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Abstract. While message sequence charts (MSCs) are widely used in industry to document the interworking of
processes or objects, they are expressively weak, being based on the modest semantic notion of a partial ordering
of events as defined, e.g., in the ITU standard. A highly expressive and rigorously defined MSC language is a must
for serious, semantically meaningful tool support for use-cases and scenarios. It is also a prerequisite to addressing
what we regard as one of the central problems in behavioral specification of systems: relating scenario-based
inter-object specification to state-machine intra-object specification. This paper proposes an extension of MSCs,
which we call live sequence charts (or LSCs), since our main extension deals with specifying “liveness”, i.e.,
things that must occur. In fact, LSCs allow the distinction between possible and necessary behavior both globally,
on the level of an entire chart and locally, when specifying events, conditions and progress over time within a chart.
This makes it possible to specify forbidden scenarios, for example, and enables naturally specified structuring
constructs such as subcharts, branching and iteration.
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1. Introduction

Message sequence charts (MSCs) are a popular visual medium for the description of scenar-
ios that capture the typical interworking of processes or objects. They are particularly useful
in the early stages of system development. There is also a standard for the MSC language,
which has appeared as a recommendation of the ITU [34] (previously called the CCITT).
The standard defines the allowed syntactic constructs rigorously, and is also accompanied
by a formal semantics [35] that provides unambiguous meaning to basic MSCs in a process
algebraic style. Other efforts at defining a rigorous syntax and semantics for MSCs have
been made [10, 17, 29], and some tools supporting their analysis are available [1, 2, 6].

Surprisingly, despite the widespread use of the charts themselves and the more rigorous
foundational efforts cited above, several fundamental issues have been left unaddressed.
One of the most basic of these is, quoting [7]: “What does an MSC specification mean:
does it describe all behaviors of a system, or does it describe a set of sample behaviors of
a system?”. While typically MSCs are used to capture sample scenarios corresponding to
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use-cases [5, 25], as the system model becomes refined and conditions characterizing use-
cases evolve, the intended interpretation often undergoes a metamorphosis from an exis-
tential to a universal view: earlier one wants to say that a condition can become true and
that when true the scenario can happen, but later on one wants to say that if the condition
characterizing the use-case indeed becomes true the system must adhere to the scenario
described in the chart. Thus, we want to be able to specify liveness in our scenarios, that is,
mandatory behavior, and not only provisional behavior.

In fact, the confusion between necessity and possibility arises even within a basic MSC
itself: should edges of an MSC prescribe only (partial) ordering constraints, or should they
entail causality? While the standard [35] views the semantics of MSCs as merely imposing
restrictions on the ordering of events, designers are often interested in shifting the intended
meaning depending on the current design level. And this, again, means preferring initially a
provisional interpretation, but transforming these into mandatory interpretations as design
details are added, thus enforcing messages to be sent and received, progress to be made, etc.
We feel that the lack of variety in the semantic support of conditions in the ITU standard
may well have contributed to its inability to distinguish between possibility and necessity.

Hence, we feel the dire need for a highly expressive MSC language with a clear and
usable syntax and a fully worked out formal semantics. Such a language is needed in order
to construct semantically meaningful computerized tools for describing and analyzing use-
cases and scenarios. It is also a prerequisite to a thorough investigation of what we consider
to be one of the central problems in the behavioral specification of systems, and, we feel,
the problem in object-oriented specification: relating inter-object specification to intra-
object specification. The former is what engineers will typically do in the early stages of
behavioral modeling; namely, they come up with use-cases and the scenarios that capture
them, specifying the inter-relationships between the processes and object instances in a
linear or quasi-linear fashion in terms of temporal progress. That is, they come up with the
description of the scenarios, or “stories” that the system will support, each one involving all
the relevant instances. An MSC language is best used for this. The latter, on the other hand, is
what we would like the final stages of behavioral modeling to end up with: a full behavioral
specification of each of the processes or object instances. That is, we want a complete
description of the behavior of each of the instances under all possible conditions and in all
possible “stories”. For this, most methodologists agree that a state-machine language (such
as statecharts [18, 20]) is most useful. The reason we want something like a state-machine
intra-object model as an output from the design stage is for implementation purposes:
ultimately, the final software will consist of code for each process or object. These pieces
of code, one for each process or object instance, must—together—support the scenarios as
specified in the MSCs. Thus, the “all relevant parts of stories for one object” descriptions
must implement the “one story for all relevant objects” descriptions.

Investigating the two-way relationship between these dual views of behavioral description
is an ultimate goal of our work. How to address this grand dichotomy of reactive behav-
ior, as we like to call it, is a major problem. For example, how can we synthesize a good
first approximation of the statecharts from the MSCs? Finding good ways to do this would
constitute a significant advance in the automation and reliability of system development.
However, despite the fact that there are a number of algorithms for synthesizing state
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machines from MSCs [26–28, 30], we believe that this problem should really be contem-
plated in depth for a far more powerful MSC language.1

In this paper we propose a language for scenarios, termed Live Sequence Charts, or LSCs
for short. LSCs constitute a smooth extension of the ITU standard for MSCs, along several
fronts. We allow the user to selectively designate parts of a chart, or even the whole chart
itself, as universal (that is, live, or mandatory), thus specifying that messages have to be sent,
conditions must become true, etc. By taking the weaker existential interpretation as a default,
the designer may incrementally add liveness annotations as knowledge about the system
evolves. Hand in hand with this extension comes the need to support conditions as first-class
citizens: we assume availability of interface definitions for instances, containing events that
can be sent and received, and also variables that may be referred to when defining (first-
order) conditions. By associating pre-charts with an LSC, a live interpretation of the chart
becomes more significant; it now means, informally, that whenever the system exhibits the
communication behavior of its pre-chart its own behavior must conform to that prescribed
by the chart. (See figure 4 for an example of a pre-chart.)

As we shall see, live elements (we call them hot) also make it possible to define forbidden
scenarios, i.e., ones that are not allowed to happen—a very important need for the engineer
at the early stages of behavioral modeling.

Another use of LSCs, indeed one of our motivations for the present work, comes from the
UML standard [36], which recommends statecharts as well as sequence-charts for modeling
behavior, but says little about the precise relationships between the two. The Rhapsody tool
from I-Logix is based on the language set for executable object modeling (XOM ) defined
in [20], which is really the executable kernel of the UML, and as thus can be regarded as
UML’s definitive core. It consists of the constructive languages of object-model diagrams
and statecharts, and allows a variant of MSCs, but as a descriptive language only. The work
presented in this paper provides the semantical basis for rigorous and complete consistency
checks between the descriptive view of the system by sequence charts and the constructive
one. Such checks could eventually be made using formal verification techniques like model-
checking [3, 4]. (Some of the ideas of this paper were indeed inspired by the symbolic timing
diagrams of [16, 31–33], used to specify and verify safety-critical requirements for systems
modeled using Statemate; see [8, 9, 11, 12, 24].)

The paper is organized as follows. Section 2 defines the way we link LSC specifications to
a system, assuming the semantics of basic charts as given. Section 3 presents and motivates
our basic extensions to message sequence charts and outlines their semantics informally.
We assume a linear time semantics of systems, where each system is associated with a set
of (possibly infinite) runs. Section 4 outlines our approach in defining the semantics of
LSCs as the set of runs of a system that is consistent with the chart. A full definition of that
semantics appears in the Appendix. Section 5 demonstrates the concepts with an example—
the automated rail-car system of [20]. Since, for lack of space, we cannot reproduce that
example here, we must assume that the reader has familiarized him/herself somewhat with
it. Small figures with variations on this example are used also in earlier sections to illustrate
some of the main concepts. In Section 6 we discuss how to use LSCs and supporting tools
in the life cycle of system development, and how they relate to use-cases and to the recently
proposed play-in scenarios of [19].
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2. Relating charts to systems

In this section we show how a set of LSCs is related to a conventional behavioral description
of the system given in some operational specification language, such as statecharts [18] or
an object-oriented version thereof [20]. Usually, this description will be of the intra-object
species, but for the purposes of the present paper the precise form it takes is unimportant;
as we shall see, all we need is a behavioral description that defines the runs of the system.
To avoid confusion, we refer to the language of such descriptions as the implementation
language, reserving the term specification for our LSCs.

