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Chapter 1

Introduction

Message Sequence Charts (MSCs) is a graphical and textual standarized language'
for the description and specification of the interactions between system components.
The main area of applications for MSCs is as overview specification of the commu-
nication behavior of concurrent, message exchanging systems. Message Sequence
Charts may be used for requirement specification, interface specification, simulation
and validation, test case specification and, documentation.

There are commercial and research tools that support MSC. One example is
the Telelogic Tau Suite that supports not only MSC but also SDL(Standartd De-
scription LLAnguage) and TTCN (Tree and Tabular Combined Notation). The Tau
toll is used to develop software for telecommunications and embedded applications.
The MSCs are used in this tool to capture requirements, to record traces of SDL
model simulations and as source for test generation.

An important functionality of Tau is the ability to define and execute test
sequences.(Derived from SDL specifications). However there is not current support
to generate test sequences from the MSCs requirements. The next question were
stated: How can the MSCs be used to generate test sequences 7. This question
describes the main goal of this project.

There is previous work related in this field, e.g., the work developed by
Grabowski in the Test Generation from MSC [?] and some other projects related
in the test generation using both SDI and MSC. These works are developed using
MSC’96 or previous releases.

TU-T MSC2000 Z.120 (11/99).



1.1 An introductory example

msc START

[ User | [ contral | [ Heating ]
start _
start_ack

hot

Y

Figure 1.1: Basic Message Sequence Chart

Figure 1.1 describes a scenario where a toaster machine starts to work. Three
different entities, named instances, interact in the scenario: User, Control and
Heating. Each instance has three main elements, head, end and, time axis. The
instance head and instance end describe the existence of the instance, not the cre-
ation or destruction of it. The arrows represent the message exchanges between
two instances, the arrow head denotes the reception and the arrow tail denotes the
sending. The set of messages is: start, start_ack, and hot. Each message arrow
represents two events: the sending and the reception. Let !m denote the send event
and ?m the receive event for message m. Figure 1.2 shows the msc START where
the sending and receiving events are highlighted as circles.

msc START

[ User | [ contral | [ Heating ]

Istart ?start

Istart_ack

hot ?hot

Figure 1.2: Basic Message Sequence Chart with an explicit representation of send
and receive events.



1.1.0.1 The partial order of events

For each instance the time axis describes a total order among events called instance
order. An MSC defines a partial ordering of events composed from:

e Instance order: The events are ordered over the axis time in every instance;
there are exceptions as the coregions and inline expressions but these elements
will be explained later. For every instance we have a sequence of events built
from the instance head to the instance end. For example, instance User
has the sequence of events !start,?start_ack , the instance Control has
the sequence ?start, !start_ack, 'hot, and the instance Heating has the
sequence Thot . The nature of the sequence defines a total order over the
contained elements.

e Send - receive relation: There is a one-to-one correspondence between
sending and reception of each message represented by the arrows e.g, in Figure
1.1, the event of sending message !start is related to the receiving event
?start. This relation can be described by a bijective function from each send
to its corresponding receive event.

The instance order, together with the send-receive relation define
a partial order over the events in the MSC. Let e; and ey be two
different events, we say that e; precedes ey, denoted by e; < ey if

¢ ¢; and e; belong to the same instance and e; appears before than
€.

e ¢ 1s the send event and e, is the corresponding receive event.

MSCs describe a set of possible traces (test sequences). A trace is a sequence
of events. The MSCs in Figure 1.1 describes the next set of traces:

Trace 1: start!, start?, start_ack!, start_ack?, hot!, hot?

?

Trace 2: start!, start?, start_ack!, hot!, start_ack?, hot?

3

Trace 3: start!, start?, start_ack!, hot!, hot?, start_ack?



Chapter 2

The MSC2000 Standard

2.1 Introduction

In this chapter we shall present the most important MSC 2000 features. The features
presented are:

e The MSC basic elements, such as instances, messages, timers, condition, ac-
tions and coregions.

e Inline expressions.
e High level MSC.

e Data and time concepts.

2.2 Basic elements

2.2.1 Instances

Instances are reactive entities whose communication behavior is described by the
MSCs. Each instance can store information in local variables (called dynamic vari-
ables in MSC2000). Instances may be created and destroyed dynamically. The
message exchanging is the only mean of communication among instances. Within
the instance body the ordering of events is specified (Figure 2.3).

2.2.2 Messages

Messages are the units of information exchange between instances. A message can
be as simple as a signal or as complex as a sophisticated data packet. Usually a



message consist of an identifier and zero or more data parameters. Two different
events are associated to the message: the send and receive events (Figure 2.3).

2.2.2.1 Timers

Timers are mechanisms to count time units. Each timer is also a reactive entity

which belongs to some instance '. Three different events are associated to the

timers: timeout, setting, and stopping the timer (Figure 2.3).

2.2.2.2 Conditions

Conditions are multi-instance events, which may span over several instances. There
are two types of conditions: setting and guarding conditions. The setting conditions
describe the global state of the system (as labels), the guarding conditions must be
local and attached to one instance. The guard conditions are used to enable or dis-
able sections in inline expressions. The guarding conditions can contain predicates
associated to data in the MSCs (Figure 2.3).

2.2.2.3 Actions

Actions are events that can have either informal text associated to it (labels), or
formal data statements. An action describes an internal atomic activity of an in-
stance. When an action contains data statements, the event modifies the state by
the evaluating each statement concurrently. This concurrency reflects the atomicity
of an action (Figure 2.3).

2.2.2.4 Coregions

A coregion is a special mechanism introduced to describe unordered sets of events,
i.e. to remove the order described in the time axis. A coregion is part of the
instance axis; the events specified within that part are assumed to be unordered
in time (Figure 2.3). A coregion covers, for example, the practically important
case of two or more incoming messages where the ordering of reception may be
interchanged.

2.2.3 Inline expressions

Inline expressions provide a mean to formulate the composition of MSCs within the
MSC language. The use of inline expressions reduces the need for several MSCs to

IThis element will be explained in the next sections



msc AcceptAcces(Door:integer)

User Controller

Central_Controller

enter(UserCode)

password(PP)

- X

open := valid(UserCode)

open = true

X T (59

openDoor(Door)

OpenDoorBeep

openDoor_ack(Door)

grantedAccess
e —

-
|
|
k
|

open = false

open := valid(UserCode)

enter(UserCode)
—_—

T
|
|
|
|

>

Central_Controller

Action

Condition

Message

Coregion

Timer

Instance head

Instance end

Figure 2.3: Elements inside Message Sequence Chart

describe complex behaviors. Graphically an inline expression consists of an inline
expression symbol that is attached to a number of instances (at least one).This
inline expression symbol contains in the left-upper corner one of the keywords alt,
par, seq, exc, opt or loop. These keywords indicate the composition operation

that is described by the inline expression:

e Weak sequential composition (seq)

e Alternative composition (alt)

Parallel composition (par)

e Iteration (loop)

Optional composition (opt)

e Exceptional composition (exc)

Both alternative and parallel composition can have any finite, positive number of
inline sections (the inline section is another MSC). These sections are all drawn
inside the inline expression symbol and they are separated by a dashed vertical line

(Figure 2.4).



msc Examplel msc Example2
A B A B C
[ ] J [ ! ] 1 ]
Start
T ¥— T X—
par J messagel message2
M messagel | | | | | _ _ _ | __ _____|______ V_ o
T message3
iiiiiiiiiiii T message4
TX" message2 - >
- Done
I I s

Figure 2.4: Example of inline expression in the Message Sequence Chart

2.2.3.1 Alternative composition

The alternative composition defines alternative executions of inline sections. This
means that if several inline sections are meant to be alternatives only one of them
will be executed. In the case where alternative inline sections have common pream-
ble (the same set of traces) the choice of which inline section will be executed is
performed after the execution of the common preamble (until one section can really
be selected). Figure 2.5 presents an MSC containing a common preamble in the two
inline sections. Notice that the initial set of messages is the same in both sections.

msc Example
| A | B . c
alt m
’ n
, p >
- r
i Rl s bbbl e bl
n
- P
t >

Figure 2.5: Common preamble in both inline sections.



