
Innovations in Systems and Software Engineering: A NASA Journal manuscript No.
(will be inserted by the editor)

Modeling Security as a Dependability Attribute:
A Refinement Based Approach

Ali Mili
��� �

, Frederick Sheldon
�
, Lamia Labed Jilani

�
, Alex Vinokurov

�
, Alex Thomasian

�
, Rahma Ben

Ayed
�

�
College of Computing Science
New Jersey Institute of Technology
Newark NJ 07102-1982�
Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213	
U.S. DOE Oak Ridge National Lab
PO Box 2008, MS 6085
1 Bethel valley Road
Oak Ridge TN 37831-6085

Institute of Management
University of Tunis
Bardo 2000 Tunisia�
School of Engineering
University of Tunis
Belvedere 1002 Tunisia

The date of receipt and acceptance will be inserted by the editor

Abstract As distributed, networked computing sys-
tems become the dominant computing platform in a grow-
ing range of applications, they increase opportunities
for security violations by opening heretofore unknown
vulnerabilities. Also, as systems take on more and more
critical functions, they increase the stakes of security by
acting as custodians of assets that have great economic
or social value. Finally, as perpetrators grow increas-
ingly sophisticated, they increase the threats on system
security. Combined, these premises place system secu-
rity at the forefront of engineering concerns. In this pa-
per, we introduce and discuss a refinement-based model
for one dimension of system security, namely surviv-
ability.

1 Introduction: Motivation

The term missile gap was coined in the late fifties when
the Soviets launched Sputnik, to refer to the wide gap
between the US’s national capabilities in space and its

national aspirations. The term software gap was coined
in the mid to late eighties, at the height of the IT revolu-
tion, when it was clear that software technology was not
keeping up with the demands of the world economy as
it was growing increasingly dependent on the safe, re-
liable operation of software systems. We coin the term
Security Gap to refer to the vast technological gap that
exists today between available capabilities and the de-
mands imposed by recent global developments. We sub-
mit that the security gap matches or exceeds the earlier
gaps in terms of its stake, and in terms of its technical
challenge.

In this section we discuss in turn, the need for mod-
eling security, then the need for modeling security as an
attribute of dependability, and finally the adequacy of a
refinement based approach to modeling security. These
will be the subject of the next three subsections.

1.1 Modeling Security

Even though logically, system reliability is driven ex-
clusively by the existence and possible manifestation

2 Ali Mili et al.

of faults, empirical observations regularly show a very
weak correlation between faults and reliability. In [22],
Mills and Dyer discuss an example where they find a
variance of 1 to 50 in the impact of faults on reliabil-
ity; i.e. some faults cause system failure 50 times more
often than others; while their experiment highlights a
variance of 1 to 50, we argue that actual variance is in
fact unbounded. Also, they find that they can remove 60
percent of a system’s faults and improve its reliability
by only ... 3 percent.1 In a study of IBM software prod-
ucts, Adams [1] finds that many faults in the system are
only likely to cause failure after hundreds of thousands
of months of product usage.

We argue that the same may be true for security:
vulnerabilities in a system may have widely varying im-
pacts on system security. In fairness, the variance may
be wider for reliability than for security, because in ma-
licious security violations high impact vulnerabilities
may be more attractive targets than lower impact vul-
nerabilities, but wide variances are still quite plausible.
Wide variances, to the extent that they are borne out,
have broad impacts on security management:

– In practice, security ought not be defined as the ab-
sence of vulnerabilities, no more than reliability is
defined by the absence of faults (low impact vulner-
abilities do not affect security in a meaningful way).

– In practice, security ought not be measured or quan-
tified by the number of vulnerabilities, just as it is
widely agreed (as highlighted by Adams’ [1] and
Mills’ [22] work) that faults per KLOC is an inap-
propriate measure of reliability. Though fault den-
sity is commonly used as a measure of programmer
productivity and product quality, it has long been
discredited as a measure of reliability.

– Security cannot be improved by focusing on vulner-
abilities, as we have no way to tell whether a given
vulnerability has low (1) or high (50) impact on se-
curity. Rather, security should be managed by pur-
suing a policy that leads us to the highest impact
vulnerabilities first (a similar approach to usage pat-
tern testing [23,22,16,17,5,15,10,25]).

In light of these observations, we argue in favor of mod-
eling security in a way that reflects its visible, measur-
able, observable attributes, rather than its hypothesized
causes. To this effect, we introduce the tentative outline

1 Given that typically system level testing consumes nearly
50% of lifecycle costs and hardly comes close to discovering
60% of system faults, this finding is a resounding condemna-
tion of random fault-chasing, and advocates instead a disci-
pline that leads us towards the most influential faults first.

of a Logic for System Security, which represents / cap-
tures security properties in terms of its observable at-
tributes. This logic is defined in terms of the following
features:

– A notation for security specification, which details
how to capture security requirements of a system.

– A formula for security certification, which formu-
lates the condition under which a system (represented
by its security abstraction) meets a given set of se-
curity requirements (represented by security speci-
fications).

Note that in order to quantify reliability as the mean
time to failure, we must define what it means to fail,
which in turn requires that we define specification and
correctness. Likewise, defining and quantifying secu-
rity requires that we define the concepts of security spec-
ification and security certification. In this paper, we dis-
cuss broad premises that characterize our approach, and
present tentative notations and formulas for the proposed
logic for system security.

