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ABSTRACT 

EXTENDING MESSAGE SEQUENCE CHARTS FOR MULTI-

LEVEL AND MULTI-FORMALISM MODELING IN MÖBIUS 

Abstract 

by Zhihe Zhou, M.S. 
Washington State University 

December 2002 
 
 
Chair: Frederick T. Sheldon  
 

Message Sequence Chart (MSC) is a formal language to describe the communication 

behavior of a system. Möbius is an extensible multi-level multi-formalism modeling tool 

that facilitates interactions of models from different formalisms. We propose a new 

version of MSC, Stochastic MSC (SMSC), which is a stochastic extension to the 

traditional MSC. SMSC is suitable for performability analysis. The SMSC formalism is 

integrated into the Möbius framework and the Möbius default solvers are used to solve 

SMSC models. We defined the mappings from SMSC to Möbius entities and 

implemented the required C++ classes to describe SMSC models in the framework. 

Together with other formalisms in Möbius, SMSC can be used as building blocks for 

large hybrid models. Users will have additional flexibility in choosing modeling 

languages in Möbius. Not like other formalisms so far included in Möbius, SMSC will 

have both textual and graphical representations. Modeling with a text editor is the same 

as writing a traditional program while the graphical representation gives users a direct 

view of the system. 
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CHAPTER ONE 

1. INTRODUCTION 

In the past two decades, much research has been conducted in the area of formal 

methods. Various formalisms have been studied and the corresponding tools developed 

[1]. The use of formal methods has evolved as the choice to make software and hardware 

systems, which are undergoing ever-growing complexity, more dependable and of higher 

performance. However, except for some costly mission/safety critical systems, formal 

methods are seldom used. Factors that hamper the use of formal methods include initial 

cost, lack of expertise, etc. One major problem that system engineers face is how to 

choose an appropriate tool and formalism from a vast array when they decide to adopt 

formal method(s). Naturally, good tools will facilitate the popularity of formal methods. 

1.1 Problem Definition 

Message Sequence Chart (MSC) [2, 3] is a Specification Description Language (SDL) 

widely used in industry for requirement specification, design specification, as well as test 

case description. MSC is a formal language with a well-defined syntax and semantics. 

Systems modeled with MSC are decomposed to a number of independent message 

passing instances. System behavior is specified by a series of charts indicating 

interactions between those instances. 

Performance evaluation is an important branch of formal analysis of system properties 

[4, 5].  It regards the quality of service a system can provide. However, not all formalisms 

are suitable for performance evaluation. For example, Petri Net [6] and Process Algebra 
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[7] cannot be used for performance evaluation1 although they are two famous formal 

languages in system liveness, deadlock free, or other static property analysis. MSC is not 

for performance evaluation either.  

 The first problem that we addressed in this research is about how we can make MSC 

suitable for performance evaluation. Petri Net has been extended to Stochastic Petri Net 

(SPN)[8], which associates stochastic time information to transitions. This extension of 

Petri Net can be used to address performance measures, and SPN models are widely used 

for performance evaluation of a system. Similarly, there is an extension to Process 

Algebra, Stochastic Process Algebra (SPA)[9], in which events are associated with 

random time information. SPA is also used for system performance evaluation. Based on 

the same idea, we have extended MSC to Stochastic MSC (SMSC). The newly created 

SMSC can be used for performance analysis. Although many research works had been 

conducted [10, 11] after MSC was proposed, no one has tried to extend it with stochastic 

properties. 

The second problem that we addressed in this research is about how to create a tool for 

analyzing SMSC. We are not going to create a separate tool for SMSC. Instead, SMSC 

will be integrated into the Möbius framework[12]. Since Möbius is a well-defined 

framework for multi-formalism modeling and several formalisms (SAN: Stochastic 

Activity Network[13], PEPA: Performance Evaluation Process Algebra [14], etc.) had 

been successfully built in [15, 16], SMSC can be easily integrated into Möbius, which 

enables SMSC to interact with other formalisms in Möbius. By implementing the 

interfaces required by Möbius, we do not even need to provide analyzers or solvers to the 

                                                 
1 Stochastic PNs and PAs do, however, provide such capabilities. 
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SMSC models. The Möbius provided solvers are applicable to solving SMSC models. 

The SMSC formalism, together with others available within Möbius, can be used for 

dependability analysis (i.e., performance, availability and reliability or performability 

analysis). 

1.2 Performability Analysis 

Performability was coined to include both performance and dependability [17]. 

Performance is defined as “quality of service, provided the system is correct.” 

Dependability is “the property of a system which allows reliance to be justifiably placed 

on the service it delivers.” Dependability includes reliability, availability, safety and 

security. In the past, performance and dependability were evaluated separately. However, 

problems exist when using separate evaluations because system performance actually 

depends on all of the aforementioned properties. When failures occur in a system, it 

usually operates at a degraded performance level. Therefore, performance evaluation 

without taking into consideration dependability does not capture the whole behavior of 

the system. On the other hand, dependability analysis tends to be conservative because 

performance considerations are usually not taken into account. To determine the overall 

quality of service by relating and quantifying aspects of what a specific system is and 

does (i.e., how well it performs, or performance) with respect to what the system is 

required to be and do (i.e., how its functionality is affected by faults, or dependability), 

performability analysis came into existence.  

Performability analysis requires that models of the system be built prior to evaluation. 

Modeling, the process of building models, is the technique that hides the unimportant 

details while retains the essence of the important aspects of the system to be evaluated, 



 4

also known as abstraction. A real system is usually too complex to be analyzed directly. 

Most commonly, performability analysis is done before the system is actually built. 

However, at this stage an abstract model is all that is feasible. The abstract model 

simplifies the system complexity, and yet embodies the same (i.e., at least to the greatest 

foreseeable extent) structural and behavioral properties, while providing accurate 

performability predictions of the real system dynamics.  

The types of models we are building are based on the formalisms we are using. 

Generally, all formalisms have well-defined semantics and/or syntax rules. Models from 

different formalisms have different appearances. For example, a SAN model will be quit 

different from a PEPA model. A SAN model is a graph, in which circles represent places, 

bars represent activities, triangles represent input gates or output gates, and arcs are used 

to connect those components. While, in contrast, a PEPA model only consists of a 

number of lines of texts and symbols that describe the modeled system. No graphical 

component is included. Although those models could represent the same system, their 

appearance is usually very different.  

1.3 Modeling Tools 

Software tools are required to create models and analyze the models for certain system 

measures. For each formalism, there is one or more software tool(s) available. These 

tools not only enable users to create models based on the formalisms, but also provide 

methods of analyzing the models. Some of them even provide a report generator, which 

can automatically create well-formatted reports. 

The Petri Nets formalism has been studied for many years. According to the Petri Nets 

World website, there are roughly 100 tools registered[18]. These tools deal with various 
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types of Petri Nets, including timed PN, colored PN, stochastic PN, etc., and can run on 

any platforms, including Unix, Mac OS, Linux, Windows, DOS, etc.  

Queuing networks is another formalism that is often used for performance analysis. 

Tools based on queuing networks include DyQN-Tool [19], LQNS [20], QNAP2 [21], 

RESQ [22], and RESQME [23]. For the PEPA formalism, a software tool PEPA 

Workbench was developed to solve the PEPA models for performance measures [24]. 

UltraSAN is a tool for specifying and solving SAN modles [25]. 

1.4 Multi-formalism Tools 

In addition to software tools dealing with a single formalism, there are tools that can 

be used to specify and solve models from more than one formalism. These tools are 

referred as multi-formalism tools. 

Multi-formalism tools can be classified into two categories: software environment that 

incorporated multiple tools, and integrated multi-formalism modeling tools. Tools in the 

first category include IMSE (Integrated Modeling Support Environment) [26], IDEAS 

(Integrated Design Environment for ASsessment of computer systems and 

communication networks) [27], and Freud [28]. The approach to build such tools is to 

provide a common user interface with which users can switch from one tool to another. 

Tools in the second category aim to build large heterogeneous models by supporting 

multiple formalisms and solution techniques. One way to implement such a tool is to 

translate models from different formalism into a single universal modeling language. This 

is exactly the method adopted by DEDS (Discrete Event Dynamic System) [29]. The 

second approach is to connect different models by exchanging results. Tools that took 
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this approach include SHARPE [30, 31] and SMART [32]. The Möbius tool uses a 

different approach in which a framework is defined and models from different 

formalisms can share states and results. 

1.5 Organization of the Thesis  

The rest of the thesis is organized as follows. Chapter 2 introduces the Message 

Sequence Chart formalism and the Möbius framework. A message sequence chart 

contains a number of MSC components: instances, messages, local actions, etc. These 

components act as the building blocks of MSCs. A basic MSC describes a simple 

scenario of system behavior. Several MSCs can be composed together to describe a more 

complex scenario. The full behavior of a system can be described by a High-level MSC. 

The Möbius framework is based on Möbius entities and the AFI. The AFI contains a 

series of functions that are defined in the Möbius entities and must be implemented by all 

formalisms in the framework. The structure of the Möbius framework and  the method of 

building and solving models using the Möbius tool is also described. 

Chapter 3 describes our extension to the MSC formalism. Events defined on a 

Message Sequence Chart are associated with random times, which denote the time 

needed to finish the events. The extended MSC is called Stochastic Message Sequence 

Chart, or SMSC. 

In chapter 4, we provide a method of integrating the SMSC formalism into the Möbius 

framework. The components of SMSC are analyzed to derive state variables and actions, 

which are the Möbius entities necessary to implement a formalism within the Möbius 

framework. The implementation of SMSC classes is discussed. We also analyze the 
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complexity of the SMSC models and the corresponding solving time for certain 

performance measures.  

Chapter 5 discusses an example of a network communication protocol. This example 

is used to demonstrate how SMSC models can be joined with models from other 

formalism. In the example, the stop-and-wait communication protocol is modeled as 

SMSC, while processes sending or receiving data through the stop-and-wait protocol are 

modeled as SANs. 

Chapter 6 concludes this thesis and provides future research directions regarding 

SMSC and the Möbius tool. 
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CHAPTER TWO 

2. MSC AND MÖBIUS FRAMEWORK 

This chapter covers the basics of MSC and Möbius. 

2.1 Message Sequence Charts 

The full specification of the Message Sequence Charts language can be found at [3]. 

Here, we briefly introduce the MSC formalism and provide some basic concepts that are 

necessary to understand our work. These concepts include the basic constructs of MSCs, 

event ordering rules, the composition of MSCs and High-level MSCs. 

The MSC formalism describes a system using a series of charts, each of which 

specifies part of the system behavior. These charts are combined together to depict the 

whole system. Inside each chart, there are several independent instances that represent 

components of the system and these instances exchange messages and perform actions.  

MSCs are always placed within the context of some encompassing environment. 

Instances in MSCs can send messages to or receive messages from their environment. An 

MSC can be represented graphically or textually. 

Figure 1 shows an example of a graphical representation of one Basic MSC (BMSC). 

The MSC is drawn as a frame containing the instances. The key word msc is followed by 

the name of the MSC and is placed inside the frame near the upper-left corner. Three 

instances exchange several messages with each other as well as with their environment. 

The environment is an imagined instance capable of sending and receiving messages. The 

instance i1 also performs a local action. 
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Figure 1 Graphical representation of an MSC 

 
The textual representation can be done in two ways. First, an MSC can be described by 

giving the behavior of all its instances in isolation. This way of describing an MSC is 

called instance-oriented. Another way of representing an MSC is the so-called event-

oriented description. With the event-oriented descriptions, a list of events is given as they 

are expected to occur in a trace of the system or as they are encountered while scanning 

the graphical MSC from top-to-bottom.  The instance-oriented description of the same 

example is shown in Figure 2 (a). Figure 2 (b) shows the event-oriented description of the 

MSC. The keyword msc denoting the beginning of an MSC is followed by the MSC 

name. The MSC ends with the keyword endmsc. 

A BMSC describes a simple scenario and cannot have loops/branches in its instances. 

Loops/branches are always based on scenarios or BMSCs and specified by the way of 

composing BMSCs within the High-level MSC. 

 msc example1 

i1 i2 i3 

m0 

m1 

m2 

m3 
a 
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Figure 2 Textual representation of the example 1 

A Message Sequence Chart is composed of interacting instances, which are the 

primary entities in an MSC. An instance may represent a system component, for example, 

a process or a service.  Within the instance body the ordering of events is specified. 

Graphically, an instance is drawn as a vertical line starting with the instance head symbol 

and ending with the instance end symbol. The instance head symbol is a rectangular box, 

and the instance end symbol is a solid rectangular box. These symbols describe the 

beginning and ending of the instance within the MSC. 

Instances in an MSC interact with each other by exchanging messages. The graphical 

description of a message is an arrow that starts at the sending instance and ends at the 

receiving instance. An arrow starting from the sending instance to the surrounding frame 

represents a message sent to the environment. If the message is sent but never consumed 

(i.e., lost), the arrow ends at a black dot, which denotes a “black hole.” Symmetrically, a 

msc example1; 
  instance i1; 
    out m0 to env; 
    out m1 to i2; 
    action a; 
    in m3 from i2; 
  endinstance 
  instance i2; 
    in m1 from i1; 
    out m2 to i3; 
    out m3 to i1; 
  endinstance; 
  instance i3; 
    in m2 from i2; 
  endinstance; 
endmsc; 

(a) 

msc example1; 
i1: out m0 to env; 
i1: out m1 to i2; 
i2: in m1 from i1; 
i2: out m2 to i3; 
i3: in m2 from i2; 
i1: action a; 
i2: out m3 to i1; 
i1: in m3 from i2; 
endmsc; 
 
 
 
 
 
 

(b) 
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message can be found, meaning it originates from nowhere. In this case, the arrow starts 

at an open dot (“white hole”). A lost or found message is called incomplete message 

because there is either no sending instance or receiving instance associated with the 

message.  

In addition to messages, local actions of an instance may be specified in MSCs. A 

local action describes an internal atomic activity of an instance and contains either an 

informal description of the activity, or a formal statement that defines operations on some 

data. Graphically, a local action is denoted by an action symbol on an instance with the 

action string inside (i.e., a box placed on and obscuring the instance axis). See local 

action a in Figure 1.  