2.2.3.2 Parallel composition

The parallel composition defines the parallel execution of inline sections. This means
that all events within the parallel MSC sections will be executed, where the only
restriction that the event order within each section will be preserved.

2.2.3.3 Iteration

An inline loop expression has exactly one inline section. The keyword loop is
followed by a loop boundary. This loop boundary refers to the number of repetitions
of the inline section. The loop boundary, if present, indicates the minimal and
maximal number of inline sections.

The most basic form is loop < n,m > where n and m are expressions of type
natural numbers. This means that the operand may be executed at least n times
and at most m times. The expressions may be replaced by the keyword inf, like
loop < n,inf >. This means that the loop will be executed at least n times. If the
second operand is omitted like in loop < n > it is interpreted as loop < n,n >.
Thus loop < inf > means an infinite loop. If the loop bounds are omitted like in
loop, it will be interpreted as loop < 1,inf >. If the first operand is greater than
the second one, the loop will be executed 0 times. The loops can be parameterized
using static variables (explained in the next sections).

2.2.3.4 Optional composition

The optional composition is the same as an alternative where the second operand
is the empty inline section.

2.2.3.5 Exception composition

The exceptional composition is a compact way to describe exceptional cases in an
MSC. The meaning of the operator is that either the events inside the inline sec-
tion are executed and then the MSC is finished or the events following the section
are executed. The exceptional inline expression can thus be viewed as an alterna-
tive where the second operand is the entire rest of the MSC. All exception inline
expressions must be shared by all instances in the MSC.

2.2.3.6 The guarding inline sections

The guarded sections contain an initial local condition (guard). If this condition
evaluates to false then the entire corresponding section is disabled, the condition



must be the first event in the section, and all events inside any guarding section
must be causally dependent on the guarding condition.

2.2.4 High Level MSC

The high level MSC (HMSC) provides a mean to graphically define how a set of
MSC can be combined. In Figure 2.6 a complete example of a HMSC is presented.
The example describes different scenarios for a Toaster machine, taken from [9]. The
HMSC is the diagram named msc TOASTER . The HMSC is a directed graph[5]
where different types of nodes can be found, e.g., the start symbol represented by <7,
connection points represented by (), and MSC references represented by (0. There
are also other nodes, such as conditions, end symbols, and parallel frames.

mscIDLE msc START msc TOAST
[ User ] [ Cotrol ] [ Heting | [ User ] [ Control ] [ Heating |
[ User ] [ Contrdl ] [ Heating
START TOAST_ACK
cooL o [
———
TIME
COMREQ START_ACK 10
HOT TIME
WARM
COMREQ|[35]
I [ — s [ s [ — =
s R —
msc ERROR msc EJECT msc TOASTER v
[ User ] [ Contrdl ] [ Heating
[ User ] [ Cotrol ] [ Heting |
READY
R =) ©
24]
EMPTY 124 __—
O
EJECT_DONE A
RESET > - |
s [ S R —
S R S R ——

T
EXCT ~—| TOAST

Figure 2.6: Example of HMSC with all basic MSCs.

-]

The flow lines connect the nodes in the HMSC and they indicate the sequencing that
is possible among the nodes in the HMSC (Figure 2.6). In our example, the initial
scenario that occurs in our system is the MSC IDLE. After the occurrence of this
scenario, the MSC START follows. Following the occurrence of the MSC START,
two different alternative scenarios are possible, MSC TOAST or MSC ERROR. If
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the MSC ERROR occurs, the next available scenario is the MSC IDLE. Loops can
be also represented, the loops can be interpreted as a specification of a continuous
execution of the system. The start symbol only shows where the system can start,
there is no additional meaning to this element. According to the recommendation

7.120 [5], the connection points do not have meaning, they can be used to improve
the readability of the chart.

2.2.4.1 Weak vertical composition

The weak vertical composition means that all the events in the instance A appearing
in top MSC finish before any event in the second MSC occurs (instance A must
appear in both MSCs). The strong vertical composition means that all the events
in the top MSC finish before any event in the second MSC occurs.

2.2.4.2 Parallel composition

The parallel composition, also called horizontal composition, means that the mul-
tiple MSC “runs” in parallel. There is no restriction among the multiples MCSs.

2.2.4.3 Alternative composition

The alternative composition means the choice among different scenarios. The only
additional consideration is when the alternatives have a common preamble, the same
initial behavior. According to the semantics expressed in the [5] the choice of one
alternative is postponed until a real alternative is found.

2.2.4.4 Loops

The Loops are not explicit declared as an operation, but they can be constructed
due the fact that the HMSC is a digraph. The meaning of the loop is the resulting
of the vertical composition of the last node with the first node, creating the loop.

2.2.4.5 MSC reference
An MSC reference is the label that is found inside the box in the HMSC. This label

denotes an MSC, an operations among MSC or a parameterized MSC.

2.2.5 Data
2.2.5.1 The Data approach

In the recommendation MSC2000, one main idea is the openness of the MSC lan-
guage, meaning that it is not constrained to any data particular language: The
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MSC can be parameterized to any data language . This means that any
complete specification will include two different languages, one for the MSC and
the other for the data.

2.2.5.2 Basic concepts

Some assumed basic elements that are included in the recommendation are:

Data type: A data type defines a (possibly infinite) set of values. E.g, the data
type DAYS may contain the elements of the set {Mon, Tue, Wed, Thu, Fri,
Sat, Sun } .

Typed variable: A typed variable is a container for a value of a specific type.
A typed variable has a name, i.e., the identifier of the container, and a value,
i.e, the actual contents of the container. The value is referred to by using the
variable name, e.g., let the variable y have the value 3 then the expression y
+ 2 denotes the integer value 5. There are two types of variables, static and
dynamic. The difference between them will be explained in the next sections.

Wildcard: A wildcard is a special variable used to denote a don‘t care value. The
usual symbol is “_”. The wildcards must be declared. A wildcard will gener-
ate a set of concrete traces corresponding to each uninterpreted trace, where
each concrete trace is derived from the uninterpreted trace by substituting a
different concrete value for the wildcard. If an expression contains multiple
occurrences of a wildcard then each represents a different reference, so that

different concrete values will, in general, be substituted for each occurrence.
Pattern: A pattern consists of either a wildcard or a dynamic variable.

Expression: An expression is a data expression which may contain wildcards,
dynamic variables, and static variables.

Binding: A binding is similar to an assignment. A bind consists of an expression
part and a pattern part that are connected by a bind symbol. The bind symbol
is :=. The example below shows equivalent left and right binding

x=y+3,y+3=x

2.2.5.83 The data inside an MSC

The places where the data can be found are:
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e Data parameters: The data can be present as data parameter in the sending,
reception, timer setting and instance creation event and in the MSC references.
The parameters should be valid expressions in the external data language.

e Predicates: The data can be presented in predicates inside conditions.

e Action expressions: The action expressions are used to manipulate the
value of the dynamic variables. Depending on the external data language
different expressions can be used as actions expressions.

e Loop Inline expressions: The loop inline expressions can contain static
variables to specify the bounds of the iteration.

e Time constraints: The boundaries that can be imposed to the send and
receive events, timer events and msc reference (in the HMSC).

2.2.5.4 Dynamic and static data

There are two different sort of variables: static and dynamic 2.
o A static variable is used to parameterize an MSC and is declared in the head
of the MSC. These variables can not be modified after the instantiation of the
MSC and the scope of this variable is the MSC body.

