
A Hierarchy of Communication
Models for Message Sequence Charts

A. Engels, S. Mauw, M.A. Reniers
Department of Mathematics and Computing Science,
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands�
engels|sjouke|michelr � @win.tue.nl

Abstract
In a Message Sequence Chart (MSC) the dynamical behaviour of a number of co-
operating processes is depicted. An MSC defines a partial order on the communica-
tion events between these processes. This order determines the physical architecture
needed for implementing the specified behaviour, such as a FIFO buffer between each
of the processes. In a systematic way, we define 50 communication models for MSC
and we define what it means for an MSC to be implementable by such a model. Some
of these models turn out to be equivalent, in the sense that they implement the same
class of MSCs. After analysing the notion of implementability, only ten models re-
main, for which we develop a hierarchy.

Keywords
Message Sequence Charts, semantics, implementation, validation, buffering, commu-
nication models, hierarchy

1 INTRODUCTION

In recent years much attention has been paid to graphical languages for the visualisa-
tion of communication traces in distributed systems. One of the most popular classes
of formalisms for this purpose is the class of sequence charts. Of those, Message Se-
quence Chart (MSC) has been standardised by the International Telecommunication
Union (ITU) as Recommendation Z.120 (ITU-TS 1996). Two important reasons for

c
�

IFIP 1996. Published by Chapman & Hall

Frederick Sheldon
A Hierarchy of Communication Models for Message Sequence Charts (1997) (Make Corrections) (7 citations)A. Engels, S. Mauw, M.A. ReniersFormal Description Techniques and Protocol Specification, Testing and Verification. Proceedings of FORTE XA. Engels, S. Mauw and M.A. Reniers. A Hierarchy of Communication Models for Message Sequence Charts. In T. Mizuno, N. Shiratori, T. Higashino and A. Togashi, editors, Proc. of FORTE X and PSTV XVII, pages 75-90, Chapman & Hall, 1997

2 A Hierarchy of Communication Models for Message Sequence Charts

the popularity of MSCs are that they provide a clear intuition to both engineers and
designers and at the same time posses a well-defined semantics.

Although MSC is primarily concerned with presenting the asynchronous commu-
nication between processes in a distributed system, no information is given as to the
way in which these communications are supposed to be realized in an implementa-
tion. The only assumption about the implementation of communication is that an out-
put precedes its corresponding input.

This impossibility to specify the communication model becomes a problem when a
specific communication model is presupposed, for example due to hardware require-
ments. Whenever MSC is used to specify the communication behaviour, the question
arises whether the behaviour defined by an MSC is feasible with respect to the de-
sired communication model. It may be the case that all traces defined by the MSC
are feasible, that at least one trace is, or that none of the traces is feasible. For exam-
ple, an MSC with two inherently crossing messages cannot be implemented with an
architecture containing one single global FIFO buffer for message exchange.

There are two approaches to deal with this under-specification in MSC. The first
is to select a single preferred model and revise the semantics of MSC accordingly.
Keeping in mind the broad context in which MSC is used in practice, this option is
not realistic. The only acceptable choice would be the most general random-access
buffer model that has been chosen in the current standardised semantics of MSC.

The alternative would be to allow the user of MSC to indicate the desired commu-
nication model explicitly. This can be done by extending the syntax of MSC with a
means to specify the intended model and by developing dedicated tools for the anal-
ysis of MSC with respect to certain implementation models. We propose to study this
second alternative and it is our aim in this paper to provide a solid and formal basis
for defining the relation between a communication model and an MSC.

For a given MSC we define the notionsof strong and weak implementability. Strong
implementability of an MSC in a given communication model means that all traces
of the MSC can be realized with the given communication model and weak imple-
mentability means that there is a trace that can be realized.

In this way, we attach to each implementation model the class of MSCs that are
strongly or weakly implementable with respect to that model. A natural question to
ask is whether there are communication models that define the same class of MSCs.
This means that for a given MSC one has a choice of communication model for im-
plementation. It turns out that the initial number of fifty MSC classes can be reduced
to a hierarchy of ten different models.

Acknowledgements We would like to thank Thijs Cobben, Loe Feijs, Herman Geu-
vers and Bart Knaack for their valuable input.

2 MESSAGE SEQUENCE CHARTS

In this section we explain the semantical foundations of Message Sequence Chart
(MSC). We use a partial order on the events of an MSC to express the semantics.
In literature several ways to define the semantics of MSC are proposed (Mauw and

Message Sequence Charts 3

Reniers 1994, Ladkin and Leue 1995, Grabowski, Graubmann and Rudolph 1993).
The process algebra approach (Mauw and Reniers 1994) has been standardised as
Annex B to ITU recommendation Z.120 (ITU-TS 1995). The partial order represen-
tation (Alur, Holzmann and Peled 1996) used in this paper coincides with most of
these proposals for the class of Basic Message Sequence Charts. We also define the
traces expressed by an MSC.

The MSCs studied here consist of a collection of instances (or processes) with a
number of messages attached to them. These are known as Basic Message Sequence
Charts, but in this paper we use the term MSCs to denote them.

