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Abstract   Use cases are useful in various stages of the software process. They are very often 

described using text that has to be interpreted by system designers. This could 
lead to implementation errors. Another drawback of using such informal notations 
is that automating the process of moving from use cases to design specification is 
difficult, if not impossible. It would be beneficial to represent use cases in an 
unambiguous way, thereby reducing the probability of misunderstanding and 
allowing for automation of various activities in the software process.  Message 
Sequence Charts (MSC) is a formal language and widely used in 
telecommunications for the specification of the required behaviors.  In this paper, 
we use MSC for describing use cases and we propose an approach for stepwise 
refinement from high-level use cases in MSC to design MSCs that contain more 
details about the internal components of the system and their interactions.  The 
refinement steps are done by the designer and guided by the system architecture. 
For each step, the newly obtained MSC is validated automatically against the 
previous MSC using a conformance relation between MSCs.   

 

1. INTRODUCTION 

Distributed software systems, like any software system, go through 
requirement, design, implementation and testing phases. Ensuring the quality 
of such software systems from the initial stages is a challenging task.  
 
UML use cases are becoming the standard form for requirements 
specification. An UML use case describes some functionality offered by a 
system as perceived by the user or an external actor of the system [1, 2, 9].  
The user sees the system as a black box that responds to inputs with a 
specified output. Use cases are very often specified using a combination of 
text and diagrams that must be interpreted by the system designers and 
translated into a more concrete representation.  It would be beneficial to 
represent use cases in an unambiguous way from the start, thereby reducing 
the probability of misunderstanding, and enabling the use of tools. MSC [3, 
4, 11] is an excellent candidate as discussed in [10]. 
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MSC and SDL (Specification and Description Language) [5, 6] are widely 
used for telecommunication software engineering. In a previous work [7, 8] 
we have developed an approach and a tool for generating SDL specifications 
from a MSC and a given architecture. The given MSC is seen as a design 
MSC where the internal behavior of the components of the system is given. 
In this paper, we introduce a new approach for refining use cases specified 
with MSC into design MSC in a stepwise manner. The resulting MSC is then 
used as input for our MSC to SDL translation approach. 
 
In our approach, a use case model is developed through interactions with the 
system designers and the customers as described in [1, 2, 9].  The result of 
this represents the functional requirements of the system under construction.  
Once the use cases have been agreed on, the designers must specify the 
architecture of the system. Guided by this architecture, the use cases are then 
refined in a stepwise manner. We distinguish between horizontal and vertical 
refinements. Horizontal refinement consists of adding new messages or 
actions to existing MSC axes. Vertical refinement consists of decomposing 
an axis into at least two other axes following the architecture of the system. 
The enriched MSC must conform to the previous (or parent) MSC.  We 
therefore define a conformance relation between MSCs that is used to 
validate refinement steps made by the designer.  
 
The rest of this paper is organized as follows. In Section 2, we discuss the 
modeling of use cases with MSC. Section 3 introduces the notion of 
conformance between MSCs and discusses the related work. In Section 4, 
Subsection 4.1 describes our stepwise refinement approach for bMSCs, while 
Subsection 4.2 extends this approach to HMSCs. In Section 5, we apply our 
approach to the ATM (Automatic Teller Machine) example, before 
concluding in Section 6. 

2. DESCRIBING USE CASES WITH MSC 

Jacobson introduced the concept of use cases in the Object-Oriented 
Software Engineering (OOSE) method [9]. Use cases are now part of the 
UML standard.  A use case is an abstract description of some desired 
functionality provided to the user of a system.  The use case description sees 
the system as a black box that generates some output for a given input.  The 
fact that they are not formalized allows for flexibility in the early stages of 
development.  This same advantage can turn into a liability if inexperienced 
designers are expected to interpret the use cases and then produce a design 
specification. In [10], the authors propose a method for formalizing use cases 
using MSCs.  We follow this approach for the modeling of use cases.    