An MSC also specifies a partial order for the events inside the MSC using two basic 

ordering rules. The first rule concerns the ordering of events of the same instance. This 

rule says that the events of an instance are executed in the same order as they are 

given on the vertical axis from top to bottom. The second rule concerns the order 

imposed by messages. The key idea for defining this rule is that a message must be sent 

before it can be consumed. Therefore, the second rule is, the event of sending a message 

must happen prior to the event of receiving the same message. 

To enable the description of unordered events along an instance axis, the MSC 

formalism introduces the coregion construct.  A coregion is drawn as a dashed vertical 

line that replaces part of the instance axis. Events in a coregion may happen in any order.  

A general ordering is used to explicitly specify the ordering of two events whose 

ordering is otherwise undefined. 
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Message exchanges and local actions may be restricted by conditions. Conditions are 

an MSC construct that specifies the system states. There are setting conditions (i.e., set 

the system to certain state) and guarding conditions. A guarding condition precedes 

messages and local actions to further restrict their execution. When the condition holds, 

the message(s)/action(s) that follow the guard may execute. 

The MSC formalism also supports structural design composed vertically and/or 

horizontally. Within one MSC, a reference can be used to refer to another MSC. Vertical 

composition connects the common instances that share the same name in two MSCs. 

Thus, the event execution trace of common instances in successive MSCs follows the 

execution of events in the preceding MSCs. While in horizontal composition, the events 

of common instances are interleaved. An MSC can have more than one MSC in vertical 

composition. In this case, the succeeding MSCs are alternatives of each other (i.e., called 

alternative composition). 

Generally, the way to combine 

MSCs is to use a High-level 

MSC (HMSC), in which MSC 

references and other constructs 

are used to specify their 

composition. An HMSC cannot 

contain instances, messages or 

local actions although it can use 

conditions. HMSCs can only use 

MSC references because the goal 

 
Figure 3. Example of High-level MSC. 

msc setup 

when disconnected 

connected 

failure connection 
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of HMSC is to define how the basic MSCs are connected. Figure 3 shows an HMSC 

example.  

2.2 Möbius Framework 

The Möbius framework provides a method by which multiple, heterogeneous models 

can be composed together, each representing a different software or hardware module, 

component, or view of the system [33]. The composition techniques developed permit 

models to interact with one another by sharing state, events, or results. This framework 

also supports multiple modeling languages and multiple model solution methods, 

including both simulation and analysis. The Möbius framework is extensible, in the sense 

that it is possible to add new modeling formalisms, composition and connection methods, 

and model solution techniques to the software environment that implements the Möbius 

framework without changing existing tool components. 

The Möbius framework defines three basic Möbius entities: state variables, actions, 

and action groups (or groups). State variables hold the state of the model, or the state 

of the modeled system. The type of state variables could be a simple type such as integer, 

Boolean, or double, or a complicated structure type. The value of a state variable could 

also depend on the value of another state variable (i.e., the value of the state variable is a 

function of another state variable). Actions are the only Möbius entities that can change 

the values of state variables, thus the state of the model or the system. Actions could be 

instantaneous or timed. An instantaneous action takes no time, while a timed action is 

usually associated with some random times, which is called time-to-complete. Only after 

this period of time can the action complete or fire. Actions are enabled under certain 

system state and the firing of an action often changes the system state to a new state. 
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Groups contain one or more actions called group members.  A group is enabled when at 

least one group member is enabled. However, not all enabled group members can fire. At 

any time, only one enabled group member is elected as the representative that can fire. 

Other enabled group members are ignored. The way to select its representative must be 

defined on a group. 

All formalisms integrated into the Möbius framework must use the Möbius entities to 

specify their model. But this by no means implies different formalisms are translated into 

some universal modeling language because the Möbius entities are not fully defined 

modeling components. For example, actions can be enabled and can fire. But how to 

decide the enabling condition and what to do when they fire are left undefined. These 

issues are specific to the formalism and must be dealt with when implementing that 

formalism into the Möbius framework. The Möbius entities, together with the formalism 

specific information, are used to describe the model built on the formalism [34]. 

The Möbius framework defines an Abstract Functional Interface (AFI). The AFI is the 

core of the Möbius framework because it enables models to exchange information with 

other models and different solvers. The AFI also enables the Möbius solvers to solve a 

model without the knowledge of the underlying formalism. Thus, hybrid models that 

consist of models from different formalisms are solvable.  

The Möbius AFI consists of functions that are implemented as C++ virtual methods 

within the implementation of the C++ classes for Möbius entities.  Virtual methods can 

be redefined in the derived class so that the formalism specific behavior can be defined in 

terms of the Möbius entities for a given formalism. In the implementation of the Möbius 

tool, state variables are not simple variables, instead, they are implemented as an abstract 
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C++ class: BaseStateVariableClass. Actions and action groups are implemented as 

BaseActionClass and BaseGroupClass, respectively. One additional class 

BaseModelClass is defined as the container for Möbius entities. Each class contains 

several virtual methods that are part of the AFI. The virtual methods and their 

corresponding classes are summarized in Table 1. 

Class AFI functions Function description 

int StateSize( ) Determine the number of bytes 
needed to store the state 

void SetState(void *p) Sets the value of the state 
variable BaseStateVaribleClass 

void CurrentState(void *p) Writes the state to the memory 
location p. 

Bool Enabled( ) 
Determines whether the action is 
enabled in the current model 
state 

double 
SampleDistribution( ) 

Returns the action’s time-to-
completion 

BaseActionClass 

Fire( ) Defines how the action changes 
the state of the model 

(All functions defined in 
the BaseActionClass)  

BaseGroupClass 
SelectAction ( ) Selects the action to represent 

the group 

int StateSize( ) Determine the number of bytes 
needed to store the model state 

void SetState(void *p) Sets the state of the model 

void CurrentState(void *p) Writes the model state to the 
memory location p. 

void ListActions( ) Lists actions in the model 

void ListGroups( ) Lists groups in the model 

BaseModelClass 

void ListSVs Lists state variables in the model 

Table 1 Möbius classes and AFI functions. 
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The formalism in the Möbius framework must derive its own classes from these basic 

abstract classes and implement the AFI, i.e., provide their own implementation for those 

virtual methods. 

The Möbius framework uses a hierarchical model construction method, as is shown in 

Figure 4. First, atomic models are built from single formalisms. Second, two or more 

atomic models form a composed model by sharing state variables. Then, reward 

variables are defined for atomic or composed models to form a solvable model. One or 

more solvable models, together with reward variables, can form a connected model.  The 

solvable models are solved using the Möbius simulators or analytical/numerical solvers. 

The process of using software tools to analyze a model for the purpose of obtaining 

certain performability measures from the system under study is called solving the model. 

The software tool used to calculate (either numerically or analytically) the measure of a 

Figure 4 The Möbius framework. 
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model property is called a solver. The Möbius tool provides two classes of solution 

techniques: discrete event simulation and analytical/numerical technique. 

How to choose an appropriate solver depends on the model type, reward variable type, 

and the desired measure. The advantages of using simulation are: 

• Simulation is applicable to any models, regardless the action’s time-to-

completion distribution. 

• Simulation does not require the generation of the entire state space. 

• Simulation does not require the model have a finite state space. 

However, simulation could take quite a long time if either the rare event problem 

arises, or higher accuracy is desired [25]. 

Before using any analytical solver, the state space of the model must be explicitly 

generated. This implies the model has to have a finite state space. Another restriction for 

using analytical solvers is that the model must imply a Markov or Semi-Markov process. 

In other words, actions’ time-to-completion must have exponential distribution and there 

is at most (for semi-Markov) one action with deterministic distribution. 

2.3 Summary 

In this chapter, the MSC formalism and the Möbius framework were introduced. MSC 

is closely related to our stochastic extension version of MSC - SMSC. SMSC will be 

defined in the next chapter. A Message Sequence Chart describes the interaction between 

a number of instances through message passing. An instance can also perform internal 

actions. Messages and actions are further decomposed as events. An MSC specifies a 
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partial order of the execution of these events. MSCs can be composed to form larger 

MSCs through composition operations, which are describe by an HMSC. 

The Möbius framework facilitates composition of multiple heterogeneous models and 

multiple solution methods. The SMSC formalism is integrated into this framework and 

hence, the Möbius solvers can be used solve SMSC models. 
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CHAPTER THREE 

3. STOCHASTIC MSC  

In this chapter, we provide a way to extend the MSC formalism to include stochastic 

information. The extended MSC is called Stochastic MSC or SMSC. SMSC has more 

expressive power than MSC, and enables the performance analysis to be performed on 

the system, which is modeled as an SMSC.  

3.1 Why Stochastic MSC? 

The MSC formalism defined in the ITU (International Telecommunication Union) 

standard [3] is commonly used to specify the behavior of systems by constructing a series 

of MSCs. Each MSC is a description of a part of system behavior. The system-wide 

behavior description is achieved by combining these MSCs using the composition 

operators. But what kind of information about the system can we get given that the 

system is modeled as MSCs? 

First, since an MSC describes a number of instances exchanging messages or 

performing some actions, we can know how many objects the system is made up of, what 

messages are exchanged, between which objects they are exchanged, and what actions 

are performed and by whom. Instances in an MSC actually represent objects of a real 

system. 

Second, certain properties of system behavior can be specified. More precisely, the 

possible orderings in which actions and messages can occur are defined. An MSC not 

only contains entities for specifying system objects and their actions, but also imposes a 

partial order for the events that the system can engage in. We say that a partial order is 
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implied because there could be events without a defined execution order. These events 

can happen in any order without violating any rules defined in the MSC formalism. A 

total order requires that all events can be ordered, directly or indirectly. This is a special 

case for MSCs in which all events have only one execution order. In a summary, MSCs 

tell us what the system is, what the system does, and how the system should do it. That is 

why MSC is a Specification Description Language (SDL). 

The event ordering specified by MSCs is only one aspect of system behavior. Other 

properties regarding how well the system behaves, i.e. the performance of the system, 

cannot be ascertained from plain MSCs. This limitation is mainly due to the assumption 

made in the MSC formalism that all events are instantaneous. Under this assumption, 

MSC events cannot capture the characteristics of real system activities that do require 

time (or that have some relationship with time). 

As a scenario description language, MSC is a good candidate for performance 

modeling since a performance model also describes the system behavior. In the paradigm 

of performance modeling, stochastic process theory is dominant. A system is first 

modeled as a stochastic process. The behavior of the system is assumed to be the same as 

the behavior of the stochastic process. A well-developed theory for stochastic processes 

can be used to analyze the system model and evaluate the system performance. 

Therefore, we relaxed the assumption in MSC formalism that all events are instantaneous 

and enable events to be associated with random time. The random time denotes the time 

required to complete the event. The new language is a stochastic extension to MSC. 

Thus, we call it Stochastic MSC (SMSC).  
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In the development of formal methods, there are many examples of extending a 

formalism to include stochastic time information. Petri Net was first defined without time 

information. Transitions in a PN are also instantaneous. Later, the PN formalism was 

extended to allow transitions to have time information. The new PN formalism was called 

Stochastic Petri Net (SPN). SPN models enabled the performance of the modeled system 

to be analyzed. SPN was further extended by allowing timed transitions to be mixed with 

instantaneous transitions. This extension to SPN is named Generalized SPN (GSPN). 

GSPN is expressively more powerful than SPN. But GSPN also has an extension: 

Stochastic Activity Network (SAN). SAN defines new constructs to build a model and 

further enhanced the expressive power. Another example would be Process Algebras 

(PA) and the corresponding Stochastic Process Algebras (SPA). PAs is used for 

analyzing system properties other than performance, while SPA is suitable for 

performance modeling. In fact, the MSC language has a formal notation based on PA[2]. 

Communicating Sequential Process (CSP) and CCS are two typical formalisms from the 

PA domain. PEPA (Performance Evaluation Process Algebra) is defined based on CCS. 

All PEPA activities must have exponentially distributed random time. As its name 

suggests, PEPA is defined for performance analysis. 

3.2 Definition of SMSC 

We define SMSC based on the language of MSC: 

• A Stochastic Message Sequence Chart is a Message Sequence Chart in 

which all events are enhanced to behave as activities by associating 
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stochastic time information with them. The stochastic time associated with 

an activity defines the time needed to complete the activity.2 

“Event” is usually used to describe the occurrence of something. When an event is 

associated with time, we call it an “activity.” Activity means something that takes time to 

do. 

The type of distribution of the stochastic time associated with activities can be 

deterministic, exponential, beta, etc. There is no restriction on what type of distribution a 

stochastic time can take. However, to simplify the description, we use the exponential 

distribution as the default distribution in the rest of this chapter. Figure 5 shows an 

example of an SMSC. 

In the MSC language, there are two types of events: the events in message passing and 

                                                 
2 An immediate or instantaneous event is an activity associated with zero time. 

Figure 5 An SMSC example 
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the events for local actions. Hence, there are also two types of activities: message 

activities and local action activities or simply local activities. 

A message in the SMSC language consists of two activities: the activity of sending the 

message and the activity of receiving it. Graphically, a message is represented by an 

arrow, which starts from the instance of sending the message and ends at the instance that 

receives the same message. A name is associated with a message and is followed by two 

parameters. The first parameter specifies the time for the sending activity and the second 

defines the time for the receiving activity. For example, message m1 in Figure 5 has two 

parameters: r3 and r4.  r3 specifies the rate of an exponentially distributed random 

variable that gives the amount of time needed to send the message. r4 is for assigning the 

time to the activity receiving the message. Both r3 and r4 may be global variables so that 

their values can be easily modified later. The textural representation of messages is 

defined by adding a new keyword withrate to the MSC language as shown in Figure 6. 

Note that a new keyword smsc is defined to distinguish SMSC from MSC and is used in 

both the graphical and textural representations. 

Figure 6 Textual representation of SMSC 

 
smsc example1; 
i1: out m0 to env withrate r1; 
i1: out m1 to i2 withrate r3; 
i1: action a withrate r0;  
i1: in m3 from i2 withrate r8; 
i2: in m1 from i1 withrate r4; 
i2: out m2 to i3 withrate r5; 
i2: out m3 to i1 withrate r7; 
i3: in m2 from i2 withrate r6; 
endmsc; 
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Local activities are also assigned random time in the same way as messages. But only 

one parameter is required.  

