R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. In IEEE Prc
International Conference on Software Engineering, pages 304-313, 2000

Inference of Message Sequence Charts

Rajeev Alur
Dept. of Computer & Info. Sci.
U. of Pennsylvania, and
Bell Labs

alur@cis.upenn.edu

ABSTRACT

Software designers draw Message Sequence Charts for
early modeling of the individual behaviors they expect
from the concurrent system under design. Can they be
sure that precisely the behaviors they have described are
realizable by some implementation of the components
of the concurrent system? If so, can one automatically
synthesize concurrent state machines realizing the given
MSCs? If, on the other hand, other unspecified and pos-
sibly unwanted scenarios are “implied” by their MSCs,
can the software designer be automatically warned and
provided the implied MSCs?

In this paper we provide a framework in which all these
questions are answered positively. We first describe the
formal framework within which one can derive implied
MSCs , and we then provide polynomial-time algorithms
for implication, realizability, and synthesis. In particu-
lar, we describe a novel algorithm for checking deadlock-
free (safe) realizability.

Keywords
Message sequence charts, scenarios, concurrent state
machines, deadlock freedom, realizability, synthesis.

1 INTRODUCTION

Message Sequence Charts (MSCs) are a commonly used
visual description of design requirements for concurrent
systems such as telecommunications software [16, 19],
and have been incorporated into software design nota-
tions such as UML [20]. Requirements expressed using
MSCs have been given formal semantics, and hence, can
be subjected to analysis. Since MSCs are used at a very
early stage of design, any errors revealed during their
analysis yields a high pay-off. This has already mo-
tivated the development of algorithms for a variety of
analyses including detecting race conditions and timing
conflicts [1], pattern matching [17], detecting non-local

Kousha Etessami
Bell Labs
600 Mountain Ave.
Murray Hill, NJ 07974

kousha@research.bell-labs.com

Mihalis Yannakakis
Bell Labs
600 Mountain Ave.
Murray Hill, NJ 07974

mihalis@research.bell-labs.edu

choice [4], and model checking [2], and tools such as
uBET [11], MESA [5], and SCED [13]. An individual
MSC depicts a potential exchange of messages among
communicating entities in a distributed software system,
and corresponds to a single (partial-order) execution of
the system. The requirements specification is given as
a set of MSCs depicting different possible executions.
We show that such a specification can be subjected to
an algorithm for checking completeness and detecting
unspecified MSCs that are implied, in that they must
exist in every implementation of the input set.

Such implied MSCs arise because the intended behav-
iors in different specified MSCs can combine in unex-
pected ways when each process has only its own local
view of the scenarios. Our notion of implied MSCs is
thus intimately connected with the underlying model of
concurrent state machines that produce these behaviors.
We define MSCs to be realizable if there exist concurrent
automata which implement precisely those MSCs.

We study two distinct notions of MSC implication,
based on whether the underlying concurrent automata
are required to be deadlock-free or not. Deadlocks in
distributed systems can occur, e.g., when each process
is waiting to receive something that has yet to be sent.
We give a precise formalization of deadlocks in our con-
current automaton framework.

Using our formalization, we show that MSCs can be
studied via their linearizations. We then establish real-
izability to be related to certain closure conditions on
languages. It turns out that, while arbitrary realizabil-
ity is a global requirement that is computationally ex-
pensive to check (coNP-complete), safe (deadlock-free)
realizability corresponds to a closure condition that can
be formulated locally and admits a polynomial-time so-
lution. We show that with a judicious choice of pre-
processing and data structures, safe realizability can be
checked in time O(k?n + rn), where n is the number of
processes, k is the number of MSCs, and r is the num-
ber of events in the input MSCs. If the given MSCs
are not safely realizable, our algorithm produces miss-
ing implied (partial) scenarios to help guide the designer
in refining and extending the specification.

Frederick Sheldon
R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. In IEEE Proc. 22nd International Conference on Software Engineering, pages 304-313, 2000

We first describe our results in the setting of
asynchronous communication with non-FIFO message
buffers between each pair of processes. In Section 8, we
point out how our results can be generalized to a variety
of communication architectures in a generic manner.

Many researchers have argued that in order to use MSCs
in the automated analysis of software, the information
MSCs provide needs to be reconciled with and incorpo-
rated into the state-based models of systems used later
in the software life-cycle, and consequently, have pro-
posed mechanical translations from MSC specifications
to state machines [14, 15, 10, 12, 9, 7]. The question
of implication is closely related to this synthesis ques-
tion. In fact, we give a synthesis algorithm which is
in the same spirit as others proposed in the literature:
to generate the state-machine corresponding to a pro-
cess P, consider the projections of the given scenarios
onto process P, and introduce a control point after ev-
ery event of process P. However, our focus differs sub-
stantially from the earlier work on translating MSCs
to state machines. First, we are interested in detect-
ing implied scenarios, and in avoiding deadlocks in our
implementations. Second, we present a clean language-
theoretic framework to formalize these problems via clo-
sure conditions. Lastly and importantly, we emphasize
efficient analysis algorithms, and in particular present
an efficient polynomial-time algorithm to detect safely
implied MSCs and solve safe realizability, avoiding the
state-explosion which typically arises in such analysis of
concurrent system behavior.