We should remark that we have attempted to define LSCs with a minimal amount of
commitment to the particulars of the implementation language, so as to preserve as much
flexibility as possible. Thus, the reader will detect a certain amount of abstractness in our
requirements from the languages and models surrounding the LSCs

For LSCs to make sense as a specification language, the implementation language must
contain explicit ways of creating instances of the modeled system. For example, in a struc-
tured analysis framework, such as that of STATEMATE [21, 23], instances could correspond
to activities, whereas in an object-oriented framework such as the UML [36] or Rhapsody
[20], they would correspond to instances of objects. Moreover, the implementation language
will associate with each instance its data-space as induced by variable declarations, and its
possible events; the latter might contain the sending or receiving of messages, timeouts, and
the creation and destruction of instances. We refer to the variables of an instance i by var(i)
and to its events by events(i). Variables may be local to an instance or globally known. All
we require is that var(i) contain all variables known to i .

Consider our railcar system example (again, the basis of this example is taken from [20],
with which we must assume familiarity), as described by the charts of figures 1–4 and 8–14.

Figure 1. Illustrating visible events.
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The instance car has the following variables:2

mode ∈ {pass, stop}
isEmpty ∈ {TRUE, FALSE}

state ∈ {idle, departure, cruising, arrival}

The car object can send events start, stop, engage, and disengage to the cruiser and events
departReq and arrivReq to the carHandler. The car can receive events alert100 and alertStop
from the proxSensor, events departAck and arrivAck from the carHandler and the event
started from the cruiser.

The following table shows the events discussed in this paper. To help keep the present
paper focussed on the key aspects of our approach, we have decided to omit from it instance
creation and destruction, as well as real-time features such as the setting and expiration of
timers.

〈i, asynch, msgid!j 〉 Asynchronous transmission of message msgid from instance i to instance j

〈i, synch, msgid!j 〉 Synchronous transmission of message msgid from instance i to instance j

〈i, msgid?j〉 Receipt of message msgid by instance i from instance j

〈i, asynch, msgid!env〉 Asynchronous transmission of message msgid from instance i to the environment

〈i, synch, msgid!env〉 Synchronous transmission of message msgid from instance i to the environment

〈i, msgid?env〉 Receipt of message msgid by instance i from the environment

A snapshot s of a system S shows all current events and gives a valuation to all variables.
In particular, if c is a condition involving events in events(S) (i.e., the collection of events of
the system’s instances) and variables in var(S) (i.e., the variables of all its instances), then
s |= c denotes the fact that c is satisfied in snapshot s.

As mentioned, we assume a linear time semantics of our implementation language. For
a system S, a run of S is an infinite sequence of snapshots. We typically use r to denote a
run, r(i) for its i-th snapshot, and r/ i for the infinite sequence obtained from r by chopping
its prefix of length i − 1. The set of all runs of S is denoted runs(S).

We now start talking about our chart language. Let M be a set of LSCs. With each LSC
m in M , we require as given the set of events and variables visible to m, and denote them by
vis events(m) and vis var(m), respectively. These include all events explicitly shown in m
as well as all variables occurring in conditions of m, but they may contain others too. Thus,
the visible events and variables consist not only of the ones that actually show up in the
chart, but also of others that we state explicitly as being known to, or visible to, the chart.

M is compatible with S (denoted com(M, S)) if vis events(m) ⊆ events(S), and vis var
(m) ⊆ var(S) for all m in M .

Consider the chart of figure 1. The events that can be actually seen in the figure are

〈car, setDest?env〉, 〈car, synch, departReq!carHandler〉,
〈carHandler, departReq?car〉, 〈carHandler, synch, departAck!car〉,
〈car, departAck?carHandler〉, 〈passenger, synch, pressButton!destPanel〉,
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〈destPanel, pressButton?passenger〉, 〈destPanel, synch, flashSign!car〉,
and 〈passenger, flashSign?destPanel〉.

These can then be enriched with others that are not seen in the chart, but which are
also included in vis events(m), such as 〈car, synch, arrivReq!carHandler〉, 〈carHandler,
arrivReq?car〉, 〈carHandler, synch, arrivAck!car〉, and 〈car, arrivAck?carHandler〉.

If the chart is a universal chart (as defined later), none of the events in vis events(m) will
be allowed to occur in between the events appearing in the chart itself. In this way, we can
specify that the arrivReq and arrivAck messages should not occur when a car is departing
from a terminal since they are relevant for arrival only.

In Section 4 (and in more detail in the Appendix) we define the concept of satisfaction
of a single chart m by a run r of S, denoted by r |= m, as a conservative extension of the
semantics proposed in the ITU standard [34]. Events and variables not visible in a chart (as
defined by vis events(m) and vis var(m)) are not constrained by the chart. However events
that explicitly appear in these sets are restricted by the chart. In particular, if r |= m, and
r jitter is obtained from r by inserting an arbitrary number of events of S which are invisible
in m and not explicitly restricted by m, (i.e., events in the set events(S)—vis events(m)),
then r jitter |= m. Similarly, inserting an arbitrary but finite number of changes of local
variables (not occurring in vis var(m)) will not impact validity of m.

To a large extent, the ITU standard leaves open the interrelation between a set of MSCs
and an independent system description. However, this is a key issue to be resolved for
any tool-development exploiting the existence of the two complementary views of system
behavior (i.e., inter- and intra-object). The problem to be solved in addressing these issues
is the unification of two seemingly contradicting views of the usage of LSCs:

• In early stages in the design process, LSCs will most often be used to describe possible
scenarios of a system; in doing so, designers stipulate that the system should at least be
able to exhibit the behavior shown in the charts. In particular, for each chart drawn, at
least one run in the system should satisfy the chart.

• In later stages in the design, knowledge will become available about when a system run
has progressed far enough for a specific usage of the system to become relevant; in the
use-case approach, once a run of the system has reached a point where the use case
applies, designers expect that from now on, regardless of possible ways the system may
continue its run, the behavior specified in the chart should always be exhibited.

At a logical level, the distinction between the two views is that between an existential and
a universal quantification over the runs of the system: while the scenario view requires the
existence of a run, the use-case view requires all runs of the system to exhibit the specified
behavior once the initial condition characterizing the use-case is met. This condition can
be an actual activation condition, reflecting some “snapshot” situation, or alternatively, it
can be a communication sequence that leads to the activation point; this is expressed in a
separate chart called a pre-chart.3

In terms of inclusion of behaviors, the scenario view calls for the legal runs of an LSC
specification M of S to be contained in those of S, while the use-case view calls for the
reverse inclusion.
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We cater for this distinction by associating with each chart m its mode, where

mod(m) ∈ {existential, universal}.

Hence, an LSC specification for a system S is a tuple

LS = 〈M, ac, pch, mod 〉,

where M is a set of LSCs compatible with S and where ac(m) and pch(m) provide the
activation condition and pre-chart for each m ∈ M .

A chart m ∈ M is satisfied by a run r ∈ runs(S) (written r |= m) iff the following hold:4

– if m is existential, then ∃i . (r(i) |= ac(m) ∧ r/ i |= m);
– if m is universal, then ∀i . (r(i) |= ac(m) ⇒ r/ i |= m).