Some examples of MSCs can be seen in Figure 3. MSCs consist of vertical lines,
denoting the various communicating processes, which we call ’instances’ and arrows
between these instances, denoting exchanged messages.

We allow messages from an instance to itself, but we only consider closed systems,
that is, we do not consider messages to the environment. Neither do we consider any
other specific features such as local actions and recursion. We assume that the names
of the instances and messages are unique. Therefore, the instances to which a message
is attached are determined uniquely by the message name.

The easiest way to express the semantics of such a simple MSC is by using a partial
order on the events that are comprised in an MSC. Depending on the particular dialect
of the MSC language, one can assign different classes of events to an MSC. For ex-
ample, in Interworkings (Mauw, Wijk and Winter 1993) every message is considered
to be a single event. There is no buffering, and thus communication is synchronous.

In MSC (ITU-TS 1996), messages are divided into two events, the output and the
input of the message. The output of message m is denoted by !m and the input by ?m.
The only assumption about the implementation of communication is that an output
precedes its corresponding input. This corresponds to the most general implementa-
tion model in which processes communicate via unbounded random-access buffers.

In this paper we go one step further, and add a third event, denoted by !!m, that we
call transmit m. The basic idea is that a message passes two buffers before arriving
at its destination. The intuition here is that !m denotes the putting of a message into
an output buffer, !!m is the transmission of the message from the output buffer to the
appropriate input buffer, and ?m is the removal of the message from the input buffer.
We assume these events to be instantaneous. Furthermore, we concentrate on FIFO-
buffers only.

Although the intermediate transmit events !!m play a crucial role in our description
of the communication models, we do not encounter them in the definition of an MSC,
nor in the partial order describing the formal semantics of an MSC. An MSC still
describes a partial order on output and input events only.

Definition 1 (MSC) An MSC is a quintuple 〈I, M, from, to, {<i }i∈I 〉, where I is a
finite set of instances, M is a finite set of messages, from and to are functions from M
to I , and {<i }i∈I is a family of orders. For each i ∈ I it is required that <i is a total
order on {!m | from(m) = i} ∪ {?m | to(m) = i}.

In the above definition, from(m) denotes the instance which sends message m. Like-

4 A Hierarchy of Communication Models for Message Sequence Charts

wise, to(m) denotes the instance which receives message m. Given an instance i, the
order<i denotes in which order the events attached to instance i occur. The order<i

is lifted in the trivial way to the set {!m, ?m, !!m | m ∈ M}.
The partial order denoting the semantics of an MSC is derived from two require-

ments. First, the order of the events per instance is respected, and second, a message
can only be received after it has been sent. The first requirement is formalised by
defining the partial order<inst :=⋃i∈I <i , and the second requirement is formalised
by the output-before-input order <oi := {(!m, ?m) | m ∈ M}.

Now, we define the partial order induced by the MSC as the transitive closure (de-
noted by +) of the instancewise order and the output-before-input order. For an MSC
k, we denote this order by <msc

k or by <msc if k is known from the context.

Definition 2 For a given MSC k = 〈I, M, from, to, {<i }i∈I 〉, the relation <msc
k is

defined by <msc
k := (<inst ∪ <oi)+.

We define similar notions for 3-traces. We define the output-before-transmit-before-
input order by <ot i := {(!m, !!m), (!!m, ?m) | m ∈ M}, and the relation <m3 by
adding the instancewise ordering on the MSC.

Definition 3 For a given MSC k = 〈I, M, from, to, {<i }i∈I 〉, the ordering <m3 is
defined by <m3:= (<inst ∪ <ot i)+.

It is easy to see that <msc is the restriction of <m3 to output and input events. It
may be the case that <msc does not define a partial order, due to cyclic dependen-
cies of the events. Such an MSC is said to contain a deadlock, or is called inconsis-
tent. In Z.120 (ITU-TS 1996) inconsistent MSCs are considered illegal, and in (Ben-
Abdallah and Leue 1997) an algorithm is described for determining whether a given
MSC is consistent. In the remainder of this paper we consider consistent MSCs only,
which implies that both <msc and <m3 are partial orders.

From an operational point of view, one can say that an MSC describes a set of
traces. We distinguish 2-traces and 3-traces. A 2-trace denotes the ordering of out-
put and input events (!m and ?m), a 3-trace those of transmit events (!!m) as well.

Definition 4 (2-traces, 3-traces) A 2-trace t over a set of messages M is a total or-
dering (e1, e2, . . . , en) of the set {!m, ?m | m ∈ M}. This ordering is denoted by
<trace

t . A trace (e1, e2, . . . , en) is denoted e1 e2 . . . en . A 3-trace is equal to a 2-trace,
except for the fact that it contains transmit events as well.

Definition 5 (MSC-trace) A 2-trace t is said to be a trace of the MSC k iff it is de-
fined over the messages M of k, and <msc

k ⊆<trace
t . A 3-trace t is said to be a trace of

the MSC k iff it is defined over the messages M of k, and <m3
k ⊆<trace

t .

A 3-trace can be turned into a 2-trace by removing all transmit events (!!m). If, for
a 3-trace t this results in a 2-trace t ′, then t is said to be an extension of t ′. It is not hard
to see that a 3-trace t is a trace of an MSC k iff the 2-trace of which it is an extension
is a trace of the MSC and <ot i

k ⊆<trace
t .

