SDL 2001: Meeting UML, Lecture Notes in Computer Science 2078, Proc. 10th International SD
Forum Copenhagen, Denmark, page 365-378, June 27-29, 2001.

An Execution Semantics for MSC-2000*

Bengt Jonsson! and Gerardo Padilla®

! Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala, Sweden
bengt@docs.uu.se
2 Telelogic AB, Uppsala, gpadilla@docs.uu.se

Abstract. Message Sequence Charts (MSCs) is a visual notation for
expressing requirements on communicating systems. Their expressive
power has traditionally been somewhat limited, and additional infor-
mation is usually needed by tools that manipulate them, e.g., to derive
test suites. The new standard MSC-2000, developed by ITU-T, extends
earlier versions by constructs for data and high-level control, so that it
may be possible to derive test sequences directly from MSC requirements,
without need of additional information. Motivated by this, we present
an execution semantics for a significant part of the MSC-2000 standard.
The semantics has the form of an Abstract Execution Machine, which
can either accept or to generate sequences of events that are consistent
with a given MSC. In the former case, the Abstract Execution Machine
can be used as a test oracle, in the latter as a test sequence generator.

1 Introduction

Message Sequence Charts (MSCs) is a graphical notation for description and
specification of interaction between entities of a communicating system. MSCs
may be used for requirement specification, interface specification, simulation and
validation, test case specification, and documentation. The main use of MSCs has
been as abstract description of the communication behavior of communicating
systems, while omitting other aspects of a system’s behavior. Used in this way,
MSCs do not, by themselves, contain enough information for the generation of
test sequences, or for attempting to synthesize a system design. Tools for test
generation, such as Autolink or TestComposer [17], and TGV [6] derive test
sequences from the combination of a test purpose specification in MSC and a
design model in SDL.

One of the motivations for our work is to investigate whether and how MSCs
can be used to describe requirements more completely, in a way that, e.g., allows
test sequences to be generated without involving other information about the
system (e.g., in the form of an SDL model). MSCs must then be able to express
many aspects of a system that can be represented in, e.g., an SDL model. The
new standard MSC-2000 [11], developed by ITU-T, extends the earlier standard

* Supported in part by Telelogic AB, and by NUTEK through the ASTEC Compe-
tence Center. This work was carried out while Gerardo Padilla was at Telelogic AB,
Uppsala

Frederick Sheldon
SDL 2001: Meeting UML, Lecture Notes in Computer Science 2078, Proc. 10th International SDL Forum Copenhagen, Denmark, page 365-378, June 27-29, 2001.

MSC-96 [10] by constructs for data and high-level control, so that this may be
possible.

In many approaches to test generation from MSCs (e.g., [7,18]), an MSC
test purpose is viewed as specifying a set of acceptable sequences of events of
the implementation. In the approaches of Autolink, TestComposer, or TGV, the
test purpose is often incomplete (missing e.g., parameters and data values), and
the missing information is supplied by matching it with an SDL model. There are
also other approaches to testing, .e.g., [4, 14, 15] where a requirement is translated
to a test oracle, which monitors test execution and reports deviations from the
original requirements.

Thus, part of the test generation in the above approaches consists in viewing
an MSC as an acceptor or generator of sequences of events. It is not difficult to
understand what sequences are represented by a simple basic MSC. However,
this is less obvious for MSCs following the newer standard MSC-2000, which
contains advanced control structures and treatment of data. When trying to
understand how MSC-2000 can be used for testing, we found a need for an
understandable and implementable description of what sequences of events are
represented by an MSC. This motivates our development of a semantics for a
part of MSC-2000, which views an MSC as a (structured) abstract machine,
whose executions generate or accept sequences of events in the same way as runs
of a finite automaton generate or accept strings.

In this paper, we present the major aspects of our execution semantics for
MSC-2000. Our aim has been to define a semantics, which in a straight-forward
way explains how an MSC “executes”, defined in terms of its graphical struc-
ture. The semantics derives from each MSC a state machine, which maintains
the “current state” of the MSC. Based on the current state of the MSC, transi-
tions can be performed, which are equipped with labels that explain what action
is currently performed, and which result in new states of the MSC. The possible
transitions are defined through rules for how an MSC may transform between
global states while performing events (such as transmitting or receiving mes-
sages). We have attempted to make these rules close to an intuition obtained
from the graphical presentation of MSCs. Our rules thus provide an operational
semantics for the MSC, which can be presented and understood in rather simple
terms and be implemented rather directly.