1.2 Security as a Dimension of Dependability

It is customary [27] to define dependability as the aggre-
gate of four attributes: availability (probability of pro-
viding services when needed), reliability (probability
of failure free operation), safety (probability of disaster
free operation) and security (probability of interference
free operation). Like most classifications, this one does
not define sharp distinctions between these attributes,
but is convenient because it highlights meaningful dif-
ferences. An important distinction is between availabil-
ity, which deals with operational properties, and the other
three, which deal with functional and behavioral proper-
ties. We argue in favor of a uniform model to capture the
three behavioral properties, i.e. reliability, safety and se-
curity. We submit three broad arguments to support our
position.

– Conceptual Argument. Generalization is a problem-
solving strategy that substitutes a specific problem
with a more general problem, thereby abstracting
away many irrelevant problem-specific details; though
it is paradoxical, it is an effective problem solving
strategy, as it tends to abstract away irrelevant detail,
whence produce more elegant solutions. We argue
that reliability, safety and security lend themselves
to analysis by generalization, by virtue of their com-
monalities. Reliability is defined in terms of faults,
errors and failures, and is handled by means of a hi-
erarchy of three methods: fault avoidance, fault re-
moval and fault tolerance. Safety is defined in terms

Modeling Security as a Dependability Attribute: A Refinement Based Approach 3

of three concepts, hazard, mishap and accident, and
is handled by means of a hierarchy of three meth-
ods: hazard avoidance, hazard removal and damage
limitation. Security is defined in terms of three con-
cepts, vulnerability, threat and exposure (or attack),
and is handled by means of a hierarchy of three
methods: vulnerability avoidance, vulnerability neu-
tralization, and exposure limitation. We argue that
these analogies are a strong hint to at least attempt
to model these attributes in a uniform manner.

– Pragmatic Argument. Reliability, safety and secu-
rity are interdependent, in the sense that each prop-
erty may depend on the others to hold. For example,
all the claims of reliability and safety become void
if an intrusion occurs and alters the system’s func-
tion or the system’s state. Conversely, the security of
a system is dependent on the reliability of the com-
ponents that implement/ enforce its security mea-
sures. Hence in practice, having high values for one
of these attributes is probably not meaningful un-
less we have commensurate values for the other at-
tributes as well; also, it is conceivable that the proof
of any one of these properties will use hypotheses
about the other properties. In addition, while the dis-
tinctions between reliability, safety and security are
meaningful for the engineer, they are less meaning-
ful for the user: From the standpoint of the user, it
matters little whether a system failed because of vi-
olation of a reliability requirement, a safety require-
ment, or a security requirement. Hence while the
distinction between these properties may be con-
venient for the sake of discussion and characteriza-
tion, in practice it is best to model and analyze these
properties as a whole.

– Methodological Argument. By virtue of the analo-
gies that we highlighted above, it is very likely that
methods developed for one property prove to be use-
ful to other properties. In particular, it is quite plau-
sible that methods developed for ensuring reliability
prove to be useful in ensuring security. We will ex-
plore this possibility in the sequel.

1.3 A Refinement Based Approach

Whereas in the previous subsection we argued in fa-
vor of a uniform approach to the three behavioral at-
tributes of dependability (reliability, safety, security) in
this subsection we argue in favor of a specific uniform
approach, one based on refinement calculi. We submit
three broad arguments to support our position.

– Conceptual Argument. Refinement calculi have long
been used to model correctness properties, hence
form the basis for reliability analysis [4,14,12,13,
30,9]. In [21] Mili et al have shown how safety can
be modeled by the same refinement mathematics,
and how reliability and safety concerns can be ad-
dressed with the same recovery mechanism. In this
paper we submit that the same refinement mathe-
matics can be used to model (some aspects of) se-
curity, and will discuss ways to do so in the sequel.
In particular, we argue that there is no difference
between reliability and safety except in the quan-
tification of failure costs (the violation of a safety
requirement costs more than the violation of a reli-
ability requirement). We will also argue that there
is no difference between reliability and security ex-
cept in the characterization of fault hypotheses (reli-
ability deals with hardware or software faults while
security deals with faults caused by malicious in-
tervention). We will elaborate on these ideas in the
sequel.

– Pragmatic Argument. In [24], Nicol et al submit that
it is virtually impossible to ascertain the security of
a complex system, and argue that in order to en-
hance system security we must deploy a wide range
of methods:

What is needed is an integrated validation
framework that permits the use of multiple
evaluation techniques in an organized man-
ner. ... A symbiotic relationship should be
established among the various techniques such
that they complement and supplement each
other to build the overall argument”.

We argue that some of the work we have done on
reliability does exactly that, deploying a range of
methods to maximize coverage and minimize (or at
least control) cost [20,2]. More recently, we have
explored means to extend this work to deal with
security, by trying to cast security properties in a
refinement-like model [3]. The purpose of this ap-
proach is to combine dependability measures irre-
spective of how they are analyzed and implemented.
Specifically, we have developed mathematics that
allow us to

– Decompose dependability goals into simpler sub-
goals, that can be dispatched to distinct verifica-
tion and validation efforts that may or may not
use the same methods.

– Compose dependability claims obtained from dif-
ferent methods deployed on different parts of a
system dealing with different aspects of depend-
ability.

4 Ali Mili et al.

The ability to decompose goals and compose claims
is an essential component of our strategy for dealing
with large and complex systems.

– Methodological Argument. By merging various as-
pects of dependability and modeling them in a uni-
form manner we allow ourselves to build eclectic
arguments of dependability. We envision to store all
dependability claims in a unique base, which we can
query for specific properties of interest; details of
this approach are discussed in the sequel.

