A Hierarchy of Communication Models for Message Sequence Charts (1997) (Make Corrections) (7 citations)
A. Engels, S. Mauw, M.A. Reniers
Formal Description Techniques and Protocol Specification, Testing and Verification. Proceedings of FORTE X

A. Engels, S. Mauw and M.A. Reniers. A Hierarchy of Communication Models for Message Sequence Charts. In T. Mi
Shiratori, T. Higashino and A. Togashi, editors, Proc. of FORTE X and PSTV XVII, pages 75-90, Chapman & Hall, 19¢

A Hierarchy of Communication
Modelsfor M essage Sequence Charts

A. Engdls, S Mauw, M.A. Reniers

Department of Mathematics and Computing Science,
Eindhoven University of Technol ogy

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{engel s| sj ouke| mi chel r }@ui n. tue. nl

Abstract

In a Message Sequence Chart (MSC) the dynamica behaviour of a number of co-
operating processes is depicted. An MSC defines a partia order on the communica-
tion events between these processes. This order determines the physical architecture
needed for implementing the specified behaviour, such asaFIFO buffer between each
of the processes. |n a systematic way, we define 50 communi cation models for MSC
and we definewhat it means for an M SC to be implementabl e by such amodel. Some
of these modelsturn out to be equivalent, in the sense that they implement the same
class of MSCs. After analysing the notion of implementability, only ten models re-
main, for which we develop ahierarchy.

Keywords
M essage Sequence Charts, semantics, implementation, validati on, buffering, commu-
nication models, hierarchy

1 INTRODUCTION

In recent years much attention has been paid to graphical languagesfor the visualisa-
tion of communication traces in distributed systems. One of the most popul ar classes
of formalismsfor this purposeisthe class of sequence charts. Of those, Message Se-
guence Chart (M SC) has been standardised by the International Telecommunication
Union (ITU) as Recommendation Z.120 (ITU-TS 1996). Two important reasons for

©IFIP 1996. Published by Chapman & Hall

Frederick Sheldon
A Hierarchy of Communication Models for Message Sequence Charts (1997) (Make Corrections) (7 citations)
A. Engels, S. Mauw, M.A. Reniers
Formal Description Techniques and Protocol Specification, Testing and Verification. Proceedings of FORTE X

A. Engels, S. Mauw and M.A. Reniers. A Hierarchy of Communication Models for Message Sequence Charts. In T. Mizuno, N. Shiratori, T. Higashino and A. Togashi, editors, Proc. of FORTE X and PSTV XVII, pages 75-90, Chapman & Hall, 1997

2 A Hierarchy of Communication Models for Message Sequence Charts

the popularity of MSCs are that they provide a clear intuition to both engineers and
designers and at the same time posses a well-defined semantics.

Although MSC is primarily concerned with presenting the asynchronous commu-
nication between processes in adistributed system, no informationis given as to the
way in which these communications are supposed to be reaized in an implementa-
tion. The only assumption about theimplementation of communication isthat an out-
put precedes its corresponding input.

Thisimpossibility to specify the communi cation model becomes aproblemwhen a
specific communication model is presupposed, for example due to hardware require-
ments. Whenever MSC is used to specify the communi cation behaviour, the question
arises whether the behaviour defined by an MSC is feasible with respect to the de-
sired communication model. It may be the case that all traces defined by the MSC
arefeasible, that at least onetraceis, or that none of the tracesisfeasible. For exam-
ple, an MSC with two inherently crossing messages cannot be implemented with an
architecture containing one single global FIFO buffer for message exchange.

There are two approaches to dea with this under-specification in MSC. The first
is to select a single preferred model and revise the semantics of MSC accordingly.
Keeping in mind the broad context in which MSC is used in practice, thisoptionis
not realistic. The only acceptable choice would be the most genera random-access
buffer model that has been chosen in the current standardised semantics of MSC.

The aternative would be to allow the user of MSC to indicate the desired commu-
nication model explicitly. This can be done by extending the syntax of MSC with a
means to specify the intended model and by devel oping dedicated toolsfor the anal-
ysisof MSC with respect to certain implementation models. We proposeto study this
second aternative and it is our am in this paper to provide a solid and formal basis
for defining the relation between a communication model and an MSC.

For agiven M SC we define the notionsof strong and wesk implementability. Strong
implementability of an MSC in a given communication model means that all traces
of the MSC can be realized with the given communication model and wesk imple-
mentability means that there isatrace that can be realized.

In this way, we attach to each implementation model the class of MSCs that are
strongly or weakly implementable with respect to that moddl. A natural question to
ask iswhether there are communication models that define the same class of MSCs.
This means that for a given MSC one has a choice of communication model for im-
plementation. It turnsout that theinitial number of fifty M SC classes can be reduced
to a hierarchy of ten different models.

Acknowl edgements We would liketo thank Thijs Cobben, Loe Feijs, Herman Geu-
vers and Bart Knaack for their valuableinput.