Implementation models 5

For MSC 2a in Figure 3 the following orderings hold: !a <msc?a, !b <msc?b, and
?a <msc?b. The first two are implied by the <oi -order, the third by the <inst -order.
The MSC has exactly three 2-traces: !a ?a !b ?b, !a !b ?a ?b, and !b !a ?a ?b. These 2-
traces can be extended to ten 3-traces, such as !a !!a ?a !b !!b ?b and !a !b !!b !!a ?a ?b.

3 IMPLEMENTATION MODELS

We discuss possible architectures for realizing an MSC. We consider only implemen-
tation models consisting of FIFO buffers for the output and input of messages. For
MSC traces, we define what it means to be implementable on some architecture.

3.1 Locality of buffers

The particular implementation models which we are interested in are constructed of
processes that communicate with each other via FIFO buffers. We assume that the
buffers have an unbounded capacity. We discern two uses of buffers, namely for the
output and for the input of messages.

A second distinction can be made based on the locality of the buffer. From most
global to most local we distinguish the following types:

• global: A global FIFO buffer: All messages from all instances pass this buffer.• inst: A FIFO buffer, local to an instance: All messages sent (or received) by one
single instance go through the same buffer.• pair: A FIFO buffer, local to two instances: All messages that are sent from one
specific instance to another specific instance go through this buffer.• msg: A FIFO buffer, local to a message: There is one buffer for every message.

This last model, a buffer per message, is a specific architecture to catch up the
cases in which the buffers do not behave like FIFO queues. Taking into account the
assumption that messages are unique, it can easily be seen that it is equivalent to a
global random-access buffer. A communication model with only a random-access
buffer represents the model of the MSC standard: the only assumption made about
the implementation of communication is that output precedes input.

Finally, we consider the following possibility of using no buffers at all, denoted by
nobuf. In this case communication is synchronous.

We assume that the transmission from an instance to its output buffer, from one
buffer to another buffer, or from an input buffer to the instance it belongs to, is syn-
chronous. We also assume that all output buffers are of the same type, and similarly
that all input buffers are of the same type. This results in four possibilities for the out-
put as well as for the input. Adding the possibility of using no buffer at all, we have a
total of 25 possible architectures. To denote the different architectures, we use the no-
tation (X,Y), where X denotes the type of output buffer, and Y the type of input buffer.

6 A Hierarchy of Communication Models for Message Sequence Charts

3.2 Examples of communication models

In Figure 1 we give examples of a physical architecture of three communication mod-
els. A circle denotes an instance, a rectangle denotes a buffer, and an arrow denotes
a communication channel. Each example contains three instances. The first example
illustrates the (nobuf,global) model. There is no output buffer, and one universal input
buffer. As there is no output buffer, the messages go straight into the input buffer. This
single buffer could be regarded as an output buffer as well, so this example is an il-
lustration of (global,nobuf) too. The second example shows the (global,inst) model.
There is one general output buffer and every instance has a local input buffer. The
third architecture is an example of the (pair,pair) model.

Figure 1 Some models: (nobuf,global), (global,inst) and (pair,pair).

Many of these architectures occur in practice as either the underlying communica-
tion architecture of a programming language or as a physical architecture. We give
some examples of languages. The model (nobuf,nobuf) is typical for process alge-
braic formalisms based on synchronous communication, such as LOTOS and ACP.
The specification language SDL, which is closely related to MSC, has as a general
communication model (pair,msg), but if we leave out the save construct we obtain
(pair,inst) and if we also do not consider the possibilityof delayed channels, we have
(nobuf,inst). Some examples of physical architectures are: an asynchronous complete
mesh has a (nobuf,pair) architecture, and an Ethernet connection with locally buffered
input and output behaves like (inst,inst).

3.3 Implementability

The main question of this paper is, whether a given MSC can be the behaviour of a
given implementation model. To answer this question, we first give a formal definition
of what it means for a trace to have a certain implementability property. The defini-
tions below can be seen as a formalisation of the notions introduced in Section 3.1.

Definition 6 (Output-implementability)

• nobuf-output: Every output event is directly followed by the corresponding trans-
mit event. Thus, output and transmit event may be combined into one new event.

Classification of implementability of traces 7

A 3-trace t is nobuf-output implementable iff ∀m∈M ¬∃e∈{!m,!!m,?m|m∈M}!m <trace
t

e <trace
t !!m.• global-output: The order of two output events is respected by the corresponding

transmit events. A 3-trace t is global-output implementable iff ∀m,m ′∈M !m <trace
t

!m′ ⇔!!m <trace
t !!m′.• inst-output: The order of any two outputevents from the same instance is respected

by the corresponding transmit events. A 3-trace t is inst-output implementable iff
∀m,m ′∈M from(m) = from(m ′) ⇒ (!m <trace

t !m′ ⇔!!m <trace
t !!m′).• pair-output: The order of two outputs with the same source and the same destina-

tion, is respected by the corresponding transmit events. A 3-trace t is pair-output
implementable iff ∀m,m ′∈M from(m) = from(m ′) ∧ to(m) = to(m ′) ⇒ (!m <trace

t
!m′ ⇔!!m <trace

t !!m′).• msg-output: A 3-trace t is always msg-output implementable.