1.4 Literature Review

In [24], Nicol et al. present an extensive survey of de-
pendability models, and analyze from the perspective of
applying them and extending them to security. In par-
ticular, they distinguish between three broad classes of
models: combinatorial methods; model checking; and
state-based stochastic methods. The extensive survey of
Nicol et al. highlights the lack of work on extending ex-
isting refinement calculi to security modeling, which is
our intent in this paper.

2 Genesis of an Integrated Approach

In [20,2] we consider the traditional classification of
program or system verification methods into three broad
classes: Fault Avoidance, Fault Removal and Fault Tol-
erance. Also, we introduce a refinement based logic that
has the following features:

– Specifications and programs are represented by bi-
nary relations, and refinement is represented by an
ordering between relations.

– The refinement relation is a partial ordering, which
has some lattice-like properties. We represent the or-
dering by

�
and the lattice operators by � (for join,

i.e. least upper bound) and � (for meet, i.e. greatest
lower bound).

– While the meet is defined for any pair of specifi-
cations, the join is not. Only pairs of specifications
that admit a common refinement admit a join. Also
(perhaps consequently) the lattice of refinement has
no universal upper bound, though it does have a uni-
versal lower bound.

We use this refinement logic to address two issues: how
to compose verification claims that stem from distinct
verification methods; and how to decompose a complex
verification goal into simpler subgoals in such a way as
to or/ control overall verification costs. We briefly ad-
dress these issues in the sequel, referring the interested
reader to [20,2] for technical details.

2.1 Composing Verification Claims

Interestingly, we find that all three methods can be cap-
tured in this refinement logic by a formula of the form

� ���

where
�

is the system under consideration and
�

is the
specification (property) we are verifying about

�
. The

form of
�

depends on the parameters of the method be-
ing used.

– For verification,
�

is the binary relation defined in
terms of the pre-condition (say ���
	��) and post-condition
(say,
���	�����	��) as follows:

����� �
	���	������ ���
	�� �!
��
	��"	����"#�$
We denote the right hand side of this equation by %
(for: verification).

– For testing,
�

is the relation defined in terms of the
oracle (say &) and test data (say ') as follows:

���(� ��	���	��)��� 	+*,'-�.��	/�"	����0*1&2#�$
We refer to the right hand side of this equation as 3
(for testing).

– For fault tolerance,
�

is defined in terms of the re-
lations that represent error detection (4) and error
recovery (5), as follows:

��� 46�!57$
We denote the right hand side of this equation by 8
(for fault tolerance), and we justify it simplistically
by the following argument: We assume that we are
ensuring fault tolerance by means of an error detec-
tion routine that checks for some binary condition
4 between a past and a current state, and eventu-
ally (if condition 4 is not satisfied) invokes recovery
routine 5 that maps a past state onto a correct new
state, according to the following (schematic/ simpli-
fied pattern):

if not E then R;

Because we do not know ahead of time whether 4
holds or not, we cannot tell whether relation 4 or
relation 5 holds between the past state and the cur-
rent state. Hence all we can claim is that the system
under review refines 4 or 5 . By virtue of a lattice
identity,

� � 469 � � 5;: � � �
4��!5<�=$

Modeling Security as a Dependability Attribute: A Refinement Based Approach 5

The lattice properties of the refinement ordering al-
low us to combine verification claims by virtue of the
following identity:

� � % � � � 3 � � � 8�: � � ��%6� 3 �!8�� �
assuming % , 3 and 8 admit a join. Hence if we have
established (using a static verification method) that

�
refines % , have established (using a dynamic testing
method) that

�
refines 3 , and have established (using

a fault tolerance method) that
�

refines 8 , we can claim
that

�
satisfies the aggregate specification

%6� 3 � 8 $

2.2 Decomposing Verification Goals

Not only does the refinement lattice allow us to com-
bine eclectic verification claims, but it also allows us to
decompose complex verification goals, by virtue of the
following observations:

– Complex specifications can naturally be decomposed
as joins of simpler specifications [6].

– Lattice identities provide that if a system refines all
the terms of a join, then it refines the join.

– Perhaps most interesting of all is the observation
that the effectiveness, ease of application, reliability
of a verification method varies a great deal accord-
ing to the specification at hand. The same verifica-
tion result, say � ��� �
can be proved very easily, effectively, and reliably
with one method (static verification, dynamic test-
ing, or fault tolerance) yet at the cost of great dif-
ficulty and complexity with another method — de-
pending on the properties of

�
. Specifically, static

verification methods are most effective for reflex-
ive transitive relations, because such methods are
typically inductive, and reflexivity makes the basis
of induction trivial while transitivity makes the in-
duction step trivial. Dynamic testing methods are
most effective for relations that can be implemented
reliably as oracles (a faulty oracle may undermine
the whole testing effort by giving misleading diag-
noses). Fault tolerance methods are most effective
for unary relations (dealing exclusively with the cur-
rent state) that can be implemented efficiently (to re-
duce computation overhead) and do not require sav-
ing previous state spaces (to reduce memory over-
head as well).

In [20] we have outlined a systematic procedure for an-
alyzing relational specifications and assigning them ap-
propriate verification methods so as to minimize overall
verification effort and maximize trustworthiness. Also,
we have illustrated this approach on a simple example,
involving a Gaussian elimination program.

