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Abstract

Redundancy is a system property that generally refers to
duplication of state information or system function. While
redundancy is usually investigated in the context of fault
tolerance, one can argue that it is in fact an intrinsic fea-
ture of a system that can be analyzed on its own without
reference to fault tolerance. Redundancy may arise by de-
sign, generally to support fault tolerance, or as a natural
byproduct of design, and is usually unexploited. In this
paper, we tentatively explore observable forms of redun-
dancy, as well as mathematical models that capture them.
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1 Redundancy, an Evasive Concept

As a concept, redundancy is widely known and widely
referenced; also, at an intuitive level, it is widely (though
perhaps cursorily) understood. We have felt the need
to model system redundancy in the midst of a research
project that we conducted on analyzing a fault tolerance
flight control system [1, 4, 5, 6, 8, 9]. Subsequent work
led to some tentative, preliminary, insights [2, 7, 15, 16].

What strikes us most about this concept is a paradoxical
combination of three premises, which are:

� Even though redundancy is a widely used and widely
referenced concept, there appears to be little effort to
model it in a generic manner that captures all observ-
able forms.

� In addition to artificially built-in redundancy, such as
modular redundancy, most systems have ample nat-
ural redundancy. This natural redundancy is seldom
acknowledged and exploited, for example to build
fault tolerance and improve system reliability.

� Although it is tantalizingly easy to understand at an
intuitive level, redundancy has proven rather hard to
model formally in a way that is general and mean-
ingful.

In this paper, we attempt to catalog diverse manifestations
of redundancy, then we explore means to model them. In
Section 2 we present the many faces of redundancy, that
we have observed and attempted to model; then we dis-
cuss some questions that we wish to address in the long.
In Section 3 we introduce qualitative models of redun-
dancy that we have tentatively explored, and briefly com-
ment on the insights that these models afford us; for the
sake of readability, we will keep the discussion informal,
referring the interested reader to bibliographic references
for technical details. In section 4 we explore a quantifica-
tion of some aspects of redundancy, and outline issues that
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pertain to the quantification of other, more advanced con-
cepts. In the conclusion, we summarize our main results
and discuss future prospects.

2 Guises of Redundancy

While redundancy is widely recognized as an important
system attribute, it has not been modeled and analyzed in
a commensurate manner. Most bibliographic references
appear to use this term in a literary sense, rather than a
technical, well-defined, widely agreed upon, sense. In this
Section we will survey and analyze some of the uses of
this term, to form a background for our discussion.

2.1 Forms of Redundancy

Many authors have recognized distinct forms of system
redundancy, and have classified redundancy under several
categories. In [23] Pullum distinguishes between three
classes of redundancy in software systems: Software Re-
dundancy, referring to multiplicity of functions; Infor-
mation or Data Redundancy, referring to redundant data
representations; Temporal Redundancy, referring to re-
dundancy between consecutive values of a given function
over time. In [25] Shooman distinguishes between two
levels of redundancy, including Modular Redundancy (at
the module/ component/ subsystem level) and Micro-code
Level Redundancy; he also distinguishes between two ar-
chitectures of redundancy, Parallel Redundancy (redun-
dant modules running concurrently) and Standby Redun-
dancy (a spare module activating in case the main mod-
ule fails). In [2], Ammar et al distinguish between three
classes of redundancy: Temporal Redundancy (duplicat-
ing functions); Spatial Redundancy (duplicating compo-
nents), and Informational Redundancy (duplicating data).
In [11] Johnson distinguishes between two forms of hard-
ware redundancy: Passive Redundancy (modular redun-
dancy with voting) and Active Redundancy (standby spar-
ing). He also distinguishes between three forms of soft-
ware redundancy: Information Redundancy (duplicating
data), Time Redundancy (check-pointing, re-computation)
and Software Redundancy (assertion checking,

�
-version

programming). Arora and Kulkarni’s Theory of Fault Tol-
erance Components [3] can be viewed as capturing a con-
cept of redundancy, though that is not the author’s explicit
goal. It differs from our approach by the the way in which
it models program execution (a sequence of state transi-
tions, as opposed to an input/ output mapping).