The input implementabilities are defined analogously.

Definition 7 (Input-implementability) A 3-trace t is

• nobuf-input implementable iff ∀m∈M ¬∃e∈{!m,!!m,?m|m∈M}!!m <trace
t e <trace

t ?m;• global-input implementable iff ∀m,m ′∈M !!m <trace
t !!m′ ⇔?m <trace

t ?m′;• inst-input implementable iff ∀m,m ′∈M to(m) = to(m ′) ⇒ (!!m <trace
t !!m′ ⇔

?m <trace
t ?m′);• pair-input implementable iff ∀m,m ′∈M from(m) = from(m ′) ∧ to(m) = to(m ′) ⇒

(!!m <trace
t !!m′ ⇔?m <trace

t ?m′);• always msg-input implementable.

Having defined formally the notionsof output- and input-implementability,we now
combine them and obtain our notion of communication model.

Definition 8 A 3-trace is (X,Y)-implementable (for X, Y ∈ {nobuf, global, inst, pair,
msg}) iff it is X-output implementable and Y-input implementable. A 2-trace is (X,Y)-
implementable iff it can be extended to a 3-trace that is (X,Y)-implementable.

4 CLASSIFICATION OF IMPLEMENTABILITY OF TRACES

To each of the implementation models defined in the previous section we can asso-
ciate the set of all traces that are implementable in the model. Based on the subset
relation on these sets of traces, we can order implementation models. We consider
two models equivalent if they have the same set of implementable traces.

In Lemma 9 we give a classification of the notions of output-implementability. It
states that a trace that is implementable on a certain architecture is also implemen-
table on an architecture where these buffers are partitioned into buffers with a more
restricted locality. For example, if a trace can be implemented on an architecture with
one output buffer per instance, it can also be implemented on an architecture with an
output buffer per pair of instances (provided the input buffers remain the same).

8 A Hierarchy of Communication Models for Message Sequence Charts

Lemma 9 (Classification of output-implementability) Every nobuf-output imple-
mentable trace is global-output implementable. Every global-output implementable
trace is inst-output implementable. Every inst-output implementable trace is pair-
output implementable. Every pair-output implementable trace is msg-output imple-
mentable.

For the proof of this lemma, and of the other lemmas and theorems for which no
proof is given in this paper, we refer to (Engels, Mauw and Reniers 1997).

The following lemmas give the orderings between the implementation models.

Lemma 10 Every (global, global)-implementable 2-trace is (global, nobuf)-imple-
mentable. Every (inst,global)-implementable 2-trace is (inst,nobuf)-implementable.
Every (pair,pair)-implementable 2-trace is (pair,nobuf)-implementable. Every (msg,
msg)-implementable 2-trace is (msg,nobuf)-implementable.

For the previous lemmas the analogue obtained by switching output buffers and
input buffers is equally true. Next, we describe how the above lemmas are useful in
ordering the models. Lemma 9 provides us with a partial ordering on the various im-
plementations: Any (X,Y)-implementable trace is implementable by all implementa-
tion models located to the right of or below (X,Y) in Figure 2. 10, together with the
order provided by Lemma 9, gives us the equivalences as expressed in Figure 2 by
means of the clustering of implementation models.

nobuf

global

inst

pair

nobuf global inst pair msg
input

output

msg

nobuf

global

inst out

pair

msg

inst2

inst in

Figure 2 Equivalence of implementation models for traces.

For example, the models from the last column are equivalent. This can be seen as
follows. Because of the analogue of Lemma 10, any (msg,msg)- implementable 2-
trace is (nobuf,msg)-implementable, while Lemma 9 gives that any (nobuf,msg)-im-
plementable 2-trace is (X,msg)-implementable, and every (X,msg)-implementable 2-
trace is (msg,msg)-implementable.

Now we have brought down the number of implementation models to only seven
different classes. Of course some of these could still be equivalent for other reasons.
That this is not the case, will be seen in Theorem 12 below. We name the equivalence
classes as follows: nobuf, global, inst out, inst in, inst2, pair, msg (see Figure 2).

Note that of these seven cases only inst2 is not of the form (X, nobuf) or (nobuf,X).

Classification of MSCs 9

As these forms imply that there is respectively no input buffer or no output buffer, of
these seven cases only the case inst2 needs two buffers, all other cases can be mod-
elled such that each message goes through at most one buffer.

5 CLASSIFICATION OF MSCS

There are two principal ways to lift the definition of implementability from the level
of traces to the level of MSCs. The first is to define that an MSC can be implemented
in a certain communication model iff every 2-trace of the MSC can. The second is to
define that an MSC can be implemented in a certain implementation model iff some
2-trace can. We call these notionsstrong and weak implementability. We first focus on
the strong implementability, then on weak implementability. After this we consider
the relation between classes from the strong and the weak spectrum.

5.1 Strong implementability

Definition 11 An MSC k is said to be strongly X-implementable, notation Xs -imple-
mentable, iff all 2-traces t of k are X-implementable.