3 A Uniform Representation of Dependability
Claims

Combining diverse methods to reach a uniform verifi-
cation goal is a commendable approach, but it suffers
from the following shortcomings:

– Verification methods are best captured by probabilis-
tic statements rather than logical statement; even the
most formal verification methods have a degree of
uncertainty, that we do not model in our logical in-
terpretation.

– All verification methods are based on (implicit) as-
sumptions, that the logical model discussed above
does not capture. For example, static verification is
based on the assumption that the verification rules
used in the proof are borne out by the compiler and
run-time system on which the program runs. Also,
dynamic testing is based on the assumption that the
testing environment is consistent with (or is harsher
than) the operating environment. Finally, fault toler-
ance methods are usually based on the assumption
that the fault tolerance (error detection, error recov-
ery) routines are free of faults.

– Another issue with the logical interpretation is that
it is too narrow: For example, we have interpreted
the process of testing a program

�
against an oracle

& using test data ' by the formula

� � 3 �
where 3 is the restriction of & to ' . While strictly
speaking that is all we can claim, in fact most often
we test

�
against oracle & using data ' to establish

that
�

refines & , assuming that test data ' is (some-
how) a faithful representative of the whole input do-
main of the program. This interpretation is reflected
by the (stronger) claim

� � &7$
In the proposed new approach, we do not have to
choose between these two interpretations; we can
keep them both, provided we learn how to combine
them.

6 Ali Mili et al.

– Absent from the logical interpretation is the concept
of failure cost. We argue in favor of a model that
quantifies failure costs associated with various situ-
ations; in particular, we argue that the main differ-
ence between reliability and safety is a difference of
failure costs.

3.1 A Probabilistic Model

In light of the foregoing premises, we propose that all
verification results be characterized by the following at-
tributes.

– Property. This attribute reflects the property that we
are claiming for the product under consideration.
Possible values for this attribute include: correct-
ness (refinement), operational attributes (such as re-
sponse time, for example), recoverability preserva-
tion [21], security property (protection against intru-
sion, for example), etc. Overloading the

�
symbol,

we will denote this attribute by
�

even though we
refer more generally to any kind of property.

– Reference. This complements the previous attribute
by specifying with respect to what specification we
are claiming the property. In the case of correct-
ness or recoverability preservation, for example, the
reference in question would be the specification of
relevant functional requirements. In the case of re-
sponse time, for example, this would be the specifi-
cation of relevant response time requirements. In the
case of a security property, this would be the spec-
ification of relevant security requirements (whose
form we will explore subsequently). We usually rep-
resent this attribute by the symbol 5 .

– Assumption. As we discussed above, each verifica-
tion method has an implicit assumption, which we
highlight through this attribute; we can also use this
attribute to highlight additional conditions. For ex-
ample, if we test program

�
against oracle & and

we use a representative data set ' , we are assum-
ing that the program is correct with respect to & if
and only if it is correct with respect to the restric-
tion of & to ' ; such a claim is contingent upon '
being a representative set for the domain of the pro-
gram. We usually represent this attribute by

�
(for

assumption).
– Certainty. This attribute quantifies the probability

we estimate for the verification claim being made;
we usually denote it with � .

– Stake. Also referred to as a the failure cost, this at-
tribute quantifies the cost of failing to satisfy the

claimed property with respect to the claimed refer-
ence. This attribute allows us to reflect the fact that
different requirements carry different stakes; some
may be more critical than others.

– Expense. Also referred to as the verification cost,
this attribute quantifies the cost of verifying a par-
ticular claim; as we have discussed in section 2, this
attribute depends a great deal on the specification
(reference) against which the claim is established.

To reflect all these attributes, we represent verification
claims using the generic format:

� � � � 5 � � � � � �
which we read as: The probability that system

�
refines

(in the general sense) specification (or reference) 5 un-
der the assumption

�
is � . Further, to capture failure

cost and verification cost, we introduce two additional
functions:

– The Failure Cost Function, which maps a property
and reference onto a cost. Formally

��� ���	� ��
,5���
���� � 	�� $
– The Verification Cost Function, which maps a prop-

erty, reference, method, and assumption onto a cost.
Formally,

��� ����� ��
 5��	
�
���������
 � 	�	��! "��� � 	�� $
The verification cost clearly depends on the prop-
erty to be verified and the method used for verifi-
cation; as we discussed in section 2, it also depends
on the reference (specification); finally, it clearly de-
pends on the assumption of the proof (the stronger
the assumption, the easier the proof).

To illustrate/ justify the proposed model, we use it to
briefly represent some sample verification claims.

– Testing Experiment, I. If we test a program
�

on
some test data ' against some oracle & and find
it to run correctly on all the elements of ' , then we
can claim

� � � � 37� � ��#2� �%$ $ &
where 3 is the restriction of & to ' ,

�
is the as-

sumption that the testing environment is equivalent
to (or harsher than) the operating environment and
is the assumption that the oracle (and other test
set-up code) is correct.

Modeling Security as a Dependability Attribute: A Refinement Based Approach 7

– Testing Experiment, II. If we test a program
�

on
some test data ' against some oracle & and find it
to run correctly on all the elements of ' , then we
can claim (for example)

� � � � & � � ��#6� � � � �
where

�
and # are the assumptions defined above

and � is the assumption that the test data is a faith-
ful representative of

�
’s input domain (i.e. if

�
suc-

ceeds on ' then we can infer with probability � that
it succeeds on all its domain). if and only if it suc-
ceeds on all its domain).