Even though these sources do not acknowledge each
other, they recognize the same important distinctions, and
give them similar names. From a modeling standpoint,

we have found the following categorization to be useful
for our purposes:

� State Redundancy. This arises when the representa-
tion of the system state allows a wider range of val-
ues than are needed to represent the set of possible
states. This is the traditional form of redundancy, that
arises in parity-bit schemes, error correcting codes,
modular redundancy schemes, etc.

� Functional Redundancy. This form arises when, for
example, we compute the same function using three
different algorithms, and we take a vote on the out-
puts. We do not distinguish, in functional redun-
dancy, between whether the components that com-
pute the same function are running concurrently, or
in sequence.

� Temporal Redundancy. Consider the state defined by
two variables: the altitude ( � ) and the vertical speed
( ��� ) of an aircraft. There is no redundancy between
the values of � and ��� at a given time � (i.e. �����
	
and ���
���
	 can take arbitrary values, for a given � ),
but there is redundancy between the values of these
variables within small time intervals, e.g.

���������������������
� Control Redundancy (for lack of a better name).

Control redundancy arises in control applications
whenever we can achieve the same effect on the
system by several distinct control settings. Our in-
terest in redundancy stems from a project we con-
ducted to analyze a fault tolerant flight control sys-
tem [1, 5, 8, 9]. This system is fault tolerant in the
sense that it can keep flying the aircraft (under some
restrictive conditions) even if some control surfaces
are lost or if some controls become in-operational.
This stems from redundancy between the controls
that the system operates: though the throttle, eleva-
tors, ailerons, flaps, and rudder have distinct func-
tions, some may be used to make up for the loss of
others. In at least two recent accidents of civil avi-
ation (Alaska Airlines 261, January 2000; and US
Airways 427, September 1994) investigators believe
that despite losing flight surfaces, the flight could in
theory have been saved [19]. Constructive proof is
given by an incident at DFW in 1996 in which a flight
was saved despite a malfunction of the flaps [20]; the
pilot used the left aileron to compensate for the loss.

This classification is neither complete nor orthogonal; all
we can claim for it (even then, subject to further investi-
gation) is that it reflects what we view as distinct forms
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of redundancy. It illustrates the diversity of forms of re-
dundancy, and the interest in trying to model them and
possibly unify them.

2.2 Questions on Redundancy

The study of redundancy, for all its interest, is not a mere
intellectual exercise. We view it as a way to better ana-
lyze/ understand complex systems. Examples of questions
that we envision, in the long term, include:

� Modeling Redundancy. Can we define/ model redun-
dancy as an intrinsic property, independent of fault
tolerance capability? What other attributes of a sys-
tem does redundancy affect? How can we model re-
dundancy in a way that reflects its relevant/ useful
properties?

� Classifying Redundancy. Is the classification pro-
posed above complete? If not, what other forms
need to be considered? Is the classification proposed
above orthogonal? If not, how can different cate-
gories be unified?

� Quantifying Redundancy. Can we quantify redun-
dancy? Can we link the quantity of redundancy to
specific attributes, such as fault tolerance capabili-
ties?

� Applying Redundancy. Can we use our insights on
redundancy to exploit/ use implicit forms of redun-
dancy? For example, in

�
-version programming, it

is conceivable that the volume of redundant informa-
tion is much greater than

�����
, since each version

has natural/ implicit redundancy; our challenge is to
model this excess redundancy and determine whether
it can also be combined to support further fault tol-
erance capability than the scheme of

�
-version pro-

gramming makes provisions for (e.g. make the sys-
tem fault tolerant in the presence of a larger number
of faults).

These are broad long term questions, distinct from the pre-
liminary issues that we discuss in this paper.

3 Qualitative Models of Redun-
dancy

Whereas in Section 2 we cataloged forms of redundancy
from an external standpoint, by characterizing their ob-
servable manifestations, we focus in this Section on mod-
els of redundancy, which attempt to provide a mathemati-
cal rationale for the observed manifestations.