From this definition it follows immediately that the ordering of the implementation
models for traces also holds for MSCs as far as strong implementability is concerned
(see the left part of Figure 5). Next, we demonstrate that the implementation models,
obtained by lifting them from the trace level to MSCs in the strong way, are indeed
different. This is achieved by finding examples of MSCs that are in one class but not
in another.

MSC 2a MSC 2b MSC 3 MSC 4

i j i j k i j k

a a

b b

a c
a

b

a
b

i j k i j

MSC 1

b

Figure 3 MSCs to distinguish the implementation models: strong case.

MSC 1 in Figure 3 shows an example that is globals-implementable, but not nobufs-
implementable. It is not nobufs-implementable, because the trace !a !b ?a ?b is not.
The inputs necessarily have to be ordered in the same way as the outputs, so it is
globals-implementable.

MSC 2a is inst outs-implementable, but not globals-implementable due to the trace
!b !a ?a ?b. That MSC 2a is inst outs-implementable can be seen as follows: All mes-
sages go through a different output buffer, so there is no problem with the output
buffers at all. Similarly, MSC 2b is inst ins-implementable, but not globals-imple-
mentable due to the trace !a !b ?b ?a.

10 A Hierarchy of Communication Models for Message Sequence Charts

MSCs 2a and 2b show the difference between inst outs and inst ins . MSC 2a is
inst outs-implementable, as mentioned before, but not inst ins-implementable. The
trace !b !a ?a ?b is not inst in-implementable, because the inputs of instance j do not
reach the input buffer in the order in which they are to be manipulated. For MSC
2b the reverse is the case: It is inst ins-implementable, but not inst outs-implemen-
table. MSC 2a is inst outs-implementable and therefore also inst2s-implementable.
We have already established that it is not inst ins-implementable. Similarly, MSC 2b
is inst ins and inst2s-implementable, but not inst outs-implementable. Together, these
show that inst outs , inst ins and inst2s are all different.

MSC 3 is an example of an MSC that is pairs-implementable, but not inst2s-imple-
mentable. It is easy to see that it is pairs-implementable, because each message goes
through a different buffer. Its only 2-trace is !c !a ?a !b ?b ?c. If we try to extend this to
an inst2-implementable 3-trace t ′, we need to have !!c <trace

t !!a <trace
t !!b <trace

t !!c,
which is impossible (the first <trace

t is because of the inst-output implementability
and !c <trace

t !a, the second is clearly true for every 3-trace of the MSC, and the third
is because of the inst-input implementability together with ?b <trace

t ?c).
Finally, MSC 4 shows the difference between pairs- and msgs-implementability.

All other implementation models are also pairwise different. This result is obtained
due to the transitive closure of the ordering as presented in Figure 5.

Together the examples show that if we look at strong implementability, the seven
remaining implementation models are indeed different for MSCs, and thus that they
are also different for 2-traces.

Theorem 12 The classes nobuf, global, inst out, inst in, inst2, pair, and msg are dif-
ferent for implementability of traces and for strong implementability of MSCs, and
for strong implementability they are ordered as shown in the left part of Figure 5.

5.2 Weak implementability

Definition 13 An MSC k is said to be weakly X-implementable, notation Xw-imple-
mentable, iff there is an X-implementable 2-trace t of k.

As was the case for strong implementability, for weak implementability we also
have the ordering for traces as a starting point. However, using weak implementa-
bility, we do not have anymore that all implementation models differ. To see this, we
first give an alternative way to characterise some of the implementations and prove
that these are equivalent to the original definition.

Definition 14 Let k be an MSC over the set of messages M. Then we define the re-
lations<io

k and<ii
k on {!m, ?m | m ∈ M} and the relation<i2

k on {!m, !!m, ?m | m ∈
M} as follows:

<io
k := (<msc

k ∪ {(?m, ?m′) | m,m′ ∈ M ∧ from(m) = from(m ′)∧!m <msc
k !m′})+ ,

<ii
k := (<msc

k ∪ {(!m, !m′) | m,m′ ∈ M ∧ to(m) = to(m ′)∧?m <msc
k ?m′})+ ,

Classification of MSCs 11

<i2
k := (<m3

k ∪{(!!m, !!m ′) | m,m′ ∈ M ∧ from(m) = from(m ′)∧!m <m3
k !m′}

∪{(!!m, !!m ′) | m,m′ ∈ M ∧ to(m) = to(m ′)∧?m <m3
k ?m′})+ .

We explain the definition of the ordering<io
k which is defined in order to check the

inst out-property. The ordering is obtained from<msc
k by adding pairs of input events

to it. More specifically, if two outputs are defined on the same instance of the MSC,
and thus are ordered in some way, then we add their corresponding input events in the
same order. This is motivated as follows. For a trace to be inst out-implementable it
is required that the input events are ordered in this way anyway. Thus by adding this
pair explicitly we construct an ordering representing the MSC given that it has to be
implemented on an architecture with one output buffer per instance.

The inst out-implementable traces of the MSC are also traces of the ordering<oi
k

as they respect the requirements for inst out-implementability by definition, and vice
versa. Basically this is what is expressed in Theorem 15.