2 MESSAGE SEQUENCE CHARTS

In this section we explain the semantical foundations of Message Sequence Chart
(MSC). We use a partial order on the events of an MSC to express the semantics.
In literature several ways to define the semantics of MSC are proposed (Mauw and

Message Sequence Charts 3

Reniers 1994, Ladkin and Leue 1995, Grabowski, Graubmann and Rudolph 1993).
The process agebra approach (Mauw and Reniers 1994) has been standardised as
Annex B to ITU recommendation Z.120 (ITU-TS 1995). The partial order represen-
tation (Alur, Holzmann and Peled 1996) used in this paper coincides with most of
these proposals for the class of Basic Message Sequence Charts. We also define the
traces expressed by an MSC.

The MSCs studied here consist of a collection of instances (or processes) with a
number of messages attached to them. These are known as Basic Message Sequence
Charts, but in this paper we use the term M SCsto denote them.

Some examples of MSCs can be seen in Figure 3. MSCs consist of vertical lines,
denoting the various communicating processes, which we cal "instances’ and arrows
between these instances, denoting exchanged messages.

We allow messages from an instance toitself, but we only consider closed systems,
that is, we do not consider messages to the environment. Neither do we consider any
other specific features such as local actions and recursion. We assume that the names
of theinstances and messages are unique. Therefore, theinstancesto which amessage
is attached are determined uniquely by the message name.

The easiest way to expressthe semantics of suchasimpleMSC isby using apartial
order onthe eventsthat are comprisedin an M SC. Depending on the particul ar dial ect
of the MSC language, one can assign different classes of eventsto an MSC. For ex-
ample, in Interworkings(Mauw, Wijk and Winter 1993) every message is considered
to be asingle event. There is no buffering, and thus communication is synchronous.

In MSC (ITU-TS 1996), messages are divided into two events, the output and the
input of themessage. The output of message misdenoted by 'm and theinput by 2m.
The only assumption about the implementation of communication is that an output
precedes its corresponding input. This corresponds to the most general implementa-
tion model in which processes communicate via unbounded random-access buffers.

In this paper we go one step further, and add athird event, denoted by !!m, that we
cal transmit m. The basic idea is that a message passes two buffers before arriving
at its destination. The intuition here is that !m denotes the putting of a message into
an output buffer, I'm isthe transmission of the message from the output buffer to the
appropriate input buffer, and ?m isthe removal of the message from theinput buffer.
We assume these events to be instantaneous. Furthermore, we concentrate on FIFO-
buffersonly.

Althoughtheintermediatetransmit events!!m play acrucial rolein our description
of the communi cation models, we do not encounter them in the definition of an MSC,
nor in the partia order describing the forma semantics of an MSC. An MSC till
describes a partia order on output and input events only.

Definition 1 (MSC) An MSCisaquintuple (I, M, from, to, {<;}i<), where | isa
finite set of instances, M isafinite set of messages, fromand to are functionsfrom M
tol, and {<;}ic) isafamily of orders. For eachi € | itisrequired that <; isatota
order on {!m | from(m) =i} U {?m | to(m) = i}.

Intheabove definition, from(m) denotestheinstancewhich sendsmessage m. Like-

4 A Hierarchy of Communication Models for Message Sequence Charts

wise, to(m) denotes the instance which receives message m. Given an instancei, the
order <; denotesin which order the events attached to instancei occur. The order <;
isliftedin thetrivial way tothe set {Im, ”m, I'm | m € M}.

The partid order denoting the semantics of an MSC is derived from two require-
ments. First, the order of the events per instance is respected, and second, a message
can only be received after it has been sent. The first requirement is formalised by
defining the partial order <'™':= | J;, <i, and the second requirement isformalised
by the output-before-input order <®:= {(!Im, 2m) | m € M}.

Now, we define the partial order induced by the MSC as the transitive closure (de-
noted by *) of theinstancewise order and the output-before-input order. For an MSC
k, we denotethisorder by <™¢ or by <™ if k isknown from the context.

Definition 2 For agiven MSCk = (I, M, from to, {<i}ic), the relation <™ is
defined by <"¢:= (<'™! U <%)*,

Wedefinesimilar notionsfor 3-traces. We definethe output-before-transmit-before-
input order by <°:= {(!Im,!'m), (!!m,2m) | m € M}, and the relation <™ by
adding the instancewise ordering on the MSC.

Definition 3 For agiven MSC k = (I, M, from to, {<i}ic), the ordering <™ is
defined by <Mm3._ (<InSt U <0t|)+.

It is easy to see that <™ is the restriction of <™ to output and input events. It
may be the case that <™ does not define a partial order, due to cyclic dependen-
cies of the events. Such an MSC is said to contain a deadlock, or is called inconsis-
tent. In Z.120 (ITU-TS 1996) inconsistent MSCs are considered illegal, and in (Ben-
Abdallah and Leue 1997) an algorithmis described for determining whether agiven
MSC isconsistent. In the remainder of this paper we consider consistent MSCsonly,
which impliesthat both <™s¢ and <™ are partial orders.

From an operationa point of view, one can say that an MSC describes a set of
traces. We distinguish 2-traces and 3-traces. A 2-trace denotes the ordering of out-
put and input events (!m and ?2m), a 3-trace those of transmit events (!!m) as well.

Definition 4 (2-traces, 3-traces) A 2-tracet over aset of messages M isatotal or-
dering (e1, €, ..., ey) of thesat {Im, ?m | m € M}. This ordering is denoted by
<{race_Atrace(er, e, ..., &) isdenoteder & ... e,. A 3-traceisequal toa2-trace,
except for the fact that it containstransmit events as well.