3.1 Redundancy as a Feature of State Rep-
resentation

To complement the quantitative model presented above,
we discuss in this Section a qualitative model, which
equates redundancy with functional attributes of the rep-
resentation of the system state. In this view, we study
redundancy as a representational issue, i.e. as a feature
of the relation that maps states to their representations,
which is the state representation relation. The simplest
representation relations are those that are

� total (each state value has at least one representa-
tion),

� deterministic (each state value has at most one repre-
sentation),

� injective (different states have different representa-
tions), and

� surjective (all representations represent valid states).

Not all representation functions satisfy these four proper-
ties —in practice hardly any satisfy all four, in fact.

� When a representation relation is not total, we ob-
serve a partial representation (for example not all
integers can be represented in computer arithmetic).

� When a representation relation is not deterministic,
we observe an ambivalent representation. Consider
the representation of signed integers between -7 and
+7 using a sign-magnitude format; zero has two rep-
resentations, -0 and +0 [10].

� When a representation relation is not injective, we
observe loss of precision (for example, real numbers
in the neighborhood of a representable floating point
value are all mapped to that value).

� When a representation relation is not surjective, we
observe redundancy (for example, in a parity-bit rep-
resentation of characters, not all bit patterns repre-
sent legitimate characters).

For the purposes of our discussions, we equate redun-
dancy with non-surjectivity; for the sake of simplicity, we
limit our discussion to representation relations that are de-
terministic, total, and injective —whence each state value
has exactly one representation (by virtue of totality and
determinacy) and different state values have different rep-
resentations (by virtue of injectivity).

A simple example that illustrates why redundancy can
naturally be equated with non-surjective representation re-
lations is the parity bit representation of information in a
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computer. Out of eight bits in a byte, seven are used to
represent different values, and one is used to represent the
parity bit. This makes the representation non surjective
since the range of the representation function has a cardi-
nality of (at most) ��� while the set of representations has a
cardinality of ��� . This non-surjectivity is crucial to error
detection; one out of two representations is illegitimate,
making it possible to detect some errors. Had the repre-
sentation been surjective, an error would map a legitimate
state into another legitimate (though incorrect) state, mak-
ing it impossible to detect any error.

3.2 Redundancy as a Feature of System
Function

Whereas the previous Section focuses on the redundancy
of state representations, this Section focuses on the redun-
dancy of system functions. Specifically, in this Section
we will equate redundancy with fault tolerance capability,
and explore how functional attributes of systems and their
specifications introduce sources of redundancy that can be
used to support fault tolerance. For the sake of readability,
we resolve to keep the discussion non-technical, referring
the reader to publications [7, 16] for technical details.

3.2.1 Redundancy and Surjectivity

Building on earlier work [14], and on widely accepted
fault tolerance ideas [12], we have proposed in [7, 15, 16]
a hierarchy of correctness levels for intermediate states in
computations:

� Strict Correctness, characterizing an error-free state.

� Maskability, characterizing a state which, while it
may not be strictly correct, will spontaneously avoid
failure, nevertheless.

� Recoverability, characterizing a state which, while
it may not be maskable, does nevertheless contain
all the necessary information that allows a recovery
function to produce a maskable state.

� Partial Recoverability, characterizing a state which,
while it may not be recoverable, does nevertheless
contain some information about maskable states.

� Non Recoverability, which characterizes an erro-
neous state that contains no information that could
be used for recovery.

This hierarchy is highlighted in Figure 1. Before we dis-
cuss the link between redundancy and surjectivity, we
briefly mention that a relation � from � to � is said to

be surjective if and only if its range is all of � . In [16] we
have established the link between this hierarchy and in-
creasing levels of redundancy, in the following terms (see
Figure 2):

� Each level of correctness can be characterized as the
image set of initial set �	� by some relation, say 

(for strict correctness), � (for maskability), � (for
recoverability) and � (for partial recoverability).

� The relations that correspond to these consecutive
levels of correctness ( 
 , � , � , � ) have increasingly
larger ranges, and for each argument, increasingly
larger image sets.

� The ability to detect errors, assess damage, perform
complete recovery or perform partial recovery repre-
sent increasing levels of fault tolerant capability.