The meaning of an MSC reference with actual parameters is call by value [5],
in which the parameters are substituted by the actual parameters wherever
they appear in its body.

Figure 2.7 presents a parameterized MSC. The static data is declared in the
head of the MSC. In the example one static variable “ Door” can be used to
parameterize the MSC to different users or different doors. The main idea of
this scenario is the description of the exchange of messages between a locking
system and the user. Using different concrete MSCs different scenarios can
be described (In a concrete MSC' concrete values are assigned to the static
variables).

o A dynamic variable belongs to an instance and must be declared in the MSC
Document. These variables can be modified using the binding mechanism by
events in the owning instance. These variables can be assigned and reassigned

2The recommendation uses the term static data and dynamic data to denote the two types of
variables
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values through action boxes, message and timer parameters, and in-
stance creation. The value that a dynamic variable may possess at any
point in a trace will, in general, depend upon the previous events in the trace.

Figure 2.7 presents two action boxes where the value of the variable “open”
is changed. In the first action box the content is changed depending on the
return value of the function “valid”. In the second action box the value of the
variable “open” is bound to the value “false”.

2.2.5.5 Data declaration

The declaration of data mostly takes place in the MSC document, the only ex-
ception being static variables, which are declared in the MSC head (Figure 2.7).The
MSC document declarations include: messages and timers that have data parame-
ters, dynamic variables, wildcard symbols, the data language, and data definitions.
Messages that have parameters are declared so that the type and number of para-
meters are defined. Messages that do not have parameters need not be declared.
The data definitions consist of text in the data language that, for example, defines
structured types, constants, and functions signatures. It must provide all infor-
mation required to type check and evaluate data expressions used in MSCs within
the scope of the enclosing MSC document. Figure 2.7 presents an example of data
declaration.

msc AcceptA cces(Door:integer) mscdocument
User Controller Central_Controller inst User variables UserCodelinteger;
\ | | | inst Controller variables open:boolean;
enter(UserCode) inst Central_Controller
—_—
open := valid(UserCode) msg enter(integer);
msg openDoor(integer);
open = true msg openDoor_ack(integer);
apenDioor(Door) msg grantedAccess;
grtodcosss | ZEPOTK(D00n wildcard ~ _: integer;

- data
open := false .
open: integer -> boolean;
I I

Figure 2.7: Example of data declaration inside an MSC document.
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2.2.5.6 Modification of the data

The only two mechanism to manipulate the value of the variables are: Instantiation
and Binding.

The instantiation mechanism, used only for static variables, occurs when a
MSC reference contains the explicit values to be used in the static variables. The
binding mechanism, used only for dynamic variables, occurs when an assignment is
found in the parameter expression of any event such as action, receive event, etc.

2.2.5.7 Definition of values of dynamic variables

The recommendation establishes the next constraint:

In a defining MSC' there must be no trace through an MSC in which
a vartable is referenced withoul being defined. That is, each variable
appearing in an expression must be bound in the stale used to compute
the value of the expression. The only exception occurs in the utility MSC,
references to undefined variables are permitled.

There is a special qualifier used to denote if any variable is defined in some period
of time. Figure 2.7 shows two additional action boxes, the first one contains a
def statement which is used to indicate that a variable has been assigned some
unspecified value; it is the equivalent of a binding of a variable to a wildcard. That
is, def x is the equivalent of x := _, where _is a wildcard. In the second action box
an undef statement is used to indicate that a variable is no longer bound, i.e. that
the variable cannot be legally referenced, or has moved out of scope.

msc AcceptAcces(Door:integer)

User Controller LockActuator

l | |

def UserCode

enter(UserCode)

open := valid(UserCode)
open = true

openDoor(Door)

openDoor_ack(Door)

-¢

undef UserCode
If iopen _

Figure 2.8: Example of def and undef qualifier.

grantedAccess
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2.2.5.8 Event State

An Event State is a set of bindings in the event in an execution trace. A state
associated with a current event is computed from previous states together with
the data content of that event. The previous states used to compute the new
state depend upon the type of event, all are derived from at least the last non-
creating event executed on the same instance as the current event. In addition, for
message receiving events and for the first event on a created instance, the state of the
corresponding send or creating events is also used in the computation. Effectively,
this means that a state is maintained by each instance, and a new state is derived
from the instance‘s previous state together with state information passed to the
instance through messaging, or from the parent instance in the case of instance
creation (Figure 2.9).

Event Sete "y, msc Example mscdocument
Local N A B C
X := 12(Any value) S ] [ ] [ ] . . . .
e N inst A variables x:integer;
z=4 inst B variables y:integer;
- mi() inst C variables zinteger;
CoE e S Y msg mi(integer);
Local h m2(x +y, y-1) msg m2(integer,integer);
y:=12 - 1 i i .
) mi(z-10) msg m3(integer,integer,integer);
Inherited -
x:=12 T ) % wildcard _: integer;
Event State -7 - /_
Local e
y:=12 i
Inherited e .
x:=12 .7
z:=4 e

Figure 2.9: Example showing some event states.

2.2.5.9 Accessing variables

Because information is allowed to flow between instances via message passing and
instance creation, the state associated with each event may contain bindings to vari-
ables not owned by the instance upon which the event occurs. The rules governing
the access to the value of variables owned by foreign instances are defined in [5,
pags. H8-59]. We can resume them: If z is nol bound either in the old state or in
the parameter list, then the binding from the sending event can be inherited. Intu-
itively, the binding of a variable can be inherited from another instance only if the
variable is sent to the instance by appearing in a parameter‘s expression. However,
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a binding cannot be inherited if the variable is owned and in scope by the receiving
instance, as the local binding takes precedence. Thus, the value of a variable can
be transmitted by a chain of messages lo other instances, so long as each message
explicitly references the variable in ils parameter list [5].

2.2.5.10 Assumed Data Types

There are three places in the standard where the MSC language assumes the exis-
tence of data types. Boolean valued expressions used in conditions, Natural number
expressions used to define loop boundaries, and Time expressions used in specifying
timing constraints.

Following the recommendation data approach, these types have to be defined
as part of the user‘s chosen data language and not part of the MSC language.

2.2.6 Time

Time concepts are introduced into MSC to support the notion of quantified time
for the description of real-time systems with a precise meaning of the sequence of
events in time [5].

The timed interpretation of the MSC assumes the following:

o All events are instantaneous.

e Progress of time is explicitely represented using a special event which repre-
sents the passage of time:

{61, tl, €2, tz, €3, tg, 64..}

The triple (e1, 1, €2) means that after the occurrence of event e; time ¢; passes
until event ey occurs. Events with no time delay, meaning that ¢,, = 0, occur
simultaneously, i.e. without any delay.

e Time progress (i.e. clocking) is equal for all instances in a MSC, a global clock
is assumed [5, pag. 63].

o [t is assumed that time is progressing and not stagnating. Progressing means
that after each event in a trace there is eventually a time event. Non-
stagnation means that there is an upper bound on the number of normal
events between each pair of timed events.
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2.2.6.1 The time inside the MSC

There are three main areas where time can be used:
e Time observation, such as the measurements.
e Timer events, such as the starting timer, stopping and timeout event.

e Time constrains, such as the time points and the time intervals.

2.2.6.2 Relative and absolute timing

The relative timing uses pairs of events - preceding and subsequent events, where
the preceding event enables (directly or indirectly, i.e. via some intermediate events)
the subsequent event. Relative timing can be specified by the use of arbitrary expres-
sions of type Time, i.e. referencing parameters, wildcards and dynamic variables.
The concrete value of a relative time expression is evaluated once the new state of
the event relating to this relative timing has been evaluated.

The absolute timing is used to define occurrence of events at points in time
that relate to the value of the global clock. Absolute timing can be specified by
the use of arbitrary expressions of type Time, i.e. referencing parameters, wildcards
and dynamic variables. The concrete values of a time constraint are evaluated at
the start of a time interval once the new state of the event relating to the start of
the time interval has been evaluated.