Theorem 15 Let t be a 2-trace of an MSC k. Then, t is inst out-implementable iff
<io

k ⊆<trace
t , t is inst in-implementable iff <ii

k ⊆<trace
t , and t is inst2-implementable

iff there exists a 3-trace t ′ which is an extension of t such that <i2
k ⊆<trace

t ′ .

Proof. We only give the proof for the last proposition. The proofs for the first two
propositions follow the same line. Suppose that t is inst2-implementable. Then we
must prove that <i2

k ⊆<trace
t ′ for some 3-trace t ′ which is an extension of t . For t ′ we

choose any inst2-implementable 3-trace of t . It suffices to prove that e <trace
t ′ e′ for

an arbitrary pair of events e, e′ ∈ {!m, !!m, ?m|m ∈ M} with e <i2
k e′. Since e <i2

k e′
we have the existence of e1, . . . , en such that e ≡ e1 < e2 < · · · < en ≡ e′ where for
all 1 ≤ i < n we have one of the following:

• ei <
m3
k ei+1;• ei ≡!!m, ei+1 ≡!!m′, from(m) = from(m ′) and !m <m3

k !m′ for some m,m′ ∈ M;• ei ≡!!m, ei+1 ≡!!m′, to(m) = to(m ′) and ?m <m3
k ?m′ for some m,m′ ∈ M.

For all of these cases we can conclude that ei <
trace
t ′ ei+1, and hence, e <trace

t ′ e′.
Next, suppose that <i2

k ⊆<trace
t ′ for some extension t ′ of t . We must prove that t

is (inst,inst)-implementable. Thereto it suffices to show that t ′ is (inst,inst)-imple-
mentable, i.e., that t ′ is inst-output implementable and inst-input implementable. We
prove that t ′ is inst-output implementable, the proof that t ′ is inst-input implemen-
table is analogous. Let m,m ′ ∈ M such that from(m) = from(m ′). Then it suffices to
show that !m <trace

t ′ !m′ ⇔!!m <trace
t ′ !!m′. Thereto, suppose that !m <trace

t ′ !m′. Since
from(m) = from(m ′), we have !m <msc

k !m′. So !!m <i2
k !!m′. Because <i2

k ⊆<trace
t ′ we

therefore have !!m <trace
t ′ !!m′. Suppose that !m 6<trace

t ′ !m′. Then !m′ <trace
t ′ !m. With

similar reasoning as before we obtain !!m ′ <trace
t ′ !!m. Therefore, !!m 6<trace

t ′ !!m′.

Thus far, we have seen that the ordering <io
k contains all inst out-implementable

traces of MSC k. An MSC k is inst outw-implementable iff it has a trace t that is

12 A Hierarchy of Communication Models for Message Sequence Charts

inst out-implementable. Clearly, such a trace exists iff there is a trace for the ordering
<io

k , in other words, iff<io
k is cycle-free. Therefore, we have the following character-

isation theorem, which follows directly from Theorem 16.

Theorem 16 An MSC k is inst outw-implementable iff <io
k is cycle-free. An MSC

k is inst inw-implementable iff<ii
k is cycle-free. An MSC k is inst2w-implementable

iff <i2
k is cycle-free.

We use the alternative characterisations provided by the previous theorem in the
proof of the equivalence of the classes inst outw, inst inw, and inst2w.

Theorem 17 The implementation models inst outw, inst inw, and inst2w are equal.

Proof. We show that each inst2w-implementable MSC is inst outw-implementable.
The reverse implication is trivial, and the proofs with inst inw are analogous. From
Theorem 16 we see that it suffices to prove that<io is cycle-free if <i2 is cycle-free.
We prove this using contraposition, so we assume that <io has a cycle. Let e1 <

io

e2 <
io · · · <io en <

io e1 be an arbitrary largest cycle. For every ordering in the cycle,
say ei <

io ei+1 either ei <
msc ei+1 , and hence ei <

i2 ei+1, or ei ≡?m, ei+1 ≡?m′ for
some m,m′ ∈ M such that !m <msc!m′. If the first is always the case, then we have
a cycle in <msc , so certainly in <i2 . Now assume we have the second at least once
in the cycle. In that case we have at least two inputs in the cycle, say ?m and ?m ′ .
Then ?m <io?m′ and ?m′ <io?m. As is shown in (Engels et al. 1997), this implies
that !!m <i2!!m′ and !!m′ <i2!!m. Thus clearly <i2 has a cycle.

Theorem 17 establishes that the classes inst outw, inst inw , and inst2w are equiv-
alent. In the remainder we denote this class by instw . The remaining models are all
different. The MSCs 3 and 4 in Figure 3 show the difference between instw and pairw ,
and pairw and msgw respectively in the weak case too (these MSCs have only one
2-trace, so their weak implementability equals their strong implementability). MSC
5 in Figure 4 is globalw-implementable, but not nobufw-implementable. The trace
!a !b ?a ?b is global-implementable, but because both outputs must have been exe-
cuted before any input can be processed, there is no nobuf-implementable trace.

i j

a

b

MSC 5

i j k l

a

b
c

d

MSC 6

Figure 4 MSCs to distinguish the implementation models: weak case.