� The ability to provide these increasing levels of fault
tolerant capability is dependent, according to [16],
on relations 
 , � , � and � being non-surjective.
For example, the only way we can detect errors is for

 not to be surjective; for if 
 were surjective, then
any value that 
 produces would look legitimate, and
we could not distinguish between correct states and
erroneous states —whereas if 
 is not surjective and
produces a state outside its range, we would know
for sure that this state is not correct.

� Because 
 , � , � and � have increasingly larger
ranges, it takes an increasingly larger space to make
them non-surjective (i.e. to be larger than their
ranges). The space of the computation is enlarged
by defining additional state variables, which is the
source of increased redundancy.

Hence we have established the link between function sur-
jectivity and system redundancy by highlighting two rela-
tions: increasing levels of fault tolerance depend on in-
creasing levels of non-surjectivity; increasing levels of
non-surjectivity depend on enlarging state spaces, by in-
troducing state variables, which increase redundancy.

3.2.2 Redundancy and Injectivity: Past Functions

A function is said to be injective if it maps distinct argu-
ments into distinct images. By and large, we refer to the
equivalence relation ( 
�����	 ��
���� 	 ) that a function 
 de-
fines on its domain as the nucleus of 
 (represented, in
relational notation, by 


�

 ), and we refer to its equiva-

lence classes as the level sets of 
 (terminology of Mills
et al [13, 17, 18]). A function is injective if its nucleus
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� � �	� 	
(strictly correct state)

unrecoverable states

partially recoverable states

totally recoverable states

maskable states

recovery unnecessary

total recovery necessary and sufficient

probabilistic recovery desirable, insufficient

recovery insufficient

�
�

�
���

Figure 1: A Hierarchy of Correctness Levels.
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�
�

�

Figure 2: Redundancy as Surjectivity of Relations with
Increasing Ranges

is the identity relation (whence its levels sets are single-
tons), and it grows increasingly less injective as its level
sets grow larger and larger. The least injective function
is a constant function, which maps all its arguments into
the same image; the nucleus of such a function is the total
relation ( � ), which has one equivalence class (the whole
space).

To illustrate the relationship between redundancy and
injectivity, we show how maskability, recoverability, par-
tial recoverability and un-recoverability can be deter-
mined by the degree of injectivity of function 
 . For the
purposes of this discussion, we will introduce this rela-
tionship by means of a simple/ simplistic example. We
consider the space � defined by an integer variable � , and
we consider the following simple program

P; K: F

where � is a label, and P (past) and F (future) are defined
as follows:

P: x = x mod 6;
F: x = x mod 9 + 12;

We will denote by 
 and � the functions defined by pro-
grams P and F; whenever no ambiguity arises, we may
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confuse a program with the function it computes. If the
computation starts with initial state � � , then at label �
we must have state ( � ����� ��� ). This is the only correct
state at label � .

If the past function is incorrect, and instead of comput-
ing ( 
���� 	 � � ��� ��� ) it computes



	���� 	 � � ��� ��� � �
�

then the states that 
�	 produces are not correct, but they
are still maskable, in the sense that application of the fu-
ture function (which takes the mod by 9) after 
 	 will can-
cel out the error produced by 
 	 (which mistakenly adds
18 to the correct result).

If the past function is incorrect, and instead of comput-
ing ( 
���� 	 � � ��� ��� ) it computes


�������	 ��� ��� � � �
then the states that 
 � computes are not even maskable,
but they are recoverable, in the following sense: If we
know what is ��� ��� � � ��	 , we can derive ��� ��� ��� 	 . We
say that 
 � preserves recoverability with respect to the
expected past function 
 . It is possible to recover from
errors caused by 
 � by simply applying � ��� ��� 	 to the
current (potentially erroneous) state.

If the past function is incorrect, and instead of comput-
ing ( 
���� 	 � � ��� ��� ) it computes


�� ����	 ��� ��� ���

then the states that 
�� computes are not even recoverable,
but they are partially recoverable, in the following sense:
If we know what is ��� ��� ��� 	 , we may not know exactly
what is ��� ��� ��� 	 , but we know something about it. For
example, if ��� ��� ��� 	 � � , we know that ��� ��� ��� 	 is
either 1 or 4. We then say that 
 � preserves partial recov-
erability with respect to the expected past function � 
�� .
We can envision a probabilistic recovery routine which
preserves the current state or adds 3 to it, and has a 0.5
probability of retrieving the correct state.

