HICSS-39 2006 Workshop: Next Generation Software Engineering: Transformation to a Computational Engineering Discipline

Challenges in Computational Software Engineering

Ali Mili,

College of Computing Science
New Jersey Institute of Technology
Newark NJ 07102-1982
(973)596 5215, miliQcis.njit.edu

1 Next Generation Software

Broadly speaking, it is possible to characterize next
generation software by the following features: size;
complexity; distribution; heterogeneity; etc. In the
face of such complexity, it is natural to turn to the
tool of choice that scholars have always used to main-
tain intellectual control, viz mathematics; yet, para-
doxically, mathematics has remained of limited use
in dealing with software engineering in the large.
Automated tools, built on computational models
of software engineering, are required to help fill the
wide gap between human capabilities and the daunt-
ing task of designing, analyzing, and evolving mod-
ern software systems [1]. In this position paper, we
briefly discuss some computational issues and some
automation issues pertaining to this gap.

2 Prospects in Program Anal-
ysis: Functional Properties

Despite several decades of research and develop-
ment, the automated analysis of software artifacts
remains an open challenge. While there is an abun-
dance of CASE tools, that assist software engineers
in the analysis and synthesis of software systems,
these are usually fairly superficial, in the sense that
they are incapable of dealing with the detailed se-
mantics of such systems. Tools that are capable of
capturing all the functional properties of software ar-
tifacts are still needed. Some of the research issues
that stand in the way of deriving such tools include:

o Capturing Architectural Information. In the
early days of software engineering, most soft-
ware products were data processing applica-
tions, whose behavior can be readily modeled
by a function (mapping an input file to an out-

Frederick Sheldon

U.S. DOE Oak Ridge National Lab

PO Box 2008, MS 6085
Oak Ridge TN 37831-6085

(865)576 1339, sheldonft@ornl.gov

put file, mapping an input screen to an out-
put screen, etc). Modern applications do not fit
this simple model, and typically include com-
plex temporal interactions, distributed state in-
formation, complex combinations of events, and
as a consequence, non trivial external behavior.
In addition to capturing the function of software
components, we must also capture attributes of
the architecture, and their impact on the be-
havior of the system.

Program Functions Slicing. Programs are typ-
ically very information-rich, and trying to de-
rive their function may require some divide-and-
conquer strategies. One possible way to derive
the function of a program in a stepwise man-
ner is to extract successive specifications R;,
1=1,2,3,..., such that

where represents the refinement ordering,
then infer (by lattice theory)

fORUR,URsU..URy,

where Ll is the join in the refinement lattice. Be-
cause R;’s can be arbitrarily weak (non-refined),
the statements that [P] refines R; can be arbi-
trarily easy to establish. It is possible to prove,
under some conditions, that if the join of the R;
is deterministic, then

f:R1I_|R2L|R3I_I...I_IRn.

We may refer to this method as program func-
tion slicing, by contrast with the well known
technique of program slicing. The proposed
technique slices the program function (by deriv-
ing one component of it at a time) rather than
to slice the program (one statement sequence at
a time).

This manuscript has been authored by a contractor of the U.S. Government (USG) under DOE Contract # DE-AC05-000R22725. The USG
retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for USG

Purposes.

Sheldon
Text Box
This manuscript has been authored by a contractor of the U.S. Government (USG) under DOE Contract # DE-AC05-00OR22725. The USG retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for USG Purposes.

Sheldon
Text Box
HICSS-39 2006 Workshop: Next Generation Software Engineering: Transformation to a Computational Engineering Discipline

e Combining Data Abstraction and Control Ab-

straction. A complete, exhaustive analysis of
program functions requires that we model the
program’s data structures and control struc-
tures. In practice, these two models have sel-
dom been used together: Approaches that fo-
cus on program function usually assume simple
data types whose axiomatization is straightfor-
ward. On the other hand, approaches that focus
on data modeling usually do not model program
functions above the method level. For a compre-
hensive analysis, we must combine data models
and control models, and explore means to com-
bine their respective axiomatizations.

Functional Analysis as Language Processing.
Language processing (compiler construction,
syntax analysis, code generation) has been one
of the most successful areas of domain-specific
automated software engineering. One can pro-
duce a compiler by submitting to a compiler
generator the BNF of the target language as
well as a semantic definition that accompany
each BNF production. This creates a strong
incentive for us to model program analysis as
language processing. In the context of the di-
vide and conquer strategy advocated above, we
can model the analysis activity by means of at-
tribute grammars, using two attributes: A syn-
thesized attribute, which represents the function
of programs or program parts; and an inher-
ited attribute, which represents the specification
against which we wish to prove refinement.

For example, we can consider that each state-
ment of our programming language has two at-
tributes: a function (func) and a specification
(spec). Given the following BNF rule

S ::=951; S2

we produce the following semantic rule for the
synthesized attribute:

S.func := S1.funco S2. func,

and the following semantic rules for the inher-
ited attribute:

S1.spec := S.spec\S2. func,

S2.spec := S.specf[S1. func.

The synthesized attribute propagates the pro-
gram function from the leaves of the parse tree

to the root; and the inherited attribute de-
composes the specification from the root to the
leaves.

o A Product Line of Functional Analysis Tools.
The biggest surprise one encounters when try-
ing to extract the function of a program is that
.... the extraction of the function is actually not
difficult. What is most difficult is to present the
extracted function to the user in a way that al-
lows her/ him to relate to it and understand
it. The second important realization in this re-
gard is that, in order to present the computed
function in a way that is meaningful to the
user, we must deploy a great deal of domain-
specific knowledge. A well defined paradigm
for supporting this kind of development is the
paradigm of product line engineering, where we
build a set of core assets that capture the requi-
site program analysis knowledge, then we derive
the support structure that allows us to integrate
domain specific knowledge.

3 Prospects in Program Anal-
ysis: Dependability

Non functional attributes of software systems are
attributes that do not deal with the system’s ser-
vices per se, but rather with the conditions under
which these services are delivered. An important
non-functional attribute of software systems is de-
pendability, which is composed of reliability, safety,
security and availability. The three first attributes,
are known collectively as Surety. We advocate to
model them in a common framework, according to
the following premises:

e All three are modeled symbolically by a refine-
ment property, of the form

[P] 2 R,

for some ordering relation J and some specifica-
tion R. The exact definition of the ordering (3)
and the specification (R) depend on the specific

property.
e Surety claims and goals can be represented,
not as absolute logical statements (as written

above), but possibly as probabilistic, condi-
tional statements, of the form

II([P] 3 R[A) > p,

i.e. the probability that [P] refines R under
assumption A is greater than or equal to p.

e In order to acknowledge the relative gravity
of various failure conditions, we associate with
each claim of surety a failure cost, that quanti-
fies the cost of failing to meet the specified re-
quirement. Hence for example, we could write

v(3,R) =C,

i.e. the cost of failing to refines (by 3) specifi-
cation R is C.

e We must develop means to compose surety
claims and decompose surety goals, as well as
means to quantify individual measures and to
certify that we have satisfied a particular surety
goal.

e The modeling of the various dimensions of
surety must highlight the interdependencies
that exist between them (some dimensions de-
pend on others, some imply other, etc).

References

[1] Alan Hevner, Richard Linger, and Gwendolyn
Walton. Next generation software engineering:
Transformation to a computational engineering
discipline. In Hawaii International Conference
on Systems Sciences, Lihue, HI, January 2006.