The system S satisfies the specification L S (written S |= L S) iff the following hold:

– for all existential charts m ∈ M, ∃r ∈ runs(S). r |= m;
– for all universal charts m ∈ M, ∀r ∈ runs(S). r |= m.

Typically, the activation condition of the pre-chart of an existential chart will be weak,
possibly degenerating to true, and the pre-chart itself will be small or even empty. The
reason is that with an existential chart we might have only partial knowledge of what we
want in this stage of the system’s development. In contrast, for universal charts, a run of the
system need never match the activation condition, so that the “body” of a universal chart
might become vacuous, imposing no restrictions on the system at all. Good tool support
for LSCs should offer “healthiness” checks for universal charts, guaranteeing that at least
one run eventually reaches a point where the pre-chart, including its activation condition,
is satisfied.

Figure 2 describes a car departing from a terminal. The instances participating in this
scenario are cruiser, car, and carHandler. The chart of figure 2 is universal. In it we use
a simple kind of activiation condition, which is really an activation message. We denote it
by a dashed cold message arrow coming into the chart from the outside. Thus, whenever
this message occurs, i.e., the car receives setDest from the environment, the sequence of
messages in the chart should occur in the following order: the car sends a departure request
departReq to the car handler, which sends a departure acknowledgment departAck back to
the car. The car then sends a start message to the cruiser in order to activate the engine,
and the cruiser responds by sending started to the car. Finally, the car sends engage to the
cruiser and now the car can depart from the terminal. Each send event is followed by the
appropriate receive event.

Figure 3 shows an example of an existential chart, depicted by dashed borderlines.
The chart describes a possible scenario of a car stopping at a terminal. Since the chart is
existential, it need not be satisfied in all runs; we only require that at least one run satis-
fies it. In an iterative development of LSC specifications, such an existential chart may be
considered informal, or underspecified, and can later be transformed into a universal chart
specifying the exact activation message or pre-chart that is to determine when it happens.
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Figure 2. A universal chart.

Figure 3. An existential chart.

3. Breathing life into basic charts

As pointed out in the Introduction, the question of which parts of behavior are provi-
sional and which are mandatory is not only an issue when an entire chart is considered.



LSCs: BREATHING LIFE INTO MESSAGE SEQUENCE CHARTS 53

It arises in full force already within a single LSC. Should a message arc linking in-
stances i and i ′ entail that the communication will indeed take place, or just that it can
take place? Does an instance have to carry out all events indicated along its instance
line or can it stop at some point, without continuing? What is the fate of false condi-
tions? Are they mandatory; that is, does the run abort if a false condition is reached?
Or are they provisional, meaning that there is some escape route that is taken in such a
case?

These are fundamental questions, and one of the main features of our LSC language,
which turns it into a true enrichment of MSCs, is the ability to answer them in any of the
two ways in each individual case. This is done by adding liveness to the individual parts of
the charts, via the ability to specify mandatory, and not only provisional, behavior. Thus, we
allow local parts of the chart to be labeled as mandatory or provisional, and this labeling is
carried out graphically. We refer to the distinction regarding an internal chart element as the
element’s temperature; mandatory elements are hot and provisional elements are cold. We
have attempted to make the graphical notation simple and clear, trying to remain as close as
possible to the visual appeal of the ITU standard for MSCs. Here, now, are the extensions
themselves.

Along the horizontal dimension of a chart we not only distinguish between asynchronous
and synchronous message-passing by two kinds of arrow-heads (solid for synchronous and
open-ended for asynchronous), but the arrows themselves now come in two variants: a
dashed arrow depicts provisional behavior—the communication may indeed complete—
and a solid one depicts mandatory behavior—the communication must complete. Along
the vertical dimension we use dashed line segments to depict provisional progress of the
instance—the run may continue downward along the line—while solid lines indicate manda-
tory progress—the run must continue.

As far as conditions go, in order to help in capturing assertions that characterize use-
cases, we turn conditions into first-class citizens. Conditions can thus qualify requirements
as assertions over instance variables, and they too come in two flavors, in line with the
basic spirit of LSCs: mandatory (hot) conditions, denoted by solid-line condition boxes,
and provisional (cold) ones, denoted by dashed-line boxes. If a system run encounters a false
mandatory condition, an error situation arises and the run aborts abnormally. In contrast, a
false provisional condition induces a normal exit from the enclosing subchart (or the chart
itself, if it is on the top-level).

This two-type interpretation of conditions is quite powerful. Mandatory conditions (that
is, hot ones), together with other hot elements, make it possible to specify forbidden sce-
narios, i.e., ones that the system is not allowed to exhibit. This is extremely important and
allows the behavioral specifier to say early on which are the “yes-stories” that the system
adheres to and which are the “no-stories” that it must not adhere to. Also, as we shall
see later, provisional (cold) conditions provide the ability to specify conventional flow of
control, such as conditional behavior and various forms of iteration.

Along the vertical time axis, we associate with each instance a set of locations, which
carry the temperature annotation for progress within an instance. As explained, provisional
progress between locations is represented by dashed lines and mandatory progress by solid
lines.
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Figure 4. Illustrating pre-charts and cold locations.

Consider figure 4, depicting the perform approach scenario. The top part of the figure
shows our notation for pre-charts: a dashed frame, like that of a cold condition, surrounding
the pre-chart, thus indicating that the scenario is relevant only if the pre-chart has been
traversed successfully. The dashed segments in the lower part of the car and carHandler
instances specify that it is possible that the message arrivAck will not be sent, even in a run
in which the pre-chart holds. This might happen in a situation where the terminal is closed
or when all the platforms are full.

The following table summarizes the dual mandatory/provisional notions supported in
LSCs, with their informal meaning:

Mandatory Provisional

Chart Mode Universal Existential
Semantics All runs of the system At least one run of the system

satisfy the chart satisfies the chart

Location Temperature Hot Cold

Semantics Instance run must move Instance run need not move
beyond location beyond location

Message Temperature Hot Cold

Semantics If message is sent it Receipt of message is not
will be received guaranteed

Condition Temperature Hot Cold

Semantics Condition must be met; If condition not met exit
otherwise abort current (sub)chart
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One notational comment is in order. While we feel that the consistent use of dashed
lines and boxes for provisional elements is important, it raises a problem with the graphical
notation used in the standard (and elsewhere) to denote co-regions—a dashed vertical
instance line segment. To avoid this confusion, we denote co-regions by dotted line segments
running in parallel to the main instance axis.

We have not included figures describing each of the graphical features alone, and prefer
to show fuller examples. Thus, Section 5 contains LSCs for parts of the rail-car example of
[20]. They illustrate the expressibility of some of the newly introduced concepts in LSCs.

We now define the abstract syntax of the basic charts of our language, the semantics being
described briefly in Section 4 and in more detail in the Appendix. Let inst(m) be the set of
all instance-identifiers referred to in the chart m. With each instance i we associate a finite
number of “abstract” discrete locations l from the set dom(m, i) ⊆ {0, . . . , l max(m, i)},
to which we refer to in the sequel as i’s locations. We collect all locations of m in the set

dom(m) = {〈i, l〉 | i ∈ inst(m) ∧ l ∈ dom(m, i)}.

Locations are labeled with an arbitrary number of messages and at most one condition.
All messages within such a simultaneous region are sent/received at the same time and the
condition is also evaluated simultaneously. Single messages or conditions are thus special
cases of this more general construct. Both messages and conditions are assumed to have
unique names. Messages with no defined partner as indicated by a matching message label
are assumed to be sent or received from the environment. A shared condition by definition
reappears in the label of locations in all instances sharing the condition. Formally, the sets
of messages and conditions are defined by:

Messages = Message Ids × {synch, asynch} × {!, ?}
Conditions = Condition Ids × Bexp(vis var(m))

where Bexp(V ) denotes the set of boolean expressions involving only variables in the set
V . Each location is then labeled by an element of the set

Labels = ℘(Messages) × Conditions.