If the past function is incorrect, and instead of comput-
ing ( 
���� 	 � � ��� ��� ) it computes


�� ����	 ��� ��� ���

then the states that 
�� produces are not recoverable, in the
following sense: knowing ��� ��� ��� 	 gives us no infor-
mation whatsoever on the value of ��� ��� ��� 	 .

A superficial, intuitive look at this example seems to
indicate that a function 
 � preserves recoverability with
respect to an ideal function 
 if the level sets of 
 � (i.e.
the equivalence classes of the domain of 
 � modulo the

relation 
 � � � 	 � 
 � � � � 	 ) refine (in the sense of: define a
finer partition) the level sets of 
 . Note, interestingly, that
this relation does not involve how 
 � maps inputs to out-
puts, as that is a correctness preservation consideration,
not a recoverability preservation consideration. What is
important, from the standpoint of recoverability preserva-
tion, is not what values 
 � assigns to each level set (if that
were wrong, the recovery routine can always correct it),
but rather how 
 � partitions its domain into level sets (as
that reflects whether 
 � maintains sufficient information
to compute the correct final result, which is the essence of
recoverability preservation). For all these cases except the
last, it is possible to recover from errors, using exclusively
the current state, with perhaps less than 1.0 probability of
successful recovery.

Figure 3 illustrates the hierarchy between the various
properties that we have discussed:

� Figure (a) represents the partition of the domain of 

by the equivalence relation 


�

 . This is identical to

the partition of the domain of 
 by 
�	! 
�	 .
� Figure (b) represents the partition of the domain of 


by the equivalence relation 
 �  
 � . This function pre-
serves recoverability, because if we know what par-
tition we are in by 

�  
�� , we know what partition we
are in by 


�

 .

� Figure (c) represents the partition of the domain of

 by relation 
��  
�� . This function preserves partial
recoverability, because if we know what partition we
are in by 
��  
�� , we can infer a limited set of possible
partitions by 


�

 .

� Figure (d) represents the partition of the domain of 

by relation 
��  
�� . This function does not preserve re-
coverability, because knowing what partition we are
in by 
 �  
 � gives us no indication on what partition
by 
 we are in; the two partitions are perfectly or-
thogonal.

3.2.3 Redundancy and Injectivity: Future Functions

In the previous Section, we have observed, on a sample
example, how we can equate redundancy with the injec-
tivity of past functions. We briefly argue, in this Sec-
tion, how we can also equate redundancy with the non-
injectivity of future functions. To illustrate this idea, we
again equate redundancy with fault tolerance capability,
and consider the following sample example, which is a
variation of the example discussed above. We consider
the space � defined by an integer variable � , and we con-
sider a program structured as the sequence
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(d): 
��  
�� , where

�� does not preserve recoverability

(c): 
��  
�� , where

�� preserves partial recoverability

(a): 

�

 , for original 
 (b): 
 �  
 � , where 
 � preserves recoverability

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
�

�
�

�

Figure 3: Degrees of Recoverability
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P; K: F.

If, instead of

����� 	 ��� ��� ��� � � ���
the future function computed

�
	 ����	�� � ��� ��� � � ���
(which is less injective than � ), then the past function 
 � ,
which was deemed to preserve recoverability, would now
be maskable, since

��� ��� � � ��	 ��� ��� � � � � ��� ��� ��� 	 ��� ��� � � � �
Likewise, the past function 
 � , which was deemed to pre-
serve partial recoverability, would now preserve recover-
ability, since all we need to know to preserve recoverabil-
ity with respect to the new future function is

� ��� ��� �
which is what 
 � computes. Hence when we made the
future function less injective (from � ��� � � � � � to
� ��� ��� � � � ) past function 
 � went from preserving
recoverability to being maskable and function 
 � went
from preserving partial recoverability to preserving recov-
erability.

Beyond the technicalities of this example, it is easy to
see why redundancy increases when past functions grow
more injective and future functions grow less injective:

� The injectivity of past functions ensures the preser-
vation of important information.