As a contribution, this paper thus presents an operational semantics for
MSCs, which is presented in a rather direct manner by showing how an MSC
may “execute” by changing its global state, without translation to an imme-
diate formalism. Each construct of MSC-2000 that we consider is defined by
one or two rules. In particular, we present a simple operational semantics for
high-level control constructs (e.g., inline expressions) and data aspects of the
MSC-2000 standard [5]. A main problem here is that inline expressions impose
control structures that are global to several instances, which otherwise execute
asynchronously. In the execution semantics, this “global control” is represented
by global execution steps where participating instances are synchronized.

msc Loop

IS e

loop[0..inf] m

Fig. 1. An MSC with a Loop Inline Expression.

Our semantics naturally implies a certain amount of interpretation of the
ITU-T standard. For instance, we use the weak form of sequential composition
(in the terminology of [11]). This means, e.g., that the MSC shown in Figure 1
allows executions in which many messages can be sent by A before any of them
are received by B. Our interpretation is that the standard adopts this view.
However, the semantics we propose in this paper can rather easily be adapted
to a stronger interpretation of sequential composition, or to a stronger synchro-
nization between instances in the presence of control constructs.

Related Work There are several approaches to defining the semantics of MSCs in
terms of other formalisms. For basic MSCs, semantics have been given in terms
of Petri Nets [8,9], automata [12], process algebra [13], etc. In comparison with
Petri Net semantics, our work gives a more direct semantics without translation
to an intermediate formalism. Ladkin and Leue [12] make a more restrictive
interpretation of communication, e.g., disallowing buffered communication.

Several approaches defined the semantics compositionally, by building a pro-
cess algebra with a repertoire of composition operators, in which MSCs are
defined. An advantage of this approach is its compositionality, which is not
present in our, more direct, semantics. Reniers [16] presents a carefully worked
out compositional semantics of MSC-96. Data is not considered.

Works that are closer in spirit to ours include the work on Live Sequence
Charts by Damm and Harel [3]. They present an extension of MSCs which is
different from the standards MSC-96 and MSC-2000. Their semantic definition
is similar in spirit to the one defined in this paper, but differ, e.g., by adding
explicit “program pointers” that range over control locations in the instances.
Alur and Yannakakis [1] present a simple semantics for Hierarchical basic MSCs.

Outline In the next section, we informally present the ideas behind our execution
semantics. In Section 3, we present the main features of MSC-2000 that we

considered in a form suitable for the definition of semantics. A semantics for these
features is proposed in Section 4. Section 5 contains conclusions and directions
for future work.

2 Informal Presentation of Ideas in the Semantics

In this section, we present the ideas underlying the execution semantics for
MSCs. Consider first a simple Basic Message Sequence Chart, such as the one
in Figure 2. This MSC defines some possible scenarios of interaction between

msc Start Toaster

User Control Heating

start

start_ack

heat

Fig. 2. A Basic MSC.

the three instances User, Control, and Heating. Our aim is to derive a transition
system (i.e., a finite-state or infinite-state machine) which is able to perform
the six events (three sends and three receives) in exactly those orders that are
allowed by the MSC. A straight-forward approach is to let the state of this
transition system for each instance record the sequence of remaining events. For
example, for the User instance, the state will initially consist of the sequence

send(start) rec(start_ack)

In order to enforce the ordering between corresponding send and receive events,
we need a mechanism by which a reception becomes enabled only after the corre-
sponding send event has been performed. In the above example, the reception of
start_ack, denoted rec(start_ack) will become enabled only after the correspond-
ing sending of start_ack, denoted send(start_ack), by instance Control, has been
performed. Based on these ideas, rules can be formulated for how the transition
system can perform events, and how its internal state will be changed accord-
ingly.

Let us now extend the MSCs with control structures, such as inline expres-
sions. Figure 3 shows an MSC with inline expressions. After the transmission

msc example

1

= m2
alt

e >
| loop1..8] 2;
e >

mbd

[2]
6
]]]

Fig. 3. An MSC with Inline Expressions.

of messages m1 and m2, the MSC contains an alternative inline expression, in
which the execution can follow one of two possibilities. The first alternative starts
by checking condition C1 in instance I;, whereafter I; sends m3. The second
alternative starts by instance m2 checking condition C2 and then sending mA4.