2.1 bMSC Use Cases 

bMSCs are simple diagrams that capture the interactions between system 
components, and between system components and the environment. For use 
case modeling, bMSCs are used to show the interactions between the system 
and the environment only as illustrated in Figure 1. The user sees a “black 
box” represented by a single process instance in the MSC.  The axis 
represents the system boundary that interacts with the user.  In this example, 
the user sends message “a” to the system, and the system reacts by sending 
message “b” to the user.  

Figure 1. A bMSC use case. 

2.2 HMSC Use Cases 

HMSC allows for a more abstract view of the system [10, 11].  HMSCs 
improve the readability of the system by hiding low-level details and 
showing graphically how a set of MSCs can be combined. They are viewed 
as roadmaps composed of MSCs using sequential, alternative and parallel 
operators. HMSCs are seen as directed graphs where the nodes are: start 
symbol, end symbol, MSC reference, a condition, a connection point, or a 
parallel frame.  
 
For simple use cases, a single bMSC is sufficient to show the behavior, but 
complex behaviors such as conditional executions or alternatives can lead to 
large and unreadable bMSCs.  For these complex use cases, it is easier to use 
several bMSCs and then combine them using a HMSC use case.   
 
A use case describes one possible usage of a system.  Most systems will have 
many functions that will result in many use cases.  In order to be able to 
organize many use cases and to allow a designer to view and navigate them 
with ease, a HMSC that references the HMSC use cases could be used to 
show an even higher level of abstraction.   Using three level of abstraction 
allows us to specify the use cases for an entire system. Figure 2 shows how 
the various levels relate to each other. 
 
The system level expresses the functional view, as a set of use cases, of the 
system by using a top-level HMSC. The structure level describes each use 
case using one HMSC without going into details. The basic level shows the 
interactions between the system and the environment using bMSCs.  A 
bMSC at that level cannot refer to a HMSC as allowed in the standard [3]. A 
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bMSC at the basic level does not contain alternatives or optional behaviors. 
Any alternative or optional behavior can be represented using HMSC at the 
structure level. In this paper, we restrain the HMSC language to the weak 
sequencing operator, alternative operator and iteration. The parallel operator 
is not taken into consideration.  

 
Figure 2. Three levels of abstraction for use case specification. 

3. CONFORMANCE RELATION FOR MSC 

In this section, we first introduce the definition of conformance between 
bMSCs, and then we extend this definition to HMSC.   

3.1 bMSC 

The bMSC refinement process consists of several steps. We refer by Mk to 
the bMSC obtained at step k. In order to preserve, throughout the refinement 
process, the semantics of the original use case defined by the user, each 
newly obtained bMSC should preserve the semantics of its parent bMSC. In 
other words, bMSC Mn must preserve the behavior described by bMSC Mn-
1. Mn must have the events of Mn-1 and for these events Mn preserves the 
orders defined in Mn-1. The new messages and events introduced in Mn are 
not constrained. Informally, we say that a bMSC M2 preserves the behavior 
of (or conforms to) a bMSC M1, if and only if for each axis A1 in M1 there is 
a corresponding set of axes {A21, A22, …, A2n} in M2 with all events of A1 
included in {A21, …, A2n}, and all the orders defined between events in M1 
are preserved in M2. 
 
For a formal definition of the conformance relation, we need a formal 
definition of a bMSC. For this, we follow the definitions in [12, 13]. 
 



Definition 1 (bMSC). A bMSC is a tuple <V, <<, P, M, L, T, N, m>,  where 
• V is a finite set of events, 
• <<  ⊆  V x V : is a transitive and acyclic relation, 
• P is a set of processes, 
• M is a set of message names, 
• L: V Æ P is a mapping that associates each event with a process, 
• T: V Æ {send, receive, local} defines the types of each event as a 

send, receive or local, 
• N: V Æ M maps every event to a name 
• m: a partial function that pairs up send and receive events. 