� The non-injectivity of future functions reduces the
amount of information that must be preserved to
avoid failure.

3.3 Redundancy as a Feature of System
Specifications

If we equate redundancy with fault tolerance, which we
have throughout Section 3.2, we must recognize that the
non-determinacy of system specifications is an important
source of (often unexploited) redundancy. In all the dis-
cussions we had so far, we have assumed that for a given
input to the system, there exists a single correct output,
and have equated recovery with the ability to retrieve
this single correct output from current information. But
there is usually a wide gap of determinacy between sys-
tem functions and system specifications [22], for a va-
riety of reasons (design decisions that characterize spe-
cific implementations but bear no relation to the system

� ��

�

��� �	


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


����������������������
��� �	� 	 � � �	� 	

��� �	
correct F-maskable

S-maskable

� �
� �
� �
� �
� �
�





















� �
� �
� �
� �
� �
�





















� � �




Figure 4: Non Determinacy of Specifications: An addi-
tional Dimension of Redundancy

requirements; weak functional requirements, that require
approximate values; state variables whose final value does
not matter to the user; etc). Taking into account the non-
determinacy of specifications would add several levels to
the classification depicted in Figure 1; it would in fact
double the number of categories, creating an orthogonal
classification to that of Figure 1. We do not show the
full classification obtained if we were to introduce non-
deterministic specifications, but use Figure 4 to illustrate
the impact of non-determinacy on maskability; in this
Figure, we now have two levels of maskability, one for
the system function (F-Maskable) and one for the system
specification (S-maskable). Imagine a version of Figure
1 where each level of correctness is duplicated: one level
pertains to the system function, and one pertains to the
system specification.

What makes this redundancy model of particular in-
terest to us is our hypothesis (yet to be confirmed) that
this is an adequate model for control redundancy, intro-
duced in Section 2. To illustrate this idea, we consider
the Flight Control Loop depicted in Figure 5, taken from
[15]. In this loop, the Flight Control Software (FCS) takes
as input sensor readings (depicting relevant flight param-
eters), Pilot Commands (as Auto-Pilot settings) and pos-
sibly Navigation Signals (for navigating an approach to a
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landing), and produces as output actuator settings. The
specification of FCS describes the relation that must be
maintained between inputs and outputs. The control re-
dundancy means that the same state of the aircraft can
be achieved by more than one control setting; this is
reflected by the non-determinacy of the specification of
FCS, whereby the same input will be mapped onto a wide
range of possible settings, corresponding to equivalent
control combinations. This is obviously a tentative inter-
pretation, which we envision to investigate and formalize
further in this project.

Another incentive for us to study specification non-
determinacy as a possible model of redundancy is that
system safety can be modeled as system correctness, but
with respect to a weaker specification [15, 21]. Whence
we have a hierarchy of three specifications, which are or-
dered by refinement, and which can be used as references
against which correctness, maskability and recoverability
can be judged. In [15] we have shown, very cursorily, how
reliability and safety concerns can be combined, using a
two dimensional matrix of correctness levels (with respect
to the correctness requirements, and with respect to safety
requirements). We envision to pursue this matter further.

4 A Quantitative Model: Measuring
Excess Information

4.1 Space Redundancy

We focus our attention in this Section on state redundancy,
and we try to quantify the amount of excess information
of the state representation by means of a numeric function
that matches the information carried by a state against the
number of bits used to represent the state. We envision our
function to satisfy the following identities: It takes its val-
ues in the set of non-negative real numbers; it takes value
zero whenever the state carries no redundancy; it takes
value 1 if a redundancy-free state is duplicated; generally,
it takes value

� � �
whenever a redundancy-free state

is duplicated
�

times. In [24], C. Shannon introduces a
quantitative measure of state redundancy as follows:

”The ratio of the entropy of a source to the max-
imum value it could have while still restricted
to the same symbols will be called its relative
entropy. One minus the relative entropy is the
redundancy”.