Intuitively, we can describe a snapshot of a system S monitored by a chart m by picking
from each of m’s instances the “current” location, indicating which events and conditions
of this instance have already been observed.

For an LSC m, the association between locations and events or conditions is given by a
partial labeling function:

label(m) : dom(m) → Labels.

To enforce progress along an instance line we associate a temperature with locations.
Temperatures are also used to indicate if a message must be received once sent and if a
condition has to be satisfied. This is expressed by the total mapping:

temp(m) : (dom(m) ∪ Message Ids ∪ Condition Ids) → Temp,
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with Temp = {hot, cold}. As outlined above, labeling a location with the temperature hot
entails that the chart must progress beyond the location, along the subsequent (vertical)
segment of the instance line. We add the one restriction that maximal locations must be
cold; this is consistent with the graphical representation depicting a hot location by a solid
line segment originating from the hot location: by convention of the ITU standard [34], no
time-line originates from the endpoint of an instance line, which is its maximal location.

To capture ordering information that will make it possible to associate locations with
coregions, we assume a total mapping:

order(m) : dom(m) → {true, false}

A coregion is then defined as a maximal unordered set of locations within a given instance;
i.e., a maximal connected set L of locations of i all satisfying order(m)(〈i, l〉) = false
(where l ∈ L).

Our LSCs are also endowed with hierarchy and the ability to specify simple flow of
control. This is done by allowing a straightforward subchart construction, similar to the
one present in the ITU standard, together with multiplicity elements for specifying sub-
chart iteration (both limited iteration—using constants or numeric variables—and unlimited
iteration—denoted by an asterisk), and a special notation for conditional branching, also
similar to that of the standard. The subcharts are themselves LSCs, specified over a set of
instances that may contain some of the instances of the parent chart and some new ones.

While these extensions (the formal definitions of which we omit here) are not in them-
selves truly novel, when coupled with the dual notions of hot and cold elements in the charts
(mainly conditions) their power is significantly enhanced. Whereas hot conditions serve in
general to specify critical constraints that must be met to avoid aborting the entire run, in
the presence of subcharts cold conditions become of special interest. For example, they can
be used to control the flow of the run, by exploiting the fact that our semantics causes a
false cold condition to trigger an exit from the current (sub)chart. For example, a subchart
with a cold condition at its start is really an if-then branching construct, and a subchart
annotated with an unbounded multiplicity element (an asterisk) and with a cold condition
within can be used to specify very naturally while-do or repeat-until constructs, etc. Thus,
cold conditions exit the current subchart and hot conditions abort the entire run.

4. Semantics of basic charts

A key topic in the formalization of sequence charts is the proper level of abstraction chosen
to capture computations on variables. MSCs, and therefore LSCs too, are suitable for
capturing the inter-workings of processes and objects, but are not intended to specify how the
valuations of variables change during the runs of a system. For this there is a rich variety of
specification formalisms. However, as mentioned earlier, we are interested in capturing the
conditions that qualify use-cases, and to do so our semantic model must include knowledge
about instance variables.

Our approach to reconciling these seemingly contradictory facets of sequence charts
is to provide sufficiently loose constraints on variable valuations. We thus allow runs
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accepted by an LSC to include any implementation choice in updating instance variables,
as long as the constraints expressed by conditions are satisfied. Technically, this can be
achieved by allowing a potentially infinite number of local computation steps to occur any-
where between transition s in the LSC; such local computation steps hence do not advance
the current cut in the partial order, but may arbitrarily change the values of local variables.
Note that annotating locations as hot will ensure that local computations do not get stuck in
some instance line-segment. Local computation steps may in fact also generate messages,
as long as they are not visible in the chart.

Progress requirements induced by hot locations introduce an additional component in the
states of the transition-system associated with an LSC: whenever a hot location is reached,
its local successor must be reached too. Technically, we achieve this kind of requirement
by a list of promises we maintain, which will include the successor that has to be reached.
For a run to be accepted by the LSC, all promises must be eventually kept, by traversing
the LSC at least up to the promised locations. Once thus reached, the promised locations
are removed from the list. Similarly, when a run reaches the sending of a hot message, its
reception is added to the list of promises, and is removed when the message arrives.

Our definition of the semantics takes a two stage approach. We first associate with an LSC
m a transition system A(m) called the skeleton automaton of m. Since message sequence
charts are expressible in our language by always picking the provisional interpretation, the
semantics will also be a conservative extension of that provided by the ITU standard. The
semantics of the standard builds on the partial order induced by an LSC m, which we denote
by ≤m . The states of A(m) correspond to cuts in ≤m , augmented by the current valuation
of visible variables, the currently emitted events of all instances, the set of promises, and
finally the status of m, in which we record whether the chart is active, or terminated, or
aborted due to encountering a hot condition in a state where it evaluates to false. A chart
may become terminated either after a complete successful run, or upon encountering a cold
condition in a state where it evaluates to false.

Figure 5 shows the transitions allowed in a particular status. The τ -steps perform purely
local computations and are always enabled when the chart is active. The i-steps allow
instance i to proceed; this requires the chart to be active, and i’s next location to be enabled
according to the partial order ≤m . We allow chaos-steps to arbitrarily change valuations of
variables as well as the presence of events. Also, stutter-steps perform idle steps only, i.e.,
they do not change the state of the transition system.

Readers with no previous exposure to formal semantics may be irritated by the fact that
any behavior is allowed, once the chart has terminated. To understand why chaos is in this
case desired, in fact required, recall that we have to be able to pad runs of the implemen-
tation into behaviors accepted by the LSC. Chaotic behavior hence represents the most
liberal restriction possible: all runs that have successfully passed all ordering and liveness
constraints causing the chart to achieve status terminated, may now behave ad libitum.

The Appendix contains a complete definition of the transition system A(m).
Given the skeleton automaton A(m), we derive the set of runs accepted by the LSC m

in the following steps. We first define the set of traces of m to consist of the appropriate
(infinite) sequences of valuations of instance variables and events. We then classify the
traces into accepted and rejected ones, which is done by inspecting the valuation sequences
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Figure 5. The skeleton automaton of a basic chart.

of the status and promises variables. We then obtain the runs satisfying the chart m by
projecting the accepted traces onto instance variables and events only, hiding things like
the system variables status and promises.

The details of these steps also appear in the Appendix.
We now consider the pre-chart for an LSC. The skeleton automaton for a pre-chart differs

from a regular skeleton automaton (cf. figure 6). For the pre-chart we do not allow false
cold conditions to be a legal completion of the chart, because a pre-chart describes a single
prefix to the real LSC. A violated cold condition would provide an extra exit point from the
pre-chart, in addition to the one obtained by visiting all locations. We therefore introduce
an exit-state into the automaton to reflect this difference.

The semantics of a pre-chart is thus described by the concatenation of the corresponding
skeleton automaton with the automaton of the actual LSC (as shown in figure 7). In order
to glue the two automata together two things have to be done once the automata have been
constructed. First, when the pre-chart has been traversed completely we enter the initial
state of the automaton for the actual LSC. Second, an abort from the pre-chart is not an
abort from the concatenated automaton, but a legal exit. This abort signifies an illegal prefix,
therefore we just do not activate the actual LSC. We analogously exit from the concatenation
automaton when we encounter a false cold condition in the pre-chart.

More formally, let A(p) and A(m) denote the skeleton automata associated with the
pre-chart p and the LSC m, respectively, and let “→pre” denote the above concatenation
operator on skeleton automata. We then derive the semantics of an LSC m with pre-chart p
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Figure 6. The skeleton automaton of a pre-chart.