 
The relation << is defined between the sending event (sm) and the receiving 
event (rm) of message “m” as sm << rm, and between events e1 and e2 in the 
same axis, e1 << e2, if e1 appears before e2. 
 
Definition 2 (Conformance for bMSCs). A bMSC M2 = <V2, <<2, P2, M2, 
L2, T2, N2, m2> conforms to a bMSC M1 = <V1, <<1, P1, M1, L1, T1, N1, m1>, 
if and only if there exist an injective mapping Γ: V1 Æ V2 and a surjective 
function φ: P2 Æ P1 such that: 

• L1(e) = φ(L2 (Γ(e))) 
• T1(e) = T2 (Γ(e)) 
• N1(e) = N2 (Γ(e)) 
• if  m1(e) = f  then  m2(Γ(e)) = Γ(f) 
• if e <<1 f then Γ(e) <<2 Γ(f) 

 
Our conformance relation is similar to the matching relation defined in [12, 
13].  However, there are two differences. The first one is related to the MSC 
semantics. In fact, we do not distinguish between the visual order and the 
enforced order as it is done in [12, 13]. The visual order being the transitive 
and reflexive closure <<* of <<, while the enforced order depends on the 
communication architecture where some visual orders may not hold, because 
of race conditions [14]. In the formal semantics of MSC (for bMSC [15]), the 
visual order has to be enforced. The question “if an architecture allows for 
that order or not” is another issue. The second difference as mentioned earlier 
in our conformance relation, an axis in bMSC Mn may correspond to a set of 
axes in bMSC Mn+1. In other words, we allow for one-to-many relationship 
between axes, contrary of the one-to-one relation in [12, 13]. 
 
Mauw and Reniers have proposed a refinement relation for interworkings 
[16]. This refinement consists of decomposing an instance into its 
constituents and adding internal messages between these constituents. Beside 
the semantic issues, our conformance relation can be seen as a combination 



of the refinement relation in [16] and the matching relation in [12, 13].  In 
this paper, the terms “refinement” and “conformance” are not synonymous. 
With the term “refinement” we only mean developing further a MSC, 
without automatically ensuring conformance. 
 
For the illustration of the conformance relation, let us consider the bMSCs in 
Figure 3. A mapping Γ between M1 and M2 that associates each event to 
itself and a function φ that associates each process to itself satisfy the 
conditions in Definition 2. bMSC M2 conforms to bMSC M1. We have more 
messages and events in M2, but these events preserve the orders defined in 
M1. The bMSC M3 also conforms to M1. In this case, the function φ 
associates P21 and P22 to P2. In the case of bMSC M4, we cannot find a 
mapping of events that preserves the orders defined in M1. In fact, reception 
of message “x” by P21 and reception of “y” by P22 are not ordered as 
specified in P2 in M1. 

Figure 3. Examples of conformance and non-conformance between bMSCs. 

3.2 HMSC 

In order to build complex behaviors from simple behaviors, the MSC 
standard [3] has defined weak sequential, iteration, alternative and parallel 
compositions of MSCs.  Informally, weak composition of two bMSCs can be 
seen as a concatenation of the axes of the common processes in the bMSCs. 
 
Definition 3 (Weak composition of bMSCs). Given two bMSCs, M1 = <V1, 
<<1, P1, M1, L1, T1, N1, m1>  and M2 = <V2, <<2, P2, M2, L2, T2, N2, m2>, with 
V1 ∩ V2 = ∅ ,  M1 o M2 = <V1 ∪  V2, << , P1 ∪  P2, M1 ∪  M2, L1 ∪  L2, T1 ∪  T2, N1 

∪  N2, m1 ∪  m2>,  where << = <<1  ∪   <<2  ∪   {(e1, e2), such that L1(e1) = L2(e2), 
e1 ∈  V1 and e2 ∈  V2}.  
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From the syntactical point of view, a HMSC defines a roadmap where MSCs 
are combined using weak sequential, iteration, alternative and parallel 
compositions. As mentioned in Section 2, we do not take into account the 
parallel operator in this paper.  From a semantic point of view, we define a 
HMSC as a potentially infinite set of alternatives of (infinite) weak 
sequential composition of bMSCs. 
 