We consider a state � ranging over a state space � , we
let 
�� � 	 be the probability of occurrence of � , and we
denote by � � � 	 the entropy of � modulo probability 


and by � � � 	 the maximal entropy of space � (typically,
� � � 	������������ �	� 	 ). According to Shannon, the relative
entropy of � is given by the following formula


 � � 	 � � � � 	
� � � 	 �

We use Shannon’s formula to obtain the relative redun-
dancy of space � (though Shannon merely calls it redun-
dancy) �

� � 	 � � � 
 � � 	 �
As defined by this formula, relative redundancy varies be-
tween 0 and 1, and measures the quantity of excess infor-
mation normalized to the maximum entropy. The redun-
dancy function ( � ) we are interested in ranges between 0
and infinity, and measures the amount of excess informa-
tion normalized to the entropy of the space we are repre-
senting. We define it by the following formula,

� � � 	�� � � � 	 � ��� � 	
� � � 	 �

where the numerator represents excess information and
the denominator normalizes the excess information to the
actual information being represented. We find readily that
the relative redundancy and the (absolute) redundancy sat-
isfy the following equations:

� � � 	 �
��
� � 	
� � �

�
� � 	 �

�

� �
� � � 	 �
which are consistent with their respective interpretations.

In practice, we did encounter a difficulty, however: we
were not sure how to interpret Shannon’s concept of max-
imal entropy, � � � 	 . Also, we found situations where all
possible interpretations of Shannon’s definition lead to un-
satisfactory results. Examples include:

� If we consider 8 states represented by taking bi-
nary codes ����� to

� � �
and duplicating them (to ob-

tain: ����������� , ��� � ��� � , � � ��� � � , � � � � � � , � ��� � ��� , ...� � � � � �
), we are not sure what is the maximum en-

tropy in this case: Is it ����� � � 	 � � since we have only
eight values to represent, or is it ����� � ��� 	 � � since
we can represent up to 64 values?

� In the case of Huffman prefix codes, where the length
of the code varies according to the probability of oc-
currence of each symbol, we are not sure what maxi-
mal entropy means. There seems to be no way to re-
flect the property that we have a variable length code,
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Figure 5: Outline of a Flight Control Loop.

since the maximal entropy is achieved by a uniform
probability distribution, which yields a code of con-
stant length.

To overcome this dilemma, we had to reinterpret/ rede-
fine Shannon’s formula, by replacing the maximal entropy
( � � � 	 )with the weighted length of the code, which we
denote by � � � 	 . Whence we revisit the definition of re-
dundancy and rewrite as:

� � � � � 	
��� � 	

� � �
where � � � 	 �������
	 � � � 	 ��� � � 	 , and � � � 	 is the prob-
ability of occurrence of � , and � � � 	 is the length of � .
Intuitively, it makes sense that the formula of redundancy
should mention the size of the representation somewhere,
which it now does.

To illustrate this function, we consider some sample ex-
amples below; in the interest of brevity, we will not show
details of our computations, but all we are doing is apply-
ing the formula above.

1. No Redundancy. If � contains 8 states that are
equally likely to occur and are coded on 3 bits, then
� � � 	 � � .

2. bf Duplication. If � contains 8 states that are equally
likely to occur and are coded on 6 bits where the code
of each state is duplicated, then � � � 	 � � . This
value means that one hundred percent of the informa-
tion needed to represent these states is added to the
representation, which reflects the situation at hand.

3. Error Correcting Code. We consider a space of 8
values (of equal probability) and we represent it by

four bits, say three bits of data and a parity bit. We
find that the redundancy function is then equal to:
0.333, whose interpretation is obvious.

4. Non Uniform Distribution. If � contains 8 states
that are not equally likely to occur and are coded on 3
bits, then � � � 	
� � . For example, if the probability
distribution is:

��� � � � � � � �
��� � � � � � � � ��� � � � � � � � � ��� � � ����� � � � 	
then the redundancy function yields the value: 0.069.

5. Tame Distribution. If the variance in the probabil-
ity is more tame, the redundancy is much smaller.
Hence for the following probability distribution,

��� � � � ��� � � ��� � � ��� � � � � � � �
����� � � ��� � � � � � � � � � � 	
we find the value: 0.0215.