Definition 5 (M SC-trace) A 2-tracet issaid to be atrace of the MSC k iff it isde-
fined over the messages M of k, and <°C <{"a®, A 3-tracet issaid to beatrace of
the MSC k iff it is defined over the messages M of k, and <km3g<§ra°e.

A 3-trace can be turned into a 2-trace by removing all transmit events (!!m). If, for
a3-tracet thisresultsina2-tracet’, thent issaidto bean extensionof t'. Itisnot hard
to seethat a 3-trace t isatrace of an MSC k iff the 2-trace of which it isan extension
isatrace of theMSC and <! c <{race,

Implementation models 5

For MSC 2ain Figure 3 the following orderings hold: 'a <™¢?a, 'b <™¢%, and
?a <™. The first two are implied by the <° -order, the third by the <'"™!-order.
The MSC has exactly three 2-traces: la?a!'b b, la!b?a?b, and 'b!a ?a ?b. These 2-
traces can beextended toten 3-traces, suchas!a!la?alb!lb?band!a!b!!b!la?a .

3 IMPLEMENTATION MODELS

We discuss possible architecturesfor realizing an MSC. We consider only implemen-
tation models consisting of FIFO buffers for the output and input of messages. For
MSC traces, we define what it means to be implementable on some architecture.

3.1 Locality of buffers

The particular implementation models which we are interested in are constructed of
processes that communicate with each other via FIFO buffers. We assume that the
buffers have an unbounded capacity. We discern two uses of buffers, namely for the
output and for the input of messages.

A second distinction can be made based on the locality of the buffer. From most
global to most local we distinguish the following types:

® global: A global FIFO buffer: All messages from al instances pass this buffer.

@ inst: A FIFO buffer, local to an instance: All messages sent (or received) by one
singleinstance go through the same buffer.

® pair: A FIFO buffer, local to two instances: All messages that are sent from one
specific instance to another specific instance go through this buffer.

® msg: A FIFO buffer, local to a message: There is one buffer for every message.

This last model, a buffer per message, is a specific architecture to catch up the
cases in which the buffers do not behave like FIFO queues. Taking into account the
assumption that messages are unique, it can easily be seen that it is equivalent to a
globa random-access buffer. A communication model with only a random-access
buffer represents the model of the MSC standard: the only assumption made about
the implementation of communication isthat output precedes input.

Finally, we consider the following possibility of using no buffersat all, denoted by
nobuf. In this case communication is synchronous.

We assume that the transmission from an instance to its output buffer, from one
buffer to another buffer, or from an input buffer to the instance it belongsto, issyn-
chronous. We also assume that all output buffers are of the same type, and similarly
that all input buffers are of the same type. Thisresultsin four possibilitiesfor the out-
put aswell asfor theinput. Adding the possibility of using no buffer at all, we have a
total of 25 possiblearchitectures. To denotethedifferent architectures, we use the no-
tation (X,Y), where X denotes the type of output buffer, and Y the type of input buffer.

6 A Hierarchy of Communication Models for Message Sequence Charts

3.2 Examplesof communication models

In Figure1 we give examples of aphysical architecture of three communication mod-
els. A circle denotes an instance, a rectangle denotes a buffer, and an arrow denotes
a communication channel. Each example contains three instances. Thefirst example
illustratesthe (nobuf,global) model. Thereisno output buffer, and oneuniversal input
buffer. Asthereisno output buffer, the messages go straight into theinput buffer. This
single buffer could be regarded as an output buffer as well, so thisexampleisan il-
lustration of (global,nobuf) too. The second example shows the (global,inst) model.
There is one genera output buffer and every instance has a local input buffer. The
third architectureis an example of the (pair,pair) mode.

Figure1 Some models: (nobuf,global), (global,inst) and (pair,pair).

Many of these architectures occur in practice as either the underlying communica:
tion architecture of a programming language or as a physical architecture. We give
some examples of languages. The model (nobuf,nobuf) is typical for process alge-
braic formalisms based on synchronous communication, such as LOTOS and ACP.
The specification language SDL, which is closely related to MSC, has as a generd
communication model (pair,msg), but if we leave out the save construct we obtain
(pair,inst) and if we also do not consider the possibility of delayed channels, we have
(nobuf,inst). Someexamples of physical architecturesare: an asynchronous complete
mesh hasa (nobuf,pair) architecture, and an Ethernet connectionwithlocally buffered
input and output behaves like (inst,inst).

3.3 Implementability

The main question of this paper is, whether a given MSC can be the behaviour of a
givenimplementationmodel. To answer thisquestion, wefirst giveaformal definition
of what it means for atrace to have a certain implementability property. The defini-
tions below can be seen as aformalisation of the notionsintroduced in Section 3.1.

Definition 6 (Output-implementability)

® nobuf-output: Every output event isdirectly followed by the corresponding trans-
mit event. Thus, output and transmit event may be combined into one new event.