2.2.6.3 Time points

Time points are defined by expressions of type Time. The optional absolute time
mark, “@” | indicates an absolute timing. The evaluation of a time point yields a
concrete quantified time. An event without time constraints can occur at any time.
Figure 2.10 presents an MSC where the time execution is constrained. The absolute
timing constraints, represented with the “@” symbol denotes that the execution of
this MSC must be start when the global clock starts, or the occurrence of this
scenario restart the global clock. The total time that this scenario must consume is
498 ms. There is a relative timing constrain in the MSC, the time that the sub-MSC
or MSC reference “Get_User_ID” must consume is 221 ms between the first and the
last event inside the sub MSC. The only constraint is that the execution of this
MSC must be in the period restricted by the global clock.

2.2.6.4 Time observations

Measurements are used to observe the delay between the enabling and occurrence
of an event (for relative timing) and to measure the absolute time of the occurrence
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User Door_Controller Central_Controller
(@ \ | | |

[221mg] { Get_User_ID }
|
Voo __

=
~ L L

Figure 2.10: Example of relative and absolute time points.

of an event (for absolute timing). In order to distinguish between a relative from
an absolute measurement, different time marks (i.e. “@” for absolute and “&” for
relative) are used. Measurements can be tied to time intervals. For each measure-
ment, a time variable has to be declared for the respective instance. Figure 2.11

msc UserAccess

User Door_Controller Central_Controller
@absl \ | | |

Z; B )E }
&rell | Get_User_ID
Vo __

[ Start Service }

Figure 2.11: Example of relative and absolute measurements.

presents an MSC with both relative and absolute measurements. Remember that
these measurements are stored in dynamic variables owned by one instance. In this
case, the absolute measurements are stored in the variables abs1l and abs2. The
relative measurements are stored in the variable rell.
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2.2.6.5 The timer

The timer is a mechanism used to measure the time. A timer is a predefined
counter, synchronized with the global clock. We can associate two different internal
variables to the timer (these are abstract variables, different to the dynamic and
static variables). The timeout variable and the counter variable, both belong to
the Time domain. The default value for the timeout variable is infinite. We assume
the existence of the timers in the instances. The manipulation of these variables is
performed through the following events (Figure 2.12):

e Starting timer event: This event denotes the timer setting, i.e. set the
timeout variable to any value described in its parameters.

e Timeout event: This event denotes the consumption of the timer signal, i.e.
the counter reaches the timeout variable value.

e Stopping timer: This event denotes the cancelling of the timer.

msc Example
A v & T ¥— Timer Start
[ ] ]
T X— Timer Stop
T X T Y—» Timeout
M messagel
T %
TX message2
I

Figure 2.12: Example of a Timer.

2.2.6.6 Time interval

Time intervals are used to define constraints on the timing for the occurrence of
events: the delay between a pair of events can be constrained by defining a minimal
or maximal bound for the delay between the two events. A time interval does not
imply that the events must occur. The fulfillment of a time constraint is validated
only if the event relating to the end of that time intervals occurs in the trace.
An MSC trace has to fulfill all its time constraints, i.e. if a trace violates a time
constraint the trace is illegal. Time intervals can be used for relative timing as
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well as for absolute timing. Time intervals can be specified by the use of arbitrary
expressions of type Time, i.e. referencing to parameters, wildcards, and dynamic
variables. The concrete values of a time constraint imposed by a time interval are
evaluated at the start of a time interval once the new state of the event relating to
the start of the time interval has been evaluated. Within a time interval, either only
relative time expressions or only absolute time expressions must be used. Either the
minimal, the maximal bound or both bounds are given. An interval must define at
least one of the two bounds. Figure 2.13 presents an MSC containing time interval
constraints. The interval denotes the maximum and minimum time that constrain
the pair of events. In the example the MSC is consistent with all the time constraints

presented.
msc UserAccess
User Door_Controller Central_Controller
(0,104 \ | | |
! A\:, > .
|
: (049 ! Get_User_ID ‘
|
OV
‘ | | |
AT
: (045 : ‘ Start Service ‘
VA
\ o
o L L ;

Figure 2.13: Example of a time interval.



Chapter 3

Formalization

3.1 Introduction

In this chapter a formalization based on sequences is presented.The features included
in this formalization are:

e The basic Message Sequence Chart (MSC).
e The inline expression.

e The high level MSC (HMSC).
e Data

We do not formally model timing.

3.2 Previous work

There are many works related to the formalization of the MSC. For basic MSC, there
are formalizations based on process algebra [3] , Petri nets [49] and an approach
based on automata theory and temporal logic [7]. The most extensive semantics is
based on process algebra.

In the formalization based on process algebra, it is very difficult to express
what a condition is, the reason is, that a condition refers rather to states not to
events. Conditions are treated as meaningless actions [3]. Petri nets are state ori-
ented and this allows for a natural definition of conditions. Another advantage is
that Petri nets provide different semantics for parallel composition and for alterna-
tive composition. The problem with this semantics is that there are no composition
operators allowing to compose different MSC. Therefore, one have to specify a MSC
as a closed system. Another interesting semantics is given by the automata approach

21
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[7]. There is another semantics based on multiset algebra [46], this semantics in-
cludes the inline expressions.

In general, the existing semantics do not formalize features like actions, con-
ditions, etc. Additionally, none of them includes the formalization of data.

3.3 Inconsistencies in the recommendation

We found one inconsistency in the recommendation 7.120 [5]: the mechanism used
to modify the dynamic variables is the binding. A binding can occur in the message
parameter list as is established. However, how must this binding be declared in
the data declaration ? e.g., having the next message “open(x:=4,10)” contains one
binding. The number of data parameters is two, but how should this message be
declared 7

We assume that no bindings can appear in the message parameter list. And
we do not formalize time.

3.4 Formalization of the basic MSC

The approach followed to formalize the MSC is based on a non-visual interpretation,
as it is established in the recommendation Z.120. [5].

3.4.1 Structural elements

An MSC is formed from the following components:

e Instances: A finite set 7 of instances. The environment is modeled as another
instance.

e Timers: A finite set T of timers.

o Messages: A set M of messages. A message may have data, i.e. as data
parameters.

e Expressions: A set Exp of dala expressions defined by an external data

language.

3.4.2 Behavioral elements

The next elements define the behavior of the MSC

e Events : A finite set £ of events.
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e Inline expressions : A finite set ZE of inline expressions. The inline expres-
sion is a multi instance meta-event!.

e Send - receive bijection : The relation described by the interpretation asso-
ciated to the messages ( sending - receiving events) is described by a bijective
function b such that each sending event is mapped to a unique receiving event,
b:S — R, where § and R denote respectively the set of sending and receiv-
ing events. In order to handle the instance creation, we define a Creating -
Created bijection, that is similar to the Send - Receive Bijection.

o Coregions: A finite set C. A coregion is a multiset of events.?

e Sequence of elements Each instance is mapping to a sequence of elements,
these elements can be coregions, inline expressions or both. The total order
described by the sequence is denoted by <. The set composed by all possible
sequences of elements is denoted by SEQ(C U ZE). Each instance owns a
sequence of elements (coregions, inline expressions or both) describing the
elements in the instance’s axis time, i.e. each instance is mapped to a sequence
of coregions by the function m. m : Z — SEQ(C U Z¢).