MSC 6 is instw-implementable, but not globalw-implementable. It is not globalw-
implementable, as can be seen thus: !a <msc!b, so for every global-implementable

Classification of MSCs 13

nobufw

globalw

instw

pairw

msgw

nobufs

inst2s

pairs

msgs

inst insinst outs

globals

Figure 5 Incomplete hierarchy.

nobufs

globals

inst insinst outs

globalwinst2s

instw

pair

msg

nobufw

Figure 6 Final hierarchy.

trace t we must have ?a <trace
t ?b. Because !d <msc?a and ?b <msc!c, we get !d <trace

t
!c. But we also have ?c <msc?d, and thus ?c <trace

t ?d, from which it follows that t
cannot be global-implementable. On the other hand, the trace !a !b !d ?a ?b !c ?c ?d
is inst out-implementable, so the MSC is instw-implementable.

Theorem 18 The implementation models for weak implementabilityof the rightpart
of Figure 5 are all different.

5.3 Combining the strong and weak hierarchy

The relations between classes in the strong implementability hierarchy and the re-
lations between classes in the weak hierarchy have been studied extensively in the
previous sections. In this section we focus on the relations between implementation
models from the different hierarchies. From the definitions of strong and weak im-
plementability it is clear that any Xs -implementable MSC is also Xw-implementable.
These orderings are also depicted in Figure 5.

Theorem 19 establishes that the classes pairs and pairw, and msgs and msgw are
equivalent. In the remainder we denote these by pair and msg respectively.

Theorem 19 An MSC is pairs-implementable iff it is pairw-implementable. An MSC
is msgs-implementable iff it is msgw-implementable. Every inst outs-implementable
or inst ins-implementable MSC is globalw-implementable.

In Figure 6 we give all communication models that remain after the identifications
obtained until now. The arrows between these models follow also from the previous
theorems and lemmas. Finally, we have to prove that the arrows between models from
the strong and weak hierarchy are strict and that there are no additional arrows nec-
essary. It suffices to show that the following arrows do not exist: globals to nobufw,

14 A Hierarchy of Communication Models for Message Sequence Charts

nobufw to inst2s , and inst2s to globalw. The rest then follows because of transitiv-
ity. For example, the nonexistence of an arrow from globals to nobufw implies the
nonexistence of an arrow from inst outs to nobufw, because if the second arrow ex-
ists then, by transitivity, also the first must exist. Similarly we obtain the nonexistence
of arrows from inst ins and inst2s to nobufw. We use the MSCs in Figure 7 to indi-
cate that the first two arrows do not exist. MSC 7 is globals-implementable, but not
nobufw-implementable. On the other hand MSC 8 is nobufw-implementable, but not
inst2s-implementable. The trace !a ?a !b ?b !c ?c is nobuf-implementable, while the
trace !b !c ?c !a ?a ?b is not inst2-implementable.

i i j k l

a
b

a

c
b

MSC 7 MSC 8

Figure 7 Distinguishing MSCs: comparing strong and weak.

The non-existence of an arrow from inst2s to globalw is taken care of by MSC 6
in Figure 3. It has already been shown not to be globalw-implementable. It is inst2s-
implementable because every 2-trace of this MSC can be extended to an inst2-imple-
mentable 3-trace by adding !!a and !!b immediately after !a and !b, and !!c and !!d
immediately before ?c and ?d.

Theorem 20 The implementation models from Figure 6 are all different, and they
are ordered as expressed in Figure 6.

6 CONCLUDING REMARKS AND FUTURE RESEARCH

We have considered implementation models for asynchronous communication in Mes-
sage Sequence Chart. These models contain of FIFO buffers for the sending and re-
ception of messages. By varying the locality of the buffers we have arrived, in a sys-
tematic way, at 25 models for communication. With respect to traces, consisting of
putting a message into a buffer and removing a message from a buffer, there are seven
different models.

By lifting this implementability notion from traces to Message Sequence Charts
in two ways, strong and weak, we obtain fourteen models. After identification, ten
essentially different models on the level of Message Sequence Charts remain.

For defining the models we have used the notion of 3-traces; these are a natural
extension of normal MSC-traces if a message can pass two buffers on its way from
source to destination.

In this paper, we have only considered Basic Message Sequence Charts. An inter-
esting question is how to transfer the notions and properties defined for this simple
language to the complete language MSC. As many of our theorems rely on the fact

Concluding remarks and future research 15

that the events on an instance are totally ordered, an extension to MSC with more
sophisticated ordering mechanisms (e.g., coregion and causal ordering) will imply a
revision of the hierarchy. Another interesting question is whether the implementation
properties are preserved under composition by means of the operators of MSC.

Furthermore, we have restricted ourselves to the treatment of architectures in which
each message has exactly one possible communication path and where each such path
contains at most two buffers. The extension to more flexible architectures is non-
trivial and is expected to lead to an extension of the hierarchy.

Finally, our assumption of infinite FIFO buffers may be relaxed, allowing other
types of buffers and buffers with finite capacity.