Classification of implementability of traces 7

A 3-tracet is nobuf-output implementable iff Vmem — Jecim,1im, 2mmem;!m <irace
e <iracelim,

global-output: The order of two output events is respected by the corresponding
transmit events. A 3-tracet is global-output implementable iff Vi pyem!m <{race
Im’ &!m <iracelim/,

inst-output: The order of any two output eventsfrom the same instanceisrespected
by the corresponding transmit events. A 3-tracet isinst-output implementabl e iff
Vm.mem fromm) = from(m') = ('m <{ra€Im’ & !im <{racelin).

pair-output: The order of two outputswith the same source and the same destina-
tion, is respected by the corresponding transmit events. A 3-tracet is pair-output
implementable iff Vi mem from(m) = from(m’) A to(m) = to(m’) = (Im <{race
Im’ &!m <{raceliny),

msg-output: A 3-tracet is always msg-output implementable.

The input implementabilities are defined ana ogously.

Definition 7 (Input-implementability) A 3-tracet is

nobuf-input implementable iff Vimem — Jecqim,1iim 2mmem;! ! m <{race e <{raceom;
global-input implementable iff Vim mem!!m <i@lim’ &2m <{raeoy';
inst-input implementable iff Vim mem to(m) = to(m') = (IIm <"@®lim &
m <}race?ﬂ’l/)'

pair-input implementable iff Vim nwem from(m) = from(m’) A to(m) = to(m') =
(||m <§race”m/ <:>'>m <%race?m/);

always msg-input implementabl e,

Having defined formally the notionsof output- and i nput-implementability, we now

combine them and obtain our notion of communication mode!.

Definition 8 A 3-traceis (X,Y)-implementable(for X, Y € {nobuf, global, int, pair,
msg}) iff itisX-output implementableand Y-inputimplementable. A 2-traceis (X,Y)-
implementableiff it can be extended to a 3-trace that is (X,Y)-implementable.

4

CLASSIFICATION OF IMPLEMENTABILITY OF TRACES

To each of the implementation models defined in the previous section we can asso-
Ciate the set of all traces that are implementable in the model. Based on the subset
relation on these sets of traces, we can order implementation models. We consider
two models equivalent if they have the same set of implementable traces.

In Lemma 9 we give a classification of the notions of output-implementability. It

states that a trace that is implementable on a certain architecture is aso implemen-
table on an architecture where these buffers are partitioned into buffers with a more
restricted locdity. For example, if atrace can beimplemented on an architecturewith
one output buffer per instance, it can aso beimplemented on an architecture with an
output buffer per pair of instances (provided the input buffers remain the same).

8 A Hierarchy of Communication Models for Message Sequence Charts

Lemma 9 (Classification of output-implementability) Every nobuf-output imple-
mentable trace is global-output implementable. Every global-output implementable
trace is inst-output implementable. Every inst-output implementable trace is pair-
output implementable. Every pair-output implementable trace is msg-output imple-
mentable.

For the proof of thislemma, and of the other lemmas and theorems for which no
proof is given in this paper, we refer to (Engels, Mauw and Reniers 1997).
The following lemmas give the orderings between the implementation models.

Lemma 10 Every (global, global)-implementable 2-trace is (global, nobuf)-imple-
mentable. Every (inst,global)-implementable 2-trace is (inst,nobuf)-implementable.
Every (pair,pair)-implementabl e 2-trace is (pair,nobuf)-implementabl e. Every (msg,
msg)-implementable 2-trace is (msg,nobuf)-implementable.

For the previous lemmas the ana ogue obtained by switching output buffers and
input buffersis equally true. Next, we describe how the above lemmas are useful in
ordering themodels. Lemma 9 provides uswith apartia ordering on the variousim-
plementations: Any (X,Y)-implementable trace isimplementable by all implementa-
tion models located to the right of or below (X,Y) in Figure 2. 10, together with the
order provided by Lemma 9, gives us the equivalences as expressed in Figure 2 by
means of the clustering of implementation models.

input i i

outpdt nobuf global inst pair msg

nobuf @]
r%uf

global |®] [J
glo inst_in

inst :(°)
Instou i%z

pair (® 0 ° °
pair

msg l® ° ° ° °
msg

Figure 2 Equivaence of implementation modelsfor traces.

For example, the models from the last column are equivaent. This can be seen as
follows. Because of the analogue of Lemma 10, any (msg,msg)- implementable 2-
trace is (nobuf,msg)-implementable, while Lemma 9 gives that any (nobuf,msg)-im-
plementable 2-trace is (X,msg)-implementable, and every (X,msg)-implementable 2-
trace is (msg,msg)-implementable.

Now we have brought down the number of implementation modelsto only seven
different classes. Of course some of these could still be equivalent for other reasons.
That thisisnot the case, will be seen in Theorem 12 bel ow. We name the equivalence
classes as follows: nobuf, global, inst_out, inst_in, inst2, pair, msg (see Figure 2).

Notethat of these seven cases only inst2 isnot of theform (X, nobuf) or (nobuf, X).

Classification of MSCs 9

Asthese formsimply that thereisrespectively no input buffer or no output buffer, of
these saven cases only the case inst2 needs two buffers, all other cases can be mod-
elled such that each message goes through at most one buffer.

5 CLASSIFICATION OF MSCS

There are two principa waysto lift the definition of implementability from the level
of tracesto thelevel of MSCs. Thefirst isto define that an MSC can beimplemented
in a certain communication model iff every 2-trace of the MSC can. The second isto
define that an MSC can beimplemented in a certain implementation model iff some
2-trace can. We call these notionsstrong and weak implementability. Wefirst focuson
the strong implementability, then on weak implementability. After this we consider
the relation between classes from the strong and the weak spectrum.