In order to derive a transition system which gives the semantics of this MSC,
let us consider how to extend the ideas presented for the previous basic MSC.
The transition system will still maintain a local state for each instance, and let
message receptions become enabled by corresponding transmissions. The exe-
cution of the MSC in Figure 3 may follow either of two paths, depending on
which alternative is chosen in the outer inline expression. The crucial point here
is that all three instances must choose the same alternative even if they do not
arrive simultaneously to the inline expression in their execution. In Figure 3, the
choice between the two alternatives means that if instance I; passes condition
C1 and sends m3, then instance I> must not attempt to pass C2 after sending
m2, but should rather wait for message m3. Thus, instance I;’s entry into the

first alternative has global consequences in that it “forces” the other instances
to also choose the first alternative.

The preceding discussion shows that control structures must be captured by
a mechanism which is global to all instances. In our semantics, we treat inline
expressions as “global” procedures, which may span over several instances. In
the containing MSC, an inline expression is represented by a name in the control
structure of each participating instance. Before any instance can “enter” into an
inline expression, the inline expression name must be “expanded” and replaced
by its defining inline expression. This expansion takes place simultaneously in
all participating instance, i.e., the entry into a section of and inline expression
is a global event. Note that at expansion time, some instances may not yet have
reached the inline expression in their execution, but the expansion forces them
to make a consistent choice when they reach it later in their execution.

Let us finally consider data, which is introduced in the MSC-2000 standard.
As an illustration of the data definition mechanisms, consider the MSC in Fig-
ure 4. In this MSC, instance I; has a local variable z, instance I has a local

msc Data MSC

e=nl [
0[]

m2(x +y,y—1)

ml2(z — 10)

Fig. 4. An MSC with Data.

variable y, and instance I3 has a local variable z. In its first action, instance Iy
assigns an arbitrary value, represented by a wildcard, to x. This value is then
transmitted as a parameter of message m1 to instance I». Instance I may then
use the value of z in local manipulations, such as assignments to its variable
y, and as parameter in subsequent message transmissions. We say that instance
I> inherits the binding to z from the reception of the first message, where z is
bound to a specific value.

In our semantics, we extend the state of each instance by an environment
which maintains the values of local variables. Thus, instance I; has a local en-
vironment which maintains the current value of x, and similarly for instances
I5 and I3. In order to model the fact that the transmission of the first message
also transmits a binding of the local variable z from I; to I, we let the local
environment of I also contain a binding to z after reception of the message.
In our semantics, when the transmission of message ml is performed, then the
corresponding message reception becomes enabled and extended with an extra
update action which assigns appropriate values to inherited variables (z in this
case). When the message is received, this extra update action will be performed,
thus adding the inherited variables to the local environment of the receiving
instance.

3 Definition of Message Sequence Charts

In this section, we define MSCs in a form which is suitable for our execution
semantics. The MSC syntax presented here corresponds closely to the represen-
tation of its state in the execution semantics.

Basic Concepts We assume a basic vocabulary, containing instance names, mes-
sage names, and condition names. We assume data types, and a set of of typed
data variables. A wildcard is a special symbol to denote a don’t care value. An
expression is formed from variables, wildcards, and operators in the data lan-
guage. A binding corresponds to an assignment, written x := y+3'. It is assumed
that expressions, bindings, etc. are type-consistent in the usual sense.

We will consider actions that consist of bindings, such as the four actions in
Figure 4, and guarding conditions which contain boolean expressions as guards.
By adding suitable control variables, we could treat setting conditions as ac-
tions that assign appropriate values to the control variables, and treat guarding
conditions containing condition names as conditions whose guards are boolean
expressions over the control variables.

Each arrow representing a message is in our definition represented by a unique
transmisston name. We use Y to range over transmission names. The transmis-
sion of the message in the sending instance is represented by a sending reference
of form Y!. The receiving end of the message is in the receiving instance repre-
sented by a receiving reference of form Y'?. The label label(Y') of Y is an expres-
sion of form m(exp,,...,exp,) where m is a message name, and ezxp,,...,ezxp,
is a (possibly empty) tuple of expressions.

Each occurrence of an inline expression is represented by a unique chart
name, ranged over by X. A chart name is analogous to a procedure call, which
occurs once in each participating instance. Each chart name has a definition
(corresponding to the body of the procedure), which is expanded (simultaneously
in all concerned instances) when execution reaches the chart name.