3.4.3 The partial order

The combination of the previous elements presented define a partial order of events:

Partial Order ®: The local total order and the send-receive bijection, define
the relation <, known as partial order of the elements (coregions, inline expressions
or both). Let ¢; and ¢; two different elements (coregion or inline expression), we
say that c¢; precedes causally ¢y , denoted by ¢; < ¢, if

e ¢; and ¢y belong to the same instance, and ¢; precedes in time ¢y, ¢; <7 ¢s.

e ¢ is the sending event of the message m, and ¢y is the respective receiving
event. b(cy) = cg A b7 (e2) = ¢

3.5 Formalization of the Inline Expressions

An inline expression can be interpreted as a multi instance meta-event. The inline
expression is a sequence of MSCs. Every MSC inside the inline expression is called

IThe inline expression can not be consider as an event, but its position in the sequence can be
interpreted as a meta-event.

2 A multiset is a set-like object in which order is ignored, but multiplicity is explicitly significant.
Therefore, multisets {1, 2,3} and {2, 1,3} are equivalent, but {1,1,2,3} and {1, 2,3} differ.

3A relation r is a partial order on a set S if it has: reflexivity, antisymmetry and transitivity.
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inline section, this recursive property of the inline expression describes nested inline
expressions. Every inline expression is labeled with a compositional operation such
as { par, alt, loop, ... }.

3.6 Formalization the High Level MSC

A High level MSC, denoted by HMSC 4, is a directed graph composed by
e Nodes: A finite set N of Nodes. There are different types of nodes:

— Control nodes : These nodes are used to represent the initial and
terminal node of the graph. The initial node is represented using the
symbol 17, and the terminal using the symbol A.

— Conditions: These nodes represent global conditions of the system.

— Parallel frames: These nodes represent parallel composition of ele-

ments (MSC or HMSC).

— Reference: These nodes represent references to basic MSC (or instances

of MSC utilities) or another HMSC.

— Connection points: These nodes are used to improve the readability
of the HMSC, they have no semantic interpretation.

e Labeling node function: A labeling function [ that maps each node refer-
ence to an MSC, a parallel frame or another HMSC.

e Edges: A set of edges that connect nodes to nodes. £ C [N x N .

e Labeling operation function: A function o that maps each edge to any
operation (alternative, parallel or sequential).

There are some restrictions in the number of nodes. The number of initial nodes in
the HMSC must be one. The number of incoming arrows to an initial node must
be zero, and the number of outgoing arrows from a final node must be zero.

3.7 Formalization of Data

3.7.1 Basic elements

In this section we assume that all the details related to the syntactic properties of
the data language have been solved. We assume a semantic domain S in which

4We change the use of some elements in the HMSC in order to make a simple formalization
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the expressions will be interpreted. We assume the existence of a multiset set of
variables V and a labeling relation [oc that maps variables to instances, loc: V — 7,
describing the local variables. The relation :n maps variables to instances, describing
the inherited variables. The definition or undefinition of variables is denoted as a
binding, in the case of definition the binding is performed using a non-deterministic
choice operation and the undefinition operation is represented by the use of binding
to the “undefined” value L. The set of expressions Fxp contains the set of binding
expressions (B), being the strings that represent (or can represent) respectively
declarations or bindings to variables.

3.7.2 State

We need to define the notion of state. A state gives a snapshot of all variables
involved in the MSC. A state consist of:

o A set of defined variables V', V C V.

e A valuation function ¢ : V — &, giving the values of the variables. The set
of all valuation functions is called ®. The interpretation of the wildcard in
the context of this valuation function is defined as a non-deterministic choice,
meaning that assuming that the wildcard has a specific data type, then the
non-deterministic choice select any value from the values described by the
corresponding data type, we denote the non-deterministic choice as x :€ A,
where z is the value taken from the set A.

Additional to the previous elements, we need a set of functions to interpret the
various elements:

e For bindings: A set B’ C B for each set of variables V, giving the set of
bindings that may actually be used, given that only variables in V' are defined,
and state transition function 7: ® x B — ®. 7(¢,b) denotes the new event
state the MSC turns into when binding b is executed in the event state (V).
Note that 7(¢,b) needs only be defined when b € B’, where V' is the set of
variables on which ¢ is defined.

o For expressions: A set Fx C Fxp for each set of variables V', giving the set
of expressions that may actually be used, given that only variables in V' are
defined and an interpretation function I, : Kz — &, where V' is the set of all
variables on which ¢ is defined. [,(z) gives the value that z is interpreted to.

e For local variables in any expression: | : Exp x T — P(V) giving the the local
variables appearing in any expression in some instance.
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e For inherited variables in any expression: i : Exp x T — P(V) giving the
inherited variables appearing in any expression in some instance.

3.7.3 General semantics

In an event state (V) ) all expressions must be in Fz an all bindings in B’. Provided
one uses variables with a well-defined scope, this can be checked statically. The types
of events that can change the state are: The action, receiving, setting timer, timeout
and instance creation event. The semantics associated to the modification of the
event state is similar for all of them. If the MSC is in a state (V) ), all events such
as action(a,1) or receive(m,i,7) have in the “label”(i.e. a for action and m for a
message) part expressions, which must be in Fz. The semantics for such events are
equal to the semantics of (¢, receive, [,(m),,7) and (7, action, /,(a)). However, if
there is any explicit binding, such that m € B or a € B, this causes that the event
state changes from (V| ¢) to (V,7(p,a)) or (V,7(p, m)).



Chapter 4

Execution Model for the basic

MSC

4.1 Introduction

In this chapter the execution model for the basic MSC is presented. The approach
followed to model the execution of the MSC was the utilization of an Abstract
FEzecution Machine (AEM). This AEM can be used in two different ways: as an
Acceptor or Generator. The AEM works as an Acceptor when is used to verify if
a set of traces met the corresponding specification (MSCs). The AEM works as a
Generator when the AEM is used to generate set of traces based on a specification.

4.2 Basic concepts

4.2.1 Event Structure

The Event Structure &s is a vector of sequences. The elements of the sequences are
coregions and inline expressions. This structure represents the set of sequences of
coregions as is presented in Figure 4.14.

| | | ( h
aj b Z1 a El 21
ap b, Z, ap 2 Z,
as bs Z3 az b3 Z3
| | |
| | - - - |
am bn z, am bn Zy
s L Event Structure )

Figure 4.14: Visualization of the Event Structure.
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4.2.2 Instance Reference

An instance reference is a structure composed by a pointer and a multiset of events.
The instance reference is used as a pointer over the sequence of elements in the
Event Structure (MSC). Every instance reference is associated to any instance.
The instance reference works as a head over the sequence and reads the content of
the current element in the sequence and keep it.

4.3 Abstract Execution Machine

The Abstract Frecution Machine is a set of structures and rules used to generate or
accept traces defined by an MSC. The AEM is composed by the next components:

o Control reference: A set Cref of instance references, this set is similar to
the set of heads used in a multi-tape Turing Machine.

e Event memory: A set Mg of events. This set is used to keep some historic
knowledge of the execution.

e Data space: A set Dy, of MSC variables. This component will be explained
in the next sections.

e Operational rules: A set O of operational rules that define the AEM be-
havior.

A graphical representation of the AEM and the event structure is presented in
Figure 4.15.

4.3.1 Event Memory

An Event Memory, Mg is a multiset of events. The Event Memory is used to record
some historical information about the execution of the AEM.

4.3.2 The enabled predicate

The next table presents the description of the enabled predicate.
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Event Structure
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Figure 4.15: The AEM and the event structure.

Event type Condition Description

Receiving b1 (ev) € Mg The corresponding sending event is lo-
cated in the Event Memory. i.e., the cor-
responding sending event has occurred.

Time out time(Timer(ev)) | The timer counter has reached the timeout
value. The time predicate is associated to
the timed semantics of the MSCs.

Created instance b~'(ev) € Mg | The corresponding creating instance event
is located in the Event Memory

Creating instance true

Sending true

Stopping Instance true

Condition true

Action true

Setting timer true

Stopping timer true

Table 4.1: Description of the enabled predicate .