5.1 Strongimplementability

Definition 11 An MSC k issaid to be strongly X-implementabl e, notation Xs-imple-
mentable, iff all 2-tracest of k are X-implementable.

Fromthisdefinitionit followsimmediately that the ordering of theimplementation
modelsfor traces also holdsfor MSCsas far as strong implementability isconcerned
(see theleft part of Figure5). Next, we demonstrate that the implementation models,
obtained by lifting them from the trace level to MSCs in the strong way, are indeed
different. Thisis achieved by finding examples of M SCsthat are in one class but not
in another.

i i i i K i i K i i K i i
a a a ‘ c a a
b
. b ‘ ‘ b \ b
MSC 1 MSC 2a MSC 2b MSC 3 MSC 4

Figure 3 MSCsto distinguish the implementation models: strong case.

MSC 1inFigure 3 showsan examplethat isglobal s-implementabl e, but not nobufs-
implementable. It is not nobufs-implementable, because the trace 'a!b?a b is not.
The inputs necessarily have to be ordered in the same way as the outputs, so it is
global s-implementable.

M SC 2a isinst_outs-implementabl e, but not global s-implementabledueto thetrace
Ibla?a?b. That MSC 2a isinst_outs-implementabl e can be seen asfollows: All mes-
sages go through a different output buffer, so there is no problem with the output
buffers at al. Similarly, MSC 2b is inst_ins-implementable, but not globals-imple-
mentable due to thetrace !a!b ?b ?a.

10 A Hierarchy of Communication Models for Message Sequence Charts

MSCs 2a and 2b show the difference between inst_outs and inst_ins. MSC 2a is
inst_outs-implementable, as mentioned before, but not inst_ins-implementable. The
trace !b'a ?a ?b isnot inst_in-implementabl e, because theinputs of instance j do not
reach the input buffer in the order in which they are to be manipulated. For MSC
2b the reverse isthe case: It isinst.ins-implementable, but not inst_outs-implemen-
table. MSC 2a isinst_outs-implementable and therefore also inst2s-implementable.
We have already established that it is not inst_ins-implementable. Similarly, MSC 2b
isinst_ing and inst2¢-implementabl e, but not inst_outs-implementabl e. Together, these
show that inst_outs, inst_ing and inst2 are al different.

MSC 3isan example of an MSC that ispair s-implementabl e, but not inst2-imple-
mentable. It iseasy to seethat it is pairs-implementabl e, because each message goes
through adifferent buffer. Itsonly 2-traceis!cl!a?a!b 2 ?c. If wetry to extend thisto
an inst2-implementable 3-tracet’, we need to have !lc <[l <{racelip <tracelic,
which isimpossible (the first <} is because of the inst-output implementability
and !c <{rala, the second is clearly truefor every 3-trace of the MSC, and the third
is because of the inst-input implementability together with 2 <{race).

Finally, MSC 4 shows the difference between pairs- and msgs-implementability.
All other implementation models are also pairwise different. This result is obtained
due to the transitive closure of the ordering as presented in Figure 5.

Together the examples show that if we look at strong implementability, the seven
remaining implementation models are indeed different for MSCs, and thus that they
are also different for 2-traces.

Theorem 12 The classes nobuf, global, inst_out, inst_in, inst2, pair, and msg are dif-
ferent for implementability of traces and for strong implementability of MSCs, and
for strong implementability they are ordered as shown in the left part of Figure 5.

5.2 Weak implementability

Definition 13 An MSC Kk is said to be weakly X-implementable, notation X,,-imple-
mentable, iff thereisan X-implementable 2-tracet of k.

As was the case for strong implementability, for weak implementability we also
have the ordering for traces as a starting point. However, using weak implementa-
bility, we do not have anymore that all implementation models differ. To see this, we
first give an aternative way to characterise some of the implementations and prove
that these are equiva ent to the original definition.

Definition 14 Let k be an MSC over the set of messages M. Then we define the re-
lations <|° and <| on {!m, 2m | m € M} and therelation <2 on {!m, I'm, 2m | m
M} asfollows:

<0:= (<IC U {(2m, 2m) | m,m' € M A from(m) = from(m)Alm <CIm'})+,

<= (<C U {(m,!Im) | m,m € M A to(m) = to(m')A2m <Cam'})+,

Classification of MSCs 11

<Zi= (<M U{Im, M) | m, M’ € M A from(m) = from(m")Alm <S1nv'}
U{(m, ') | m, m’ € M A to(m) = to(m')A2m <TBam'h+.

We explain the definition of the ordering <! whichisdefined in order to check the
inst_out-property. The ordering isobtained from < ¢ by adding pairsof input events
toit. More specificaly, if two outputs are defined on the same instance of the MSC,
and thusare ordered in some way, then we add their correspondinginput eventsinthe
same order. Thisis motivated as follows. For atrace to be inst_out-implementableit
isrequired that the input events are ordered in thisway anyway. Thus by adding this
pair explicitly we construct an ordering representing the MSC given that it has to be
implemented on an architecture with one output buffer per instance.