! The MSC-2000 standard also allows other syntaxes for assignments, which we do not
consider here

Sequence Charts A thread is a sequence of actions, conditions, transmission ref-
erences, and chart names, or constructs of form

par(my,---,m), where my, . .., T, are threads. We use 7, possibly with subscripts,
to range over threads. A chart C is a composition of threads of form

L:m || || I
where I1,...,I, are distinct instance names and m1,..., 7, are threads. We
refer to {I,..., I} as the instances of C, denoted instances (C'). The chart must

satisfy certain consistency conditions, concerning ordering between occurrences
of chart names, transmission references, etc. We do not present them here, since
they are not needed for understanding the remainder of the paper.

Inline Expressions An inline expression consists of an operator applied to a
tuple of charts. If C' and Ci,...,C} are charts with instances(Cy) = --- =
instances (Cy), and if | and u are natural numbers or co with 0 < < u < oo
and ! < oo, then

— loop([l..u], C) is a loop inline expression, which intuitively denotes at least
! and at most u repetitions of the chart C.

— alt(Cy,...,Cy) is an alternative inline expression, which denotes a nonde-
terministic choice of one of the charts C4,...,C, and

— par(C1, ..., C}) is a parallel inline expression, denoting the parallel indepen-
dent execution of the charts C,...,Ck.

Each chart name has a definition as an inline expression. We write eval(X) =
inline expression to denote that the chart name X is defined as the inline ex-
pression inline expression. Define

instances (loop([l..u],C)) = instances(C)
instances (alt(Cy,...,Cy)) = instances(C1)
instances (par(Cy,...,Cy)) = instances (Cy)
instances (X) = instances (eval(X))

Remark: There are other forms of inline expressions, which can be expressed in
terms of the above ones. Here are two examples.

— A coregion with events eq, . . ., €, can be defined as the expression par(ey, ..., en).
— An optional inline expression can be written as a loop inline expression which
is repeated 0 or 1 times, so we omit it.

Ezxample The MSC in Figure 3 is, according to our definitions, represented as
the chart
Ilyi'Xl || IQ}/.I?Y.Q‘XI ” 1'31/2?X1

where
eval(X1) = alt(Cs, C3)
02 ZIICIYEJ,'”IQYE?XQHI;;XQ
Cs =0L:Y?7AY! || L:C2Y ! V5! || I3: Yy? Yg?
eval(X3) = loop([1..8], Cy)
04 :IQY}'YZ;?”I:;Y}?Y:S'

label(Y;) = mi fori=1,...,8

Data Variables can be of two types:

— A static variable is used to parameterize an MSC, and is declared in the head
of the MSC. A static variable can not be modified after the instantiation of
the MSC, and the scope of the variable is the entire MSC body. We do not
here treat static variables.

— A dynamic variable belongs to an instance, and must be declared in the
MSC. A dynamic variable can be modified by the owning instance using the
binding (i.e., assignment) mechanism.

Dynamic variables are manipulated by conditions and actions. A transmitted
message can also carry an implicit binding of the variables that appear in its
label. For instance, if one instance transmits m(z), where an actual value v occurs
for z, then the receiving instance can also use the variable z in subsequence
bindings and message transmissions, thus “inheriting” the binding to z in the
received message.

4 Execution Semantics

Our semantics defines the execution of an MSC as a sequence of computation
steps between successive configurations of the MSC. Each configuration cor-
responds to the “current state” of the MSC. Possible Computation steps are
defined by a labeled transition relation, which consists of a set of triples, each

of which is denoted ~y SN ~' where v and +' are configurations and [is a label

which represents the “observable view” of the transition. Intuitively, v LN ~'
denotes that in the configuration <y, the label | can be observed, whereby the
configuration evolves into '. Labels are either of form I : e, meaning that the in-
stance I performs the event e, or are the “empty” label e. Depending on how the
transition semantics is intended to be used, the labels may be chosen differently,
since they do not affect the structure of the semantics.

A receive event is a term of form rec(m(vy,...,v;)), where m is a message
name and vq,...,0; is a tuple of values. An extended thread is a sequence of
actions, conditions, receive events, transmission references, and chart names, or
constructs of form par(wy,---,m), where 7, ..., 7 are extended threads.