29
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4.3.3 The action operation

The action operation defines the actions that are performed when an event occurs:

Event Actions Description

Sending Mg U{generate(ev)} Copy the event in the Event Mem-
ory.

Receiving Me = {b7'(ev)} and | Remove the event from the Event

update(ev) Memory and update the set of vari-

ables

Action update(generate(ev)) Update the local set of variables

Setting update(generate(ev)) and | Start the timer and update the set

timer start(ev) of variables

Stopping stop(ev) Stop the timer

timer

Timeout update(generate(ev)) Update the local bindings

Creating in- | Mg U {generate(ev)} Copy the event in the Event Mem-

stance ory.

Created in- | Mg — {b7!(ev)} and Cref U | Remove the corresponding creating

stance {ref(ev)} and update(ev) event from the Event Memory and
update the set of variables

Stopping Cref —{(ref(ev))} Remove the event reference !

instance

Condition if evaluate(ev) = false then | If the condition evaluation is false,

stopEzec(ev). then stop the the execution?.

Table 4.2: Description of the action operation.

4.3.4 Operational rules

Let be ev be any event in any instance reference (meaning in the multiset of events)
and let be ref be any reference in the control word, then
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Rule

Rule

Description

Enabling event

enabled(ev)

—  action(ev)

If an event is enabled, then
perform the corresponding ac-
tion.

Computing
progress

ref =0 — next(ref)

If there is any event reference
that is empty, then move to
the next element in the corre-
sponding sequence.

Table 4.3: The AEM operational rules.

4.4 Example: The operation of the AEM without
data

Figure 4.16 presents an example of execution using the AEM. The header of the

table has the following columns:

e A, B and C: denote the instance referencein the MSC.

e R(A), R(B) and R(C): Denote the elements in the instance references.

e FEnabled : denotes the set of enabled events.

e Selected: denotes the event which actually occurs.

msc ExampleAEM
A

Al

B3 5 I Cl

A2 |=

B6

= C2

INSTANCE A

A B C R(A) R(B) R(C) Enabled Selected

- 0|A1B1Cl m! m? |a? bl |m! bl |m
@ 1|A2B1Cl ¢? m? |[a? bl |m?b! | m?
INSTANCEB | 2|A2 B2 Cl ¢? cC |abp|cho |b
" 3|A2 B2/ Cl c¢? c |a? c |c
CondC
< 4|A2 B3 Cl c? a |a? a |a
b? 5| A2 B4 Cl c? b? |a? a? a?
° 6| A2 B4 C2| c? b? |d? b? | b?
d!
7| A2 B5 C2| c? ¢ |d? ¢ |c
INSTANCE C
= 8| A2 B6l C2| c? d | d? c? d|c?
@ 9 B6 C2 d | d? d | d
10 c2 d? d? |d?
11

Figure 4.16: MSC Example.
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4.4.1 Data space

The data space is a set of tuples < v,1,7,s > called MSC' variables, where v is the
variable, 7 1s the owner instance, j is the instance which manipulate the variable
and s is the state of the variable (defined or undefined). The two instances are
used to distinguish between a local or inherited variable.i.e the owning and the
manipulating instance.

4.4.2 The generate/accept function

If the approach selected is as an Acceptor then the accept function fill the wildcards
with the values provided in the event. If the approach selected is as a Genera-
tor, the function will select any random (non-deterministic choice) value from the
corresponding data type.

4.4.3 Snapshot

A Snapshot is a set of MSC variables. A snapshot is used to copy the variables
(bindings) that are explicitly or implicitly referenced in the parameter expressions
of some events. This snapshot is associated to the sending and creating event when
is located in the Event Memory. The other events do not require temporal storage
due to the fact that the snapshot is not required when the data modification is
performed.

4.4.4 The update action

The update(ev) action performs the actions related to the updating of the data
space.

1. Extract the explicit bindings (local variables).
2. Update all local local bindings.

3. If the event is a creating event, then update the creating and the created event
state.

4. If the event is a sending event then create a snapshot and store it in the event
memory.

[

. Add or update the inherited variables referenced in the parameter expression.



e A, B and C: denote instance references.
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In this section an example of execution using an MSC with data is presented.
The headers of tables 4.4 and 4.5 have the following columns:

R(A), R(B) and R(C): denote the elements in the instance reference.

Enabled : denotes the set of enabled events.

Selected: denotes the “real” event.

Loc(A), Loc(B) and Loc(C) denotes the local variables of each instance.

In(A), In(B) and In(C) denotes the inherited variables of each instance.

msc ExampleAEM
A

m—m

Bl

varA2=0, varB1=33

A2 B2
B

varAl=10

A

varA2 varAl,
na | SNEAZVIAL

B4

B3
b(varA2,varB1)

»| Cl

INSTANCE A
m!
i DATA DECLARATION
avarA2varAl, )! mscdocument ExampleAEM;
INSTANCE B inst A variables varAl, varA2:integer;
m? inst B variables varB1: integer;
" instC;
actionB
avarA2,varAl, )? msg m; _ _
b(varA2varB1)! meg a('.meger".mege” nteger):
msg b(integer,integer);
INSTANCE C wildcard _: integer;

Figure 4.17: MSC Example with data.



Step | A | B | C | R(A) | R(B) | R(C) | Enabled | Selected
0 |A1|B1|Cl| m! | m? | b? m! m!
1 |A2|B1|Cl| m? | b? | m?A m?
2 |A2|B2|C1| A | B | b? | BA A
3 |A3|B2|C1| a! | B | b? | B,al al
4 B2 | C1 B | b? B B
5 B3| C1 a? | b? a? a?
6 B4 | C1 bl | b? b b
7 C1 b? b? b?
8

Table 4.4: Execution of the bAEM using the MSC with data.

| T | Loe(a) Loc(B) Loc(C) | In(A) In(B) In(C)
0 varAl=1, varBl=1
varA2=1
1 varAl=1, varBl=1
varA2=1
2 varA1=10, varBl=1
varA2=0
3 varA1=10, varBl=1
varA2=0
4 varAl1=10, varB1l = 33
varA2=0
5 varA1=10, varB1l = 33 varA1=10,
varA2=0 varA2=0
6 varA1=10, varB1l = 33 varA1=10,
varA2=0 varA2=0
7 varA1=10, varB1=33 varAl1=10, varA2=0,
varA2=0 varA2=0 varB1=33
8 varA1=10, varB1=33 varAl1=10, varA2=0,
varA2=0 varA2=0 varB1=33
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Table 4.5: Execution of the bAEM using the MSC with data, this table only de-

scribes the event states.



Chapter 5

Execution model for the basic
MSC with inline expressions

5.1 Introduction

Using the formalization presented in Chapter 3, the inline expression is another
element in the sequence that defines the instance behavior. The inline expression is
composed by sections, and every section is a sequence of elements. Every section is
interpreted as a new instance reference(thread) in the AEM. However, we need to
include more information in order to describe the semantic behavior of every inline
expression type. The Figure 5.18 shows a representation of this approach.

'm2

iel m2 iel

o o o e
a ms RN ie2 ‘?mA"mG‘ :
‘m3 A m3 2 m7

‘m6 ie2 1ma 1m8

9

Im7

m8

Event Structure

Figure 5.18: The interpretation of the inline expression in the AEM.

Figure 5.18 shows an MSC containing two inline expressions. The corresponding
send and receive events of each message are denoted by circles. Next to the MSC
the sequence intepretation is presented. The first instance contains just two events,
the sending event (!m1) and the inline expression (iel). The inline expression iel
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contains two sections, and each section contains two and three evens respectivelly.
Using this approach nested inline expression can be described.

5.2 The extended wnstance reference

5.2.1 The instance referencestate
The instance referencemay be in one of the following states (Figure 5.19):

e Sleeping. The instance referenceis created, but it can not run.

Running. The instance referenceis being executed.