Figure 7. Concatenation of pre-chart and LSC automaton.
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and activation condition ac(m) by consistently working with A(p) →pre A(m) instead of
just with the skeleton automaton A(m) in all formal definitions. Note that this entails that
the activation condition of m must be satisfied to even trigger the evaluation of its pre-chart.

5. An example

This section is devoted to illustrating LSCs with an example—parts of the car behavior
portion of the rail-car system of [20]. The reader would do well to have [20] handy, since
the system itself is described there, as are the relevant scenarios.

In this paper we have not incorporated explicitly specifiable states into LSCs, so we do
not provide here a direct mapping between the statecharts of [20] and the LSCs. However,
once a state-based system model exists this is rather easy to do. Also, the example has
no pre-charts, only activation conditions (denoted by AC). In fact, we claim that for the
most part the LSCs in the figures are self-explanatory. Figures 8, 9 and 10 provide the Car
Behavior in increasing levels of detail. That is, each figure is a refinement of the previous
one. Though we do not provide the formal semantics of refinement in this paper, it can easily
be defined using our semantics of LSCs. Figure 11 shows the Perform approach subchart
on its own.

A few things are worth noting: the way we denote a full chart by “LSC: name” and a
subchart by “Subchart: name”; the way a top-level condition “activating” a subchart drawn

Figure 8. Top level LSC of rail-car.
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Figure 9. More detailed LSC of rail-car.
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Figure 10. Full LSC of rail-car.
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Figure 11. The “Perform approach” subchart.

within a parent chart is attached from within to the top of the subchart borderline; the fact
that the only instance lines shown passing through a subchart are the ones relevant to it,
and that the others become transparent to it; the cruising condition that is joint to the Car
and Proximity Sensor; the if-then-else construct within the Stopping at terminal subchart
in figure 10; the termination of the CarHandler instance, and the two small coregions with
their dotted lines, inside the Perform departure subchart. Note also that we are using the
standard timeout notation from statecharts, although we do not deal with timing issues in
this paper.

Figures 12, 13 and 14 are not subcharts. They are full LSCs, and are presented with
dashed borderlines to signify that they are existential. They constitute an alternative way of
showing the three possible scenarios of Perform approach and hence they do not need to
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Figure 12. Existential LSC for “Perform approach”: Scenario 1.

be satisfied in all runs. In contrast, the main LSC in figures 8, 9 and 10 is universal, so that
it has to be satisfied in all runs, but its activation condition Car.idle makes sure that only
runs satisfying the Car.idle condition need be considered, as prescribed by the semantics of
universal LSCs.

The contrast between the two ways of presenting the possible scenarios of Perform ap-
proach (by existential charts or by an appropriately guarded subchart) illustrates our com-
ments in the Introduction about the different stages of behavioral specification. Typically,
the scenarios would first be specified existentially, as in figures 12 to 14, probably early on in
the specification process. Later, they would be carefully combined—using the appropriate
conditions—into the more informative subchart of figure 11, and then incorporated into the
universal parent chart, as in figure 10.

6. Scenarios for applying LSCs

In this section we make an attempt to describe some possible ways (use-cases if you will)
of exploiting the expressive power of LSCs in a UML based design process for embedded
real-time systems. (One such process is the spiral ROPES one described in [15]). Although
we focus here on a UML context, and cast our discussion in terms of a particular case
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Figure 13. Existential LSC for “Perform approach”: Scenario 2.

tool that supports the UML—the Rhapsody tool from I-Logix, Inc. [20]—the methodology
described can also be adapted to more traditional design approaches of embedded real-time
software, relying on the structural decomposition paradigm (see e.g., [23]). The process
described reflects discussions with many actual UML users in application domains such
as telecommunication, avionics, automotive and train systems. Nevertheless, here we only
demonstrate in basic terms how the expressive power of LSCs can be put to actual use; clearly
many variations can be imagined and put to use, depending on the particular application
domain and the established design flows of users. In particular, the discussed design flow
does not address issues of re-use, although clearly re-use is a must in any real application
development.

Any “classical” UML process model, such as ROPES, will propose to give more meat
to use-case specifications by elaborating on the dialog between the involved actors using
sequence diagrams. While initially designers would see the system as a black box, in the
object analysis phase he or she will start to identify supporting objects on a per-use-case
basis, hand in hand with elaborating the already captured system-level dialogues into sce-
narios, capturing the communication patterns between internal objects required to support
the given use-case. At this stage, the existential mode of LSCs will be the one typically
selected.
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Figure 14. Existential LSC for “Perform approach”: Scenario 3.

Activation conditions come into play as a convenient way to capture situations triggering a
use-case, such as an event emitted by some actor. As part of the identification of the structure
of the object model, methods and events used for inter-object communication are identified,
thus gradually building the interface of an LSC. As object behaviour is elaborated, we will be
able to enrich LSCs with internal conditions on values of attributes and states of the involved
objects, and to refine activation conditions, taking into account expected attribute values
and states when entering a given scenario. Internal conditions, i.e., conditions occurring in
the chart itself, will be used to both document pre- and post-conditions of method calls, as
well as to express local invariants, i.e., conditions on attribute values or states assumed to
be true at particular points in time when elaborating the scenario. In both these cases, hot
conditions would typically be used, while cold conditions would be employed to express
case distinctions.

At this stage, we will have gained sufficient insight into the realization of a use-case to turn
most of the charts from existential into universal. This process will be repeated iteratively,
until the complete object structure of the essential object model has been defined. We thus
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see as a key artifact resulting from the completion of object analysis a set of well defined
LSCs documenting all required interobject communication. While UML sequence diagrams
would allow one to capture some of the design aspects expressed through LSCs, the key
advantage of LSCs here rests in the rigorous definition of the consistency between an LSCs
specification and the constructed object model.

We will now capitalize on the semantic rigour of LSCs by describing powerful analysis
tools, allowing us to boost the quality of the constructed object model by using increasingly
powerful methods of verifying the compliance of the object model against the derived LSC
specification.

Current state of the art UML case tools, such as Rhapsody, support validation of the object
model by animated simulation and soft panels, providing, in particular, the dynamic creation
of scenarios depicting runs of the system. Note that, for lack of a rigorous definition of the
link between the object model and the captured scenarios, no compliance check between
the generated scenarios and the sequence diagrams documented by the designer can be
offered in today’s tools: this complex analysis must be carried out on an informal basis by
the designer.

The OFFIS group is currently developing a tool suite supporting LSCs, incorporating
capabilities for monitoring, test-generation, and formal verification. What is the added value
of these in enhancing the quality of the object model? Well, the monitoring tool observes,
during simulation, all inter-object communication. Whenever an activation condition of
a universal chart is detected, it dynamically creates a watchdog that monitors all traffic
between the involved object instances, checking for consistency with all the requirements
expressed by its chart. Thus, it will capture all situations in which a visible event or method
call was emitted at a point in time violating the ordering constraints. It will also detect if a
pre-condition to a method call was violated, it will announce to the user any violation of a
local invariant, and will report violation of timing constraints. Once the scenario is exited
(through violations of cold conditions) or has been processed completely, the watchdog is
killed. All detected violations will be reported, as well as succesfull completion of a chart.

Note, that an activation condition of a chart may become true while a previous incarnation
of this chart is still active. This kind of self-activation of charts is an artifact of the formal
semantics, but it is highly relevant from an application point of view, where different
transactions associated with one and the same use-case may overlap in time. It is thus
possible that several watchdogs for one and the same chart are active simultaneously, as
required by the formal semantics of live sequence charts, to enforce observation of the
requirements of a chart for all its active instances. For existential charts, the tool keeps track
of the degree of coverage during a simulation run, depicting which existential charts have
been observed so far.