3.3 Comparing MSC with SMSC 

The SMSC language is different from the MSC in that SMSC activities are not 

instantaneous. Therefore, SMSC provides more information about a system than MSC. 

However, one may ask the question “Can SMSC provide the information regarding the 

modeled system that MSC provides?” or “Is the partial order of events imposed by MSCs 

still applicable to SMSC activities?” After comparing these two formalisms, we 

amazingly found that the answer is YES. 

3.3.1 Constructs 

All constructs (instances, messages, local actions, conditions, etc.) defined on MSC 

can be used for SMSC. The graphical representation of a SMSC looks the same as an 

MSC except for the additional parameters mandatory to activities in the SMSC. 

As for textual representations, all the keywords defined in MSC are still defined on 

SMSC. Although new keywords are defined for SMSC, the method of describing SMSC 

is the same as that of MSC. 

Most of the new keywords deal with the specification of random times for activities 

except for the keyword smsc, which denotes the MSC specified is actually an SMSC. For 

example, if an activity is associated with exponentially distributed random time, the 

keyword withrate is used in the description and is followed by a parameter that specifies 

the rate of the exponential distribution. We only need to provide one such parameter 

because the exponential distribution requires only one parameter. Other distributions may 
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be specified by defining the corresponding keywords and providing the required 

parameters. In this thesis, we focus on the exponential distribution only. 

SMSC and MSC have the same composition operators. SMSCs can be combined 

vertically, horizontally, or alternatively. The semantics of these composition methods in 

SMSC are identical to that of MSC. 

High-level SMSC (HMSC) is defined in the same way as HMSC. HSMSC organizes 

SMSC references using the same nodes defined on HMSC. The interpretation of the 

organization is done in a similar way as what is defined for HMSC.  

3.3.2 Ordering Rules 

SMSC has different ordering rules. Under the new ordering rules, a SMSC imposes a 

partial order on its activities. This partial order is the same as that imposed by an MSC. 

The two assumptions made in MSC are for precisely ordering events. The assumption 

of instantaneous events is obvious. If events can last for a period of time, it would be 

quite possible that another event starts before an already stated event finishes. In this 

case, what is the order of these two events? The assumption that no two events can be 

executed at the same time means any two events have a specific order. An event either 

happens before or after the other one. Hence, the execution of events forms a trace that 

describes the system behavior. 

In SMSC, we relax the first assumption. As a result, the second assumption can no 

longer be held and is also relaxed.  

We have mentioned that activities cannot be ordered. But if we decompose an activity 

into two events, one for the starting of the activity and the other for the ending of it, we 
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will find a new way to order activities. The order of activities can be defined as either the 

order of starting events or that of the ending events. By this definition, the order of 

activities may not be unique for an execution of these activities.   

Since instances are independent in SMSC, activities are executed concurrently. Even if 

the starting times are different, two activities may finish at the same time because the 

execution time is a random variable. Therefore, it is possible that two events happen at 

the same time. If two events happen at the same time, they are treated as if they can be in 

any order.  

We will show later that these ambiguities in ordering activity events will not prevent 

us from defining the partial order the same as that defined in MSC. 

There are five ordering rules regarding the ordering of activities and activity events: 

1) The event of starting an activity must happen before the event of finishing the 

same activity.  

2) Activities attached to an instance are executed sequentially in the same 

order as they are given on the vertical axis from top to bottom. An activity 

can only start after the previous one finished. 

3) The activity of sending a message must finish before the activity of receiving 

the same message can start. 

4) Activities in a coregion can happen in any order, but their execution must 

abide by rule 1. 

5) If general orderings are used, they are treated as messages in terms of 

ordering these activities. In other words, the activity pointed to by a general 
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ordering symbol can only start after the activity from which the general 

ordering originates has finished. 

The first rule describes how to order the two events (start and finish) in an activity. 

Obviously, the starting event should always happen before the ending event. The second 

rule covers the ordering of activity events associated with the same instance. If each 

activity is treated as two consecutive events, the ordering of these events is the same as 

that defined for MSC.  

The third rule is for ordering events in a message. The order of activities of different 

instances can be derived from this rule. A message includes two activities, and hence four 

events: the event of starting to send the message, the event of starting to receive the 

message, the event of finishing the sending of the message, and the event of finishing the 

receiving of the message. The precise restriction for their order is that the event of 

starting to send a message must happen before the event of starting to receive the 

message, and the event of finishing the receiving of the message must happen after the 

event of finishing the sending of the message. In other words, a message must be sent 

before it can be received, and the sending of the message must have finished before the 

receiving of it can finish. However, we define a stricter rule: the sending of a message 

must have finished before the receiving of it can start. This rule is to prevent a message 

from being completely received before the end of sending the message has not occurred. 

The fourth and fifth rules are defined for ordering events in a coregion or for being 

controlled by general orderings. The interpretation is easy to understand. 

Under these ordering rules, whether using the order of starting events or the order of 

ending events as the order of activities, this order imposed by an SMSC is sure to comply 
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with the partial order imposed by the corresponding MSC if the time information is 

removed from the SMSC. Therefore, an SMSC imposes the same partial order on its 

activities as an MSC does on its events. This result is mainly due to the strict ordering 

rules defined for messages and general orderings in SMSC. 

Although we may have two different orderings for activities’ starting events and 

ending events, both of the orderings will comply with the partial order imposed by the 

corresponding MSC. Any two activities that can be orders differently must correspond to 

the events that have undefined order in the corresponding MSC.  

  3.3.3 Traces vs. Processes 

An MSC specifies a set of valid traces that the system can take. If we define the 

sequence of activities as a trace, an SMSC specifies a set of valid traces the same as an 

MSC. In addition, an SMSC also specifies a stochastic process. 

The main difference between the MSC and SMSC languages is that SMSC defines a 

stochastic process while MSC does not.  SMSC can describe the system behavior more 

precisely than MSC by providing users with more information about the system. The 

stochastic process enables users to do performance analysis about the system. This is the 

reason that we extend MSC to SMSC.  

3.4 The Underlying Stochastic Process 

To show that an SMSC defines a stochastic process, we use an indirect way. It is 

known that a Stochastic Activity Network defines a stochastic process [35]. It can be 

shown that a SMSC is equivalent to a SAN, hence a SMSC also defines a stochastic 

process. 
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3.4.1 SAN 

SAN is an extension to GSPN. In addition to the common constructs defined for 

GSPN: places, directed arcs, and transitions. SAN defines two new elements: input gates, 

and output gates. The transitions are called activities in SAN. 

Input gates are used to control the enabling of activities. Associated with each input 

gate are a predicate and a function. An activity can only be enabled if all its input gate 

predicates evaluate “true.” The input gate function defines the marking change if the 

activity to which it connects fires. An input gate must be connected to all places whose 

markings affect or are affected by the firing of the activity. The graphical symbol for an 

input gate is a triangle:> . 

An output gate contains a function, which defines the marking change if the activity to 

which it connects fires. The symbol for the output gate is also a triangle: > . To 

distinguish an input gate from an output gate, the arc that starts at one vertex of the input 

gate triangle always ends at an activity. For an output gate, the arc will end at a place. For 

example, the triangle in the left part of Figure 7. is an input gate, and the right one is an 

output gate. 

Gates enable the modeler to manipulate markings and control the activities in a more 

flexible way. Hence SANs is expressively more power than GSPNs. 

Figure 7 Gates in a SAN 
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3.4.2 SMSC to SAN 

A SMSC can be translated into a SAN. They specify the same underlying stochastic 

process. 

First, let us look at an independent instance with no message exchange. This instance 

just performs a series of local activities. Such an instance specifies a sequential process if 

no coregion is defined along the instance axis. The translation from a trivial instance to a 

SAN is trivial as well. Local activities are translated as SAN activities. Between any two 

consecutive activities a place is added. Also, we add one place before the first activity 

and another one after the last activity. This method of translation is illustrated in Figure 8. 

The SMSC with one instance and three local activities is translated to a SAN with four 

places and three activities. Each place can at most have one token. In fact, only one of 

Figure 8 Translating an instance to a SAN 
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these places will contain a token at any time. The place that has a token denotes the 

current state of the SAN or the state of the corresponding instance.  

Next, a more complex example is discussed. In this example, there are two instances 

between them there are two messages. Each instance also performs a local activity. This 

example is shown in Figure 9. 

If we look at the instances individually, each instance also specifies a sequential 

process. However, the condition that an activity can be executed in one process depends 

on the state of the other one. Message exchanges impose new restrictions on the enabling 

of activities. 

According to the third ordering rule in section 4.3.2, the activity of receiving a 

message can only be executed after the activity of sending the same message has finished 

its execution. This means the activity of receiving a message can only be enabled after 

Figure 9 Translation of an SMSC to a SAN 
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the execution of the instance that sends the message has past a point, which denotes the 

end of sending the message. In the SAN model in Figure 9, activity RM1 represents the 

activity of receiving message m1, and SM1 denotes the activity of sending message m1. 

RM1 can only be enabled if there is a token in P21, P22 or P23. A token in either place 

means the sending of the message has finished. This restriction is modeled by the 

addition of an input gate. Note that the place P23 is excluded because there is activity 

before P23 that receives a message from the instance that executes RM1. Before finishing 

RM1, the instance cannot start SM2, and hence activity RM2 cannot be executed and it is 

impossible to have a token in P23. The predicate of the input gate should evaluate “true” 

if there is a token in either P21 or P22. Similarly, the enabling of RM2 is also controlled 

by an input gate that depends on the markings of P12 and P13. Of course, the enabling of 

an activity for receiving message also depends on the state of the instance that performs 

the receiving activity. 

A general ordering between two activities from different instances imposes the same 

restrictions on the enabling of the later activity as a message does. The general orderings 

defined on activities of the same instance have no special meanings except for activities 

in a coregion. If a coregion is specified, activities in the coregion can run concurrently. 

Before all the activities in a coregion have finished execution, the activity which follows 

the coregion cannot be executed. If a general ordering is specified between two activities 

in a coregion, these two activities are executed sequentially as specified by the general 

ordering. 
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Any SMSC can be translated to an equivalent SAN. The execution order of activities 

imposed by an SMSC is preserved in its SAN equivalence. Therefore, a SMSC defines a 

stochastic process equivalent to the one defined by its corresponding SAN translation. 

3.4.3 The Difference Between SMSC and SAN 

Although SMSC models can be translated into SAN models, SMSC language is 

different from SAN in several aspects. 

First, the purposed of modeling a system in SAN is to analyze the system 

performance. While a SMSC model not only enables performance analysis, but also 

describes the system behavior in terms of a specification description language. Therefore, 

SAN only cares about the internal dynamic behavior of the system and models the system 

as abstract as possible. A SAN model is usually complicated, and one is hard to capture 

the profile of the system to be modeled. SMSC can provide a clear overview about the 

modeled system. 

Second, SAN and SMSC use different components. The basic components in SAN are 

activities, places, and input/output gates. But SMSC uses messages, local activities, and 

instances as its basic components. The concept of message is unique to SMSC in that 

messages imply the execution order of activities between different instances.  

Finally, SMSC imposes a partial order on the execution of activities by carefully 

defining the ordering rules. There is no ordering rule defined on SAN activities. Although 

we can use SAN to mimic the behavior specified by the SMSC as we did in the previous 

examples, addition input gates have to be added in the SAN model. Since we need one 

extra input gate for any message and the input gate must connect to all the subsequent 
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places, too many input gates could be introduced for large models and the resulting SAN 

model would be a very complicated one comparing with the SMSC model. 

Therefore, SMSC can be used to specify a system more clearly and concisely than 

SAN. SMSC also enables the performance analysis to be conduced on the system model 

just as a SAN model does.  

3.5 Summary 

In this chapter, we defined a new formalism Stochastic Message Sequence Chart based 

on the MSC language. SMSC is an extension to MSC. SMSC can be used to describe the 

system behavior in the same way as MSC does. However, SMSC includes stochastic time 

information and is capable of performance analysis, which cannot be done with just 

MSC.  

The following chapter introduces a way to analyze SMSC models. 
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CHAPTER FOUR 

4. INTEGRATING SMSC INTO MÖBIUS 

Now that we have defined the SMSC language and it is capable of performance 

modeling, we need to provide a tool to analyze the SMSC models. Instead of creating a 

new tool for solving SMSC models, we decide to integrate the SMSC formalism into the 

Möbius framework and use the Möbius tool to solve SMSC models. Since the Möbius 

tool supports multi-formalism modeling, building SMSC into the Möbius framework not 

only provides a tool for solving SMSC models, but also enables SMSC model to interact 

with models from other formalisms. In this chapter, we study the theoretical possibility of 

adding SMSC into the Möbius, and also give suggestions about how and what is needed 

for implementation. 

4.1 Motivations and Problem Definition 

To analyze an SMSC model, we can use one of the following three ways: 

1) Develop a tool specifically for solving SMSC models. 

2) Develop a parser to translate SMSC to SAN and use UltraSAN to solve the 

corresponding SAN model. 

3) Integrate SMSC into the Möbius framework and use the Möbius tool to 

analyze the SMSC model. 

We reject the first two methods and decide to adopt the third method due to the 

following reasons. 
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First, the Möbius tool provides discrete event simulators and analytical solvers that are 

capable of solving any models within the Möbius framework. Once a new formalism is 

integrated in the framework, the existing solvers are ready to solve models expressed in 

the new formalism. It is not necessary to develop solvers for the new formalism. All we 

need to do is to express our models using the Möbius entities.  

Second, SAN has been integrated into the Möbius framework. In fact, the Möbius tool 

borrowed lots of ideas from the UltraSAN tool, such as model replication, performance 

variable specification, study editor, etc. The solvers available in the UltraSAN tool are 

also available in the Möbius tool. We do not need to translate SMSC to SAN if we can 

use Möbius entities to describe the SMSC models.  

Finally, the most important advantage that we build SMSC formalism into the Möbius 

framework is that the SMSC formalism can be used for multi-formalism modeling. 