It is worth noting that inferring sequential state ma-
chines from example executions is a well-studied topic
in automata theory [6, 3]. In our setting, only “positive”
examples are given, but the executions are partially or-
dered and we infer “distributed” implementations.

2 SAMPLE MSC INFERENCE

We motivate inference of missing scenarios using an ex-
ample related to serializability in database transactions
(see, e.g., [18]).

Consider the following standard example, described in
the setting of a nuclear power plant. Two clients, P, and
P5, seek to perform remote updates on data used in the
control of a nuclear power plant. In this database the
variable U R controls the amount of Uranium fuel in the
daily supply at the plant, and the variable N A controls
the amount of Nitric Acid. It is necessary that these
amounts be equal in order to avoid a nuclear accident.
Consider the two MSCs in Figure 1 which describe how
distinct transactions may be performed by each of the
clients, P, and P». The “inc” message denotes a re-
quest to increment the fuel amount by one unit, while
the “double” message denotes a request to double the
fuel amount. In the MSCs, we interpret the point where

a message arrow leaves the time line of a process to be
the instance when the requested operation labeling the
transition is issued, and we interpret the point where a
message arrives at the time line of its destination pro-
cess to be the instance when the requested operation is
acted on and executed.! In the first scenario, P, first
increments the amounts of both ingredients, and then,
P; doubles the amounts of both ingredients. In the sec-
ond scenario, first P, doubles the two amounts, and
then, P; increments both the amounts. In both scenar-
ios, after both transactions have finished, the desired
property, equal amounts of uranium and nitric acid, is
maintained. However, these MSCs imply the possibil-
ity of MSCy,q in Figure 2. This is because, as far as
each process can locally tell, the scenario is proceeding
according to one of the two given scenarios. However,
the scenario results in different amounts of uranium and
nitric acid being mixed into the daily supply, and in the
potential for a nuclear accident. Note that either of
the MSCs in Figure 1 alone will not necessarily imply
MSCyq4, because in each case the protocol could specify
that client P1 (P2) updates the fuel levels first, followed
by P2 (resp., P1).

3 MESSAGE SEQUENCE CHARTS

In this section, we define message sequence charts, and
study the properties of executions definable using them.
Our definition captures the essence of the ITU standard
MSC’96 [16], and is analogous to the definitions of la-
beled MSCs given in [1, 2].

Let P = {P,...,P,} be a set of processes, and X
be a message alphabet. We write [n] for {1,...,n}.
We use the label send(i,j,a) to denote the event “pro-
cess P; sends the message a to process P;.” Simi-
larly, receive(i,j,a) denotes the event “process P; re-
ceives the message a from process P;.” Define the set
35 = {send(i, j,a) | i,j € [n] & a € £} of send labels,
the set S = {receive(i, j,a) | i,j € [n] & a € X} of re-
ceive labels, and ¥ = X5 U XF as the set of event labels.
A Y-labeled MSC M over processes P is given by:

1. a set E of events which is partitioned into a set S
of “send” events and a set R of “receive” events;

2. a mapping p : E — [n] that maps each event to a
process on which it occurs;

3. a bijective mapping f : S — R between send and
receive events, matching each send with its corre-
sponding receive;

4. a mapping | : E — 3 which labels each event
such that I(S) C ¥ and I(R) C X%, and fur-
thermore for consistency of labels, for all s € S,

IThis interpretation is consistent with our concurrent state
machine interpretation of MSCs in the rest of this paper.

P, UR NA P, P, UR NA P,

inc . double
inc

double

double inc

inc

double

MSC, MSC,

Figure 1: Two seemingly “correct” scenarios, updating fuel amounts
if I(s) = send(i,j,a) then p(s) = i and I(f(s)) =
receive(i, j,a) and p(f(s)) = j;

5. for each i € [n], a total order <; on the events of
process P;, that is, on the elements of p~1(i), such inc
that the transitive closure of the relation

double

<= Uie[n] <i U {(Saf(s)) | s € S}

double

is a partial order on E. inc

Note that the total order <; denotes the (visual) tem-
poral order of execution of the events of process P;. The
requirement that < is a partial order enforces the no-
tion that “messages can’t travel back in time”. Thus,
an MSC can be viewed as a set E of X-labeled events
partially ordered by <. The partial order corresponding
to the first MSC of Figure 1 is shown in Figure 3.

Figure 2: Implied MSCyyq: Incorrect fuel mix

receive(P1,UR,inc)

Besides the above, we require our MSCs to satisfy an send(P1,UR;inc)
additional non-degeneracy condition. We will say an receive(P1,NA ,inc)
MSC is degenerate if it reverses the order in which two send(P1,NA inc) send(P2,UR,double)

identical messages sent by some process P; are received
by another process Pj. More formally, an MSC M is
degenerate if there exist two send-events e; and es such i
that l(e1) = l(e2) and e; < ez and f(e2) < f(e1). To receive(P2,NA, double)
understand this notion, consider the four MSCs in Fig-
ure 4. In both MSC; and MSCy;, P1 sends two a’s and
P2 receives two a’s. The receiving process has no way
to tell which of the messages is which, since the mes-
sages themselves are indistinguishable. If one wants to
distinguish the two MSCs, then one needs to associate,
e.g., time-stamps to the two messages. But then we are

receive(P2,UR,double) send(P2,NA ,double)