In the above scenario, it is still the user who will need to drive simulation whenever events
or methods from actors are involved, or, more generally, when stimuli must be provided
from the environment of the currently simulated part of the object model. Using the test-
driver tool, such stimuli will be derived automatically from the LSC specification. Similarly
to the monitor tool, the test-driver tool detects which scenarios are active and creates objects
dedicated to driving the system according to the associated sequence chart. While inheriting
all capabilities of the monitor, it will, in addition, detect when environment events or
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method calls are enabled and will provide such stimuli to the system based on different
heuristics for exploring the space of allowed environment communications. Since stimuli
are generated completely automatically, this effectively allows to subject the model to a
stress test: except for border-case testing, essentially random stimuli are provided, unless
environment actions are restricted by the scenarios. We expect this stress test to significantly
enhance robustness of the model, since environment stimuli are bound to occur, which are
“legal” as far as the LSC specification is concerned, but were never taken into account when
specifying object behaviour. Typically, this will induce repair work in the object model,
and possibly elaboration of the LSC specification in order to further restrict interactions
allowed by the environment.

Finally, adding another level of rigour, we can strengthen the above analysis by applying
formal verification techniques. Mathematically, this entails the construction of a formal
proof that all runs of the object model are compliant with the given scenario specification.
From a user’s perspective, the effect of carrying out formal verification is essentially the same
as running a simulation with the test-driver tool for infinite amount of time: while the test-
driver will clealry catch uncovered errors only with a coverage degree that depends on the
duration of the simulation, formal verification provides 100% coverage, taking into account
all legal environment interactions; that is, the only environment interactions not taken into
account in formal verification are exactly those prohibited by the scenario definition. We
would typically apply formal verification following stress testing. The mathematical theory
underlying this verification tool will be discusssed in a follow-up paper currently under
preparation.

Taken together, the combination of these techniques will significantly enhance the quality
of the essential object model. Having passed a maturity gate defined by the application of
monitoring, stress-testing and formal verification will indeed allow us to assert that the
functional essence of the application as expressed in the essential object model is correctly
realized. We can thus enter the design phase with a high quality essential object model.
In particular, this object model can serve as a reference when introducing design related
details into the model.

Once we make the transition from a virtual to a real target, where aspects such as real-
time scheduling and device drivers come into play, we can still validate conformance of
the executable running on the target and the essential object model by test-vectors charac-
terizing the essential object model. The OFFIS group is currently implementing a tool that
automatically generates such test-vectors, taking into account both the LSC specification as
well as the essential object model. The algorithms underlying automatic test vector gener-
ation will drive the object model in a way that all activation conditions of scenarios will be
reached. They will also provide coverage with respect to other aspects of the object model,
such as states, transitions, guards, etc. Test-vectors not only drive the target code, they also
define the expected response of the systems as defined from the essential object model.
They can be downloaded onto the target architecture, together with a monitor component,
which observes whether the response provided by the target is indeed compliant wih the
result expected according to the test vector.

In addition to these methods of using LSCs in an overall design process for systems, we
refer the reader to [19], which is orthogonal and complementary to the above discussion. In
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it, a high level description is provided of a generic system development process, where LSCs
serve as the main language for stating requirements. Besides verification, model execution
and debugging, and code generation, two additional techniques are discussed there. One
is the automatic synthesis of object behavior directly from LSCs (see [22]). This makes it
possible to go from requirements to a first-cut implementable model of the system (which
can then be refined, the new version verified against the requirements, which themselves
can be enriched and refined, etc.).

The second technique is a user-friendly requirement capture method, which is called
play-in scenarios in [19]. What is proposed there is to play-in scenarios, rather than playing
them out, and this prior to building the behavioral model of the system, in order to set
up the requirements, perhaps driven by use-cases. This will be done not using visual or
other languages, but by working directly opposite such a mock-up of the system’s interface,
using a highly user-friendly method of ‘teaching’ your tool about the desired and undesired
scenarios. The interactive process will also include means for refining the system’s struc-
ture as you progress, e.g., forming composite objects and their aggregates and setting up
inheriting objects, all reflected in a modified mock-up interface. As the process of playing
in the scenario-based requirements continues, the underlying tool will automatically and
incrementally generate LSCs (not merely MSCs) that are consistent with these played-in
scenarios. Thus, we are automating the construction of rigorous and comprehensive require-
ments from a friendly, intuitive and user-oriented play-in capability, rather than employing
abstract engineer-oriented languages.

The work on play-in scenarios is being carried out at the Weizmann Institute, and will
also be described in more detail in a follow-up paper.

Appendix: The semantics of basic charts

The semantics of a basic chart m is defined to consist of all runs compatible with the order
induced by m and its annotations. We define these in three stages. Subsection A.1 recalls the
definition of the partial-order induced by a basic chart (cf. [35]). Subsection A.2 shows how
to construct from m a transition-system called the skeleton-automaton of m. From these we
derive the set of runs accepted by a basic LSC in Subsection A.3.

A.1. The partial-order induced by a basic chart

For the sake of completeness we provide here a formal definition of the partial order ≤m

induced by a chart m. As defined in the standard [35], all events along an instance line are
ordered, as are any pair of events signaling the sending and receiving of a message (the
very same message, of course); the former from top to bottom in the chart, and the latter
from sending to receiving. The rest of the ordering is then obtained by taking the transitive
closure of these, with the exception that comes from the provision of coregions which, as
explained in the paper, are captured by the order mapping: If order(m)(〈i, l〉) = false, then
there is no ordering relation implied between locations 〈i, l〉 and 〈i, l + 1〉.

The only non-standard features we have to discuss in this Appendix are extensions of this
order to cover synchronous messages and shared conditions. For synchronous messages, we
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want the sender of the message to be blocked until receipt. Hence we include the receive-
event location in the preset of the location that is the successor to the send-event. A shared
condition induces a synchronization barrier for all instances sharing it: the condition will
be evaluated when all involved instances have reached the barrier. This decision is tightly
coupled with the decision (motivated in Subsection A.2), to allow arbitrary insertion of local
computation steps between locations visible in the chart, thus relaxing the synchronization
between instances as far as local computations are concerned.

A subtle point regards synchronous messages sent to or received from the environment.
To keep the definition of the partial-order compile-time computable, we incorporate into
our definition the assumption that the environment of a chart will eventually be willing to
communicate, and hence infer no ordering constraints from such messages. In some situa-
tions, e.g., when embedding a subchart into a chart and binding the synchronous message to
a matching event in the embedding chart, this assumption may be violated, which can lead
to the blocking of runs that were allowed when the subchart was considered in isolation.
In a follow-up paper we plan to present algorithms that generate verification conditions to
check for the validity of this (and other) assumptions when embedding subcharts.

We now proceed with the formal definition of semantics for basic LSCs. We first define a
binary relation R(m) on dom(m) to be the smallest relation satisfying the following axioms
and closed under transitivity and reflexivity:

• order along an instance line:

∀〈i, l〉 ∈ dom(m). order(m)(〈i, l〉) = true ⇒ 〈i, l〉R(m)〈i, l + 1〉;
• order induced from message sending:

∀m id ∈ Message Id. ∀〈i, l〉,〈i ′, l ′〉 ∈ dom(m).
label(m)(〈i, l〉) = 〈 , 〈m id, , !〉〉 ∧

label(m)(〈i ′, l ′〉) = 〈 , 〈m id, , ?〉〉 ⇒ 〈i, l〉R(m)〈i ′, l ′〉;
• synchronous messages block sender until receipt:

∀m id ∈ Message Id. ∀〈i, l〉,〈i ′, l ′〉 ∈ dom(m).
label(m)(〈i, l〉) = 〈 , 〈m id, synch, !〉〉

∧ label(m)(〈i ′, l ′〉) = 〈 , 〈m id, synch, ?〉〉 ⇒ 〈i ′, l ′〉R(m) 〈i, l + 1〉;
• shared conditions induce synchronization barrier:

∀c ∈ Conditions Id. ∀〈i, l〉, 〈i ′, l ′〉 ∈ dom(m).
label(m)(〈i, l〉) = 〈 , 〈c, 〉〉 = label(m)(〈i ′, l ′〉) ⇒ 〈i, l〉R(m)〈i ′, l ′〉.