Waiting. The instance referenceis waiting to be awake.

e Terminated. The instance referencehas finished execution.

Sleeping
dispatch sleep
end | awake

Figure 5.19: The instance referencestates.

5.2.2 The instance referencecounter

In order to handle the loop inline expression all instance referenceshave an counter,
i.e. an integer variable associate to them.

5.2.3 Decision set

The common behavior (Figure 5.20) in the alternative inline expressions is handled
by the AEM using a decision set. The decision set is composed by instance refer-
ences, this set denotes disjoint alternatives among instance references. The set of
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all decision sets is called Decision Memory.

msc Example

A ] [ B ] [ ¢ ]
alt

Figure 5.20: Example of common preamble between two alternatives in the MSC.

5.2.4 The inline expression activation

The inline expression activation is similar to the procedures used to create new
threads in the programming languages. The Figure 5.21 presents the approach used
to represent the different “threads” ( instance references) that are activated in the
inline expressions.

This activation is denoted by the operation activate and is described by the next
steps:

If the instance referenceis the first referenced instance that reaches the
inline expression:

1. For every section in every instance in the inline expression a new instance
referenceis created, the initial state of these instance referenceis Ready.

2. The new instance referencecreated that has the same instance as the current
instance referenceis dispatched.

3. The current instance reference state changes to waiting.

4. Depending on the inline expression label, the next set of actions is performed:



msc ExampleAEM
A

msc ExampleAEM
A

Y \)

’
’
’
,
’
N /o
Desicion

Figure 5.21: The inline expression activation in the AEM.

Label Actions
Alternative | Add a new decision set using them.
Parallel
Loop
Optional Add a new decision set using.
Exception | Add a new decision set using them and the current instance ref-
erence.
Otherwise:

1. The instance referencesthat already exists (children) are dispatched.

2. The current instance reference state changes to waiting.

38

3. Depending on the inline expression label, the next set of actions is performed:
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Label Actions

Alternative | Add a new decision set using them.

Parallel

Loop

Optional Add a new decision set using them and the current instance ref-
erence.

Exception | Add a new decision set using them and the current instance ref-
erence.

5.2.5 The instance referencerelationships

To organize the set of instance referenceswe define a set of additional concepts that

are interpreted as relations.

o A set of instance referencesare brothers if they are at the same level. For
example, the initial instance referencein any MSC are brothers. The set of new
instance referencesthat are created when the AEM find an inline expression
are brothers among them.

o A set of instance referencesare children if they have the same “father”,
meaning the same instance referencethat dispatches them.

Figure 5.22 shows an example of this concepts.

5.2.6 Inline expression counter set

In order to control the execution of the loop, we define a tuple called inline ex-
pression counter, < ie,v,s >, where e denotes inline expression, v the value of
the maximum counter and s denotes the state { free, locked }. The set of inline

expression counters is called inline expression counter set.

5.2.7 The operation clean

This operation removes elements from the Decision set and terminates instance ref-
erences. This operation is used to allow the execution of instance referenceswhen
they are selected by the event (in the case of alternative inline expression for exam-
ple). Let be ev any event that occurs:
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@ 3 o8
E % @ @ Instance reference
Event

Seion1 Section2 Section3 Sectio J1 Section2  Section3 \ Secl nl Section2 Section3 Inline expression

Section 1 Section 1

Theinstance references 1,2,3 are brothers.
The instance references 1.1, 1.2, 1.3 are brothers.
The instance references 3.1, 3.2, 3.3 are brothers.

Theinstance reference 1 isthe father of 1.1, 1.2 and 1.3 .
Theinstance reference 3 is the father of 3.1, 3.2and 3.3 .
The instance reference 3.1 is the father of 3.1.1.

Figure 5.22: The relations among instance references.

1. Get all instance referencesthat own this event.

2. Get all decision sets that have any of the instance referencescomputed in step

1.

3. Every instance referenceand its corresponding brothers that are in any set
found in step 2 and do not own the event ev must be terminated. (This step
removes the unselected alternatives).

4. Update the corresponding decision set. If there are any set containing only
one element, then this set must be removed, otherwise just remove the corre-
sponding decision relation.

5. If there is any loop involved in the decision set, then lock the corresponding

inline expression counter.

5.2.8 The operation stopExec

This operation stops (removes) the instance referencesthat are related to any event
in a condition. It means that the instance referencerelated with a guard is stopped.
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This operation terminates all related instance referenceto any condition that eval-
uates to false (The brothers are terminated).

5.2.9 The operation evalLoop

This operation perform the following actions: Let be top the maximum value asso-
ciated to the corresponding inline expression, maz and min the corresponding loop
bounds and ¢ the instance referencecounter.

1. Increment the instance referencecounter.
2. If the operation is restricted, (¢ < min A ¢ < top) then activate( ev).
3. If the operation is not restricted, (¢ > min A ¢ < maz A topisnotlock)V then

create a new friend instance referenceand add a new decision set.

5.2.10 The extended action operation

The action operation defines the actions that are performed when an event happens,
or is selected.

5.2.11 The extended operational rules

Let ev be any event in any instance reference (meaning in the multiset of events)
and let ref be any reference in the control word, then

5.3 Example: The operation of the AEM with
inline expressions

IA 1B IC } !

[ ] ] ] |

[ e | [ et | [

“ ey a e -7 !
b g |

3 = - :

,,,,,,,,,,,,,,,,,,,,,,,,,, /] |
c | |

|

! ]

! I

! I

Event Structure

Figure 5.23: Example MSC with inline expressions and the corresponding Event
Structure .



Event Actions Description

Sending Mg U {generate(ev)} Take a copy of the associ-
ated bindings in the sending
instance and store it in the
Event Memory

Receiving Mg — {b7(ev)} and update(ev) Remove the event from the
Event Memory and update
the set of variables

Action update(generate(ev)) Update the local set of vari-
ables

Setting update(generate(ev)) and start(ev) | Start the timer and update

timer the set of variables

Stopping stop(ev) Stop the timer

timer

Timeout update(generate(ev)) Update the local bindings

Creating in-
stance

Me U {generate(ev)}

Take a copy of the associ-
ated bindings in the sending
instance and store it in the
Event Memory

Created in-

Mg — {b7'(ev)} and Cref U

Remove the corresponding

stance {ref(ev)} and update(ev) creating event from the Event
Memory and update the set of
variables

Stopping Cref —{(ref(ev))} Remove the event reference

instance

Condition if evaluate(ev) = false then | If the condition evaluation is

stopEzec(ev). false, then stop the the execu-

tion?.

Inline activate(ev) Activate the inline expression

Expression

Table 5.6: Description of the extended action operation.
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Rule

Description

Event Execution

If an event is enabled, then perform the operations
action and clean.

Computing progress

If there is any instance referencethat is empty and
running, then move to the next element in the corre-
sponding sequence.

Awakening instance
references

If there is any instance referencethat has no children
and the corresponding inline expression is not a loop
then the instance referenceis awake

If there is any instance referencethat has no children
and the corresponding inline expression is a loop then
perform the operation evalLoop

Terminating  instance
reference

If the sequence has no elements then the instance
referenceis terminated.

Table 5.7: The AEM operational rules.

Figure 5.24 presents the corresponding instance referencesand its execution.
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Execution example.
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Chapter 6
Execution Model of the HMSC

6.1 Introduction

In this chapter the execution of the High Level Message Sequence Chart (HMSC) is
presented. The execution model is based on an extension of the previous Abstract
Execution Machine. The approach is similar to the one used to handle the inline
expressions.

6.2 Approach

The approach used to handle the HMSC is assuming a strong vertical composition.
We need to use this approach since the weak vertical composition can lead to un-
desired results. An example of a HMSC is presented in Figure 6.25. The instances
involved in each node are presented. Assuming the weak vertical composition, there
is not an initial scenario, the initial scenario is split in many “initial scenarios”. The
example shows the “real” initial set of scenarios (MSCs A, B and E, the reason is
based on the meaning of the weak vertical composition.