Definition 4 (HMSC). A HMSC H1 is a set of sequences seqi (or bMSCs), 
with seqi = Mi1oMi2oMi3o…oMiq, where Mij is a bMSC, for  j = 1, …, q and i = 
1, …, n.  
 
The set and the sequences could be infinite.  The iteration is defined as the 
repetition, using weak sequential composition, of the same bMSC. 
 
Informally, we say that a HMSC H1 conforms to HMSC H2, if and only if for 
each alternative bMSC M1 in H1 there is a bMSC M2 in H2, such that M2 
conforms to M1. M2 preserves the behavior of M1.  H2 may contain more 
alternatives than H1, but each alternative of H1 is preserved in at least one 
alternative of H2. 
 
Definition 5 (Conformance for HMSCs). Given two HMSCs, H1 = {seq1i, i 
= 1, …, n} and H2 = {seq2j, j = 1, …, m}, H2 conforms to H1, if and only if 
for each seq1i in H1 there exist seq2j in H2 such that seq2j conforms to seq1i. 
 
The conformance between seq1i and seq2j is given in Definition 2. Both 
conformance relations (for bMSCs and HMSCs) are transitive and reflexive.   

4. FROM USE CASES TO DESIGN SPECIFICATION 

Typically, designers will use their experience to generate design 
specifications from textually represented use cases.  This method can lead to 
errors in implementation if the use cases are unclear.  How these types of 
errors can be avoided is the goal of our approach. It enables a designer to 
specify an initial use case in MSC and refine it incrementally into a MSC 
design specification. The system architecture plays an important role in the 
stepwise refinement of MSC use cases.  A refined MSC must conform to its 
parent MSC and follow the underlying system architecture. This system 
architecture can be represented using either UML or SDL.  Our methodology 
for stepwise refinement of use cases is to be used in conjunction with 
existing tools for translation of a UML architecture into a SDL architecture 
[17], and the generation of a SDL specification from a given target 
architecture and MSCs [8]. 



4.1 bMSC Refinement Methodology 

During the refinement process, we distinguish between vertical and 
horizontal refinements. Vertical refinement reflects the architectural 
decisions, while horizontal refinement allows to enrich the behavior of a 
bMSC. Both types of refinements are used together to incrementally refine a 
use case bMSC into a design specification.  Figure 4 illustrates how both 
types of refinements are combined to reach a design specification.   
 

 
Figure 4. Overall refinement methodology. 

The refinement process is dependent on the system architecture.  The amount 
of layers used in the architecture limit the number of vertical refinements.  
There can only be one vertical refinement per layer. Each vertical refinement 
step splits a bMSC instance into several instances according to the 
architecture. The instances that are not decomposed keep the same names. 
When an instance is decomposed the designer has to distribute its events 
among the new instances. For each message “m”, the names of the associated 
events (sending and receiving) are kept unchanged. The messages and events 
associated with instances that are not refined are kept unchanged and re-
generated automatically. In general, a combination of vertical and at least one 
horizontal refinement is needed in order to generate a MSC that may 
conform to the previous level. 
 
Horizontal refinement is concerned with adding messages, events and local 
actions to the bMSC. The designer can add new messages, sending and 
receiving events, as well as local actions.  The messages that can be used in a 
horizontal refinement are specified in the architecture. A designer cannot 
introduce messages that are not specified in the architecture at the current 
level of refinement. Unlike vertical refinement, there is no limit to the 
number of horizontal refinements that can be performed at any given layer.  



After each horizontal refinement, the designer can check automatically 
whether the refined bMSC conforms to the previous one. This verification of 
the conformance relation between bMSCs is implemented with the Event 
Order Tables (EOT) introduced in [7, 8].  As mentioned earlier, the bMSCs 
used in this paper do not contain alternative or optional behaviors. 