3.2 Integrating Failure Costs

In this section we briefly discuss the impact of introduc-
ing failure costs into our model; in particular, we argue
that failure costs enable us to propose a generic measure
of system dependability. When we talk about a system’s
MTTF, we usually do so with respect to two implicit pa-
rameters: First, an implicit specification; and second an
implicit failure cost. It is only with respect to these two
implicit parameters that the MTTF makes sense.

This approach can be generalized in three directions:

– First, complex specifications typically represent of
a wide range of requirements, which the traditional
concept of MTTF lumps into one.

– Second, different requirements may have widely vary-
ing failure costs, hence failing one requirement may
mean something totally different from failing an-
other.

– Third, the same requirement may carry different stakes
for different stakeholders of a system, hence failure
cost depends not only on the requirement but also
on the stakeholder.

To illustrate this situation, consider a Flight Control Sys-
tem of a commercial airliner, for example. We can imag-
ine the following stakeholders in the operation of such
a system: a passenger; the pilot; the FAA; the airline ex-
ecutive; the insurance company that insures the aircraft;
etc. On the other hand, we could consider a wide range
of (non-orthogonal, overlapping) requirements: that the
ride be smooth; that the flight be fuel-efficient; that the
flight be timely; that the flight follow its route within a
few hundred feet; that the flight be safe; etc. It is easy to
see how each stakeholder has different stakes in each re-
quirement; this can be represented in a two-dimensional
table (stakeholders vs requirements).

In a context like this, the MTTF of the system is not
sufficiently informative, if it talks about a global fail-
ure to satisfy the specification, but does not distinguish

between the various components of the specification.
We argue instead in favor of a measure that acknowl-
edges variations in stakeholders and in stakes, and re-
flects the mean failure cost. This function can be quan-
tified by a monotonic combination (over requirements
5 �) of terms of the form:

� $�� � � � � 5 � � �
 ��� � � � 5 � �=�
where � � is the cost function for stakeholder � (hence� � � � � 5 � � is the cost for stakeholder � of failure to sat-
isfy requirement �). We talk about monotonic combina-
tion of these terms rather than their sum, because the
requirements are not necessarily orthogonal or disjoint;
the exact structure of this formula is currently under in-
vestigation.

This discussion illustrates in what sense reliability
and safety can be modeled alike: If 5 � is a safety re-
quirement, then typically ��� � � � 5 � � is very high, whence
the term

� $	� � � � � 5 � � �
must be very low, in order to maintain a low value for
the product

� $�� � � � � 5 � � �
 ��� � � � 5 � �=�
To keep this value low, we must ensure with the great-
est possible certainty that

�
refines 5 � . From this stand-

point, there is no distinction between safety and relia-
bility; all we see are requirements with varying failure
costs.

4 Towards a Logic for System Security

In this section, we analyze system security and investi-
gate in what sense and how it can be folded into the uni-
form model discussed above for representing depend-
ability claims.

4.1 Assigning Meaning to Security Measures

Both safety and reliability can be represented by the
claim that the system/ program under consideration re-
fines a given specification. We write this abstractly as

� � 57$
The first question that we wish to raise as we attempt to
model security is: is security modeled with a different
property (

�
) or a different reference (5)? The answer,

as we will discuss, is both.

8 Ali Mili et al.

In [24] Nicol et al. discuss a number of dimensions
of security, including: data confidentiality, data integrity,
authentication, survivability, and non-repudiation. In the
context of this paper, we focus our attention on sur-
vivability, and readily acknowledge a loss of general-
ity; other dimensions of security are under investiga-
tion. Survivability is defined in [11] as the capability
of a system to fulfill its mission in a timely manner, in
the presence of attacks, failures, or accidents [24]. We
discuss in turn how to represent security (survivability)
requirements, and how to represent the claim that a sys-
tem meets these security requirements.

4.1.1 Specifying Security Requirements We note that
there are two aspects to survivability: the ability to de-
liver some services, and the ability to deliver these ser-
vices in a timely manner; to accommodate these, we
formula security requirements by means of two rela-
tions, one for each aspect. Using a relational specifi-
cation model presented in [6] we propose to formulate
functional requirements as follows:

– An input space, that we denote with � ; this set con-
tains all possible inputs that may be submitted to the
system, be they legitimate or illegitimate (part of an
attack/ intrusion).

– Using space � , we define space � , which repre-
sents the set of sequences of elements of � ; we refer
to � as the set of input histories of the specification.
An element � of � represents an input history of the
form

$)$ ���+$ ����� � $)$ $ � � $ � � $ � � $ � ���
where � � represents the current input, � � represents
the previous input, � � represents the input before
that, etc.

– An output space � , which represents all possible
outputs of the system in question.

– A relation � from � to � that specifies for each in-
put history � (which may include intrusion/ attack
actions) which possible outputs may be considered
correct (or at least acceptable). Note that � is not
necessarily deterministic, hence there may be more
than one output for a given input history. Note also
that this relation may be different from relation 5
which specifies the normal functional requirements
of the system: while 5 represents the desired func-
tional properties that we expect from the system,
� represents the minimal functional properties we
must have even if we are under attack; hence while
it is possible to let � � 5 , it is also possible (per-
haps even typical) to let there be a wide gap between
them.

As for representing timeliness requirements, we pro-
pose the following model:

– The same input space � , and history space � .
– A relation from � to the set of positive real num-

bers, which represents for each input history � the
maximum response time we tolerate for this input
sequence, even in the presence of attacks. We de-
note this relation by � .