We say that a chart m is well-formed if the relation R(m) is acyclic. In the sequel, we
assume all charts to be well-formed and use ≤m to denote the partial order R(m).

We denote the preset of a location 〈i, l〉 containing all elements in the domain of a chart
smaller than 〈i, l〉 by

•〈i, l〉 = {〈i ′, l ′〉 ∈ dom(m) | 〈i ′, l ′〉 ≤m 〈i, l〉}.
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We denote the partial order induced by the order along an instance line by ≺m , thus
〈i, l〉 ≺m 〈i ′, l ′〉 iff i = i ′ and l < l ′.

A cut through m is a set c of locations, one for each instance, such that for every location
〈i, l〉 in c, the preset •〈i, l〉 does not contain a location 〈i ′, l ′〉 such that 〈 j, l j 〉 ≺m 〈i ′, l ′〉 for
some location 〈 j, l j 〉 in c.

A.2. The skeleton automaton of a basic chart

A skeleton automaton is just a symbolic transition system (STS) in the sense of [14],
equipped with a particular state structure induced from the basic LSC. Intuitively, a state
in this transition system represents a cut through the partial-order induced by the LSC,
annotated by the current valuation of local instance variables and of messages currently
sent or received by each instance.

In the definition below, we exploit the property guaranteed by the construction of the par-
tial order, that shared conditions effectively induce “run-time” barriers among the instances
sharing the condition. (Recall, however, that local computations are always enabled!) We
then evaluate conditions only when all involved instances have reached the barrier. The fact
that local computations may arbitrarily interfere with the establishment of shared condi-
tions might look a little unusual. However, one must keep in mind that this “interference”
is exactly what is needed in order to “pad” an actual computation as determined by an
implementation into the runs accepted by the LSC. In particular, “good” runs that do not
include changing of local variables for a sufficient time span are among those accepted by
the LSC.

The state space of the STS associated with the basic LSC m is derived from the following
(meta)variables, where i is any of the instances referred to in the LSC:

• i.location denotes the current location of instance i ;
• i.events denotes the events currently emitted by i ;

this must be included in events(i), but can also take the value silent, repre-
senting the situation in which no message is emitted at the current location;
Note that due to the simultaneous region construct i may emit more than one
message;

• i.v the current local value of i’s instance variable v;
• promises the current set of promises; this variable takes its value in the power-set of

dom(m) ∪ {m id? | m id ∈ vis events(m)};
• status can take any of the values active, aborted, terminated.

Initial states of the STS must satisfy the initialization predicate init(m), which is the con-
junction of the following:

• i.location = 0 initially all instances start at location zero;
• status = active initially the system is active;
• i.events /∈ vis events(m) initially no event visible in the chart is present.
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Note, that there is no restriction on values of variables, nor on the presence or absence of
invisible events. The transition relation is partitioned into the following types of moves:

• τ -steps perform purely local computations, and are always enabled when the
chart is active;

• i-steps allow instance i to proceed;
this requires the chart to be active, and i’s next location to be enabled;

• chaos-steps may arbitrarily change valuations of variables as well as presence of
events; this requires the chart to be in status terminated;

• stutter-steps perform only “stuttering”; i.e., do not change any of the variables of the
STS; this requires the chart to be in status aborted.

Our semantics is a pure interleaving one: only a single instance is allowed to proceed
at a time, and hence the transition predicate for the global transition relation is just the
disjunction of the transition predicates of its partitions.

Figure 5, presented in Section 4, gives a global view of the relation between the status
of the basic chart and the allowed transition types. In the case of subcharts, the “terminate”
box will include also exiting the subchart with no chaos allowed.

We describe the transition relation of our STS using the concrete syntax suggested in
[14], in a self-explanatory imperative style. Following the keyword behavior, the effect of
a single step of the STS on its (meta-) variables (declared in the section introduced by the
keyword variables) is described in an imperative style, making free use of abbreviations
(introduced in the section named definitions). Definitions are evaluated at each step; in
particular, we make heavy use of the fact that non-deterministically chosen values (picked
using the choose expression from some set possibly restricted by a predicate) are drawn
anew for each step of the STS.

system skeleton automaton(m) is

variables
i.location : dom(i) for all i ∈ instances(m);

the current value of all location pointers of all instances together defines the cut through
the LSC: all predecessors up to and including locations in the cut have been visited

i.events : ℘(events(i)) ∪ {silent} for all i ∈ instances(m);
i.v : type(v) for all v ∈ var(i), i ∈ instances(m);
i.blocked : integer for all i ∈ instances(m);
if an instance is waiting for the receipt of a synchronous message, it cannot perform
local computations; to disallow τ -steps in such an instance, we increment its
block-counter whenever a synchronous message is sent
the need for a counter arises due to the simultaneous region construct: an instance may
send more than one synchronous message and has therefore to keep track of the number
of receipts it is awaiting

promises : ℘(dom(m) ∪ {m id? | m id ∈ vis events(m)});
status : {active, aborted, terminated};
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definitions
enabled(〈i, l〉) = •〈i, l〉 ⊆ {〈i ′, l ′〉 ∈ dom(m) | l ′ ≤ i ′.location} ∧ l > i.location

for 〈i, l〉 ∈ dom(m);

a location 〈i, l〉 of instance i is enabled iff it has not yet been reached and all its
predecessors according to the partial order defined by m have been visited

active(c) = ({〈i, l〉 ∈ dom(m) | i ∈ shared(c) ∧ label(〈i, l〉) = 〈−, c〉}
= {〈i, i.location〉 | i ∈ shared(c)}) for c ∈ Condition Ids;

a condition is active iff all instances sharing it have reached the location labeled with it;
conditions will only be evaluated when they are active

completed = ∀i ∈ inst(m). i.location = l max(m, i);

a chart has been visited completely once the current cut covers all maximal locations
of instances, i.e., the “lowest” locations depicted per instance line; henceforth no
further restrictions are implied by the chart

〈i, l〉 = choose 〈i ′, l ′〉 ∈ dom(m) s.t. enabled(〈i ′, l ′〉);

an enabled location is picked, in order to advance the cut by moving to the new enabled
location 〈i, l〉; note that the set of enabled locations may be empty only when the
chart is completed

loc temp = temp(m)(〈i, l〉);

short-hand notation for the temperature of the location to be visited in the next i-step

transition type = choose s type ∈ {τ -step, i-step};

when active, a choice is made between performing local computation steps or i-steps; the
value of transition type determines the choice for the current step

i τ = choose i ∈ inst(m) s.t. i.blocked = 0;

a candidate instance for a local or terminating computation step is picked, which is not
blocked waiting for receipt of synchronous messages

action = choose act ∈ {update, transmission};

a decision is made as to whether the local step will update a variable or involve
sending or receiving a message