Figure 3: Partial order representation of MSC;

really dealing with distinct messages, as in MSCrrr and OK Degenerate OK OK
MSCry. In these scenarios, process P2 can clearly tell 72 P2 Pl P2 Pl P2 Pl P2
the distinct messages apart, and we in general accept a a a a

such reorderings.? Note that, the partial order on the a b
events induced by MSCj is more general than that in- a b

duced by MSCyy, in that it allows strictly more possible

interleaved executions. Henceforth, throughout the rest MSC) MSCy) MSC iy MSCy

of this paper, MSCs refer to non-degenerate MSCs.] '
Figure 4: Degeneracy in MSCs
2When dealing specifically with FIFO architectures, via the
general framework in section 8, we will explicitly forbid crossing
of the kind in MSCyy as well.

Given an MSC M, a linearization of M is a string over
3} obtained by considering a total ordering of the events
FE that is consistent with the partial order <, and then
replacing each event by its label. More precisely, a word
w = wy - --w|g| over the alphabet X is a linearization of
an MSC M iff there exists a total order e; - - - e|g| of the
events in E such that (1) whenever e; < e;, we have
i <j,and (2) for 1 <i < |E|, w; = l(e;).

Not all sequences of send’s and receive’s can arise as
legitimate linearizations of MSCs. For example, a mes-
sage received must already have been sent. What char-
acterizes the words that can arise as linearizations of
MSCs? Let #(w,z) denote the number of times the
symbol z occurs in w. Let w|; denote the projection
of the word w that retains only those events that occur
on process P; (that is, events of type send(i,j,a) or re-
ceive(j,i,a)). The two conditions necessary for a word
to be in an MSC language are the following;:

Well-formedness. A word w over ¥ is well-formed
if all receive events have matching sends. Formally, a
symbol z € ¥ is possible after a word v over ¥, if, either
z € X% or x = receive(i, j,a) with #(v, send(i, j,a)) —
#(v,receive(i, j,a)) > 0. A word w is well-formed if for
every prefix vz of w, x is possible after v.

Completeness. A word w over 3 is complete if
all send events have matching receives. More pre-
cisely, a well-formed word w over 3 is called complete
iff for all processes i,j € [n] and messages a € X,
#(w, send(i, j, a)) — #(w, receive(i, j,a)) = 0. It is easy
to check that every linearization of an MSC is well-
formed and complete. The converse also holds:

Proposition 1 A word w over the alphabet 3 is a lin-
earization of an MSC iff it is well-formed and complete.

More is true. Let M|; denote the ordered sequence of
labels of events occurring on process ¢ in the MSC M:

Proposition 2 An MSC M over {Pi,...,P,} is
uniquely determined by the sequences M|;, i € [n].
Thus, we may equate M = (M|; | i € [n]).® Likewise, a
well-formed and complete word w over) uniquely char-
acterizes an MSC M,, given by (w|; | i € [n]).

Both propositions follow from the fact that from any
well-formed and complete word w one can build a canon-
ical MSC, msc(w), by progressively matching receives in
prefixes of the word w with the first corresponding send
in w which is yet to be matched. It is easy to verify
that if w is some linearization of an MSC M, then M
can be reconstructed from w, i.e. msc(w) = M. For an

3Note that the MSC M is non-degenerate by assumption, and
this assumption is required.

MSC M, define L(M) to be the set of all linearizations
of M. For a set M of MSCs, the language L(M) is the
union of languages of all MSCs in M. We say that a
language L over the alphabet ¥ is an MSC-language if
there is a set M of MSCs such that L equals L(M).
What are the necessary and sufficient conditions for a
language to be an MSC-language? First, all the words
must be well-formed and complete. Second, in the MSC
corresponding to a word, the events are only partially
ordered, so once we include a word, we must include all
equivalent words that correspond to other linearizations
of the same MSC. This notion is formalized below.

Closure Condition CC1. Given a well-formed word
w over the alphabet 2, its interleaving closure, de-
noted (w), contains all well-formed words v over X
such that for all 4 in [n], w|; = v|;- A language L
over 3 satisfies closure condition CC1 if for every
w € L, (w) C L.

Note that CC1 considers only well-formed words, so
matching of receive events is implicitly ensured. Now,
the following theorem characterizes the MSC-languages:

Theorem 3 A language L over the alphabet Y is an
MSC-language iff L contains only well-formed and com-
plete words and satisfies CC1.

The proof uses the fact that one can recover uniquely an
MSC from any of its linearizations. It is worth noting
that CC1 can alternatively be formalized using semi-
traces over an appropriately defined independence rela-
tion over the alphabet X (see, for instance, [8]).

We will find useful the notion of a partial MSC. A partial
MSCis given by a well-formed, not necessarily complete,
sequence v, or, equivalently, by the projections of such a
sequence. We call an MSC M a completion of a partial
MSC v 2 (v|; | i € [n]), if v|; is a prefix of M|; for all i.