SMSC models can be easily joined with models from other formalisms (available within 

the Möbius tool) and form large heterogeneous models. Integrating the SMSC formalism 

into the Möbius framework enables the SMSC formalism to use the full features of the 

Möbius toolkit.  

The Möbius framework defines three basic entities: state variables, action, and action 

groups. These basic entities are the building blocks of any model. In addition, an abstract 

functional interface (AFI) is also defined. The AFI can be used by other models or 

solvers to access the model information or to control the execution of the model. These 

basic entities and the interface has been implement as base C++ classes in the Möbius 

tool.  
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The Möbius framework requires that any formalism in the Möbius must implement the 

AFI and describes its model based on these basic entities. To build the SMSC formalism 

into the Möbius tool would require that SMSCs be decomposed into a set of state 

variables and a set of actions. Groups are not used when we describe the SMSC models. 

The state change and the ordering of action firings are determined by the structure of the 

SMSC model.  

Therefore, before we can use the Möbius tool to solve a SMSC, the following three 

problems must be solved: 

1) How to define SMSC states and the corresponding state variables. 

2) How to define SMSC actions. 

3) How to organize state variables and actions to represent the same model structure 

as defined in the SMSC. 

The following three sections will answer these questions. 

4.2 Identifying State Variables in SMSCs  

To define the state of an SMSC, we must examine the components to see that the 

SMSC contains what necessary information for specifying the state of the system. An 

SMSC contains a number of independent instances. The instances send messages to each 

other and/or perform some local activities. SMSC may contain conditions that govern the 

execution of some activities. Local activities can also perform operations on local or 

global data. These constructs are used to model a system and contain the information that 

describes the system state. 
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4.2.1 Instance state 

In section 4.4.2 we have shown that an SMSC can be translated into a SAN. The given 

example also showed that an instance with three activities corresponds to a SAN with 

four places. Places in the SAN model represent the system states. This implies that 

instances do have states. 

The state of an instance should reflect which activity has been executed. Since an 

instance specifies a sequential execution order of its activities, it is important to keep the 

information about the execution of activities so as to ensure the sequential order. Initially, 

the instance is in a state that no activity has been executed. After executing the first 

activity, the state of the instance evolves to a new state that reflects the fact that the first 

activity has been executed. This process goes on until the last state has been reached, 

which shows all activities have finished. 

The number of states that an instance can have depends on the number of activities 

associated with the instance. First, if an instance has no coregion defined on it, the 

number of states is given by the following equation: 

                        1+= eActivitesNumInstanceStatesNumInstanc                           (5.1) 

where NumInstanceStates is the number of states, and NumInstacneActivites denotes the 

number of activities on the instance. 

We have two methods of representing the instance states. One method is to define a 

Boolean variable for each state. This method comes from the SAN equivalence of a 

SMSC. We have said in section 4.4.2 that each place in the SAN model can have at most 

one token, so a Boolean variable can be used to represent the state. But we reject this 
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method because the number of variables would be too many if an instance has a large 

number of activities attached. Actually we can use only one variable to hold the state 

information. 

An instance that has no coregion specifies a strict sequential process. Activities can 

only be executed in the order they are given from top to bottom along the vertical 

instance axis. The execution of a later activity implies that all previous activities have 

finished. Therefore we can represent the instance state using an integer variable that holds 

the value of how many activities have been executed. Initially, the value is 0, meaning no 

activity is executed. The value increments by 1 after each activity is executed. From the 

value of this variable, we can immediately know which activity has finished and which 

activity is the next one to execute. It gives us no less information than a large number of 

Boolean variables. Furthermore, it uses less memory and is easy to manage. As long as 

the number of activities is within the rang of integer values (this is always the case), the 

state of an instance can be kept simply by using an integer variable. 

Second, if a coregion exists in an instance, equation (5.1) no longer holds. Activities in 

a coregion can be executed in any order. A coregion brings additional states to the 

instance. To represent the state of a coregion, we have to associate each activity in the 

coregion with a Boolean variable. The “true” value denotes the finish of the execution of 

the activity, while the “false” value denotes the activity has not been started. The number 

of additional states brought by a coregion is at most  

snActivitieNumCoregio2                     (5.2). 
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If we exclude the coregion activities from the instance activities, equation 5.1 can be 

used to calculate the number of instance states. The total number of the states is the sum 

of this number and the number of states contributed by the coregion. Finally, if more than 

one coregion appears in an instance. Each coregion contributes at most the number of 

additional states given by (5.2). 

4.2.2 Conditions 

As defined in the MSC language, conditions represent system state. Therefore, 

conditions are good candidates for state variables. Depending on how many states a 

condition represents, the type of the state variable for a condition can be either Boolean 

or integer. 

4.2.3 Data 

SMSC can also perform operations on data just as MSC does. Data defined on SMSC 

are also state variables. The change of the data value represents the state change of the 

model. The type of the state variable for a data member is the same as the type of the data 

member. 

4.2.4 Special Entities 

Some special entities are defined in the MSC language. They are capable of sending or 

receiving messages. Theses entities include the environment, lost and found. Messages 

can be sent to or received from the environment. There is no order defined on 

environment. Therefore, we cannot consider the environment as an instance. Messages 

that are sent but not received by an instance are called incomplete messages. Incomplete 
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messages are considered to be directed to an entity: lost. Similarly, a found message is 

the one that no instance sends and is considered to originate from an entity: found. 

To represent these special entities in the Möbius framework, we define one state 

variable for each. The state of the environment may contain the number of messages 

sent and received. So we can define a structure that contains two integers which represent 

the type of state variable for the entity environment. The state of lost can be used to 

count how many messages are lost. Thus, an integer is used to represent its state. The 

state of found is actually fixed. It must act as if the sending of the message has finished 

and enable the activity of receiving the found message. 

4.2.5 Shareable vs. Non-shareable State Variables 

The Möbius framework uses the concept of state sharing to join models from the same 

or different formalisms. If a state variable is shared with other models, the value of the 

state variable can be changed by other models too. The change of value represents the 

state change. Therefore, the behavior of the model is affected by the behavior of other 

models.  

Not all the state variables we defined are shareable. For example, if the state variable 

defined for an instance is shared with other models, the increase of the state variable’s 

value by other models may cause some actions to be considered finished even though 

they have not been executed. This is referred as state jump. Whether the state jumps 

ahead or back, the sequential execution order will be disturbed. Therefore, state variables 

from instances are not shareable. 
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Conditions and data will not affect the sequential order and hence these state variables 

are shareable. There is no need to share the special state variables for environment, lost 

and found because they are special state variables used only for SMSC.  

4.3 Identifying Actions in SMSCs 

By definition in the Möbius framework, actions are the only entities that can change 

the system state by changing the values of state variables. Thus any components in 

SMSC that can change the value of state variables will give us actions. These 

components include local activities, message activities, and setting conditions. Although 

data operations change the value of state variables that represent the data, data operations 

are not considered as actions because they are not components of SMSC. Data operations 

are performed by local activities or message activities. 

4.3.1 Local Activities 

Local activities can perform data operations and the completion of an activity must 

also increment the state variable that represents the instance to which the activity is 

attached. Thus, local activities are Möbius actions. If data operations are defined on the 

local activity, the execution of this local activity must also change the state variable 

representing the data. The execution time distribution for the action coming from a local 

activity takes the same distribution function as that of the local activity.  

4.3.2 Message Activities 

A message consists of two activities. The sending activity is performed by the instance 

that sends the message, and the receiving activity is performed by the one that receives 

the same message. Data operations can also be defined for message exchange. When the 
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activity of sending the message completes, it must adjust the state variable to reflect the 

fact that the message has been sent. Likewise, the completion of receiving a message 

should change the state of the instance that receives the message. Therefore, a message 

can be represented by two Möbius actions. 

4.3.3 Setting Conditions 

Conditions have two forms: setting conditions and guarding conditions. Setting 

conditions set the system to some particular state. Guarding conditions control the system 

behavior by restricting the execution of certain activities. 

The setting conditions are Möbius actions since they change the system state. 

The following figure (Figure 10) shows an example of an SMSC and its corresponding 

state variables and actions. Action rm1 corresponds to the activity of sending the message 

m1, and sm1 corresponds to the receiving of message m1. Action la is for the local 

Figure 10 State variables and actions from an SMSC 

 smsc example2 

i1 i2 i3

m0(r1, r2) 

m1(r1, r2) 

m2(r1,r2)

m3(r1,r2) 

a(r) 

State variables: 
s1: int; 0 to 4; 0 
s2: int; 0 to 3; 0 
s3: int; 0 to 1; 0  

 
Actions: 

sm0(r1), sm1(r1), la(r), 
rm3(r2) 
rm1(r2), sm2(r1), rm3(r1) 
rm2(r2) 
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activity a. The same naming rules apply to other action names. The state variables s1, s2 

and s3 represent the state of instances i1, i2, and i3, respectively. 

In summary, the SMSC constructs and their corresponding Möbius entities are shown 

in Table 2. 

Table 2 Mapping SMSC constructs to Möbius entities 

SMSC Constructs Möbius Entities 

Instances State Variables 

Messages Actions 

Local Activities Actions 

Conditions State Variables 

Setting Conditions Actions 

Data State Variables 

Special Components (env, lost, and found) State Variables 

General Orderings Taken care of by Actions 

4.4 Implementing SMSC in Möbius Framework 

To express SMSC in Möbius, we must define state variables and actions. State 

variables represent the model state. Actions can change the state variables’ value and 

hence the state of the model. Since SMSC imposes a partial order on the execution of 

activities, the firing of actions must comply with this partial order. Therefore, these state 

variables and actions must be organized in a way that the partial order is ensured. 

4.4.1 Deriving SMSC State Variable Classes 

This section describes the implementation of the SMSC state variable classes, 

including SMSCInst and SMSCCond. 
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4.4.1.1 The Möbius BaseStateVariableClass 

The Möbius BaseStateVariableClass defines methods and data members necessary to 

implement state variables. Methods defined on BaseStateVariableClass are summarized 

in Table 3. These methods are categorized into three types: those that deal with state 

variable’s state, those that are used for state sharing, and those that manipulate the data 

members that store the list of actions affected by or affecting this state variable. 

The state manipulation methods are defined as virtual functions. They are SetState, 

StateSize, CurrentState, and PrintState. The state change of a model is closely related to 

the formalism that specifies the model. The BaseStateVaribleClass has no specific 

definitions of these methods, but provides the description of what these methods intend to 

do. The formalism implementor is responsible to fulfill the requirements of the state 

manipulation methods. SetState is used to set the state of the state variable by copying 

data from a specific memory location pointed by a void pointer. A void pointer is able to 

point to any type of data. Hence, the formalism specific data type is not important in the 

definition of this method. Actually, SetState is only used when the entire model needs to 

be reset by solvers. The action-firing-related state change is formalism specific, and must 

be implemented in the derived class.  
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Table 3 Methods defined on BaseStateVariable Class 

Method Name  Description 

int StateSize()  This method returns the number of bytes of compact 
state variable representation. 

SetName(char*)  This method sets the name of the state variable. 
void SetState(void*)  This method sets the state of the state variable 

void CurrentState(void*)  This method writes the state variable’s current state to 
the specified memory location 

void printState()  This method prints the state of the state variable to 
standard out 

bool getShared()  This returns true if the state variable is shared with 
another state variable 

bool getStored()  This returns true if the state variable is using a local data 
member to store its state 

Bool getFunctionallyShared() This methods returns true if the state variable value is 
functionally shared 

Const Listt<BaseActionClass>* 
getAffectingActions()  This method returns the affecting actions data structure 

Const Listt<BaseActionClass>* 
getEnabledActions() This method returns the enabled actions data structure 

int getSharingCount()  This method returns the number of state variables that 
are shared with this state variable 

const BaseActionClass* 
getAffectingAction(int) 

This method returns the specified element from the 
SVAffectingActions data member 

const BaseActionClass* 
getEnabledAction(int)  

This method returns the specified element from the 
SVEnabledActions data member 

Int getNumAffectingActions()  This method returns the number of affecting actions 
Int getNumEnabledActions()  This method returns the number of enabled actions 
Void 
appendAffectingAction(BaseAction
Class*) 

This method appends the specified action to the state 
variable’s object SVAffectingActions 

Void 
appendEnabledAction(BaseAction
Class*) 

This method appends the specified action to the state 
variable’s SVEnabledActions object 

Void 
copyAffectingActions(List<BaseAc
tionClass>*) 

This method copies the data structure passed in and uses 
it as its list of affecting actions 

Void 
copyEnabledActions(List<BaseActi
onClass>*) 

This method copies the data structure passed in and uses 
it as its list of enabled actions 

Void 
updateAffects(BaseStateVariableCl
ass*) 

This method will notify all the actions on the state 
variable’s SVAffectingActions and SVEn-abledActions 
lists to inform them that this state variable is part of a 
sharing set 



 47

CurrentState writes the value of the state variable to a specific memory location. 

StateSize is used to determine how many bytes are needed to store the state variable state. 

PrintState displays the state variable’s value on the standard output device of a computer. 

Usually, this is the screen. 

State-sharing methods are used to access the state-sharing-related data members.  

These data members are usually Boolean variables indicating whether the state variable is 

shared, whether it is functionally shared, and if the state variable’s state is store locally. 

For example, GetShared, GetFunctionallyShared, and GetStored. The method 

GetSharingCount returns the number of state variables that share state with this state 

variable. It returns 1 if the state variable is not shared. 

BaseStateVariableClass contains data members that store the information about 

actions related to a state variable. Two lists of actions are defined in this class. 

SVEnabledActions is a list of all actions that are enabled by the state variable’s value. 

SVAffectingActions contains all actions that their firing will affect the state of this state 

variable. These two data members are implement as list data structures that contain 

pointers pointing to the actual actions. The set of actions used to initialize these data 

structures for each state variable must be structurally determined from the model 

specification. 

4.4.1.2 The SMSCInst Class 

Based on the Möbius BaseStateVariableClass, we derived state variables classes for 

SMSC models. These state variable classes include SMSCInst, and SMSCCond. The 

C++ class SMSCInst is defined to represent SMSC instances. The class SMSCCond is to 

represent SMSC conditions, which are sharable state variables. 
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The class SMSCInst contains all the information necessary to describe an instance 

including its state, its coregion, activities associated with it, and especially the order of 

the activities. The data members defined on the SMSCInst class are shown in Table 4. 