The inst_out-implementable traces of the MSC are a'so traces of the ordering <?'
as they respect the requirementsfor inst_out-implementability by definition, and vice
versa. Basicaly thisiswhat is expressed in Theorem 15.

Theorem 15 Let t be a 2-trace of an MSC k. Then, t isinst_out-implementable iff
<PC<{e, tisinstin-implementableiff <! C<{"2, and t isinst2-implementable
iff there exists a 3-trace t’ which is an extension of t such that <|2C <{race,

Proof. We only give the proof for the last proposition. The proofs for the first two
propositions follow the same line. Suppose that t is inst2-implementable. Then we
must prove that <}?C <!"3° for some 3-trace t’ which is an extension of t. For t’ we
choose any inst2-implementable 3-trace of t. It suffices to prove that e <!/ ¢ for
an arbitrary pair of eventse, € € {!Im, !'m, 2mim € M} withe <{? €. Sincee <}? &
we havetheexistenceof ey, ..., ey suchthate=e < & < - -- < &, = € wherefor
al 1 <i < nwe have one of thefollowing:

m3 .
® ¢ <k G+1,
® g =!Im, g1 =!'m', from(m) = from(m’) and 'm <km3!m’ forsomem, m’ € M;
® g =!Im, g1 =!'m, to(m) = to(m’) and ?m <km3?m’ forsomem, m € M.

For all of these cases we can conclude that & <{/?°® g 1, and hence, e <!/2* €.
Next, suppose that <{?C <2 for some extension t’ of t. We must prove that t
is (ingt,inst)-implementable. Thereto it suffices to show that t’ is (inst,inst)-imple-
mentable, i.e., that t’ isinst-output implementable and inst-input implementable. We
prove that t’ is inst-output implementable, the proof that t’ is inst-input implemen-
tableisanalogous. Let m, m" € M such that from(m) = from(m’). Then it suffices to
show that !m <{/2°®Im’ <!1m </2®!1im’. Thereto, supposethat 'm <{/2°®!m/. Since
from(m) = from(m'), we have!m <™CImy. So!'m <i?!!nY. Because <[2C <12 we
therefore have I'm <{/2°®!Im/. Supposethat !m £{2°®Im/. Then !m’ <{/2°Im. With
similar reasoning asbeforeweobtain!''m’ <{'2¢!'m. Therefore, I'm £{/2®lim’. [J

Thus far, we have seen that the ordering <! contains al inst_out-implementable
traces of MSC k. An MSC kK is inst_out,,-implementable iff it has atrace t that is

12 A Hierarchy of Communication Models for Message Sequence Charts

inst_out-implementable. Clearly, such atrace existsiff thereisatrace for theordering
<0, inother words, iff <2 iscycle-free. Therefore, we have thefollowing character-
isation theorem, which follows directly from Theorem 16.

Theorem 16 An MSC k isinst_out,-implementable iff <19 is cycle-free. AnMSC
kisinst.in,-implementableiff <} iscycle-free. An MSCk isinst2,,-implementable
iff <|? iscycle-free.

We use the alternative characterisations provided by the previous theorem in the
proof of the equivalence of the classes ingt_out,,, inst_in,,, and inst2,,.

Theorem 17 Theimplementation modelsinst_out,,, inst_in,,, and inst2,, are equal.

Proof. We show that each inst2,,-implementable MSC is inst_out,,-implementable.
The reverse implication is trivial, and the proofs with inst_in,, are analogous. From
Theorem 16 we see that it sufficesto provethat <'© iscycle-freeif <2 iscycle-free.
We prove this using contraposition, so we assume that <'° has a cycle. Let e, <'°
& <'9... <1°q, </°¢ beanarbitrary largest cycle. For every orderinginthecycle,
say g <'° g, either g <™ g1, andhenceg <2 g1, 0rg =2m, g1 =2m for
somem, m € M such that 'm <™¢InY. If thefirst isaways the case, then we have
acyclein <™, so certainly in <'2. Now assume we have the second at least once
in the cycle. In that case we have at least two inputs in the cycle, say ?m and 2m'.
Then 2m <°2m' and 2m' <'°2m. Asis shown in (Engels et a. 1997), thisimplies
that !'m <"2!!m’ and ''m’ <"2!!m. Thusclearly <'? hasacycde. [

Theorem 17 establishes that the classes inst_out,,, inst_in,,, and inst2,, are equiv-
alent. In the remainder we denote this class by inst,,. The remaining models are all
different. The M SCs 3 and 4 in Figure 3 show the difference between inst,, and pair,,
and pair,, and msg,, respectively in the weak case too (these M SCs have only one
2-trace, so their wesk implementability equals their strong implementability). MSC
5in Figure 4 is global ,,-implementable, but not nobuf,-implementable. The trace
lalb?a? is global-implementable, but because both outputs must have been exe-
cuted before any input can be processed, there is no nobuf-implementabl e trace.

i i i j k |
. | b
[0}
b a d
MSC5 MSC 6

Figure 4 MSCsto distinguishthe implementation models; wesk case.