4 CONCURRENT AUTOMATA

Our concurrency model is based on the standard
buffered message-passing model of communication.
There are several choices to be made with regard to
the particular communication architecture of concurrent
processes, such as synchrony/asynchrony and the queu-
ing disciplines on the buffers. We will show in section
8 that our results apply in a general framework which
captures a variety of alternative architectures. However,
for clarity of presentation in the main body of the pa-
per, we fix our architecture to a standard asynchronous
setting, with arbitrary (i.e., unbounded and not neces-
sarily FIFO) message buffers between all pairs of pro-
cesses. We now formally define our automata A;, and
their (asynchronous) product II7-; A;, which captures
their joint behavior.

As in the previous section, let ¥ be the message alpha-
bet. Let X; be the set of labels of events belonging to
process P;, namely, the messages of the form send(i, j, a)
and receive(j,i,a). The behavior of process P; is speci-
fied by an automaton A; over the alphabet X; with the
following components: (1) a set @; of states, (2) a tran-
sition relation §; C Q; X DIPR @i, (3) an initial state
@ € Q;, and (4) a set F; C Q; of accepting states.

To define the joint behavior of the set of automata A;,
we need to describe the message buffers. For each or-
dered pair (4, j) of process indices, we have two message
buffers B} ; and B ;. The first buffer, B ;, is a “pend-
ing” buffer which stores the messages that have been
sent by P; but are still “in transit” and not yet accessible
by P;. The second buffer B ; contains those messages
that have already reached P;, but are not yet accessed
and removed from the buffer by P;. Define @5, to be the
set of multi-sets over the message alphabet ¥.. We de-
fine the buffers as elements of @y (FIFO queues, on the
other hand, can be viewed as sequences over ¥). Thus,
for 4,5 € [n], we have Bf], B! ; € Qs. The operations
on buffers are defined in the natural way: e.g., adding
a message a to a buffer B corresponds to incrementing

the count of a-messages by 1.

We define the asynchronous product automaton A=
I, A; over the alphabet X, given by:

States. A state ¢ of A consists of the (local) states g;
of component processes A;, along with the contents of

the buffers B} ; and BJ ;. More formally, the state set

2 2
Qis X7 1Qi x Q% x Q% .

Initial state. The initial state go of A is given by
having the component for each process i be in the start
state ¢¥, and by having every buffer be empty.

Transitions. In the transition relation § C Q x (¥ U
{r}) x @, the T-transitions model the transfer of mes-
sages from the sender to the receiver. The transitions
are defined as follows:

1. For an event z € 3, (¢,z,q") € § iff (a) the local
states of processes k # i are identical in ¢ and ¢,
(b) the local state of process i is ¢; in ¢ and ¢} in ¢’
such that (¢;,z,q}) € &;, (¢) if x = receive(j,i,a)
then the buffer B ; in state ¢ contains the message
a, and the corresponding buffer in state ¢’ is ob-
tained by deleting a, (d) if x = send(i, j,a), the
buffer B;; in state ¢' is obtained by adding the
message a to the corresponding buffer in state ¢,
and (e) all other buffers are identical in states g
and ¢'.

2. There is a 7-labeled transition from state ¢ to ¢,
iff states ¢ and ¢' are identical except that for one
pair (i, j), the buffer B; ; in state ¢’ is obtained from

the corresponding buffer in state ¢ by deleting one
message a, and the buffer B ; in state ¢’ is obtained
from that in ¢ by adding that message a.

Accepting states. A state g of A is accepting if for
all processes i, the local state ¢; of process ¢ in ¢ is
accepting, and all the buffers in ¢ are empty.

We associate with A = II; A; the language of possible ex-
ecutions of A, denoted L(A), which consists of all those
words in £* leading A from start state go to an accept-
ing state, where T-transitions are viewed as e-transitions
in the usual automata-theoretic sense. The following
property of L(A) is easily verified:

Proposition 4 Given any sequence of automata (A; |
i € [n]), L(IT;A;) is an MSC-language.

5 WEAK REALIZABILITY
When can we, given MSCs M, actually realize L(M) as
the language of concurrent automata? In other words,
when are no other MSCs implied:

Definition 1 Given a set M of MSCs, and another
MSC M', we say that M weakly implies M', and denote
this by

w
ME M
if for any sequence of automata (4; | i € [n]), if
L(M) C L(IT; A;) then L(M") C L(I1; 4;).

We want to characterize this implication notion, and
furthermore detect when a set M is realizable:

Definition 2 A language L over the alphabet ¥ s
weakly realizable iff L = L(II;A;) for some (4; | i €
[n]). A set of MSCs M is said to be weakly realizable if
L(M) is weakly realizable.

The reason for the term “weak” is because we have not
ruled out the possibility that the product automaton
IT; A; might necessarily contain the potential for dead-
lock. In general we wish to avoid this. We will take up
the issue of deadlock in the next section. We now de-
scribe a closure condition on languages which captures
weak implication and thus weak realizability.

Closure Condition CC2 A language L over the al-
phabet 3 satisfies closure condition CC2 iff for all
well-formed and complete words w over 3. if for
every process i there exists a word v* in L such
that w|; = v?|;, then w is in L.