Table 4 Data members defined on the SMSCInst class 

 

In general, the data member TheInstValue reflects the current state of the instance by 

maintaining a pointer to a value that equals to the number of activities that have been 

executed. The value pointed to by the data member TheInstValue increases by 1 after 

each activity finishes execution. For example, a value 3 means the first three activities 

have finished execution. But if the last finished activity (suppose it is the number 6 

activity) is in a coregion, this number does not necessarily mean that the first 6 activities 

have completed. The completion of an activity in a coregion is recorded in a separate 

Boolean variable array: CoregionStates. One must further refer to the CoregionStates 

array to find out whether the number 6 activity has finished. 

Data Members Descriptions 

short *TheInstValue;  Point to the number of activities that has 
been executed sequentially 

BOOL *CoregionState 
Point to an array of Boolean variables 
whose true value means the corresponding 
activity has finished; 

int NumCoregions; The number of coregions defined on this 
instance; 

struct {int start; int end} *Coregions; 

Point to a series a coregion structures that 
defines the starting and ending of coregions 
by the sequence number of the activities 
staring from 0. 

List<SMSCActivity> 
*TheAttachedActivities; 

A list of activities in the order as they are 
given in the SMSC.  
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Another important data member is TheAttachedActivities, which maintains a list of 

activities defined on the instance. The order of the activities, together with the value 

pointed to by TheInstValue, is used to determine whether an activity has finished 

execution. 

Member functions defined on the SMSCInst class include getInstValue(void), 

setInstValue(short), appendAttachedActivity(SMSCActivity *), and 

CheckFired(AMSCActivty *). The member function getInstValue is used to examine 

the current value of this state variable. setInstValue is for setting the value of the state 

variable. The member function appendAttachedActivity append an SMSC activity to 

the list of TheAttachedActivities.  This function is usually called when initializing the 

SMSC instance. The member function CheckFired is used to check whether a certain 

activity has finished its execution. CheckFired returns TRUE if the specified activity has 

completed its execution. Otherwise, it returns FALSE.  

As we have pointed out, instance state variables are not shareable. We need to define 

some sharable state variables so that SMSC models can be joined with other models. 

SMSCSharableStateVariableClass are used to define shareable state variables. Since their 

types could be integer, Boolean, or a structured type, it would be better to define them as 

template classes. A template class can take type as a parameter when it is instantiated. 

Therefore, within the class definition, we define a pointer that points to the state 

variable’s value. This is important when sharing this state variable with others because 

these shared state variables can point to the same memory location that stores the current 

state variable’s value. A template class can be defined as: 

template <Class T> Class SMSCSharableStateVariableClass{ 
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T *state; // point to the state value. 

} 

We have implemented a special sharable class: SMSCCond. The class SMSCCond 

contains a pointer that points to a short value. A member function specific to the 

SMSCCond class is checkCond, which is used to check whether the condition holds. 

SMSC conditions are usually used to guard the execution of activities. The activities 

guarded by an SMSC condition cannot be executed unless the guarding condition is met. 

Since there is no universal rule to check whether a condition is met, the member function 

checkCond is defined as a virtual function. The default implementation always returns 

TRUE. Users can derive their own classes from SMSCCond and override the default 

implementation of the checkCond with their own implementation. 

4.4.2 Deriving SMSC Activity Classes 

This section covers the implementation of the SMSC activity class. 

4.4.2.1 The Möbius BaseActionClass 

BaseActionClass is the implementation of the Möbius entity action. This 

implementation is quite straightforward. Table 5 shows the methods defined on this class 

and their corresponding description. Most of the methods are virtual functions because 

their exact definitions are determined by the formalism that implements them.  

 

 

 



 51

Table 5 Methods defined on BaseActionClass 

Method Name  Description 

bool Enabled() 
This method determines whether the action is 
enabled in the current state 

double Weight() 
Weights are used to determine the probability of 
selecting an action from the set of enabled actions in 
the current state 

double Rate() 
This method returns the rate with which an 
exponentially timed action fires 

bool 
ReactivationPredicate() 

This method determines whether an action is 
reactivatable 

bool 
ReactivationFunction() 

This method determines whether an action whose 
ReactivationPredicate is true should 
restart after a state change in which the action is still 
enabled 

double 
SampleDistribution() 

This method samples the action’s distribution and 
returns the action’s time-to-completion 

double* 
ReturnDistributionParam
eters() 

This method returns the set of distribution 
parameters 

void SetFired() 
This method sets the Fired data member on an 
action to record the fact that the action fired  

BaseActionClass* Fire() 
This method defines how the action changes the 
state of the model 

int Rank() 
This method returns the action’s priority value for a 
given state 

bool EnablingChange()  
This method determines whether there has been a 
change in the enabling condition since the last time 
the Enabled method was called 

bool 
IsAMember(BaseActionCla
ss*TheAction) 

This returns true if the specified action is equal to 
the this object 

double 
Probability(BaseActionC
lass*TheAction) 

This method returns 1.0 if the specified action is 
equal to the this object, or 0 otherwise 

 

In addition to these methods, BaseActionClass also defines important methods and 

data members that facilitate efficient analysis of the model. Among them, two data 

members are AffectedStateVariables and EnablingStateVariables. AffectedStateVariabes 

is a list of state variables whose states are affected by the firing of the action. 

EnablingStateVariables stores a set of state variables that are used to determine whether 
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the action is enabled. To initialize these two data members, the corresponding set of state 

variables must be deduced from the structure of the model. Four methods are defined to 

change the value of these data members. They are addEnablingSV, addAffectedSV, 

replaceEnablingSV, and replaceAffectedSV. The last two methods are used when a state 

variable is shared. In this case, the pointer stored in these data members might need to be 

replaced by a pointer pointing to another state variable, which is the head of the list of 

shared state variables. 

Action attributes (shown in Table 6) include GroupID, ExecutionPolicy, ActionName, 

and DistributionType. GroupID specifies the group to which this action belongs. 

ExecutionPolicy take one value from RaceResamping, RaceEnabled, and RaceAge. It 

governs the behavior of the action when it is interrupted. DistributionType defines the 

probability distribution used for describing the action’s firing time distribution. The 

supported types of distributions are listed in Table 7. 

 

Table 6 Action attributes 

Attribute Name  Description 

Int GroupID  The group to which the action directly 
belongs. 

ExecutionPolicyType ExecutionPolicy The type of race-based execution policy 
that should be applied to the action. 

char* ActionName  The name of the action. 

Distribution DistributionType  The type of distribution function used for 
the action’s firing time distribution. 
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Table 7 Supported distribution functions 

Distribution Name  Parameters 
Exponential  Rate 
Deterministic  Val u e 
Geometric P 
Weibull βα ,  
Normal 2,σµ  
Lognormal 2,αµ  
Erlang m,β 
Triangular a,b,c 
Gamma βα ,  
Beta 1,1 βα  
Uniform UpperBound, LowerBound 
Binomial t, p 
NegativeBinomial s, p 
HyperExponential rate1, rate2, p 
  

Table 8 Performance variable related data members 

Data Structure  Description 

ActionAffectsElement* Affects Linked list of state variables affected by the 
firing of action 

int* PVAffects  The list of performance variables whose 
reward functions are affected by the action 

int NumPVImpulseAffects  The length of the PVImpulseAffects array 

int* PVImpulseAffects  A list of performance variables whose 
impulses are affected by this action 

int** PVImpulseAffectsImpulses  The list of impulses on the affected 
performance variables 

int*** PVImpulseAffectsImpulseWorkers The list of workers defined on the impulse-
affecting impulses. 

int*NumPVImpulseAffectsImpulses  The number of the impulse workers array 
in PVImpulseAffectsImpulse 

int** 
NumPVImpulseAffectsImpulseWorkers  

The length of the impulse workers array in 
PVImpulseAffectsImpulseWorkers 

int* NumPVWorkers  The number of PVWorkers defined on each 
performance variable 

int **PVWorkerList  An array of PVWorker arrays 

int TotalNumCollected  The total number of performance variables 
collected to date 

int TotalNumAffects  The length of the TotalNumAffectsList 

int* TotalPVAffects  A complete list of performance variables 
affected by this action 
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 BaseActionClass also defines several different data structures that are used to 

implement performance reward variables. When the action fires, the affected 

performance variables are updated. Table 8 shows the complete list of the performance 

variable related data structures and their corresponding meanings. 

4.4.2.2 The SMSCActivity Class 

The SMSC Activity class is derived from the Möbius BaseActionClass. Although 

there are three different activities in SMSC: local activity, message activity, and the 

activity of setting conditions, we only need to define one activity class.  

Two important properties regarding an activity are under what condition it is enabled 

and what state change it causes after it is executed. The activity class must contain 

information necessary to specify its enabling condition and its firing effect. For a local 

activity, it can only be enabled if the activity that precedes it has finished and its guarding 

conditions are met. For message activities, the sending activity’s enabling condition is the 

same as a local activity. While the enabling of the receiving activity depends on not only 

the previous activity of the same instance but also the state of the sending activity of 

another instance. Only after those two activities have finished can the receiving activity 

be enabled. Again, the guarding condition must be met if there is one. The setting 

condition activity has the same restriction as a local activity. Therefore it is not necessary 

to distinguish message activities from local activities or setting condition activities if we 

include enough information in the SMSCActivity. 

The class SMSCActivity is defined with four new data members in addition to those 

defined on the BaseActionClass. Their meanings are described in Table 9. 



 55

Table 9 Data members defined on the SMSCActivity class 

Data Members Descriptions 

List<SMSCActivity> 
*thePrecedingActivities; 

Point to a list of activities that must have 
been executed in order to enable this 
activity; 

List<SMSCCond> *theConditions; Point to a list of guarding conditions of this 
activity. 

SMSCInst *theInstance; Point to the instance to which this activity 
is attached. 

SMSCModel *theModel Point to the model that contains this 
activity 

 

New member functions are defined to handle these data members. The member 

function RegisterPreActivities(SMSCActivity *) is defined to add the specified activity 

to the activity list thePrecedingActivities. While the function RegisterConditions is 

used to add a guarding condition for the activity. Functions RegisterInstance and 

RegisterModel are defined to set the values for data members: theInstance and 

theModel, respectively.  

The member function Enabled (void) is used to check whether the current activity is 

enabled. It returns a TRUE value if the activity is enabled under the current model state. 

Otherwise, it returns a FALSE value to indicate that this activity is not enabled. The 

function Enabled is implemented in this way:  

• First, it checks whether the current activity has already fired. If not, it 

continues to the next step. Otherwise, return FALSE.  

• Then, check if there are preceding activities defined for this activity. If yes, 

check if all the preceding activities have finished. If any preceding activity is 

not finished, return FALSE. Otherwise, continue to the next step. 



 56

• Finally, check if there are guarding conditions defined for this activity. If yes, 

check if all the guarding conditions are met. If any guarding condition is not 

met, return FALSE. Otherwise, return TRUE. 

Note: to check whether an activity has finished its execution, use the member function 

checkFired() defined on the SMSCInst class. That is why an activity should have the 

data member theInstance, from which the activity can know to which instance it is 

attached. 

The member function Fire( ) is also defined as a pure virtual function as in the 

BaseActionClass. The reason for not providing an implementation is that the action taken 

when the activity fires depends on the structure of the model and the system to be 

modeled. There is no common rule to specify what action should be performed when the 

activity fires. The firing of an activity will change the instance state variable, may change 

a condition state variable if it is a setting condition activity, and may perform data 

operations and change data state variables. The only known action is to increase the value 

of the instance state variable by 1. But this is trivial and can be easily coded into the Fire 

function when implementing the function in the derived class. Since the SMSCActivity 

class is defined with a pure virtual function, it can only be used as an abstract class, from 

which one can derive some specific classes for activities in specific models. 

General orderings imposes same restriction on activities as messages. The effect of 

general orderings can be taken into account using the same idea for messages. For 

example, we can add the activity from which the general ordering originates as the 

preceding activity to the activity at which the general ordering ends. 
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4.4.3 Deriving SMSC Model Class 

This section defines the implementation of the SMSCModel Class, which is based on 

the Möbius BaseModelClass. 

4.4.3.1 The Möbius BaseModelClass 

Models in the Möbius framework act as containers of actions, state variables, and 

groups. The Möbius BaseModelClass defines methods that are used by solvers or other 

models to access the Möbius entities in a model. Table 10 shows all the methods defined 

in the BaseModelClass. These methods can be categorized as list methods, state methods, 

and composed model methods. 

The list methods include listModels, listGroups, listActions, and listSVs. We can see 

by their names that they each return the corresponding entity set to solvers or other 

models.  

The state methods (SetState, CurrentState, CompareState, and StateSize) are defined to 

perform operations on the model’s state variables. SetState is used to set the model to a 

specific state based on the passed memory pointer. CurrentState returns the current model 

state to a memory location specified by a pointer. CompareState is used to compare two 

model states and see whether they are equivalent. It is worth pointing out that one must 

use this method to compare two model states. Comparing the memory data of two model 

states byte by byte is not a good way to check the equivalency of two model states. The 

reason is that the difference between memory data does not ensure that the two model 

states are not equivalent. Finally, StateSize returns the number of bytes needed to store 

the model state, which is similar to the definition in BaseStateVariableClass.  
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Table 10 methods defined on BaseModelClass 

Method Name  Description 
void listModels(char*, 
List<BaseModelClass>*) 

The function returns a list of references to all 
the other models with the specified name 
defined within a model, including itself 

Void 
listActions(List<BaseActionClass>*) 

This returns a reference to all of the actions 
contained in a model 

void listActions(char*, 
List <BaseActionClass>*) 

This method returns all the actions contained 
in the model with the specified name 

Void 
listGroups(List<BaseGroupClass>*) 

This returns a reference to all of the action 
groups contained in a model 

Int getNumActions()  This returns the number of actions in a model 
Int getNumGroups()  This method returns the number of groups 

contained in the model 
Int StateSize()  This function returns the size of the memory 

needed to save the model’s current state 
bool CompareState(void*,void*) This function compares two model state 

representations and determines whether the 
two representations are the same model state 

void listSVs(char*, char*, 
List<BaseStateVariableClass>*, 
List <BaseModelClass>*) 

This method returns a list of references to 
state variables that have a specific name in a 
specific model (as specified by the caller) 

Int CountAffectedVars(char*,char*) This method returns the number of state 
variables with a specific name and in a 
specific model 

void CurrentState(void*,void*) This method writes the model’s current state 
to a specified memory location 

BaseStateVariableClass* 
getMainSharedVariable( 
BaseStateVariableClass*) 

This method hierarchically determines the 
highest-level state variable that the state 
variable has been shared with through the 
composer tree 

void printState()  This method prints the state of the model to 
stdout. It is used for debugging purposes 

SharedStateVarLink* 
getListOfSharedVariables( 
BaseStateVariableClass*) 

This method is used to hierarchically build 
groups of equivalent state variables shared at 
each level in the composer tree 

updateAffectsList(BaseStateVariable
Class*, BaseStateVariableClass*) 

This method changes the data structures of all 
actions in the model such that the actions use 
a new location for a specified state variable 

void SetState(void*)  This method sets the state of the model  
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The composed model methods are necessary for building composed models through 

state sharing. When two models are joined together by sharing state variables, the shared 

state variables are said to be in the same sharing set. Every sharing set has one state 

variable declared as the leader. The method getMainSharedVariable returns a pointer of 

the leader. But the method getListOfSharedVariables returns the head of a linked list, 

from which all the members in the sharing set are accessible.  