A local environment of an instance I is a (partial) mapping from the dynamic
and inherited variables of I to values. Given an environment ¢ and an expression
exp, let o(exp) denote the set of possible values of exp in the environment 2. We
use a(o) to denote the effect of action « on the environment o. We use o |= ¢ to
denote that the guarding condition c is satisfied in the environment o. Given a

tuple exp,, ..., exp, of expressions and a corresponding tuple vy, . . . , vy of values,
define bindings (expy,...,exp;,v1,...,v;) as the binding x;, = v;,,...,z; =
vj;, which assigns to the variables among exp, , ..., exp, the corresponding values
inwvy,...,vg.

2 Different possible values arise from different values of wildcards in exp.

A local configuration of an instance I is a pair (7,0), where 7 is an extended
thread and o is a local environment of I. A (global) configuration is of form

Lz (m,o0) || oo [I 2 (T, 0m)

where (7;,0;) is a local configuration of instance I;. We use 7y to range over
global configurations.

We use the notation 7[X] to denote that X occurs in the thread =, and use
w[n' /X] to denote the result of replacing the first occurrence of X in 7 by ='.

Transition Relation. The relation — for MSCs without inline expressions is
defined by the rules in Figure 5. Let us explain the intuition of these rules. The

Action: Let a be an action

ol s (@ mgop) || e A coe |l I s (mg, (o)) I e

Guarding Condition: Let ¢ be a guarding condition.

ogiEc
Ij:c
el T (emo) || - == I s (mg05) -
Parallel Composition 1:
I;:
ol s (i woo) Lo =5 | L (i way)) ||
I;:
” Ii:(par("'aﬂ'ij"")wzaij)|| _e)” Ii:(par())7"7‘71])H
Parallel Composition 2:
|l s (par(e,...,e) moi) || o = || it (w0 || <o

Message Transmission: Let Y be a transmission name with label(Y') = m(ezp),
and let a be the action bindings (€Tp,v) minus bindings to the local variables of I;.

v1 € oj(exp1),. .., vk € oj(expr)

- ||I1,(Y'7T1,o'l)|| . ||I] . (7rj [Yr)]’ Uj)” . Ii:se’i(;n(ﬂ))
sz (@ o0l M (my[rec(m(@)) al,0p)l] -

Message Reception:

Ijirec(m(vy,...,vg))
—

ol s (rec(m(oy, - 0p)) m,05) || - ol s (g, (o) | -

Fig. 5. Rules for Labeled Transitions

rule Action states that if a local action a occurs first in the thread of an in-
stance, then that action can be performed, whereby the effect of the action is

applied to the local environment of the instance®. The rule Guarding Condi-
tion states that a local condition ¢ can be passed whenever it is satisfied in the
local environment of the concerned instance.

According to Parallel Composition 1, a parallel composition par(-- -, m;,,- - -
of “subthreads” may execute whatever any one of its subthreads m;; may exe-
cute. The rule Parallel Composition 2 states that a parallel composition
par(m;,, ..., ;) of “subthreads” may terminate when all its subthreads have
terminated. We do not associate any particular label on the transition, just the
empty label, represented by e.

The rule Message Transmission describes how a sending reference Y'! with
label(Y) = m(exp,,...,exp,) is “unfolded” into a message transmission. A send-
ing reference Y'! can always be executed. When doing so, then values vy, . .. , vy for
the parameters of the message are obtained by evaluating exp;,...,ezxp, in the
local environment. The transmission of the message is modeled by “enabling” the
corresponding (unique) receiving reference Y'?. This is done by replacing Y'? by
the receive event rec(m(expy,...,exp,)) together with an action which updates
the local environment of the receiving instance by values of inherited variables?.
The rule Message Reception can now be seen simply as an instance of the
rule Action, since it merely performs the receive event when it is first in the
local thread.

Rules for Inline Expressions As described previously, inline expressions are rep-
resented by chart names, that work analogously as procedure identifiers, except
that a chart name may be referenced in several instances. This means that con-
trol structures are global, and that the unfolding of chart names must be made
in the same way in all concerned instances. In our semantics, each unfolding of
chart names is done in a transition which unfolds the chart name simultaneously
for all concerned instances.