Condition CC2 says that if, for every process P;, the
events occurring on P; in word w are consistent with

the events occurring on P; in some word known to be
in the language L, and w is well-formed, then w must
be in L, i.e., w is implied. Note that CC2 immediately
implies CC1. The other direction does not hold.

Going back to our example from Section 2, the language
L({MSCy, MSC,}) generated by the two given MSCs is
not closed under CC2 but is under CC1. In particular,
consider the word w, a linearization of MSCy,q4, given
by

send(P1,UR,inc) receive(P1,UR,inc)
send(P2,UR, double) receive(P2,U R, double)
send(P2, N A, double) receive(P2,N A, double)
send(P1,NA,inc) receive(P1l,NA,inc).

The word w is not in L({MSC;, MSCs}), but the pro-
jections w|p; and w|p2 are consistent with both the
MSCs, while the projection w|yg is consistent with
MSC; and w|ny4 is consistent with MSCs. Thus, any
language satisfying CC2 and containing linearizations
of MSC; and MSCy must also contain w. Thus

w
{MSCy, MSCy} + MSChaq.

The next theorem says that condition CC2 captures the
essence of weakly realizable languages.

Theorem 5 A language L over the alphabet S s weakly
realizable iff L contains only well-formed and complete
words and satisfies CC2.

We thus have characterizations of weak implication and
realizability of MSCs*:

Corollary 6 Given MSC set M, and MSC M':

w
M+ M' if and only if for each process i € [n], there is
an MSC M* € M such that M'|; = M?|;.
An MSC family M is weakly realizable iff L(M) satisfies
CC2.

6 SAFE REALIZABILITY

The weakness of weak realizability stems from the fact
that we are not guaranteed a well behaved product
IT;A;. In particular, in order to realize the MSCs, or
the language, there may be no way to avoid a deadlock
state in the product.

To describe this formally, consider a set A; of concurrent
automata and the product 4 = II; A;. A state ¢ of the
product A is said to be a deadlock state if no accepting
state of A is reachable from ¢. For instance, a rejecting
state in which all processes are waiting to receive mes-
sages which do not exist in the buffers will be a deadlock

4Due to space limitation, all proofs are omitted. An extended
version of the paper can be obtained by contacting the authors.

state. The product A is said to be deadlock-free if no
state reachable from its initial state is a deadlock state.

Definition 3 A language L over Y is said to be
safely realizable if L = L(ILA;) for some (A;|i € [n])
such that TTA; is deadlock-free. A set of MSCs M is
said to be safely realizable if L(M) is safely realizable.

Definition 4 Given an MSC set M, and a partial
MSC, M', we say that M safely implies M', and de-
note this by

s
ME M
if for any deadlock-free product 11; A; such that L(M) C

L(I1; A;) there is some completion M" of M' such that
L(M") C L(I1; 4;).

To see that weak realizability does not guarantee safe re-
alizability, consider the MSCs in Figure 5. They depict
communication among two processes, P, and P,, who
attempt to agree on a value (a or b) by sending each
other messages with their preferences. In MSCj3, both
processes send each other the value a, while in MSCy,
both processes send each other the value b, and thus,
they agree in both cases. From these two, we should
be able to infer a partial scenario, depicted in MSCs,
in which the two processes start by sending each other
conflicting values, and the scenario is then completed in
some way. However, the language L({MSC3 , MSCy4})
generated by MSC3 and MSCy, contains no such sce-
narios although it is closed under weak implication, and
thus, is weakly realizable. Concurrent automata cap-
turing these two MSCs are shown in Figure 6. Each
automaton has a choice to send either a or b. In the
product, what happens if the two automata make con-
flicting choices? Then, the global state would have A;
in, say, state ul, and A, in state v2, and this global
state has no outgoing transitions, resulting in deadlock.
We would like to rule out such deadlocks in our imple-
mentations. We need a stronger version of implication
closure. For a language L, let pref (L) denote the set of
all prefixes of the words in L.

Closure Condition CC3 A language L over ¥ is said
to satisfy closure condition CC38 if: for all well-
formed words w, if for each process i there is a
word v* € pref(L) such that w|; = v?|;, then w is
in pref(L).?

An equivalent definition, which turns out to be easier

to check algorithmically, is the following;:

5Note that this corresponds to the CC2 closure condition on
pref (L), without the requirement of completeness on w.

MSC3

MSC,

MSCsg

Figure 5: Weakness of weak realizability

send(l,z,by \send(1.2.3)

W

receive(2,1,b) receive(2,1,3)

Automaton A1

send(Z,l,bV \send2.1.8)

W

receive(1,2,0) receive(1,2,3)

Automaton A2

Figure 6: Concurrent automata corresponding to MSC3 and MSC,

Proposition 7 L satisfies CC3 iff for all w,v €
pref(L) and all processes i, if w|; = v|; and wzr €
pref (L) for some x € X;, then if vz is well-formed vz
is also in pref (L).

The basic intuition behind the above is the following.
Consider two possible (partial) scenarios w and v such
that w|; = v|;. Then, from the point of view of process
1, there is no way to distinguish between the two scenar-
ios. Now, if the next event executed by process i in the
continuation of the global scenario w is z, then x must
be a possible continuation in the context v also (unless
x is a receive event which has no matching send in v).