4.4.3.2 The SMSCModel Class 

The SMSCModelClass is derived from the Möbius BaseModelClass. The 

SMSCModelClass is used to organize the state variables and activities for a SMSC 

model. In addition to what is defined in the BaseModelClass, the SMSCModel class 

contains additional data members as shown in Table 11. 

Table 11 Data members defined on the SMSCModel class 

Data Members Descriptions 

SMSCInst **LocalStateVariables; All instances in this SMSC model 

Short NumConditions; The number of conditions 

SMSCCond **Condtions; The list of all conditions in this model 

Short NumActions; The number of activities in this model 

SMSCActivityClass ** LocalActions; All activities in a SMSC 

Short NumSubModels; The number of SMSCs in the SubModel list; 

SMSCModel **SubModelList;  SMSC Models that follow this model 

Double *SubModelWeight; The probability to select the corresponding sub 
model. 

BOOL Enabled; The current SMSC is enabled if “true” 

 

The structural information of an SMSC is kept in the SMSCActivity class and 

SMSCInst class rather than in the SMSCModel class. The SMSCModel class acts as a 
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container of state variables and activities. In addition, the SMSCModel class also 

provides methods of composing two or more SMSC models (see section 5.4.4). 

The data member Enabled defined on the SMSCModel class is a Boolean variable. 

Enabled is used as the guarding condition for all the activities in the SMSC. Activities in 

an SMSC can only be enabled when this variable is set to TRUE.  

In the SMSCModel class, we provide the implementation of the virtual member 

functions defined on the BaseModelClass, including StateSize, CurrentState, SetState, 

CompareState, listActions, and listSVs. These member functions will be used by the 

Möbius solvers and State Space Generator to communicate with the SMSC models. 

StateSize returns the number of bytes required to record one model state. CurrentState 

copies the model state to a specific memory location, which is passed as the parameter of 

the CurrentState function. SetState sets the model to a state based on the data in the 

memory. The function CompareState takes two memory addresses as its parameters. 

CompareState is used to determine if the model states stored in those two locations are 

actually the same state. It returns TRUE if they are. Otherwise, it should return FALSE. 

The function listActions is used by the Möbius solvers to access all actions defined on 

the model. listActions returns a list that contains pointers to activities of the SMSC 

model. The function listSVs returns a list of pointers to the state variables that have a 

specific name. All these functions are defined for the AFI and facilitate the information 

exchange between models and solvers.   

4.4.4 Model Composition 

The default methods of combining two models by joining the shared state variable in 

the Möbius framework do not work when specifying the composition of two SMSCs. The 
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reason is that the state variable defined based on an SMSC instance is not sharable. 

Therefore, it cannot be used in the Möbius joining operations. SMSCs can be joined 

vertically, horizontally, or alternatively. This is beyond what can be expressed by the 

Möbius joining operations. However, the Möbius joining operation can be used to join 

SMSCs with other models through shareable state variables for the purpose of forming 

the Möbius composed models.  

The SMSC formalism defines its own model composition methods. The SMSCModel 

class can be used to specify these compositions. First, the vertical composition is 

achieved by setting NumSubModels to 1 and SubModelList to point to the succeeding 

SMSC. This setting means there is one SMSC that immediately follows the current 

SMSC, and after all activities of this SMSC have finished, the execution continues to the 

next SMSC that is specified in the list: SubModelList. 

For alternative composition, there are two or more SMSCs following the current 

SMSC. The number of SMSCs that follow this SMSC is stored in the data member 

NumSubModels. The variable SubModelList is a pointer array in which each pointer 

points to an SMSC that follows the current SMSC. SubModelWeight contains the 

probabilities assigned to each subsequent SMSC that are used to determine which one 

should be executed after the execution of the current SMSC. 

Horizontal composition cannot be specified using this mechanism because it involves 

changing the common instances between two or more SMSCs into coregions. This 

requires significant changes to the structure of the current SMSC. If horizontal 

composition is specified, it must be resolved before using an SMSCModel object to 

represent it. 
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4.5 Solving SMSC Models 

Once the SMSC models are described using the Classes derived from the Möbius base 

classes. It is relatively easy to analyze it. The Möbius built-in solvers can be used to solve 

SMSC models. 

4.5.1 Analytical Solvers v.s. Simulators 

If all activities are associated with exponentially distributed random time, the 

underlying process is a Markov process. The Möbius analytical solvers can be used to 

quickly solve the model. Before using any analytical solvers, the state space must be 

explicitly generated. This implies that the model has to have finite states and if so, then 

the Möbius utility State Space Generator can be used to generate the state space.  

The Möbius simulators can be used to solve any model regardless of the type of 

distribution associated with activities. If the underlying process is not Markov, then 

discrete event simulators are the only choice when solving the model for performance 

measures. Before solving the model, performance variables must be defined for 

measuring the desired system properties. 

4.5.2 State Space Generation Algorithm 

The Möbius State Space Generator consists of several libraries, which contain 

precompiled functions. These functions are linked with user-defined models, such as 

SMSC models, to generate an executable model. The executable model can generate the 

model state space. The State Space Generator only uses the Möbius AFI to interact with 

the model. It has no knowledge of the type of model and is not required to know such 

information. The algorithm used to generate state space can be described as follows. 
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Initially, the set that will contain all states is empty. The first action that the State 

Space Generator takes it to call the member function StateSize, which is defined on the 

model class, to determine the size of memory needed to store one model state. Then, it 

calls the CurrentState AFI function to get the initial state of the model. The initial state 

is then saved in the set for all states. From the initial state, the State Space Generator will 

determine the subsequent states that can be reached from the initial state. Before doing 

that, the State Space Generator calls the listAction function to get all the actions defined 

on this model. For each action, its Enabled is called to check if it is enabled. If it is, then 

the Fire function is called. The firing of an action changes the model state. The State 

Space Generator calls the CurrentState function to get the possible changed state. It then 

checks to see if the state is already in the state set. If not, add the current state to the state 

set. Otherwise, discard it. The State Space State Generator then uses the SetState 

function to set the model state to the one before firing the action. After all the enabled 

actions have been fired, the state set may be added with new states that can be reached 

from the initial state. The State Space Generator continues to check each newly added 

state to see if newer states can be generated. When no new state can be generated, the 

State Space Generator stops and returns the state set that contains all model states. 

Once the state space is generated, various analytical solvers can be applied to solve the 

model for the desired performance measures. The analytical solvers only deal with the 

generated state space. They do not need to interact with the original model, from which 

the state space is generated. The state transition and the reward calculation are recorded 

in the data structure that represents the state space. 
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4.5.3 Model Complexity v.s. Solving Time 

The complexity of an SMSC model depends not only on the number of instances, 

messages and conditions, but also on the structure of the model. The structure of the 

model is the way that instances, messages, conditions and other model constructs are 

organized together to represent a certain system. Naturally, the large number of instances 

and messages implies the higher complexity of the SMSC model. However, sometimes 

the mode structure plays a more important role in deciding the model complexity. This is 

because we use the size of state space to measure the complexity given that the model is 

to be solved analytically and has finite states. 

There are two types of constructs that affect the number of the states of an SMSC 

model. The first type of constructs can increase the number of states, while the second 

one can reduce the number of model states. The SMSC construct that belongs to the first 

type is coregion. A coregion specifies a number of activities that can run in parallel or in 

any sequential order. Thus, more states will be generated for such an SMSC than the one 

without coregions. The second type of constructs includes messages and general 

orderings. Messages and general orderings imposed restrictions on the sequential order in 

which the activities can take place. This makes it impossible that the execution of 

activities follows certain orders. The exclusion of those execution orders also means that 

the SMSC model cannot be in some states. Hence, the number of states is reduced.  

For example, Figure 11(a) shows an SMSC with one instance and three local activities. 

This SMSC has 4 states: the initial state and 3 additional states that represent the 

complete of activities a1, a2, and a3, respectively. Since activities a1, a2, and a3 can 

only happen in the given order, the complete of a later activity implies the complete of 
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the early activities, i.e., the finish of a2 means the finish of a1 and the finish of a3 implies 

the finish of both a1 and a2. If we add a coregion, which is illustrated in Figure 11(b), to 

encapsulate these activities, then activities a1, a2, and a3 can execute in parallel. The 

result SMSC would have 8 states because there is no sequential order and activities can 

happen in any order. Thus, a coregion increases the number of states.  

To show that messages or general orderings can reduce the state space size, we first 

construct an SMSC shown in Figure 12(a). We define two instances and each of them has 

three local activities. No message is exchanged between the two instances. No general 

ordering is defined to restrict the execution order between activities on different 

instances. Although activities of each instance must take place in the specified sequential 

order, activities between the two instances can actually execute in parallel. The execution 

of activities on instance i1 does not affect the execution of those on i2. For each instance, 

Figure 11 State space without/with coregions 
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the state variable can take four different values; therefore it has 4 states. Thus, two such 

instances yield 16 states for the SMSC. Now we define a general ordering between the 

first activities of both instances i1 and i2 (see Figure 12 (b)). This new SMSC shown in 

Figure 12 (b) will have fewer states than the one shown in Figure 12 (a).  

The general ordering between activities a1 and b1specifies that activity b1 can only 

take place after activity a1 finishes its execution. This additional restriction on the 

execution of activities makes it impossible that activities b1, b2 or b3 be executed before 

the complete of the activity a1. As a result, the number of states of the SMSC shown in 

Figure 12 (b) is 3-state fewer than that of the SMSC without the general ordering 

between a1 and b1. Therefore, general orderings that provide additional restrictions can 

reduce the state space size.  Note that general orderings have the same effect in restricting 

Figure 12 State space without/with general orderings 
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the execution order as messages. In Figure 12 (b), if we replace the general ordering and 

the two activities that the general ordering connects with a message that originates from 

i1 and ends at i2, we have the same result, i.e., the number of states decreases by 3 if 

compared with the SMSC shown in Figure 12 (a). 

If we add even more general orderings to the extend that all activities in the SMSC can 

be totally ordered, as is shown in Figure 13, this visually more complicated SMSC 

actually has the least number of states, which roughly equals to the number of activities. 

So a visually complicated SMSC does not always mean that it will generate a larger 

number of states. 

 In addition to those constructs, the composition of SMSC model also has great impact 

on the size of its state space. For example, if an SMSC M1, which has S1 number of 

states, is vertically composed with another SMSC M2, which has S2 number of states, 

Figure 13 State space with more general orderings 

 
 

smsc two_inst_3 

i1 

a1(r0)

a2(r1)

a3(r2)

i2 

b1(r0)

b2(r1)

b3(r2)



 68

and the result composed SMSC is called M3, the number of states of M3 is not necessary 

to be the sum of S1 and S2.  Usually, that number is greater than the sum of S1 and S2. 

Therefore, model composition increases the number of states that the modeled system can 

take. 

The time needed to solve a model is directly related to the state space size of the 

model. Naturally, the larger the state space, the longer it takes to solve the model. When 

using the Möbius analytical solvers to solve a model, we need two steps. The first step is 

to explicitly generate the entire state space using the state space generator. The second 

step is to choose one analytical solver to solve for the desired reward variables. Hence, 

the time needed to solve a model can be split into two parts: state space generation time 

and reward variable solving time. The overall solving time is the sum of those two parts. 

To test how efficient the Möbius solvers can handle SMSC models, we use the 

following example SMSCs (see Figure 14.)  The SMSC A has two instances, one 

guarding condition and one local activity. SMSC B is vertically composed with SMSC A. 

The SMSC B also has two instances. There are two messages exchanged between these 

two instances: messages m1 and m2. Another SMSC, SMSC C, is also vertically 

composed with SMSC A. In other words, SMSC B and C are two alternatives succeeding 

SMSC A. Inside SMSC C are two setting conditions, one message and one local activity.  

SMSC C forms a loop, which means that SMSC C is vertically composed with itself.  
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According to the composition describe in Figure 14, SMSC B is also vertically 

composed with SMSC C. The whole SMSC model consists of 6 instances, two 

conditions, 3 messages and 4 activities that are not messages. Note we consider setting 

conditions as activities. Guarding conditions are not activities because they only specify 

Figure 14 The solved SMSCs 
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certain system states. When using the Möbius state space generator to generate the state 

space, this simple model generates 14 states. This model is so small that the Möbius can 

solve it instantly. 

Based on this simple SMSC model, we build larger models using the Möbius 

replication/join formalism. The replication /join formalism enables a simple model to be 

replicated to create a copy of itself. User can specify the number of copies to generate. 

Usually, this number is defined as a global variable so that different number of copies can 

be easily specified by assigning different values to the global variable. These copies are 

joined together through some shared state variables to form a larger model. 