The results obtained in this paper form a solid base for several applications. First,
they allow us to discuss the relation between different variants of MSC, such as Inter-
workings (Mauw et al. 1993). Interworkings presuppose a synchronous communica-
tion mechanism. An Interworking can be considered as the restriction of the seman-
tics of an MSC to only the nobuf-implementable traces. Thus, an MSC can be inter-
preted as an Interworking if and only if there is at least one such trace, i.e., the MSC
is nobufw-implementable. We also envisage more practical applications. Consider a
tool in which a user can select a communication model, draw an MSC and invoke an
algorithm to check if the MSC is implementable with respect to the selected model.
Alternatively, the user can provide an MSC and use a tool to determine the minimal
architecture, according to our hierarchy, which is needed for implementation.

Often a user is interested in the question whether all traces of his MSC are im-
plementable with respect to a certain architecture. We can also envisage two possi-
ble uses relying on the implementability of a single trace. First, MSCs are often used
to display one single trace, for example if it is the result of a simulation run. In this
case, the question is not whether the MSC is strongly or weakly implementable, but
whether the implied trace is implementable (as defined in Section 4). Second, given an
MSC, a user may want to know if at least one trace is implementable and if so, which
trace that is. He is interested in a witness. Both applications can easily be derived from
the results on weak implementability. The algorithms (see below) can easily be mod-
ified to check implementability of a given trace and to produce a witness.

A more involved application would be to use a selected communication model to
reduce the set of traces defined by a given MSC to only those traces that are imple-
mentable on the given model. In this way, the semantics of an MSC would be relative
to some selected model.

For most of these applications computer support would be useful. Based upon the
definitions presented in this paper, it is feasible to derive efficient algorithms. All
models in the weak-spectrum can be characterised in terms of the cycle-freeness of
an extended ordering relation, as is shown in (Engels et al. 1997). An example of
such a characterisation is given in Theorem 16. There it is stated that an MSC k is
inst outw-implementable iff the ordering<io

k (which is an extension of<msc
k) is cycle-

free. Thus checking if an MSC is inst outw-implementable boils down to checking
cycle-freeness of this relation. This immediately gives a wide range of efficient im-
plementations for checking class-membership as many algorithms are known in liter-

16 A Hierarchy of Communication Models for Message Sequence Charts

ature for determining whether a given ordering is cycle-free. For the strong spectrum
characterisations are given in (Engels et al. 1997) as well.

There are two papers in which a similar subject is discussed. In (Charron-Bost,
Mattern and Tel 1996) four different implementations for MSC-like diagrams are dis-
cussed: RSC (Realizable with SynchronousCommunication), CO (Causally Ordered),
FIFO and A (Asynchronous). They find that there is a strict ordering RSC ⊂ CO ⊂
FIFO ⊂ A. As shown in (Engels et al. 1997), the implementations RSC, FIFO and
A correspond to our implementations nobufw, pair and msg, while CO is positioned
strictly between the implementations instw and pair.

Another paper in which different communication models for MSC have been stud-
ied, is (Alur et al. 1996). The models from our hierarchy are incomparable with their
models, because the ordering of certain combinations of events on an instance is sub-
ject to a chosen communication model, thereby relaxing our fundamental total order-
ing of events on an instance.

REFERENCES

Alur, R., Holzmann, G. J. and Peled, D.: 1996, An analyzer for Message Sequence
Charts, Software - Concepts and Tools 17(2), 70–77.

Ben-Abdallah, H. and Leue, S.: 1997, Syntactic detection of process divergence and
non-local choice in Message Sequence Charts, in E. Brinksma (ed.), Tools
and Algorithms for the Construction and Analysis of Systems, number 1217
in Lecture Notes on Computer Science, Springer Verlag, pp. 259–274.

Charron-Bost, B., Mattern, F. and Tel, G.: 1996, Synchronous, asynchronous and
causally ordered communication, Distributed Computing 9(4), 173–191.

Engels, A., Mauw, S. and Reniers, M. A.: 1997, A hierarchy of communication mod-
els for Message Sequence Charts, Technical Report CSR 97-11, Eindhoven
University of Technology, Department of Computing Science.

Grabowski, J., Graubmann, P. and Rudolph, E.: 1993, Towards a Petri net based
semantics definition for Message Sequence Charts, in O. Færgemand and
A. Sarma (eds), SDL’93 - Using Objects, Proceedings of the Sixth SDL Fo-
rum, North-Holland, pp. 179–190.

ITU-TS: 1995, ITU-TS Recommendation Z.120 Annex B: Algebraic semantics of
Message Sequence Charts, ITU-TS, Geneva.

ITU-TS: 1996, ITU-TS Draft Recommendation Z.120: Message Sequence Chart 1996
(MSC96), ITU-TS, Geneva.

Ladkin, P. and Leue, S.: 1995, Interpreting message flow graphs, Formal Aspects of
Computing 7(5), 473–509.

Mauw, S. and Reniers, M. A.: 1994, An algebraic semantics of Basic Message Se-
quence Charts, The Computer Journal 37(4), 269–277.

Mauw, S., Wijk, M. v. and Winter, T.: 1993, A formal semantics of synchronous In-
terworkings, in O. Færgemand and A. Sarma (eds), SDL’93 - Using Objects,
Proceedings of the Sixth SDL Forum, North-Holland, pp. 167–178.