MSC 6 isinst,,-implementable, but not global ,,-implementable. It is not global -
implementable, as can be seen thus: 'a <™¢!b, so for every global-implementable

Classification of MSCs

nobufS

I nobufg . nobuf,, gIobaJS

globalg @ global, inst_ outS inst.ing
/ \ >< / nobuf,,

. inst_outg . inst_ing

\ / i nstzs global,,

inst2s @ ins, instu
pairs @ pair,, pair
msgs ® . msg
Figure 5 Incomplete hierarchy. Figure 6 Final hierarchy.

tracet wemust have 7a <}"@®%. Because!d <™?aand % <™Ic, weget!d <{ra®
Ic. But we also have 2c <™°d, and thus ¢ <{"°®?d, from which it follows that t
cannot be global-implementable. On the other hand, the trace 'a'b!d ?a ?b!cc ™
isinst_out-implementable, so the MSC isinst,,-implementable.

Theorem 18 Theimplementation modelsfor wesk implementability of theright part
of Figure5 are dl different.

5.3 Combiningthe strong and weak hierarchy

The relations between classes in the strong implementability hierarchy and the re-
lations between classes in the weak hierarchy have been studied extensively in the
previous sections. In this section we focus on the rel ations between implementation
models from the different hierarchies. From the definitions of strong and weak im-
plementability it isclear that any Xs-implementable MSC is also X,,-implementable.
These orderings are aso depicted in Figure 5.

Theorem 19 establishes that the classes pairs and pair,,, and msgs and msg,, are
equivalent. In the remainder we denote these by pair and msg respectively.

Theorem 19 AnMSCispairs-implementableiffitispair,,-implementable. AnMSC
is msgs-implementabl e iff it is msg,,-implementable. Every inst_outs-implementable
or inst_ins-implementable MSC is global ,,-implementable.

In Figure 6 we give all communication models that remain after theidentifications
obtained until now. The arrows between these models follow a so from the previous
theoremsand lemmas. Finally, we have to provethat the arrowsbetween model sfrom
the strong and wesk hierarchy are strict and that there are no additional arrows nec-
essary. It suffices to show that the following arrows do not exist: global s to nobuf,,,

14 A Hierarchy of Communication Models for Message Sequence Charts

nobuf,, to inst2s, and inst2s to global,,. The rest then follows because of transitiv-
ity. For example, the nonexistence of an arrow from global s to nobuf,, implies the
nonexistence of an arrow from inst_outs to nobuf,,, because if the second arrow ex-
iststhen, by transitivity, a so thefirst must exist. Similarly we obtain the nonexi stence
of arrows from inst_ing and inst2 to nobuf,,. We use the MSCs in Figure 7 to indi-
cate that the first two arrows do not exist. MSC 7 is global s-implementable, but not
nobuf,,-implementable. On the other hand MSC 8 is nobuf,,-implementabl e, but not
inst2s-implementable. The trace 'a?a!b 7b!c 2 is nobuf-implementable, while the
trace !b!c?cla ?a?b isnot inst2-implementable.

i i j k [

& b

MSC 7 MSC 8

Figure 7 Distinguishing M SCs. comparing strong and weak.

The non-existence of an arrow from inst2s to global,, is taken care of by MSC 6
in Figure 3. It has aready been shown not to be global ,,-implementable. It isinst2-
implementabl e because every 2-trace of thisMSC can be extended to an inst2-imple-
mentable 3-trace by adding !'a and !'b immediately after 'a and !'b, and !'c and !!d
immediately before ?c and 2d.

Theorem 20 The implementation models from Figure 6 are all different, and they
are ordered as expressed in Figure 6.

6 CONCLUDING REMARKSAND FUTURE RESEARCH

We have considered implementation model sfor asynchronouscommunicationin Mes-
sage Sequence Chart. These model s contain of FIFO buffers for the sending and re-
ception of messages. By varying the locality of the buffers we have arrived, in asys-
tematic way, at 25 models for communication. With respect to traces, consisting of
putting amessage into a buffer and removing amessage from a buffer, there are saven
different models.

By lifting this implementability notion from traces to Message Sequence Charts
in two ways, strong and weak, we obtain fourteen models. After identification, ten
essentialy different models on the level of Message Sequence Charts remain.

For defining the models we have used the notion of 3-traces; these are a natura
extension of normal MSC-traces if a message can pass two buffers on its way from
source to destination.

In this paper, we have only considered Basic Message Sequence Charts. An inter-
esting question is how to transfer the notions and properties defined for this simple
language to the complete language MSC. As many of our theorems rely on the fact

Concluding remarks and future research 15

that the events on an instance are totally ordered, an extension to MSC with more
sophi sticated ordering mechanisms (e.g., coregion and causal ordering) will imply a
revision of the hierarchy. Another interesting question iswhether theimplementation
properties are preserved under composition by means of the operators of MSC.

Furthermore, wehaverestricted oursel vesto thetreatment of architecturesinwhich
each message has exactly one possi blecommuni cation path and where each such path
contains at most two buffers. The extension to more flexible architectures is non-
trivial and is expected to lead to an extension of the hierarchy.

Finally, our assumption of infinite FIFO buffers may be relaxed, allowing other
types of buffers and buffers with finite capacity.