Event Order Tables (EOT) 

An EOT for a bMSC is a matrix that shows precedence relationships between 
events of the MSC.  Figure 5 shows a bMSC and its corresponding EOT.  
Each message between two instances corresponds to two events: sending and 
receiving.  Once the events on a MSC have been labeled appropriately, the 
EOT can be constructed.  Following the MSC semantics and the relation <<, 
we use two rules to generate the EOT [8]: 

• Each instance is totally ordered (except for co-regions where 
there is no order between events). 

• A reception event happens after its matching sending event. 
 
Inspection of each process axis in Figure 5 reveals that the first rule must be 
applied to P2, yielding the relation e2 << e3.  Applying the second rule to the 
MSC of Figure 5 yields {e1 << e2, e3 << e4}.  The transitive closure <<* of 
<< allows for the construction of the EOT.  For instance, e1 << e2 and e2 << 
e3 implies e1 << e3.   A cell in the EOT is set to true if the row event occurs 
before the column event.   
 

 
Figure 5. A bMSC and its EOT. 

Definition 6 (Inclusion for EOTs). We say that EOT T1 is included in EOT 
T2, if and only if  

• all the events of T1 are in T2, and  
• for each pair of events (ei, ej) if ei << ej in T1 then ei << ej in T2. 

 
Provided the relation, enforced by the bMSC refinement approach (and tool), 
between instances and events in bMSC Mk+1 and bMSC Mk, we say that 
Mk+1 conforms to Mk if and only if EOT of Mk is included in EOT of Mk+1.  
 
Proposition 1 (Conformance of bMSCs using EOTs). Given bMSCs, Mk 
and Mk+1, provided that events in Mk are mapped into themselves in Mk+1, 
Mk+1 conforms to Mk if and only if EOT of Mk is included in the EOT of 
Mk+1.  



 
Proof. The proof is straightforward. Our refinement approach maps events in 
Mk into themselves in Mk+1. The orders defined in Mk are preserved in Mk+1 

if and only if the EOT of Mk is included into the EOT of Mk+1.  [End] 
 
Figure 6 shows a bMSC that conforms to the bMSC in Figure 5, the message 
“c” sent from P2 to P3 has been added. In order to preserve the original event 
labels, the event labels e5 and e6 have been used for the new events. 

 
Figure 6. Example of conformance verification using EOTs. 

The EOT in Figure 5 specifies an ordering of events that is maintained by the 
refined bMSC.  In fact, the EOT in Figure 5 is included in the EOT in Figure 
6.  The old relations are bolded in Figure 6; as long as these are not violated, 
the new bMSC conforms to its parent bMSC. 

4.2 Stepwise Refinement of HMSCs 

A HMSC is composed of a number of bMSCs following a certain roadmap.  
To enrich a use case HMSC, we keep the same roadmap and we refine the 
bMSCs. A HMSC is refined according to the following rules: 
 

1. Keep the roadmap unchanged. 
2. For vertical refinement, all bMSCs are vertically refined at the same 

time so that each bMSC has the same number of instances.  
3. For horizontal refinement, we refine horizontally the referenced 

bMSCs. Each bMSC can be refined horizontally independently of the 
others.  

 
Vertical refinements are done automatically according to the system 
architecture and the current level of abstraction.  The user refines bMSCs 
horizontally using the method described previously and messages described 



in the architecture at the current level of abstraction.  Unfortunately, the 
conformance of the refined bMSCs to their corresponding bMSCs does not 
lead automatically into the conformance of the refined HMSC to the original 
HMSC. In fact, orders between events in a given axis may not hold anymore 
when the axis is decomposed and the events distributed among the refining 
axes as shown in Figure 7. Indeed, in the HMSC M1 o M2, the sending of “x” 
always precedes the sending of “y”, but this not the case in the HMSC M1’ o 
M2’, because of the distribution of these two events.  In this example, M1’ 
conforms to M1 and M2’ conforms to M2, but M1’ o M2’ does not conform 
to M1 o M2.  
 