In our experiment, the basic model is replicated from 1 to 10 times and it results in 10 

different models with increasing complexity. The shared state variable is the one that 

corresponds to the condition err. The number of states generated for each model and the 

corresponding state space generation time and solving time are shown in Table 12. This 

experiment was carried out on Windows 2000 machine with 128MB memory and one 

Intel Pentium III CPU running at 500MHz.  

Table 12 Experiment result of model complexity and solving time 

Number of 
Replication 

1 2 3 4 5 6 7 8 9 10 

States 14 91 455 1820 6188 18564 50388 125970 293930 646646 

State space 
generation 
time  

<1s <1s 1s 5s 17s 46s 156s 365s 22m 4h30m 

Solving 
time 

<1s 1s 10s 70s 416s 27m 1h35m 4h58m 14h46m 52h57m 

Total time <1s 1s 11s 75s 433s 27m46s 1h38m 5h04m 15h06m 57h27m 
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The number of states with different numbers of replication is shown in Figure 15. We 

can see that the number of states increases exponentially to the number of replications. 

One would expect the number of states increase even faster if all the copies of the simple 

model run in parallel without sharing any state variable. For example, replicating the 

model 5 times without joining them via a shared state variable would result in a model 

with 145 states, or 537842 states. That number is much larger than the number 6188, 

which is the number of states from our model. The common state variable shared by 

those models greatly reduced the number of states of the joined model. 
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Figure 15 The number of states under different replication times 

The state space generation time, reward variable solving time using the Accumulated 

Reward Solver (ARS) and the total time of solving the models are shown in Figure 16. 

The time needed to generate the state space is proportional to the number of states. 

However, when the state space size increases, we noticed a sharp increase in time for the 

last model, which has 646646 states. This is due to the memory constraint of the machine 
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used to conduct this experiment. The virtual memory was increased to 400MB and 

375MB of it was in use when computing the last model. The available physical memory 

was less than 1MB at the later stage of computation. The greatly decreased performance 

must be caused by the disk swap operation in which the operating system consistently 

swaps data to and from hard disk.  
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Figure 16 Model solving time 

The dominant part of the total model solving time is not the state space generation 

time but the reward variable solving time. The latter is more than one magnitude higher 

than the former.  

4.6 Summary 

In this chapter, we provided a way to define actions and state variables for the SMSC 

models, and derived the corresponding C++ classes. Some model composition methods 
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are discussed as well as how they can be easily implemented. We implemented the 

SMSC formalism and did some experiments to study how efficient the Möbius analytical 

solvers, especially ARS, can solve SMSC models with different complexities. SMSC is 

integrated into the Möbius framework and provides a new atomic modeling formalism for 

Möbius users. 

The next chapter will provide an example to show how SMSC can be used with other 

formalisms to model a system. 
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CHAPTER FIVE 

5. A NETWORK COMMUNICATION EXAMPLE 

In this chapter, we provide an example to illustrate that SMSC models can be joined 

with models from other formalisms, such as SANs, through equivalence sharing. SMSC 

formalism provides a new type of atomic models in the Möbius framework. The 

heterogeneous model can be solved using the Möbius solvers. 

5.1 A Communication System 

We consider a simple system with two computers connected through a cable. The 

processes running on one computer send files to those running on another computer. The 

communication protocol used by the data link layer is the stop and wait protocol[36]. 

The sending process first opens a file for transmission. The data in the file is then 

broken into small data blocks and each block corresponds to a frame. The frame is the 

smallest data block to transmit. Data blocks are then handed to a process that creates a 

frame and stores the frame into a sending buffer. Whenever there is a frame in the 

sending buffer, the sending process will try to send the frame over to the other computer 

using the stop and wait protocol. 

The receiving process is the inverse of the sending process. A received frame is kept in 

a receiving buffer. If the frame is correctly received, it will be handed up to a data block 

buffer. After all the data blocks have been received, they will be combined into a file. 

The sending and receiving processes are molded as SANs. The stop and wait protocol is 

modeled as an SMSC. 
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5.2 Model the Stop and Wait Protocol 

The stop and wait protocol is the simplest communication protocol that can coordinate 

the communication between two entities that run at different speeds and have limited 

buffer space. The sender sends out a data block and then waits for the receiver to 

acknowledge the receipt of the data. Before the sender gets the acknowledgement, it 

cannot start sending the next block of data. This is necessary to prevent a fast sender from 

flooding the slow receiver if the receiver has limited receiving buffers.  

If the stop and wait protocol is used on an unreliable channel, i.e., data in transmission 

may be damaged due to errors that occur in the channel, then the technique of 

retransmission must be adopted. The sender starts a timer after it transmits a data block. 

If the timer goes off before it receives the acknowledgement, the data is considered lost 

and the sender retransmits the same data block. Upon receiving a data block, the receiver 

first checks if the data is correct. If correct, then the receiver sends back a positive 

acknowledgement. Otherwise, a negative acknowledgement is sent back. Note that the 

receiver may receive duplicated data if the acknowledgement is lost. In our example 

system, we assume an unreliable channel is used. 

To model the stop and wait protocol, we need four SMSCs. Each of them describes a 

scenario for the behavior of this protocol. The four scenarios are shown using SMSCs in 

Figure 17. 
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The first SMSC shown in Figure 17 (a) represents the success of the data exchange. 

The data is correctly received and so is the acknowledgement. No data got lost in the 

channel. Figure 17 (b) describes the scenario where an error occurred during the 

transmission. In this case, a negative acknowledgement is sent back. The scenario shown 

in Figure 17 (c) happens if the data is completely lost in the channel. The receiver did not 

Figure 17 The 4 scenarios of the Stop and Wait protocol 

 smsc done; global int rbuf;

sender receiver 

data(r1, r2) 

pack(r3,r4) 

rbuf++ 

 smsc dataerr;

sender receiver 

data(r1, r2)

nack(r3,r4) 

 smsc datalost; 

sender receiver 

data(r1, r2) 

delay(r5)

 smsc acklost;

sender receiver 

data(r1, r2) 

delay(r5)

(a) (b)

(c) (d)



 77

receive anything at all. So it can perform no action. The sender has to resend the data 

after a period of time specified by the delay activity. The delay activity is used to 

simulate a timer. Figure 17 (d) represents the scenario that an acknowledgement is lost. 

Since the sender did not receive the acknowledgement, it will resend the data after some 

time. 

Figure 18 provides an additional SMSC, GetFrame, in order to specify how the 

sender gets data from the sending buffer. This SMSC serves as the starter for the stop and 

wait protocol. The full behavior of this protocol can be described by combining these five 

SMSCs. Figure 19 shows the composition methods. The GetFrame SMSC describes the 

behavior of the sender when it fetching a data frame from the sending buffer. After a data 

frame is acquired, the execution proceeds into one of the alternative four scenarios. The 

SMSC done represents the success of data exchange. If done is chosen and has finished, 

the execution goes back to GetFrame. The SMSCs done and GetFrame form a loop. If 

Figure 18 The GetFrame SMSC 
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done is not selected as the follower of GetFrame in this execution, the execution has to 

loop among the four scenarios indefinitely until the SMSC done is selected.   

5.3 Modeling the Data Sending and Receiving Processes 

The data sending and receiving processes are modeled as Stochastic Activity 

Networks. The SAN model for the sender is shown in Figure 20. 

Figure 19 The model of the Stop and Wait protocol  

Figure 20 The SAN of the sender 
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The data sending process or the sender works in this way. A token in the place sdata 

represents a large block of data, for example a file, is ready to transmit. The SAN activity 

depart fires, and the output gate split defines the number of tokens that are put into the 

place sblks, which represents the block buffer of the sender. The SAN activity 

CreateFrame can fire if at least one token exists in sblks and the predicate of the input 

gate BufNotFull evaluates to true. This predicate is true if the sending buffer is not full. 

Each time CreateFrame fires, a token is dropped into the place sbuf. Each token in sbuf 

represents a data frame that will be sent using the stop and wait protocol. subf represents 

the sending buffer. 

The SAN model for the data receiving process or the receiver is shown in Figure 21. 

The procedure of processing the received frames is the inverse of what is done by the 

sending process. Whenever there is a token in the place rbuf, the SAN activity 

DecodeFrame will fire and deposit a token in the place rblks. When the number of tokens 

accumulated reaches a certain value, the input gate that controls the enabling of the SAN 

activity combine may evaluate true on its predicate. Then, combine fires and a token is 

Figure 21 The SAN of the receiver 
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put in the place rdata. This token represents the same large block of data as the one in the 

place sdata.  

5.4 A Heterogeneous Model of the Whole System 

The heterogeneous model can be constructed using the Möbius Join and Replicate 

mechanism as shown in Figure 22. 

In Figure 22, sender and receiver refer to the SAN models of the sender and receiver. 

protocol refers to the SMSC model of the stop and wait protocol. The sender and receiver 

models may be duplicated several times so that the behavior of a system with several 

senders and receivers can be studied without building a complicated model in which the 

sender and receiver models are drawn several times. 

Before the models are joined, we must specify the shared state variables. The Join 

construct in Möbius uses the shared state variable to join different models together, 

whether they are from the same formalism or different formalisms. In our example, rbuf 

and sbuf are shared state variables. In the SAN model, places rbuf and sbuf are defined as 

state variables in the Möbius representation. The global data rbuf and sbuf in the SMSC 

Figure 22 Construct the system model 
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are also defined as state variables. These state variables are shareable. In fact, they 

represent the same system components in different models. The number of tokens in the 

place sbuf of the SAN model can be seen by the SMSC model when it checks its global 

data sbuf. The decrement of sbuf in SMSC model means the removal of a token from the 

place sbuf in the SAN model. The increment of the global data rbuf in the SMSC model 

will be interpreted by the SAN model as a token in put into its place rbuf. Through these 

shared state variables, the SAN model and the SMSC model can affect the behavior of 

each other. The behavior of the whole system is described by models from both 

formalisms.  

5.5 Experiment result 

To show the Möbius can solve the SMSC model, we defined one reward variable to 

measure the time that the system spends on handling error data. Whenever error occurs in 

the channel, the sender would have to retransmit the lost or distorted data frame. The 

sender may delay for a period of time before it starts to retransmit the data frame if either 

the data frame or the acknowledgement frame is lost. This period of time is considered as 

error processing time. We are interested in how the channel error probability and the 

delay time impact the error processing time.  

One additional “condition” SysInErr is defined for the SMSC models. Whenever the 

execution enters one of the SMSCs that describe the error processing scenarios including 

the SMSC dataerr, acklost, and datalost, the condition SysInErr is set to TRUE. The 

condition SysInErr gets reset to FALSE when the execution leaves that SMSC. The 

reward variable ErrTime is a rate reward and will accumulate 1 reward whenever the 

condition SysInErr is TRUE. The channel error probability is defined as a global variable 
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err_prob. So is the rate associated with the local activity delay: rate_delay. The Möbius 

Study Editor can be used to vary the values assigned to those global variables and creates 

an executable model for each combination of the variable values. In our experiment, we 

assigned 7 values to err_prob (0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64) and 6 values to 

rate_delay (0.125, 0.25, 0.5, 1.0. 2.0. 4.0). Therefore, the Möbius Study Editor generated 

42 executable models.  The result of this analysis is shown in Figure 23. 
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Figure 23 Error processing time of the system 

From Figure 23 we can see that the percentage of time in processing error is roughly 

proportional to the channel error probability. The higher the error probability, the more 

the time will be spent in processing the error messages. Error processing time is also 

affected by the delay time. The longer delay time implies that that the sender would have 

to wait for a longer time before it retransmits data frames. So the longer delay time 

results in a higher percentage of system time in processing errors. Note rate is defined as 
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the inverse of time. Therefore, higher rate means shorter delay time. This result seems to 

imply that we can use 0 delay time to get better performance. But that is not true because 

the delay time has a lower bound. It must be greater than the round trip time of the 

messages. Otherwise, unnecessary retransmission for correct data frames will occur and 

would result in worse performance. 

5.6 Summary 

In this chapter, we described a simple communication system including two 

computers. Processes running on one computer send data to another computer through a 

cable. The communication protocol used here is the stop and wait protocol.  

The stop and wait protocol are described by four scenarios and modeled as SMSCs. 

The data sending process and data receiving process are modeled as SANs. The SAN 

model and SMSC model are connected together using the Möbius Join and Replicate 

techniques. Shared state variables are defined in both types of models. 

This result shows that the SMSC formalism is able to interact with models from other 

formalisms and that the Möbius tool can solve the SMSC models. 

 



 84

CHAPTER SIX 

6. CONCLUSIONS AND FUTURE STUDY   

The Message Sequence Chart formalism and the Möbius multiple modeling 

framework were studied. Based on the MSC formalism, we defined a new formalism – 

Stochastic Message Sequence Chart, which is an extension to the MSC formalism. SMSC 

can be used to describe the system behavior in the same way as the MSC language. 

Furthermore, SMSC models contain more information regarding the system than the 

corresponding MSC models. By associating with each activity a stochastic execution 

time, the SMSC models specify an underlying stochastic process. System performance 

measures that cannot be derived from MSC models can be studied by using SMSC 

models. In this sense, the SMSC language is more powerful than the MSC language. 

The method of integrating the SMSC formalism into the Möbius framework was 

investigated. On the basis of this investigation, we discovered that the SMSC formalism 

could be well fitted into the Möbius framework. The key issue for building the SMSC 

formalism into the Möbius framework is to specify the SMSC models using the Möbius 

entities: actions and state variables. We defined the SMSC state variables and SMSC 

activities, which correspond to the Möbius state variables and actions, respectively. The 

structural information of the SMSC model is retained when the model is specified in 

Möbius framework. We also implement the C++ classes that are used to specify SMSC 

models. Some of the model composition methods specified in the SMSC formalism can 

be realized using the C++ classes, namely, vertical composition and alternative 

composition. Loop is a special vertical composition and is also realizable within the 

Möbius framework. 
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The next step in this work would be to implement the user interface within the Möbius 

framework. This requires the implementor to collaborate with the Möbius group at 

University of Illinois at Urbana-Champaign. The user interface should be implemented in 

Java in order to make it platform neutral. The front-end user interface will enable users to 

specify SMSC models in the Möbius tool. Eventually, the graphical or textural SMSC 

models are translated to C++ source files, which are further complied and linked with the 

Möbius C++ libraries to generate an executable model and the model is either simulated 

or solved analytically.  