In the sequel, we discuss under what condition do we
consider that a system

�
satisfies the security require-

ments specified by the pair �	� �
� � .

4.1.2 Certifying Security Properties Given a security
requirements specification of the form ��� ��� � , we want
to discuss under what condition we consider that a pro-
gram

�
that takes inputs in � and produces outputs in �

can be considered to satisfy these security requirements.
Space limitations preclude us from a detailed modeling
of attacks/ intrusions, hence we will, for the purposes of
this paper, use the following notations:

– Given a legitimate input history � , we denote by
 � � � an input history obtained from � by inserting
an arbitrary intrusion sequence (i.e. sequence of ac-
tions that represent an intrusion into the system).

– Given an input history � (that may include intrusion
actions) we denote by � � � � � � the response time of�

on input history � .

Using these notations, we introduce the following defi-
nition.

Definition 1 A system
�

is said to be secure with respect
to specification ��� ��� � if and only if

1. For all legitimate input history � ,

� � � � � � � �0*��!: �
 � � �=� � �
 � � � � � *�� $
2. For all legitimate input history � ,

� � � � � ����� � � � :�� � � �
 � � � ����� � � � $
The first clause of this definition can be interpreted as
follows: if system

�
behaves correctly with respect to �

in the absence of an intrusion, then it behaves correctly
with respect to � in the presence of an intrusion. Note
the conditional nature of this clause: we are not saying
that

�
has to satisfy � at all times, as that is a reliability

condition; nor are we saying that
�

has to satisfy � in
the presence of an intrusion, as we do not know whether
it satisfies in the absence of an intrusion (surely we do
not expect the intrusion to improve the behavior of the
system —all we hope for is that it does not degrade it).

Modeling Security as a Dependability Attribute: A Refinement Based Approach 9

Rather we are saying that if
�

satisfies � in the absence
of an intrusion, then it satisfies it in the presence of an
intrusion.

The second clause articulates a similar argument,
pertaining to the response time: if the response time of�

was within the boundaries set by � in the absence of
an intrusion, then it remains within those bounds in the
presence of an intrusion.

The definition that we propose here is focused en-
tirely on effects rather than causes, and gives meaning
to the concept of security failure. Using this concept,
we can now quantify security by the same old MTTF,
where F stands for security failure. In [28] Stevens et
al. present measures of security in terms of MTTD (D:
vulnerability discovery) and MTTE (E: exploitation of
discovered vulnerability). By contrast with our (re) def-
inition, these definitions are focused on causes (rather
than effect); in fairness, Stevens et al. propose them as
intruder models rather than security models. The dif-
ference between our effect-based measure and Stevens’
cause-based measure is that a vulnerability may be dis-
covered without leading to an intrusion, and an intrusion
may be launched without leading to a security failure in
the sense of our definition.

4.2 Inference Support

In light of the foregoing discussions, we can now repre-
sent security claims in the same notation proposed ear-
lier for other dimensions of dependability, i.e. as

� � � � 5 � � � � � �
but with a qualification: 5 represents security require-
ments, as discussed in section 4.1.1 and

�
represents

the security property, as we have defined it in section
4.1.2. Cost functions can be added to quantify values of
failure cost and verification cost.

We have developed a very sketchy prototype of a
tool that stores claims and supports queries. We envi-
sion several types of inference rules that such a tool can
deploy: probabilistic rules (that use identities of prob-
ability calculi); refinement based rules (that use the or-
dering properties of the refinement relation); lattice-based
rules (that use identities of lattice theory); rules that
stem from the interrelationships of the various dimen-
sions of dependability (for example, that security de-
pends on the reliability of the security components); etc.

In its current form, the prototype includes only prob-
ability rules, hence has very limited capability. Never-
theless, it allows us to discuss our vision of its function
and its operation. The first screen of the prototype offers
the following options:

– Record a Reliability/ Safety Claim. Clicking on this
tab prepares the system for receiving details about
a dependability claim (reliability, safety, etc) with
respect to a functional specification. Given that such
claims have the general form:

� � ��� 5 � � � � � �
the system prompts the user to fill in fields for the
property (

�
), the reference (5), the assumption (

�
),

and the probability (�).
– Record a Security Claim. Clicking on this tab presents

an entry screen that prompts the user for a security
specification (two fields: a functional requirement
and an operational requirement), a field for an as-
sumption, and a field for a probability. There is no
need for a property field, since the property is pre-
determined by the choice of tabs.

– Record Cost Information. As we recall, there are
two kinds of cost information that we want to record:
failure cost, and verification cost. Depending on the
user’s selection, the system presents a spreadsheet
with four columns (Property, Reference, Cost, Unit
—for failure cost), or six columns (Property, Ref-
erence, Method, Assumption, Cost, Unit —for ver-
ification cost). This information is stored in tabular
form to subsequently answer queries on failure costs
or verification costs.

– Record Domain Knowledge. Because dependability
claims are formulated using domain-specific nota-
tions, a body of domain-specific knowledge is re-
quired to highlight relevant properties and relation-
ships, and to enable the inference mechanism to pro-
cess queries. This domain knowledge is recorded by
selecting the appropriate tab on the system.

– Queries. Clicking on the tab titled Submit Query
prompts the user to select from a list of query for-
mats. The only format that is currently implemented
is titled Validity of a Claim, and its purpose is to
check the validity of a claim formulated as

� � ��� 5 � � ����� �
for some property

�
, reference (Specification) 5 ,

Assumption
�

, and probability � . Notice that we do
not have equality, but inequality; this feature can be
used if we have taken a number of dependability
measures and wish to check whether they are suf-
ficient to allow us to claim that

�
refines 5 with a

greater certainty than a threshold probability � .