Figure 7. Non-conformance between HMSCs. 

Theorem 1 (Conformance between HMSCs).  
Given a HMSC H1 and its refinement H2, (with the same roadmap), if  

• each bMSC in H2 conforms to its corresponding bMSC in H1, and 
• in the HMSC H2, for each pair of bMSCs, M1’ and M2’, such as M1’ 

o M2’ in H2, for each set of axes {A11, …, A1n} in M1’ and M2’ 
resulting from the decomposition of A1 (in M1 and M2 in H1), the 
order between the last event of A1 in M1 and the first event of A1 in 
M2 is preserved,  

then H2 conforms to H1. 
 
Proof. Consider two HSMCs, H1 and its refinement H2 obtained following 
the rules mentioned above. From a semantic point of view, each HMSC is a 
set of alternatives of concatenation of bMSCs. Roadmaps of H1 and H2 are 
identical, each bMSC in H1 has a corresponding bMSC in H2. Any sequence 
of concatenation seq1 in H1 has its corresponding sequence of concatenation 
seq2 in H2, using corresponding bMSCs in H2.  In order to show that H1 
conforms to H2, we have to show that seq2 conforms to seq1. For that, we 
only have to prove that if M1’ conforms to M1, M2’ conforms to M2, and the 
second condition of the theorem holds, M1’ o M2’ conforms to M1 o M2.   
 

P1 P2

x

m sc M 1

P11 P12 P3

x

m sc M 1’

P1 P2

y

m sc M 2

P11 P12 P3

y

m sc M 2’

P1 P2

x

m sc M 1

P11 P12 P3

x

m sc M 1’

P1 P2

y

m sc M 2

P11 P12 P3

y

m sc M 2’



M1’ conforms to M1 means that orders in M1 are preserved in M1’. M2’ 
conforms to M2 also means that orders of M2 are preserved in M2’. M1 o M2 
(before decomposition of axes) imposes orders on events in the same axes 
and these orders have to be preserved in M1’ o M2’. The second condition of 
the theorem ensures the preservation of these orders in M1’o M2’. Therefore, 
M1’ o M2’ conforms to M1 o M2.        [End]  
 
During the refinement of HMSC use cases, we check the conformance 
between the new HMSC and its parent HMSC by checking the conformance 
between each pair bMSCs and the second condition of the theorem above.  
When a bMSC in the new HMSC does not conform to its corresponding 
bMSC in the parent HMSC, the refinement is not accepted. New refinements 
and modifications have to be applied to the new bMSC and the conformance 
checked again.  In some cases, the designer has to add new messages in the 
refined HMSC to ensure that the second condition of the theorem holds. The 
tool can also add automatically “dummy” messages to satisfy this condition 
of the theorem. Notice that in our refinement approach the conformance of 
bMSCs is a sufficient condition and not a necessary one. However, in order 
to ensure the conformance between HSMCs, we enforce conformance 
between pairs of bMSCs. The study of all the possible necessary conditions 
is left for future investigations.  

5. APPLICATION 

Automation (tool) reduces the likelihood of human error and increases the 
confidence in the generated specifications. 

5.1 Tool 

We have developed a MSC refinement tool.  The use cases are specified with 
HMSC and the system architecture is specified using UML (or SDL 
directly).  The stepwise refinement of MSCs is used in conjunction with 
other methodologies that have been automated, namely: 

• UML to SDL architectural translation [17]. 
• Generation of SDL specification from a given SDL architecture and 

MSC [7, 8]. The SDL specification preserves the behaviors specified 
in the MSC and is free of any design error such as deadlocks. 

 
Figure 8 shows how the MSC refinement tool can be combined with existing 
tools.  The shaded region represents the MSC refinement process.  A tool 
guides the user through the refinement process and verifies that the resulting 
MSCs conform to the original use cases and follow the system architecture. 
 