〈msgs, cond〉 = label(m)(〈i, l〉);
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v τ = choose v ∈ var(i τ);

the local variable to be updated is picked

e τ = choose e ∈ events(i τ);
e−local τ = choose e ∈ events(i−τ) s.t. e ∈ vis events(m);

an event (a local event) to be executed in the chaos-step (local step) is picked

behavior
case status of
active:

if enabled(〈i, l〉) and transition type = i-step
then
an i-step is to be performed; the label for each location is of the form
〈msgs, cond〉 ∈ Labels; first the condition is evaluated

if(〈c, b〉 ∈ Conditions) ∈ cond and active(c) and not b

all instances sharing condition c have reached the location labeled c,
hence its condition b (referring to instance variables visible in m
and declared in the instances sharing c) is evaluated

then status := if temp = hot then abort else exit fi

in case of failure the status is updated dependent on the temperature of
the condition as explained above

else
i.location := l;
if either the condition is not active, or it is active and the condition
evaluates to true, the cut is advanced by moving the location pointer
of instance i to location l; hence, any possible promises of reaching
this location are fulfilled, entailing that promise 〈i, l〉 must be
deleted

promises := if loc temp = hot
then promises\{〈i, l〉} ∪ {〈i, l + 1〉}
promises regarding location 〈i, l + 1〉 must be
added if 〈i, l〉 is hot; recall that this implies, that
l is not the maximal location of i ; hence 〈i, l + 1〉
is indeed a location of i

else promises\{〈i, l〉}
fi

fi
for all (〈m id, synch type, dir〉 ∈ Messages) ∈ msgs do

evaluate all messages at the current location
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if dir =! and temp = hot
then promises := promises ∪ {〈m id, ?〉} fi

if in addition m id is hot (as indicated by temp) and the event
represents sending a message, the corresponding receive-event is
added to the set of promises; note that this is independent of the
transmission type synch type.

i.events := i.events ∪ 〈m id, dir〉;
if synch type = synch and dir = !

then i.blocked := i.blocked + 1 fi;
in the case of synchronous message sending, local computations of
instance i are forbidden until all synchronous messages have been
received; note that i-steps are forbidden by ordering constraints until
the receiver reaches the location labeled with the matching receive
event

if synch type = synch and dir = ?
then sender(m id).blocked := sender(m id).blocked − 1 fi

in the case of synchronous message receipt, the sender’s counter is
decremented; once it reaches 0 the sender may proceed with local
computations

od;
else

if transition type = τ -step and i τ.blocked = 0 then

perform a local action in instance i τ by choosing to emit a local event or to
perform an update on an arbitrarily chosen instance variable with an arbitrary
matching value; in the case of an update, the instance becomes silent

if action = update
then i τ.v τ := choose d ∈ type(v τ); i τ.events := silent
else i τ.events := e local τ fi
else status := terminated fi

the only remaining alternative is termination of the chart after having
reached all maximal instance locations

f i
terminated:

depending on the action, either an arbitrary value is produced for an arbitrarily
chosen instance variable or some message is generated for the randomly chosen
instance i τ

if action = update
then i τ.v τ := choose d ∈ type(v τ); i τ.events := silent
else i τ.events := e τ fi
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aborted: skip

idle steps are performed, thus maintaining the valuation of all system variables

esac
end system

A.3. Runs of a basic chart

Given the skeleton automaton A(m) we derive the set of runs accepted by the LSC m in the
following steps.

1. We view A(m) as a symbolic transition system, thus obtaining the set traces(A(m))

of all infinite sequences π of valuations of instance variables and events, such that the
first valuation satisfies the initialization predicate of A(m), and consecutive elements are
related by A(m)’s transition relation.

2. We classify A(m)’s traces into accepted and rejected runs, by analyzing the valuation-
sequences of the system variables status and promises:

• π is accepted if one of the following holds:

(i) it reaches status terminated (and maintains this status forever); in this case, either
the complete LSC has been matched or a cold condition was not satisfied, causing
exit from the chart;

(ii) it stays forever in status active, having, however, fulfilled all promises (thus from
some point in time onward, promises = ∅ continuously); in this case, the LSC has
been traversed only partially, with the frontier not progressing beyond some cut
through the LSC. Such a computation is perfectly legal, as long as no progress
annotations have been given by the designer to force the LSC to move beyond the
cut; in particular, this is the case if the LSC is restricted to the notations supported
by the current standard.

• π is rejected if one of the following holds:

(i) it reaches status aborted (and maintains this status forever); in this case, some hot
condition has not been matched, causing abortion of the chart;

(ii) it stays forever in status active, but fails to fulfill its promises, entailing that the
set of promises remains non-empty forever; in this case, again the evaluation of
the LSC gets stuck at some intermediate cut, performing local computations, but
the promises accumulated up to and including this cut have still to be met.

3. We obtain a run of the LSC by projecting an accepted trace onto valuations of instance
variables and events only, hiding the system variables status and promises, as well as
i .blocked and i .location, for all instances i of m.

4. We can now derive the satisfaction relation between a run r produced by some imple-
mentation and an LSC m. We say that m is satisfied by r , denoted r |= m, iff r is one of
the runs of m according to clause 3 above.
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We now turn these informal clauses into formal definitions. We assume as given a fixed
LSC m and its skeleton automaton A(m), with transition relation R(m) and initialization
predicate init(m). We further denote by events(m) (respectively, var(m)) the set of all events
(respectively, variables) of all instances of m, subsuming its visible events and variables,
which together with the system variables i.location, i.blocked, status, and promises consti-
tutes the set var(A(m)) of variables of A(m).

Definition

1. A state σ of A(m) is a type-preserving valuation of all variables of A(m). We denote
the set of all states of A(m) by (A(m)).

2. A trace π of A(m) is an infinite word π = (πn)n∈ω over (A(m)), s.t. π0 satisfies
init(m). We denote the set of all traces of A(m) by traces(A(m)).

3. A trace π is accepted (denoted accepted(π)) iff

∃i ∈ ω. ∀n ≥ i. ((πn(status) = terminated)

∨ (πn(status) = active ∧ πn(promises) = ∅)).

4. A trace π is rejected (denoted rejected(π)) iff

∃i ∈ ω.∀n ≥ i. ((πn(status) = aborted)

∨ (πn(status) = active ∧ πn(promises) �= ∅)).

5. Let V ⊆ var(A(m)). The projection of a trace π ∈ traces(A(m)) on V (π|V ) is obtained
from π by simply restricting all states πn to V .

6. The set of runs of an LSC m is defined by

runs(m) = {
π|events(m)∪var(m)

∣∣ π ∈ traces(A(m)) ∧ accepted(π)
}
.

Note that the apparent lack of duality in the definition of accepted vs. rejected traces
is resolved by the construction of A(m). Indeed, if the status terminated is not reached,
computation never moves beyond some cut of the LSC, hence only local computation steps
may be performed. However, local computation steps cannot resolve promises. Note also
that once the LSC has reached status aborted, it will never change this status; hence, we
could also have phrased this part of the rejection condition by only requiring that aborted
is reached for some n.

We have thus established the desired connection between a run r produced by some
implementation and an LSC m : r satisfies m iff r is one of the runs accepted by m.

Definition. Let V = events(m) ∪ var(m), let (V ) be the set of all states over V , and let
r be an infinite word over (V ). We say that r satisfies m (denoted r |= m) iff r ∈ runs(m).

As mentioned earlier, in this paper we omit the formal semantics of subcharting, as well as
that of iteration and branching, and do not deal at all with instance creation and destruction,
and timing issues. These we plan to describe in a future paper.
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Notes

1. This problem has recently been addressed for LSCs too; see [22].
2. This paper does not incorporate implementation related concepts, such as states and state-based conditions,

into the LSC language. Rather, we stick to message sequencing and use variables extensively.
3. Actually an activation condition can be expressed within a pre-chart by placing a condition at the top of the

pre-chart. We nevertheless distinguish activation conditions from pre-charts in order to have an easy to use
shorthand notation for the former, which we expect will be the one often used.

4. Here we only consider the activation condition, because we need the skeleton automaton described in Section 4
for a full definition of the pre-charts concept. We postpone the full definition until then. Informally a pre-chart
is satisfied if the activation condition is true and the system has shown the communication behavior of the
pre-chart. Immediately after completion of the pre-chart the actual LSC is activated.
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