To answer a query, the system composes a theorem that
has the query as goal clause, and uses recorded depend-
ability claims and domain knowledge as hypotheses. The

10 Ali Mili et al.

theorem prover we have selected for this purpose is Ot-
ter [29,18,19].

4.3 A Sample Demo

To illustrate the operation of the tool, we take a sim-
ple example. We will present, in turn, the dependability
claims that we submit to this system, then the domain
knowledge, and finally the query; this example is totally
contrived and intends only to illustrate what we mean
by composing diverse dependability claims. Also, even
though the model that we envision has inference capa-
bilities that are based on many types of rules (proba-
bilistic identities, refinement rules, lattice identities, re-
lations between various refinement properties, etc), in
this demo we only deploy probabilistic rules.

For the purposes of this example, we summarily in-
troduce the following notations, pertaining to a fictitious
nuclear power plant:

– Specifications. We consider a specification, which
we call SafeOp, which represents the requirement
that the operation of the reactor is safe. We also
(naively) assume that this requirement can be de-
composed into two sub-requirements, whose speci-
fications, CoreTemp and ExtRad, represent require-
ments for safe core temperatures and safe external
radiation levels.

– Assumptions. We assume (artificially) that the claims
we make about refining specifications CoreTemp and
ExtRad are contingent upon a combination of con-
ditions that involve two predicates: FireWall, which
represents the property that the system’s firewall is
operating correctly; and ITDetection, which repre-
sents the property that the system’s Insider Threat
Detection is working properly.

Using these notations, we illustrate the deployment of
the tool by briefly presenting the security claims, the
domain knowledge, then the query that we submit to it.

– Claims. Using the system’s GUI screens, we enter
the following claims, where

�
represents the reac-

tor’s control system:
� � ��� � ��� ��3 �� � � 8 � � ���������
� � & $ �	� $

� � ��� � ��� ��3 �� � �
��
 8 � � ��������� ��
�3 ' ��� ��� � � ��� � � � & $ �	� $� � ��� � ��� ��3 �� � �
��
 8 � � ��������� ��
�
/3 ' ��� ��� � � ��� � � � & $ �	� $� � ��� 4�� � 5���� � 8 � � ����������� � & $ �	� $� � ��� 4�� � 5���� �
 8 � � ���������
� � & $ � & $

– Domain Knowledge. We submit the following do-
main knowledge under the form of predicates, where
indep(p,q) means that events � and � are indepen-
dent; one could questions whether some of the claims
of independence are well-founded, but we make these
assumptions for the sake of simplicity.

� � � � � � 8 � � ��������� ��
/3 ' ��� ��� � � ��� �=$
� � � � � � ��� � ��� ��3 �� � � ��� 4�� � 5������=$

��� � �
 ��� �! � ��� � ��� ��3 �� � � ��� 4�� � 5���� � $
– Query. We submit the query whether the following

claim � � ��� � �
 ��� � � � � � & $ � & �
is valid, where

�
is the assumption that the proba-

bility of FireWall is 0.90 and the probability of IT-
Detection is 0.80.

The system generates a theorem and submits it to Otter;
then it analyzes the output file to determine if a proof
was produced. The claim is deemed to be valid.

Whereas theorem provers are adequate for symbolic
manipulations, what we need in our type of application
is a combination of symbolic manipulation and numeric
calculations. We have resolved this matter in this sim-
ple case by running two parallel inference threads, in a
way, by declaring arithmetic operations to be evaluable
(rather than simply symbolic), and adding clauses such
as

(((x+y)=z) <-> sum(x,y,z)).
((y=(z-x)) <-> sum(x,y,z)).
(sum(y,x,z) <-> sum(x,y,z)).

(where we deleted the quantifiers all x y z) to sup-
port symbolic equation manipulations and simplifica-
tions. In the long run, we may choose a different the-
orem prover, or a different means to infer queries from
claims than theorem provers altogether.

5 Conclusion: Assessment and Prospects

In this paper we have attempted to model system secu-
rity (which we equate with survivability) on the basis of
the following premises:

– First, we model security as a dependability property,
alongside reliability and safety.

– Second, we model security using a refinement cal-
culus, which has been used in the past to model re-
liability and safety.

Modeling Security as a Dependability Attribute: A Refinement Based Approach 11

– Third, we acknowledge the rigidity of strictly logi-
cal modeling, and derive a representation that sup-
ports probabilistic claims of correctness.

– Fourth, we integrate logical/ probabilistic claims with
cost functions, that allow us to quantify verification
costs and failure costs.

We characterize the form of a security requirements spec-
ification, as well as the condition under which a sys-
tem satisfies such requirements. The same reasons that
preclude us from defining reliability as the absence of
faults, also preclude us from defining security as the ab-
sence of vulnerabilities. Our definition of security (sur-
vivavibility) does not exclude vulnerabilities, and makes
provisions for the cases when mishaps do not cause fail-
ure, or are otherwise recovered from.

Finally, we discuss means to support the manage-
ment of security / dependability using the proposed mod-
els. Future prospects include the exploration of other
forms of security (other than survivability), as well as
the development and experimentation of the prototype.

References

1. E.N. Adams. Optimizing preventive service of software
products. IBM Journal of Research and Development,
28(1):2–14, 1984.