As our example shows, CC2 does not guarantee CC3.
Going back to Figure 5, the event send(1,2,a) is a pos-
sible partial scenario (according to MSCs), and the
event send(2,1,b) is a possible partial scenario (accord-
ing to MSC,4). Now, CC3 requires that the sequence
send(1,2,a), send(2,1,b) be a possible partial scenario
(since its individual projections are consistent with the
input scenarios). However, neither MSC3 nor MSC,
corresponds to this case, implying the existence of an
additional scenario which completes these two events.
Hence, although {MSCj3 , MSC4} has the weak CC2
closure property, it does not have the safe CC3 closure
property. Notice that there is no unigue minimal safe
realization which completes MSCs. The implied partial
scenarios can be completed in many incompatible ways,
each of which would eliminate the possibility of dead-
lock. The correspondence between safe realizability and
condition CC3 is established by the next theorem.

Theorem 8 A language L over the alphabet s safely
realizable iff L contains only well-formed and complete

words and satisfies CC3.

Corollary 9 An MSC family M is safely realizable iff
L(M) satisfies CC8.

7 ALGORITHMS FOR INFERENCE,
REALIZABILITY, AND SYNTHESIS

Now that we have the necessary and sufficient condi-
tions, we are ready to tackle the algorithmic questions
raised in the introduction. Namely, given a finite set M
of MSCs, we want to determine automatically if M is
realizable as the set of possible executions of concurrent
state machines, and if so we would like to synthesize
such a realization. If not, we want to find counterexam-
ples, namely missing implied (partial) MSCs. Of course,
we want any realization to be deadlock-free, and thus
we prefer safe realizations.

An Algorithm for Safe Realizability

Given MSCs M = {M; ..., My}, where each MSC is
a scenario over n processes Py, ..., P,, we now describe
an algorithm which, if M is safely realizable returns
“YES”, and if not it returns a counterexample, namely,
an implied partial MSC, M', which must exist as a par-
tial execution of some MSC, but does not in M.

By Proposition 2, MSCs are determined by any of their
linearizations, and thus by their projections onto in-
dividual processes. We can therefore assume that M
is presented to us as a three dimensional table, with
MII[i)[d] giving the label of the d’th event in the se-
quence of events on process P; in MSC M;. Thus
MIN[:]) = Mi;- Let ||M[I][é]|| denote the length of the
sequence M;|;.

By Corollary 9, it suffices to check that L(M) satisfies

CC3. A straightforward algorithm to check CC3 would
have exponential complexity. We show how to check
CC3 in polynomial time. Figure 7 gives a simple version
of our polynomial time algorithm for CC3.

Correctness: The correctness of the algorithm is based
on Corollary 9 and Proposition 7. CC3 is violated if
and only if whenever there are z and z’, in M, and My,
as in the algorithm, such that z' is eligible to replace
z in the largest prefix on all processes of My in which
no event depends on xz, there is an M, which realizes
this replacement. The reason it suffices to check the
largest prefixes on each process is that “possibility” of
an event on process ¢ can only become true and cannot
become false as the prefix on process j # 4 increases,
while the prefix on ¢ stays fixed. Thus, by considering
only maximal prefixes, we are considering the maximal
set of events z' eligible to take the place of z.

Complezity: The stated algorithm is somewhat wasteful.
With more careful data structures, the running time can
be improved to: O(k? -n +r - n).

As given, the algorithm stops as soon as it finds a single
missing partial MSC. One can easily modify the algo-
rithm in several ways to find more missing scenarios if
present. One such modification would derive not only
one implied partial MSC, but a complete set of (k% - n)
implied partial MSCs, in that for every MSC M im-
plied by the given set, there would be a partial MSC
M’ present in the derived set such that M is a com-
pletion of M’'. The reason (k% - n) such partial MSCs
suffice is that, in the main loop, we need only check for
each pair of MSCs, and for each process, whether the
first event where the two MSCs differ on that process
introduces a new implied MSC.

A second way in which the algorithm can be modified
is to substitute not just the first eligible event, z' of M;
for x in My, but to use the longest eligible subsequence
w' beginning at 2’ on process j in My, and substitute z
by w’. This will fill out the partial MSCs, completeing
them as much as possible.

Finally, one can repeatedly apply the algorithm, infer-
ring more and more partial MSCs, until the set of im-
plied partial MSCs closes, i.e., no more partial MSCs
can be implied. Of course, doing so could entail an ex-
ponentially large set of implied MSCs.