The results obtained in this paper form a solid base for several applications. First,
they alow usto discusstherel ation between different variants of M SC, such as Inter-
workings (Mauw et a. 1993). I nterworkings presuppose a synchronous communica-
tion mechanism. An Interworking can be considered as the restriction of the seman-
tics of an MSC to only the nobuf-implementabl e traces. Thus, an MSC can be inter-
preted as an Interworking if and only if thereisat least one such trace, i.e., the MSC
is nobuf,-implementable. We a so envisage more practical applications. Consider a
tool in which a user can select acommunication model, draw an MSC and invoke an
algorithm to check if the MSC isimplementable with respect to the selected model.
Alternatively, the user can provide an MSC and use atool to determine the minimal
architecture, according to our hierarchy, which is needed for implementation.

Often a user is interested in the question whether al traces of his MSC are im-
plementable with respect to a certain architecture. We can also envisage two possi-
ble uses relying on the implementability of asingletrace. First, MSCs are often used
to display one single trace, for exampleif it isthe result of a simulation run. In this
case, the question is not whether the MSC is strongly or weakly implementable, but
whether theimplied traceisimplementabl e(as defined in Section 4). Second, givenan
MSC, auser may want to know if at least onetrace isimplementableand if so, which
tracethat is. Heisinterested in awitness. Both applicationscan easily be derived from
the results on weak implementability. The algorithms (see bel ow) can easily be mod-
ified to check implementability of a given trace and to produce a witness.

A more involved application would be to use a selected communication mode to
reduce the set of traces defined by a given MSC to only those traces that are imple-
mentabl e on the given model. In thisway, the semantics of an MSC would berelative
to some selected model.

For most of these applications computer support would be useful. Based upon the
definitions presented in this paper, it is feasible to derive efficient algorithms. All
models in the weak-spectrum can be characterised in terms of the cycle-freeness of
an extended ordering relation, as is shown in (Engels et a. 1997). An example of
such a characterisation is given in Theorem 16. There it is stated that an MSC k is
inst_out,,-implementabl eiff the ordering <[° (whichisan extension of <[™°)iscycle-
free. Thus checking if an MSC is inst_out,,-implementable boils down to checking
cycle-freeness of thisrelation. Thisimmediately gives awide range of efficient im-
plementationsfor checking class-membership as many agorithmsare knownin liter-

16 A Hierarchy of Communication Models for Message Sequence Charts

ature for determining whether a given ordering iscycle-free. For the strong spectrum
characterisations are given in (Engels et a. 1997) as well.

There are two papers in which a similar subject is discussed. In (Charron-Bost,
Mattern and Tel 1996) four different implementationsfor MSC-likediagramsare dis-
cussed: RSC (Realizablewith SynchronousCommunication), CO (Causally Ordered),
FIFO and A (Asynchronous). They find that thereis astrict ordering RSC ¢ CO C
FIFO c A. Asshownin (Engels et a. 1997), the implementations RSC, FIFO and
A correspond to our implementations nobuf,,, pair and msg, while CO is positioned
strictly between the implementationsinst,, and pair.

Another paper in which different communication models for M SC have been stud-
ied, is(Alur et d. 1996). The models from our hierarchy are incomparable with their
models, because the ordering of certain combinationsof events on an instance issub-
ject to achosen communi cation model, thereby relaxing our fundamental total order-
ing of events on an instance.

REFERENCES

Alur, R., Holzmann, G. J. and Peled, D.: 1996, An analyzer for Message Sequence
Charts, Software - Concepts and Tools 17(2), 70-77.

Ben-Abdallah, H. and Leue, S.: 1997, Syntactic detection of process divergence and
non-loca choice in Message Sequence Charts, in E. Brinksma (ed.), Tools
and Algorithmsfor the Construction and Analysis of Systems, number 1217
in Lecture Notes on Computer Science, Springer Verlag, pp. 259-274.

Charron-Bost, B., Mattern, F. and Tel, G.: 1996, Synchronous, asynchronous and
causally ordered communication, Distributed Computing 9(4), 173-191.

Engels, A., Mauw, S. and Reniers, M. A.: 1997, A hierarchy of communication mod-
els for Message Seguence Charts, Technical Report CSR 97-11, Eindhoven
University of Technology, Department of Computing Science.

Grabowski, J., Graubmann, P. and Rudolph, E.: 1993, Towards a Petri net based
semantics definition for Message Sequence Charts, in O. Feagemand and
A. Sarma (eds), SDL' 93 - Using Objects, Proceedings of the Sixth SDL Fo-
rum, North-Holland, pp. 179-190.

ITU-TS: 1995, ITU-TS Recommendation Z.120 Annex B: Algebraic semantics of
Message Sequence Charts, ITU-TS, Geneva,

ITU-TS: 1996, I TU-TSDraft Recommendation Z.120: Message Sequence Chart 1996
(MSC96), ITU-TS, Geneva.

Ladkin, P. and Leue, S.: 1995, Interpreting message flow graphs, Formal Aspects of
Computing 7(5), 473-5009.

Mauw, S. and Reniers, M. A.: 1994, An agebraic semantics of Basic Message Se-
guence Charts, The Computer Journal 37(4), 269-277.

Mauw, S., Wijk, M. v. and Winter, T.: 1993, A formal semantics of synchronous In-
terworkings, in O. Feagemand and A. Sarma (eds), SDL’ 93 - Using Objects,
Proceedings of the Sixth SDL Forum, North-Holland, pp. 167-178.