In the following, let C' be a chart Iy : 7y || -+ || Iy : T- Fori =1,... &, let
Ci be a chart I, : 7} || ---|| I, : «}, such that
instances (C1) = - - - = instances (Cy) = {I;,,...,I;} C instances(C) ,

and such that the thread m; in C' contains at least one occurrence of X if and
Only lfj € {jla s 7jl}5'

The rules for unfolding or expanding chart names into inline expressions are
given in Figure 6. Let us give an intuitive explanation of these rules. If X is
defined as a parallel inline expression, then it can be expanded by replacing the
name X, in the thread of each instance I; of X, by the parallel composition of
the appropriate threads 7r]1-, el 775-“ from each C;. If X is defined as an alternative
inline expression, then it can be expanded by first choosing one of its arguments,

3 For simplicity, we consider only deterministic actions, e.g., assignments without wild-
cards.

4 this is how the transmission of bindings is modeled in our semantics

® an instance may contain several occurrences of a chart name as a result of unfolding
a loop

Parallel inline expression:

eval(X) = par(Ch,---,Ck)
Ly = if j € instances (C1) then m;[par(n}, -, n5)/X] else ;

Lz (myon) | I (T, om) = Ty (wh,00) || <o || I 2 (T, 0m)
Alternative inline expression:

eval(X) = alt(Cq,---,Ck)

1<p<k
Ly = if j € instances (C1) then =; [7r§-’/X] else m;
Li:(myo) || -l It (Fmyom) — Tu: (wh,00) || -+ | It (7, 0m)

Loop inline expressions: the “continue in loop” case. Let X’ be a fresh chart
name with eval(X’') = loop([l © 1..u — 1], C1), where © is the monus operator.

eval(X) = loop([l..u], C1)

u>1
Ly = if j € instances (C1) then 7;[r] X'/X] else =;
Iz (myon) | m: (Fmyom) == Tz (wh,00) || <ol T 2 (T, 0m)

Loop inline expressions: the “exit loop” case.

eval(X) = loop([0..u], C1)

oy = if j € instances (C1) then 7j[e/X] else 7;

Lz (myo0) || o It (Tmyom) = Tiz (a1, 00) || - |l T 2 (70, 0m)

Fig. 6. Rules for Unfolding of Inline Expressions.

say Cp, and then replacing the name X, in the thread of each instance I;, by the
appropriate thread 7r;.’ in Cp. If X is defined as a loop inline expression, then it
can be expanded either by replacing the name X in each of its threads by the
the appropriate thread 7rjl. in C; followed by an “unrolled” version of the loop,
or by the empty thread. Both of these cases have natural conditions in terms of
the loop boundaries.

The above rules do not impose restrictions on when chart names can be
expanded. It is required that a chart name be expanded only “on demand”, i.e.,
if the following transition concerns a construct which appears due to the chart
name expansion. A sequence of chart expansions and a following transition with
a non-empty label can be merged into one transition with the non-empty label.

Example To illustrate how the execution semantics works, let us consider how
it generates executions of the MSC in Figure 3, which is defined as the chart

11:Y1!X1 || I2:Y1?}/Q!Xl ” IgZYQ?Xl

Since this example contains no data, we can omit the local environments and
consider this chart to be the initial configuration in an execution.

Initially, only one transition is enabled, which is the unfolding of Y7! in in-
stance 1. This transition is labeled by send(m1) and results in the configuration

_[1 :Xl || _[2 :rec(ml) 1/2' X1 || I3 : }/2‘? Xl

In this chart, either the chart name X; can be unfolded or the message ml
may be received. If the former is carried out, and the first alternative in the
alternative inline expression is chosen, whereafter the condition C'1 is passed
(assuming that it is enabled), we arrive at the configuration

.[1 YE;' || IQ : rec(ml) }/2' YE;? X2 || I3 : sz? X2
Here, we can choose to transmit message m3, obtaining the configuration
L : || Iy:rec(ml) Ya! rec(m) Xo || I3 : ¥2? X,

At this point, the only enabled transition is the reception of m1. After receiving
m1, then sending and receiving m2, and finally receiving m3, the configuration
becomes

I1: || I2 :X2 || _[3 :XQ

The chart name X, can now be expanded and its first event (sending m7) per-
formed, resulting in

I : || I : Ys? X5 || I3 : rec(mT) Ys! X5 ,

where eval(X}) = loop([0..7], Cy). In a short execution, it is now possible to exit
the loop after receiving m7 and finally transmitting and receiving m8.