This situation can be handled, in some way, using the strong vertical composition,
where all events in the first MSC precede the events in the second MSC. Assuming
this composition the execution is isolated in just one node (with exception of the
alternative and parallel operations).
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d e f

Figure 6.25: A HMSC and the instances presented in some nodes.

6.3 The new elements in the AEM

6.3.1 The node reference

A node referenceis similar to an instance reference. The set of possible states
is the same. The only difference is the object that is referenced: the instance
referencepoints to elements in any sequence and the node referencepoints to nodes
in the digraph.

The relations that the node referencecan have are: fatherhood and childhood.
The fatherhood relation is extended to either node referenceor instance reference.
The only one constraint is that an instance referencecannot be father of a node
reference.

6.3.2 The extended clean operation

This operation removes elements from the Decision set and terminates instance
reference. This operation is used to allow the execution of instance referenceswhen
they are selected by the event (in the case of alternative inline expression for exam-
ple). Let ev be any event that really happens:

1. Get all wnstance referencesthat own this event.

2. Get all decision tuples that have any of the instance referencescomputed in
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step 1.

3. Every instance referenceand its corresponding brothers that are in any tuple
found in step 2 and do not own the event ev must be terminated. (This step
removes the unselected alternatives).

4. Update the corresponding decision set. If there is any tuple containing only
one element, then this tuple must be removed, otherwise just remove the
corresponding decision relation.

5. If there is any loop involved in the decision set, then lock the corresponding
Meaning that the
the inline expression must perform this number of loops. In some sense, this

inline expression counter. instance referencesrelated in

counter denotes the compromised iterations.

6.3.3 The extended operation rules

Let ev be any event in any instance reference (meaning in the multiset of events)
and let ref be any reference in the control word:

Rule Description

Event Execution | If an event is enabled, then perform the operations action and

clean.
Computing If there is any instance referencethat is empty and running, then
progress move to the next element in the corresponding sequence.
Awakening in- | If there is any instance referencethat has no children and the

corresponding inline expression is not a loop then the instance

referenceis awake

stance references

If there is any instance referencethat has no children and the cor-
responding inline expression is a loop then perform the operation
evallLoop

Terminating in-

stance reference

If the sequence has no elements then the instance referenceis ter-
minated.

Executing  node

reference

If there is no child instance referencesthen move to the next node
in the digraph and create all the corresponding children.

Table 6.8: The AEM operation rules.
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6.4 The operation of the AEM with HMSC

Figure 6.26 and 6.27 present how the node referenceand instance referenceare
visualized in the execution of the HMSC. Figure 6.26 presents the case where a node
is reached and the node referenceactivates the instance referencecorresponding to
the instances referenced in the MSCs node. Figure 6.27 presents the case where an
alternative is reached. The way to handle the decision is similar to the one used to
handle alternative inline expressions.

Node reference

Instance reference
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Figure 6.26: Example of the AEM and HMSC (initial step).
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Figure 6.27: Example of the AEM and HMSC (alternative)




Chapter 7

Applications

7.1 Introduction

Testing is one of the most popular methods to protect users and customers against
insecure, inappropriate or even erroneous soft- and hardware products. Further-
more, a thorough and comprehensive test gives an indication about the quality of
a product.

One application of the AEM is the test generation. This chapter presents
an initial approach towards the test generation using MSC2000. The goal is the
generation of TTCN test cases.

7.2 Previous work

The idea of using the MSC as source for the automatic test generation is not new.
There is one paper describing the direct generation of test cases from MSCs [62].
The MSCs version that was utilized in this project was the MSC’92, neither inline
expression nor HMSC were included.

The approach followed in this project was based on the analysis of all possible
traces that can be generated by the MSCs.The analysis starts removing the internal
events (events that are inside the system under test) following by a reduction of
traces that are “equivalent”. The algorithm proposed worked effectively due the
fact that the MSCs presented can only generate a finite number of traces. However
the new features in the MSC2000 need to be handled carefully.

The algorithm proposed by [62] is explained as follows:

1. An MSC describes a partial ordered set of actions. The partial order is defined
by the messages and by the order of actions along the instance axes. Based
on this information we calculate the sequences of actions which include the
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actions of the MSC and which are consistent with the partial order defined by
the MSC.

2. For the test case description only the actions of the testers are of interest.
Therefore in the second step we remove all actions which are not performed
by the testers from each sequence.

3. MSC and TTCN are different languages with different semantics. For TTCN
some of the sequences which we generated in step 2 are redundant. During
a test run they can not be distinguished. In other words, for TTCN several
sequences are in the same equivalence class. In the third step we select one
sequence of each equivalence class.

4. In the fourth step the selected sequences are transformed into the TTCN nota-
tion.

7.3 The TTCN language

A TTCN description specifies a whole test suite. It consists of
e a test suite overview which is mainly a contents list of the test suite,
o a declarations part which includes the message and data type definitions,

e a constraint part which consists of conditions on message parameters, i.e.
default values or value ranges which should be tested, and

e a dynamic part which for each test case describes the sequence of exchanged
messages.

TTCN has two syntactical forms: TTCN/MP (TTCN Machine Processible
form) as pure textual representation and TTCN/GR (TTCN Graphical form) which
is a graphical representation. Both forms are equivalent and can be translated into
each other. We only consider the dynamic part, focus on the generation of the tree
structure.

7.3.1 The declarations and constraints part

TTCN has its own data type and value assignment concept. It includes very pow-
erful operators to express conditions on parameter values. For practical purposes
TTCN also allows to use ASN.1 in the declarations and constraints part.
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7.3.2 The dynamic part

A TTCN test case describes the sequences of events which should be performed
by the testers. In general, these are send and receive events. The event sequence
is specified by means of a tree notation. Figure 7.27 shows an example with the
corresponding MSC (Only the tree is presented).

The tree structure is determined by the ordering and the indentation of the
specified events. In general, the same indentation denotes a branching (i.e. alter-
native events, e.g. lines No. 2 and 4) and the next larger indentation denotes a
succeeding event (e.g. lines No. 1 and 2). Events are characterized by the involved
entities (i.e. A and B), by its kind (i.e. ”!” denotes a send event and ”?” describes
a receive event) and by the message which should be sent or received. An example
may clarify the notation. The statement B?Disconnect denotes the reception of the
message Disconnect by the entity B.

A SUT B
[ ] [ ]
1 AlReleaseComplete At /| ReleaseComplete | pyoconect
2 B?Disconnect ReleaseComplete
3 B!ReleaseComplete F=-losooo---1 R -1
P ReleaseCompIete‘ Disconnect
4 B?ReleaseComplete o -

Figure 7.28: A TTCN tree and its corresponding MSC.



Chapter 8

Concluding remarks

In this thesis we have given an introduction of the new features presented in
MSC2000. The most important features of the MSC2000 have been explained in
Chapter 1 and 2. This chapter also contains an informal explanation of the meaning
of the MSC.

In Chapter 4, a formal description of the MSC is introduced, based on se-
quences and bijective functions. In this chapter oner inconsistency in the new
Recommendation is presented.

In Chapter 5, the execution model for the basic MSC is presented. The model
was described using an Abstract Erecution Machine. This model includes the data
concepts proposed in [5] with some restrictions. Two examples are presented.

In Chapter 6, the AEM is extended to handle inline expressions. Chapter 7
extends the AEM to handle HMSC, handling strong vertical composition instead of
the weak vertical composition.

There are two possible ways to use the AEM, as an Acceptor or Generator.
In Chapter 8 a discussion of the applications of the AEM is presented.

The AEM constitutes an executable interpretation of the MSC, allowing the
implementation of MSC based tools.
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