2. R. Ben Ayed, A. Mili, B. Cukic, and T. Xia. Combining
fault avoidance, fault removal and fault tolerance: An in-
tegrated model. In Proceedings, Design for Safety Work-
shop, Moffett Field, CA, October 2000. NASA Ames Re-
search Center.

3. Rahma Ben Ayed, Ali Mili, Frederick Sheldon, and Mark
Shereshevsky. An integrated approach to dependability
management. In Foundations of Empirical Software En-
gineering: The Legacy of Victor R. Basili, St Louis, MO,
2005. Invited talk.

4. R.J. Back and J. von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Sci-
ence. Springer Verlag, 1998.

5. S.A. Becker and J.A. Whittaker. Cleanroom Software En-
gineering Practice. IDEA publishing, 1997.

6. N. Boudriga, F. Elloumi, and A. Mili. The lattice of spec-
ifications: Applications to a specification methodology.
Formal Aspects of Computing, 4:544–571, 1992.

7. Noureddine Boudriga, Rym Zalila, and Ali Mili. A rela-
tional model for the specification of data types. Computer
Languages, 17(2):101–131, 1992.

8. Noureddine Boudriga, Rym Zalila, and Ali Mili. Didon:
A system for executable specifications. Information and
Software Technology, 33(7):489–498, 1993.

9. Jules Desharnais, Ali Mili, and Thanh Tung Nguyen. Re-
finement and demonic semantics. In Ch. Brink, W. Kahl,
and G. Schmidt, editors, Relational Methods in Com-
puter Science, chapter 11, pages 166–183. Springer Ver-
lag, January 1997.

10. M. Dyer. The Cleanroom Approach to Quality Software
Development. John Wiley and Sons, Inc., 1992.

11. R.J. Ellison, D.A. Fisher, R.C. Linger, H.F. Lipson,
T. Longstaff, and N.R. Mead. Survivable network
systems: An emerging discipline. Technical Report
CMU/SEI-97-TR-013, CMU Software Engineering Insti-
tute, november 1997.

12. P. Gardiner and C.C. Morgan. Data refinement of
predicate transformers. Theoretical Computer Science,
87:143–162, 1991.

13. E.C.R. Hehner. A Practical Theory of Programming.
Springer-Verlag, 1993.

14. M.B. Josephs. An introduction to the theory of specifi-
cation and refinement. Technical Report RC 12993, IBM
Corporation, July 1987.

15. R.C. Linger. Cleanroom software engineering for zero-
defect software. In Proceedings, 15th Hawaii Interna-
tional Conference on Software Engineering, Baltimore,
MD, May 1993.

16. R.C. Linger. Cleanroom process model. IEEE Software,
11(2):50–58, 1994.

17. R.C. Linger and P.A. Hausler. Cleanroom software en-
gineering. In Proceedings, 25th Hawaii International
Conference on System Sciences, Kauai, Hawaii, January
1992.

18. W. McCune. Otter3.0 Reference Manual and Guide. AR-
GONE National Laboratory: Mathematics and Computer
Science Division, January 1994.

19. William McCune. Otter 3.3 reference manual. Tech-
nical Report Technical Memorandum No 263, Argonne
National Laboratory, August 2003.

20. A. Mili, B. Cukic, T. Xia, and R. Ben Ayed. Combining
fault avoidance, fault removal and fault tolerance: An in-
tegrated model. In Proceedings, 14th IEEE International
Conference on Automated Software Engineering, pages
137–146, Cocoa Beach, FL, October 1999. IEEE Com-
puter Society.

21. Ali Mili, Frederick Sheldon, Fatma Mili, and Jules De-
sharnais. Recoverability preservation: A measure of last
resort. Innovations in Systems and Software Engineering:
A NASA Journal, 2005.

22. H.D. Mills and M. Dyer et al. Cleanroom software engi-
neering. IEEE Software, 4(5):19–25, 1987.

23. H.D. Mills, R.C. Linger, and A.R. Hevner. Principles
of Information Systems Analysis and Design. Academic
Press, 1985.

24. David M. Nicol, William H. Sanders, and Kishor S.
Trivedi. Model based evaluation: From dependability to
security. IEEE Transactions on Dependable Computing,
1(1):48–65, 2004.

25. S.J. Prowell, C.J. Trammell, R.C. Linger, and J.H. Poore.
Cleanroom Software Engineering: Technology and Pro-
cess. SEI Series in Software Engineering. Addison Wes-
ley, 1999.

26. Mark Shereshevsky, Rahma Ben Ayed, and Ali Mili. An
integrated approach to security management. In Cyber
Security and Information Infrastructure Research Group

12 Ali Mili et al.

and Information Operations Center, First Annual Work-
shop, Oak Ridge, TN, 2005.

27. Ian Sommerville. Software Engineering. Addison Wes-
ley, seventh edition edition, 2004.

28. Fabrice Stevens, Tod Courtney, Sankalp Singh, Adnan
Agbaria, John F Meyer, William H Sanders, and Partha
Pal. Model based validation of an intrusion tolerant infor-
mation system. In Proceedings, SRDS, pages 184–194,
2004.

29. L. Wos. The Automation of Reasoning: An Experi-
menter’s Notebook with Otter Tutorial. Academic Press,
Englewood Cliffs, NJ, 1996.

30. J. Von Wright. A lattice theoretical basis for program
refinement. Technical report, Dept. of Computer Science,
Ȧbo Akademi, Finland, 1990.