High-Level MSCs An additional control mechanism, present also in MSC-96 is
the high-level MSC. Essentially, a HMSC is a graph of MSCs. The semantics
of High-Level MSCs can be represented by “expansion” of MSCs in a manner
analogous to Inline Expressions. We omit the details in this paper.

5 Discussion and Conclusions

In the paper, we have outlined an execution semantics for the main constructs of
the standard MSC-2000. The semantics defines the meaning of and MSC in terms
of a state machine, whose execution follows the structure of the MSC. We have
not yet implemented the semantics, but we expect such an implementation to be
rather straight-forward, based on the semantics given here. Our main motivation
is to use such an implementation for test generation, and for generating test
oracles.

In our opinion, our semantics also has independent interest by virtue of its
simple structure. The meaning of each construct is represented by a few rules.
In our experience, these rules have been very valuable to several people for
understanding the meaning of constructs in MSC-2000. Of course our semantics
has implied some amount of interpretation of the standard, but we expect that
alternative interpretations can be accomodated by modest changes to the rules
in this semantics.

Acknowledgments We are grateful to Anna Eriksson at Telelogic AB for discus-

sions and support during the work, and to the reviewers for helpful comments.
The MSCs in this paper were “drawn” using the MSC BTEX package [2].

References

1.

2.

10.
11.
12.

13.

14.

15.

16.

17.

R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR 99, volume 1664 of Lecture Notes in Computer Science, 1999.

V. Bos and S. Mauw. A ETEX macro package for message sequence charts, April
1999. http://www.win.tue.nl/” sjouke/mscpackage.html.

W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. In
P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Proc. 3rd Int. Conf. on For-
mal Methods for Open Object-Based Distributed Systems, pages 293-312. Kluwer
Academic Publishers, 1999.

D. Drusinsky. The remporal rover and the ATG rover. In K. Havelund, editor, SPIN
Model Checking and Software Verification, Proc. Tth SPIN Workshop, volume 1885
of Lecture Notes in Computer Science, pages 323-330, Stanford, California, 2000.
Springer Verlag.

A. Engels. Design decisions on data and guareds in MSC2000. In Proc. 2st Work-
shop of the SDL Forum Society on SDL and MSC - SAM’2000, Grenoble, France,
June 2000.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic
generation of test suites for protocols with verification technology. Science of
Computer Programming, 29, 1997.

J. Grabowski. The generation of TTCN test cases from MSCs. Technical Report
TAM-93-010, University of Berne, Institute for Informatics, April 1993.

J. Grabowski and P. Graubmann an E. Rudolph. Towards a petri net based
semantics definition for message sequence charts. In O. Faergemand and A. Sarma,
editors, SDL’93 - Using Objects - Proc. 6th SDL Forum, Darmstadt, 1993. Elsevier.
S. Heymer. A semantics for MSC based on petri-net components. In Proc. 2st
Workshop of the SDL Forum Society on SDL and MSC - SAM’2000, Grenoble,
France, June 2000.

ITU-T. Recommendation Z.120, Message Sequence Chart. Geneva, April 1996.
ITU-T. Recommendation Z.120, Message Sequence Charts. Geneva, Nov. 1999.
P.B. Ladkin and S. Leue. What do message sequence charts mean? In FORTE 93.
North-Holland, 1993.

S. Mauw and M.A. Reniers. Operational semantics for MSC’96. In A. Cavalli and
D. Vincent, editors, SDL’97 - Time for Testing - SDL, MSC and Trends, pages
135-152. Elsevier, Sept. 1997.

T.O. O’Malley, D.J. Richardson, and L.K. Dillon. Efficient specification-based test
oracles for critical systems. In Proc. 1996 California Software Symposium, April
1996.

D.K. Peters and D.L. Parnas. Using test oracles generated from program doc-
umentation. IEEE Transactions on Software Engineering, 24(3):161-173, March
1998.

M.A. Reniers. Message Sequence Chart: Syntaz and Semantics. PhD thesis, Eind-
hoven University of Technology, June 1999.

M. Schmitt, M. Ebner, and J. Grabowski. Test generation with autolink and
testcomposer. In Proc. 2nd Workshop of the SDL Forum Society on SDL and
MSC - SAM’2000, June 2000.

18. M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Koch. Autolink - putting
sdl-based test generation into practice. In 11th Int. Workshop on Testing of Com-
municating Systems (IWTCS’98), Tomsk, Russia, Sept. 1998.