6. Huffman Coding. If we consider the Huffman pre-
fix code obtained from the first probability distribu-
tion, i.e.

��� � � � � � � �
��� � � � � � � � ��� � � � � � � � � ��� � � ����� � � � 	
we find the redundancy as: 0.011, which is signifi-
cantly less than the value found above for fixed size
coding (item 4).

7. Huffman Coding, Tame Distribution. If we con-
sider the Huffman prefix code obtained from the sec-
ond probability distribution, i.e.

��� � � � ��� � � ��� � � ��� � � � � � � �
����� � � ��� � � � � � � � � � � 	

10



we find the redundancy as: 0.012, which is signifi-
cantly less than the value found above for fixed size
coding (item 4) but more than the previous example
(item 6), on account of having a tamer probability
distribution.

8. Prefix Code, Non Uniform Distribution. We con-
sider the non uniform probability distribution,

� � � � � ��� � �
� ��� � � ��� � � � ��� � � � ��� � � � ��� � � � � � � ��	
but this time we use a prefix code that is not necessar-
ily a Huffman code (some codes are longer than they
have to be). In this case we find the redundancy value
of 0.021, which is greater than the value found for the
same probability distribution when we use Huffman
coding (item 6).

9. Non Prefix Code. If we use the following distribu-
tion

� � � � � ��� � � � � � � � � � � ��� � � ��� � � � � � � � � � � � ��� � ��� 	
and build a non prefix code (by building the huffman
tree then placing one symbol on an internal node of
the tree), we find the following value of redundancy:
-0.081.

The results computed by this formula are consistent with
our intuition, for the examples we have explored above.
Although we do not consider these developments to be a
proof, they illustrate the following premises:

� Redundancy takes a minimal value for Huffman cod-
ing.

� The redundancy of Huffman coding decreases as the
distribution grows less uniform.

� Redundancy takes non negative values for all lossless
codings.

� Redundancy takes negative values for codings that
produce a loss of information.

4.2 Functional Redundancy

Whereas in the previous (sub) section we explored means
to quantify space redundancy, in this section we briefly
touch upon the issue of quantifying functional redun-
dancy. To be sure, the mathematical literature on Shan-
non’s entropy does include definitions of functional re-
dundancy, which equate the redundancy of a function �
from � to � to the conditional entropy � ��� � ����� 	
	 , and
seem to measure the non-injectivity of a function. But our
discussion of qualitative models of redundancy leads us to
the following conclusions:

� We must generalize the concept of redundancy to en-
compass relations, not just functions.

� What aspect of a relation / function we quantify de-
pends on whether the relation is a past function, a
future function, a representation function, or a speci-
fication.

This matter is currently under investigation. The first step
in this direction consists in exploring a unified model for
redundancy that integrates all the relevant factors (the past
function, the future function, the specification, the repre-
sentation function), and reflects the observations we made
in the qualitative analysis (that redundancy increases with
the injectivity and non surjectivity of past functions, with
the non injectivity of future functions, with the non deter-
minacy of specifications, and with the non surjectivity of
representation functions).

5 Conclusion: Summary and
Prospects

5.1 Summary

In this paper we have attempted to analyze system redun-
dancy from a variety of angles, focusing first on external
manifestations of redundancy, then on possible mathemat-
ical models that capture it.

Figure 6 synthesizes our analysis by illustrating all the
properties that we found to enhance redundancy. Sur-
jectivity is represented by an arrow that points to a cir-
cle (symbolizing that the range of the function is smaller
than its space); injectivity is represented by parallel ar-
rows (symbolizing the property that different antecedents
are mapped onto different images); non-injectivity is rep-
resented by arrows that converge to a common target
(symbolizing the property that different antecedents are
mapped onto a common image); and non-determinacy is
represented by a cone (mapping a single antecedent onto
several images).

5.2 Prospects

We have offered no definite solutions in this paper, only
tentative observations about the multiple forms, multiple
models, and multiple observable manifestations of redun-
dancy. We are exploring quantitative and qualitative mod-
els that allow us to capture the many dimensions of redun-
dancy that we have discussed in this paper, with the aim
of unifying them. We are also exploring means to use the
insights derived from these models to make better use of
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Figure 6: A Synthesis of Redundancy Properties
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redundancy, for the purpose of fault tolerance for exam-
ple.
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