Ezxample: Consider the two MSCs of Figure 1 as in-
put to the algorithm, where we assume the impli-
cation algorithm is modified according to the sec-
ond suggestion above. To see how MSCy,, is de-
rived by the algorithm, consider the first events on
UR where MSC; and MSC, differ. In MSC; the first
event is receive(Py,UR,inc), whereas in MSC, the
first two events on UR are receive(P, UR, double) and

proc SafeRealizability(M) =
foreach (s,t,i) € [k] x [k] x [n] do
JTB,Li]F=InH1{C|(A4B]UMd # M[t][il[c]) }
od;
/* T[s,t,1] gives the first position on */
/* process i where M, and M; differ */
Let <® be the partial order of events in M.
foreach s € [k] and event z in M, do
foreach process j € [n] do
Uls,z,j] :==
IM[s]lilll +1 if Ve 2 £° M(s][j][c]
min {c| (z <* M[s][j][c])} otherwise

od;
od;
/* Uls, z, %] gives the events of M dependent on z */
foreach (s,t,j) € [k] x [k] X [n] do
c:=TJs,t,jl;
z = M[s][jllc]; = := M[t][j][c];
/* Determine if 2’ is eligible to replace z. */
/* If ' is a send event, it is always eligible. */
/¥ If &' = receive(i, j,a) then z' is eligible */
/* it M[s][d][1...Uls,z,i] — 1] contains more */
/* send(i, j,a)’s than M([s][j][1...Ul[s,z,j] — 1] */
/* contains receive(i, j,a)’s. */
if 2’ is eligible to replace = then
/* Find if some M), realizes this replacement */
if 3 p € [k] such that
M{pl[j]le] = 2" and
vj" € [n] Uls, 5] < T(s,p, 7]
then() /* This eligible replacement exists */
else
“M NOT SAFELY REALIZABLE”
Missing Implied partial MSC given by Vj’
M[s]lF'I1-.-Uls,2,5'] — 1] and M[s][j][¢] := 2’
return;
fi;
fi;
od;
“YES. M IS SAFELY REALIZABLE”

Figure 7: Algorithm for Safe Realizability

receive(P;,UR,inc). Since in MSC; no events, other
than those on UR, depend on the first event on UR, we
see that the sequence of two events on MSCs are in-
deed eligible to replace the first event on UR in MSC;.
The result of this replacement is precisely MSCypoq, the
inferred MSC in Figure 2.

coNP-completeness of Weak Realizability

The less desirable realizability notion was weak realiz-
ability. There deadlocks may occur. It turns out that
this weaker notion is in fact more difficult to check. CC2
gives a straightforward exponential time algorithm (in
fact, NP) for checking weak realizability, and we can’t
expect a polynomial time solution:

Theorem 10 Given a set of MSCs M, determining
whether M is weakly realizable is coNP-complete.

Synthesis of State Machines

Given a set M of MSCs we would like to synthesize au-
tomata A;, such that L(ITA4;) contains L(M), and as
little else as possible. In particular, if M is weakly re-
alizable we would like to synthesize automata such that
L(II;A;) = L(M) (and, when safely realizable, such
that II; 4; is deadlock-free).

Given the proof of Theorem 5, it is straightforward to
synthesize the A;’s. The algorithm we provide is not
new, and follows an approach similar to other synthesis
algorithms in the literature. What is new are the prop-
erties these synthesized automata have in our concur-
rent context. Let the string language of M correspond-
ing to process i be given by L; = {M|; | M € M}. We
let A; denote an automaton whose states); are given by
the set of prefixes, pref (L;), in L;, and whose transitions
are 8(quw, T, qus), where z € 3, and w,wz € pref(L;).
Letting the accepting states be g, for w € L;, A; de-
scribes a tree whose accepting paths give precisely L;.
We can minimize the A;’s, which collapses leaves and
possibly other states, to obtain smaller automata. Note
that the A;’s can be constructed in time linear in M.
Letting Axq = [1A;, we claim the following:

Theorem 11 L(Ap,) is the smallest product language
containing L(M). If L(M) is weakly realizable, then
L(M) = L(Ap), and, if moreover L(M) is safely real-
izable, then Apq = I1; A; is deadlock-free.

8 ALTERNATIVE ARCHITECTURES

Much of what we have discussed can be rephrased based
on different concurrent architectures, but rather than
delve into the peculiarities of each architecture, we can
abstract away from these considerations and assume we
are given a very general “enabled” relation

enabled : (3* x ¥) — {true, false}

which tells us, for a given prefix of an execution, what
the possible next events in the alphabet are. Architec-
tural considerations like the queuing discipline and the
synchrony of the processes clearly influence the enabled
function. Besides architectural considerations, there are
other constraints on enabled(w,z). For example, for
enabled(w, receive(i, j, a)) to hold, it must be that there
are more send(i, j,a)’s in w than receive(i, j,a)’s. We
state the following axioms which are assumed to hold
for enabled(w, x), regardless of the architecture.

1. If enabled(w, receive(i, j,a)) then

#(w, send(i, j,a)) — #(w, receive(i, j,a)) >0

2. If enabled(w,z) and enabled(w,y) and x and y oc-
cur on different processes, then enabled (wz,y).

3. If enabled(w,z) and w'|; = w|; for all ¢, then
enabled(w', x).

Justification for these axioms is as follows: the first ax-
iom is obvious. The second axiom says that an event
occurring on one process cannot disable an event from
occurring on another process, intuitively because unless
the two processes communicate they cannot effect each
others behavior. The third axiom is another version of
the second. It says that the ability of an event to oc-
cur on a given process depends only on the sequence of
events that have occurred on each process so far, and
not their particular interleaving.

As two examples, consider enabled when (1) queues are
required to be FIFO, and (2) when the message ex-
changes are synchronous, i.e., when a sending process
cannot continue until the message is received (and im-
plicitly acknowledged). In case (1), in addition to the
axioms, we require that enabled (w, receive(i,j,a)) can
only hold if the first send(i,j,*) in w for which there
is no matching receive(i, j, x) is indeed send(i, j,a). In
case (2), for any event x on process i, we require that
enabled(w, z) holds only when all sends on process i
have a matching receive in w.

