GCS_CONTROL statechart. The @ARSP, @CP, @ GP, and @ RECLP activities are link to 

their own activity charts. Every activity requires having only one control state.  

 
Figure A-4. GCS activity chart 

The GCS_CONTROL statechart (Figure A-5) represents the GCS_CONTROL schemas. 

The default transition represent the moment START_SIGNAL? input for the GCS schema is 

set to 1.  The INITIALIZATION state is equivalent to the GCS_INIT schema. 

@SUBFRAME1, @SUBFRAME2, and @SUBFRAME3 states represent the local state 

variable defined in the GCS_RESOURCE schema. Every subframe has its own state charts 

(Figure A-6 to A-8) linked to the superstate. 

 



 

 
Figure A-5. GCS_CONTROL statechart 

 

 
Figure A-6. SUBFRAME1 statechart 

 



 

 
Figure A-7. SUBFRAME2 statechart 

 
 

 
Figure A-8. SUBFRAME3 statechart 

 



 

 
Figure A-9. ARSP activity chart 

 
Figure A-10.  ARSP_CONTROL state chart 

The Figure A-9 and Figure 5 are the equivalent activity charts. Figure A-10 represents the 



 

Z specification of the ARSP submodule shown in Figure 7. The Statecharts model in the 

Section 4 has the ARSP activity, the CALCULATE sub-activity and two control states. The 

ARSP submodule Statecharts model in this section is consists of one activity and one control 

state based on the Z specification presented in the chapter 5 of the thesis (accessible by 

downloading from http://www.eecs.wsu.edu/seds/hkim_thesis_final_ilogix.pdf).  

This ARSP model has 4 distinctive paths. The simulation results of the state transition 

path are as presented in the Table A-2. 

Table A-2.  ARSP specification simulation results 

Activity/State Transition Paths 
Name of Chart Activity / State Name 

1 2 3 4 
ARSP E1 E1 E1 E1 ARSP 
@ARSP_CONTROL E2 E2 E2 E2 
ARSP_START E3 E3 E3 E3 
KEEP_PREVIOUS_VALUE E4 - - - 
ESTIMATE_ALTITUDE - E4 - - 
CALCULATE_ALTITUDE - - E4 - 
KEEP_PREVIOUS - - - E4 

ARSP_CONTROL  

DONE E5 E5 E5 E5 
 Ei  entered in ith order, -  not activated. 

The test results using DIA are the same as shown in the Section 4.3.2. The fault injection 

results are described in the Table A-3.  

Table A-3.  Fault injection simulation result 

Altered state variable 
FRAME_COUNTER AR_COUNTER AR_STATUS 

Case Case Case 
Fault injected State 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
ARSP_START x x x x x x x x x x x x x x x 

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b

 



 

 
Figure A-11. CP activity chart 

 
Figure A-12. CP_CONTROL statechart 



 

 

 
Figure A-13.  GP activity chart 
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Figure A-14. GP_CONTROL statechart 



 

 
Figure A-15. RECLP activity chart 
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Figure A-16. RECLP_CONTROL statechart 

The CP submodule is too inconsistent to develop complete Statecharts model. Moreover, 



 

the bit wise transactions needed to build the packet mask are too complicated to transform 

into Statecharts (Covered by CP_PREP_MASK1-3 and CP_MASK schemas in Z). Therefore, 

the CP model (Figure A-11 and A-12) is built with events that represent the functional 

sequences that CP is required to follow. The CP has only one state transaction path which is 

tested using the finite state machine approach (FSMA).  The fault injection and data item 

approach (DIA) test are not performed for this submodule because CP model did not have 

enough data processing functionality and CP is not a submodule that can create catastrophic 

failure for the system. 

The GP submodule has multiple functions to perform. All the sequences of functions are 

transformed into Statecharts model (Figure A-13 and A-14). However, it was impossible to 

test all the data input and output with realistic variable values because the initial values of all 

the variables are not clearly given. Therefore, FSMA test was performed on the entire GP 

model while the data item approach test is performed on some parts of GP model that uses 

only the variables processed inside of the GCS excerpt.  

The FSMA and DIA test and Fault injections are performed on the RECLP submodule 

(Figure A-15 and A-16). The test results are as presented in Table A-4 and A-6 to A-9. Table 

A-5 shows the system constants for the simulation. 

Table A-4.  RECLP submodule simulation result 

Activity/State Transition Paths 
Name of Chart Activity / State Name 

1 2 3 4 5 6 7 8 
RECLP E1 E1 E1 E1 E1 E1 E1 E1 RECLP 
@RECLP_CONTROL E2 E2 E2 E2 E2 E2 E2 E2 
RECLP_START E3 E3 E3 E3 E3 E3 E3 E3 RECLP_CONTROL 
@RE_CMD_UPDATE - E4 E4 E4 E4 E4 E4 E4 
SET_RE_CMD - E5 E5 E5 E5 E5 E5 E5 
RE_CMD1 - E6 - - - - - - 
RE_CMD2 - - E6 - - - - - 
RE_CMD3 - - - E6 - - - - 
RE_CMD4 - - - - E6 - - - 
RE_CMD5 - - - - - E6 - - 
RE_CMD6 - - - - - - E6 - 

RE_CMD_UPDATE 

RE_CMD7 - - - - - - - E6 

 



 

Table A-5.  Variable values (constants) used for simulation 

Variable name Values 
DELTA_T 0.005 

P1 0.005 
P2 0.010 
P3 0.015 
P4 0.020 

THETA1 0.010 
THETA2 0.020 

  

Table A-6.  RECLP submodule specification test input and output (1) 

 Variable Case 1 Case 2 Case 3 Case 4 
G_ROTATION 1 0.016 -0.016 0.01 -0.01 

Input 
THETA -0.00500 0.005 -0.005 0.01 
THETA -0.00492 0.00492 -0.00495 0.00995 
RE_CMD 1 1 1 1 Output 
RE_STATUS 0 0 0 0 

 

Table A-7.  RECLP submodule specification test input and output (2) 

 Variable Case 5 Case 6 Case 7 Case 8 
G_ROTATION 1 0.001 -0.001 -0.001 0.001 Input 
THETA 0.005 -0.005 -0.015 0.015 
THETA 0.005005 -0.005005 -0.015005 0.015005 
RE_CMD 1 1 2 3 Output 
RE_STATUS 0 0 0 0 

 

Table A-8.  RECLP submodule specification test input and output (3) 

 Variable Case 9 Case 10 Case 11 Case 12 
G_ROTATION 1 -0.006 0.006 -0.025 -0.015 

Input 
THETA -0.01 0.01 0 -0.001 
THETA -0.01003 0.01003 -0.000125 -0.001075 
RE_CMD 4 5 6 6 Output 
RE_STATUS 0 0 0 0 

 



 

Table A-9.  RECLP submodule specification test input and output (4) 

 Variable Case 13 Case 14 Case 15 Case 16 
G_ROTATION 1 0.01 0.025 0.015 -0.01 Input 
THETA -0.021 0 0.01 0.025 
THETA -0.02095 0.000125 0.010075 0.02495 
RE_CMD 6 7 7 7 Output 
RE_STATUS 0 0 0 0 

 