 
Figure 8. A toolkit for developing SDL and MSC specifications. 

The MSC refinement approach (and tool) can also be used in the front-end of 
the SDL specification enrichment approach introduced in [18].  

5.2 Example 

This section illustrates our refinement approach through an example.  Figure 
9 shows a system architecture representing an ATM machine using SDL.  
There are two processes, namely “ATM” and “BANK”.  There is a channel 
that allows the user of the system to interact with the ATM process instance, 
and another channel allows for the two process instances to interact with 
each other. The signals these processes exchange with each other and their 
environment are specified in the architecture. 

 
Figure 9. ATM system architecture in SDL. 

Two functions provided by an ATM machine are the ability to withdraw and 
deposit money.  Both these functions have a common starting point.  The 
user must first insert a card and enter the correct PIN before a transaction can 
occur.  Figure 10 shows the system and structure level HSMCs. 



 

 
Figure 10. System and structure level HMSCs for the ATM example. 

The system level HMSC shows three different use cases, “Exit”, “Deposit” 
and “Withdraw”.  It also shows that each use case has the common behavior 
denoted by the “Login” block.  The structure level shows more details.  The 
“Login” HMSC has only one bMSC, “Valid_Pin”.  Later on, the system 
designer can decide to add an “Invalid_Pin” scenario to the “Login” HMSC 
that would not affect the rest of the system.  The “Withdraw” HMSC shows 
that the withdraw use case can have two results, “WithdrawOK” and 
“WithdrawNOK”.  For illustration purpose, we will perform refinements on 
“WithDrawOK” only. The bMSC “WithdrawOK” in Figure 11.a is first 
refined vertically into the bMSC in Figure 11.b.  Note that there is no new 
behavior added, only a splitting of the instance “ATM_Machine” to reflect 
the architecture of Figure 9. 
 

Figure 11. Vertical and horizontal refinements of “WithdrawOK”. 

Once the vertical refinement has been performed, the designer can now 
enrich the bMSC.  A horizontal refinement is shown in Figure 11.c. The new 
MSC conforms to the original MSC in Figure 11.a. 
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Now suppose that the ATM block of Figure 9 was further decomposed into 
three separate processes: Dialogue, MoneyHandler and Printer. With our 
refinement process, the MSC of Figure 11.c is first refined vertically to show 
the decomposition of the ATM block. This refinement is followed by a 
horizontal refinement with the addition of messages.  The resulting MSC, 
that conforms to the MSC in Figure 11.c and therefore to the initial use case 
in Figure 11.a, is shown in Figure 12. 
 

 
Figure 12. Another refinement of “WithdrawOK”. 

While horizontal refinements are being done separately for each bMSC of the 
HMSC. The designer can verify the conformance of each new bMSC 
(HMSC) against its corresponding bMSC (HMSC) in the previous stage. 

6. CONCLUSION 

Use cases are a good way to capture user requirements.  They are abstract 
and are often described using textual documents that can be misinterpreted 
later on by designer.  The reason for this is that designers apply their 
experience to translate use cases into a design and implementation.  A 
structured way of going from use cases to specification would benefit the 
software development process by detecting and avoiding errors early on, and 
by enabling easier software comprehension.  This will reduce development 
and maintenance costs. MSCs are well suited for this because they can show 
a system at a high level of abstraction, or they can be used for low-level 
specifications.  They are intuitive, easy to learn and formally defined. 
 
The goal of this project is to create a methodology and a CASE tool to semi-
automate the process of refining a use case HMSC into a design 
specification.  The MSC refinement tool is used as a front-end tool for an 
existing set of tools for translating UML architecture specifications to SDL 



architecture specifications, and from MSC specifications to SDL 
specifications. This set of tools aims at improving the quality of the software 
as well as shortening the development process.  
 
Other issues such as conformance relations that allow for enrichment and 
modification of roadmaps are under consideration.  
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