We reformulate well-formedness, completeness, and the
different closures conditions, in this more general set-
ting: 1. Well-Formedness: for every prefix w'z of
w € L, enabled(w',z), 2. Completeness: The defini-
tion of completeness remains exactly the same. 3. CC2
and CC3, also remain the same.

We show that, for each architecture, Theorems 5 and 8
remain true under these modified conditions.

9 CONCLUSIONS

We have presented schemes for detecting scenarios that
are implied but unspecified. The scenarios inferred by
our algorithms can provide potentially useful feedback

to the designer, as unexpected interactions may be dis-
covered. We have given a precise formulation of the
notion of deadlock-free implementation and have pro-
vided an algorithm to detect safe realizability or else in-
fer missing scenarios. We have shown that our state ma-
chines synthesized from MSCs are deadlock-free if the
MSCs are safely realizable. Our algorithm for safe real-
izability is efficient, and thus, the conventional “state-
space explosion” bottleneck for the algorithmic analy-
sis of communicating state machines is avoided. Since
scenario-based specifications are typically meant to be
only a partial description of the system, the inferred
MSCs may or may not be indicative of a bug, but the
implied partial scenarios need to be resolved by the de-
signer one way or the other, and they serve to provide
more information to the engineer about their design.

We have introduced a framework for addressing implica-
tion and realizability questions for the most basic form
of MSCs. It would be desirable to build on this work,
extending it to address these questions for more expres-
sive MSC notations, such as MSCs annotated with state
information (e.g., [14]), and high-level MSCs (as in, e.g.,
uBET [11]).

Acknowledgements

This research was supported in part by NSF CA-
REER award CCR97-34115, NSF grant CCR99-70925,
DARPA/NASA grant NAG2-1214, and Sloan Faculty
Fellowship.

REFERENCES

[1] R. Alur, G. Holzmann, and D. Peled. An ana-
lyzer for message sequence charts. Software Con-
cepts and Tools, 17(2):70-77, 1996.

[2] R. Alur and M. Yannakakis. Model checking of
message sequence charts. In CONCUR’99: Con-
currency Theory, Tenth International Conference,
LNCS 1664, pages 114-129, 1999.

[3] D. Angluin and C. H. Smith. Inductive inference:
theory and methods. ACM Computing Surveys,
15:237-269, 1983.

[4] H. Ben-Abdallah and S. Leue. Syntactic detection
of process divergence and non-local choice in mes-
sage sequence charts. In Proc. 2nd Int. Workshop
on Tools and Algorithms for the Construction and
Analysis of Systems, 1997.

[5] H. Ben-Abdallah and S. Leue. MESA: Support for
scenario-based design of concurrent systems. In
Proc. 4th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, LNCS
1384, pages 118-135, 1998.

[6] A. W. Biermann and J. A. Feldman. On the syn-
thesis of finite state machines from samples of their

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

behavior. IEEE Trans. Computers, pages 592—-597,
1972.

W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. In Proc. 3rd IFIP Conf.
on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’99), pages 293-312,
1999.

V. Diekert and G. Rozenberg, editors. The Book of
Traces. World Scientific Publishing, 1995.

D. Harel and H. Kugler. Synthesizing object sys-
tems from LSC specifications. Unpublished draft,
1999.

G. Holzmann. Early fault detection tools. LNCS,
1055:1-13, 1996.

G. Holzmann, D. Peled, and M. Redberg. Design
tools for requirements engineering. Bell Labs Tech-
nical Journal, 2(1):86-95, 1997.

K. Koskimies and E. Makinen. Automatic synthesis
of state machines from trace diagrams. Software-
Practice and Experience, 24(7):643-658, 1994.

K. Koskimies, T. Mannisto, T. Systd, and
J. Tuomi. Automated support for OO software.
IEEE Software, 15(1):87-94, Jan./Feb. 1998.

I. Kruger, R. Grosu, P. Scholz, and M. Broy. From
MSCs to Statecharts. Distributed and Parallel Em-
bedded Systems, 1999.

S. Leue, L. Mehrmann, and M. Rezai. Synthesizing
ROOM models from message sequence chart speci-
fications. In Proc. 13th IEEE Conf. on Automated
Software Engineering, 1998.

ITU-T recommendation Z.120. Message Sequence
Charts (MSC’96), May 1996. ITU Telecommunica-
tion Standardization Sector.

A. Muscholl, D. Peled, and Z. Su. Deciding prop-
erties of message sequence charts. In Foundations
of Software Sci. and Comp. Structures, 1998.

C. Papadimitriou. The Theory of Database Con-
currency Control. Computer Science Press, 1986.

E. Rudolph, P. Graubmann, and J. Gabowski. Tu-
torial on message sequence charts. In Computer
Networks and ISDN Systems — SDL and MSC, vol-
ume 28. 1996.

J. Rumbaugh, I. Jacobson, and G. Booch. The
Unified Modeling Language Reference Manual. Ad-
dison Wesley, 1999.