Some constructs of the SMSC language, including inline expressions, horizontal 

compositions, and SMSC references, have not been defined within the Möbius 

framework. Further research will reveal how this can be accomplished. 

Another area of future work is to define the action-sharing method for SMSC. Instead 

of sharing state variables, an SMSC model may be composed with other models by 

sharing activities/actions.  
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APPENDIX 

A. THE SOURCE CODES OF SMSC CLASSES3 

1. The SMSC Instance Class 

/*SMSCInst.h by Zhihe Zhou, May 2002 */ 

#ifndef SMSCINST_H_ 

#define SMSCINST_H_ 

#include "../state/SharableSV.h" 

#include "../StandardErrors.h" 

#include "../debug.h" 

#include "SMSCActivity.h" 

#include <iostream.h> 

/** This class describes the instance state variable class 

for stochastic message sequence charts 

 */ 

 struct Coregion{ 

  int start; 

  int end; 

  }; 

 

class SMSCInst:public SharableSV<short>{ 

public: 

  /**  

    * Default constructor for SMSC instance 

    */ 

  SMSCInst(); 

  SMSCInst(char* TheInstName); 

  SMSCInst(char* TheInstName, short TheInitialValue); 

  ~SMSCInst(); 

  inline short& InstValue(){return *TheInstValue;} 

  /** This method returns the instance's value 

   */ 

                                                 
3  Only partial source codes are listed. The source codes for the detailed implementation of each class are 
too large to list line by line. 



 91

  short getInstValue(); 

  /** This method sets the value of the instance 

   * 

   *  @param TheNewValue The new value of the SMSC instance 

value 

   */ 

  void  setInstValue(short TheNewValue); 

  /* This method checks if a specified activitiy is fired */ 

  bool checkFired( SMSCActivity *act); 

  /* add an attached activity */ 

  void appendAttachedActivity(SMSCActivity *act); 

protected: 

  /**  

    * The protected data structure that holds the instance's 

value 

    */ 

  short* TheInstValue; 

  /* a list of activities attached to the instance in the 

order that 

   * they are specified on this instance */ 

  List<BaseGroupClass> *TheAttachedActivities; 

  int NumCoregions; 

  bool *CoregionStates; 

  struct Coregion *Coregtions; 

}; // end class SMSCInst 

#endif 

 

2. The SMSC Activity Class 

/* SMSCActivity.h by Zhihe Zhou May 2002. */ 

#ifndef SMSCACTIVITY_H_ 

#define SMSCACTIVITY_H_ 

 

#include "../BaseGroupClass.h" 

#include "../debug.h" 
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#include "SMSCCond.h" 

 

class SMSCModel; 

class SMSCInst; 

/** 

 *  This class describes the operation of SMSC Activities -- 

the  

 *  formalism specific action for SMSC models 

 */ 

class SMSCActivity:public BaseGroupClass{  

 public: 

  bool NewEnabled; 

  bool OldEnabled;    

  int NumDummyStateVariables; 

  BaseStateVariableClass*** DummyList; 

   

  /* These three data members govern the enabling status of 

the smsc activity */ 

  List<BaseGroupClass> *thePrecedingActivities; 

  List<BaseStateVariableClass> *theConditions; 

  SMSCInst *theInstance; /* An smsc activity must be 

attached to an instance */ 

  SMSCActivity(); 

  ~SMSCActivity(); 

  SMSCActivity(char*  TheActionName, 

        int TheGroupIDNumber, 

        Distribution TheDistributionType, 

        ExecutionPolicyType TheExecutionPolicy, 

        int TheNumberOfAffectedStateVariables,  

        int TheNumberOfEnablingStateVariables,  

        int TheNumberOfDummyStateVariables, 

        bool TheReactivation); 

  void ActivityInitialize(char* TheActionName, 

     int TheGroupIDNumber, 

     Distribution TheDistributionType,  

     ExecutionPolicyType TheExecutionPolicy, 
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     int TheNumberOfAffectedStateVariables,  

     int TheNumberOfEnablingStateVariables, 

     int TheNumberOfDummyStateVariables, 

     bool TheReactivation); 

 

  virtual void LinkVariables()=0; 

  //virtual BaseActionClass* Fire()=0;  

  bool SelectAction(); 

  void CalculateWeightDistribution(); 

  bool EnablingChange(); 

  double Probability(BaseActionClass* TheAction); 

  bool IsAnAffectingStateVariable(BaseStateVariableClass* 

TheStateVariable); 

  bool Enabled(); 

  double Weight(){ 

   return 1.0; 

  } 

  bool ReactivationPredicate() 

  { 

   return false; 

  } 

  bool ReactivationFunction(){return false;} 

  int Rank(){return 1;} 

  virtual BaseActionClass* Fire()=0; 

  

  void RegisterModel(SMSCModel *model); 

  void RegisterPreActivities(SMSCActivity *activity); 

  void RegisterInst(SMSCInst *inst); 

  void RegisterCond(SMSCCond *cond); 

  void appendDependActivity(SMSCActivity *act); 

   

 protected: 

  double* TheDistributionParameters; 

  bool Depend; 

  SMSCModel *theModel; 

  SMSCActivity *theDependActivity; 
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}; 

#endif 

 
 

3. The SMSC Condition Class 

/*SMSCCond.h by Zhihe Zhou, May 2002 */ 

#ifndef SMSCCONDITION_H_ 

#define SMSCCONDITION_H_ 

#include "../state/SharableSV.h" 

#include "../StandardErrors.h" 

#include "../debug.h" 

#include <iostream.h> 

/** This class describes one sharable variable class for 

stochastic message sequence charts 

 */ 

class SMSCCond:public SharableSV<short>{ 

public: 

  /**  

    * Default constructor for SMSC instance 

    */ 

  SMSCCond(); 

  SMSCCond(char* TheCondName); 

  SMSCCond(char* TheCondName, short TheInitialValue); 

  ~SMSCCond(){delete TheState;}; 

   

  inline short& CondValue(){return *TheCondValue;} 

  /** This method returns the instance's value (by value) 

   */ 

  short getCondValue(); 

  /** This method sets the value of the instance 

   * 

   *  @param TheNewValue The new value of the SMSC instance 

value 

   */ 

  void  setCondValue(short TheNewValue); 
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  /* check if the condition holds */ 

  virtual bool checkCond(); 

   

protected: 

  /**  

    * The protected data structure that holds the 

condition's value 

    */ 

  short* TheCondValue; 

}; // end class SMSCCondition 

#endif 
 

4. The SMSC Model Class 

*SMSCModel.h by Zhihe Zhou, May 2002 */ 

#ifndef SMSCMODEL_H_ 

#define SMSCMODEL_H_ 

#include "../BaseModelClass.h"  

#include "../StandardErrors.h"  

#include "SMSCActivity.h" 

#include "SMSCCond.h"  

#include "SMSCInst.h" 

#include <stdlib.h> 

#include <stdio.h> 

#include <iostream.h> 

#include "../MobiusTypeDefs.h" 

class SMSCModel : public BaseModelClass {   

public:  

 /**  

  * Base Constructor for SMSC Models 

  */ 

  SMSCModel(); 

 /**  

  * Overloaded constructor that take an assortment of 

parameters 

  *  

  * @param TheSMSCModelName The name of the SMSC Model 
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  * @param TheNumberOfInstances The number of instances 

defined within the model 

  * @param TheListOfInstances A list of pointers to the 

instances defined 

  *        within the model 

  * @param TheNumberConditions The number of pointers in the 

list 

  *        of conditions 

  * @param TheListOfConditions An array of pointer to all 

the 

  *        conditions in the model 

  * @param TheNumberOfActivities The number of activities 

defined  

  *         within the model 

  * @param TheListOfActivities A list of pointers to 

activities defined  

  *         within the model 

  * @param TheNumberOfGroups The number of action groups 

defined  

  *         within the model 

  * @param TheListOfGroups A list of pointers to action 

groups 

  */ 

  SMSCModel(char* TheSMSCModelName, 

    int TheNumberOfInstances,  

    SMSCInst** TheListOfInstances,  

    int TheNumberOfConditions, 

    SMSCCond** TheListOfConditions,     

    int TheNumberOfActivities,  

    SMSCActivity** TheListOfActivities,  

    int TheNumberOfGroups,  

    BaseGroupClass** TheListOfGroups);   

   

  /**  

   *  SMSCModel destructor -- Deallocates memory taken up by 

SMSC model  
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   *  if compiled with INCLUDE_DELETE preprocessor command. 

   */ 

  virtual ~SMSCModel(); 

 

  /**  

   * This method performs the initialization of all internal 

data structures. 

   *  

   * @param TheSMSCModelName The name of the SMSC Model 

   * @param TheNumberOfInstnaces The number of instances 

defined within the model 

   * @param TheListOfInstances A list of pointers to the 

instances defined  

   *         within the model 

   * @param TheNumberConditions The number of pointers in 

the list 

   *        of conditions 

   * @param TheListOfConditions An array of pointer to all 

the 

   *        conditions in the model 

   * @param TheNumberOfActivities The number of activities 

defined within  

   *        the model 

   * @param TheListOfActivities A list of pointers to 

activities defined  

   *        within the model 

   * @param TheNumberOfGroups The number of action groups 

defined  

   *        within the model 

   * @param TheListOfGroups A list of pointers to action 

groups 

   */ 

  void initializeSMSCModelNow(char* TheSMSCModelName, 

     int TheNumberOfInstances,  

     SMSCInst** TheListOfInstances,  

     int TheNumberOfConditions, 
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     SMSCCond** TheListOfConditions,     

     int TheNumberOfActivities,  

     SMSCActivity** TheListOfActivities,  

  int TheNumberOfGroups,  

  BaseGroupClass** TheListOfGroups 

  ); 

  /**  

   *  This method places the state of the SMSC into the 

memory  

   *  location specified 

   *  

   * @param TheStateStorageLocation The location where the 

current state of  

   *         the  model should be saved. 

   */ 

  void CurrentState(void* TheStateStorageLocation); 

 

  /** 

   * This method returns an array of pointers to all the 

activities in  

   *  the SMSC Model 

   * 

   *  @return An array of pointers to activities (casted as 

BaseActionClass  

   *           pointers). 

   */ 

  void  listActions(List<BaseActionClass>* TheContainer); 

 

  /** 

   *  This method returns an array of pointers to activities 

with the  

   *  specified name (not that the array only contains one 

or zero elements  

   *  if called upon an atomic model). 

   * 
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   *  @param TheSpecificActionName The name of the specified 

activity 

   *  @return An array of pointers to activities with the 

specified name 

   */ 

  void listActions(char* TheSpecificActionName, 

     List<BaseActionClass>* TheContainer); 

  /**  

   *  This method returns a list of action groups defined 

within the SMSC Model 

   *  

   * @return An array of pointers to action groups defined 

within the model 

   */ 

  void listGroups(List<BaseGroupClass>* TheContainer); 

  /**  

   * This method returns the size of the SMSC model's state 

(in bytes). 

   * 

   *  @return The size of the model state (in bytes) 

   */ 

  int StateSize(); 

 

  /**  

   * This method set the model state to the one located at 

the specified  

   *  memory location.  

   * 

   * @param TheModelStateLocation The location in memory 

holding the  

   *    state to which the model should be changed. 

   */ 

  void SetState(void* TheModelStateLocation); 

 

  /**  
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   * This method compares two SMSC Model states and 

determines whether 

   * they are the same. 

   * 

   *  @param StateLocation1 The location of the first SMSC 

model state 

   *  @param StateLocation2 The location of the second SMSC 

model state 

   *  @return True if the states are the same, else returns 

false 

   */ 

  bool CompareState(void* StateLocation1, void* 

StateLocation2); 

   

  /**  

   * This method prints infomation about the SMSC to cout 

   */ 

  void PrintSMSCModelInfo(); 

 

  /**  

   *  This method returns a list of models with the given 

name (note this  

   *  return trivial for simple atomic models). 

   * 

   * @param TheSpecifiedModelName The name of the model 

   * @return An array of models with the specified name 

   */ 

  void listModels(char* TheSpecifiedModelName, 

    List<BaseModelClass>* TheContainer); 

  /**  

   *  This method returns a list of pointers to SMSC 

instances that belong to  

   *  the specified model and whose name is the same as the 

specified  

   *  instance name. 

   * 



 101

   *  @param TheSpecifiedModelName The name of the model in 

which to search  

   *          for the instance 

   *  @param TheSpecifiedInstanceName The name of the SMSC 

instance 

   *  @param TheContainer A data structure containing an 

array of  

   *         pointers to state variables and the number of 

state  

   *         variables in the arrary 

   */ 

  void  listSVs(char* TheSpecifiedModelName,  

  char* TheSpecifiedInstanceName, 

  List<BaseStateVariableClass>* TheSVContainer, 

  List<BaseModelClass>* TheModelContainer); 

  /**  

   *  This method (defined as pure virtual in 

BaseModelClass) prints the  

   *  state of the SMSC model in a readable format to cout. 

   */ 

  void printState(); 

  /** 

   *  This method (used in RegressionTest) 

   *  tests to see if the LocalStateVariables array 

   *  has been initialized correctly. 

   * 

   *  @param TheObject The SMSCModel on which the friend  

   *         function operates 

   *  @param TheCheckArray The array to be checked 

   *         against the LocalStateVariables array 

   *  @return True if all the members match, else 

   *          false 

   */ 

  friend bool checkLocalSVs(SMSCModel* TheObject, 

       SMSCInst** TheCheckArray); 

  /** 
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   *  This method (used in RegressionTest) 

   *  tests to see if the condition array 

   *  has been initialized correctly. 

   * 

   *  @param TheObject The SMSCModel on which the friend  

   *         function operates 

   *  @param TheCheckArray The array to be checked 

   *         against the condition array 

   *  @return True if all the members match, else 

   *          false 

   */ 

  friend bool checkConditions(SMSCModel* TheObject, 

      SMSCCond** TheCheckArray); 

  /** 

   *  This method (used in RegressionTest) 

   *  tests to see if the LocalActions array 

   *  has been initialized correctly. 

   * 

   *  @param TheObject The SMSCModel on which the friend  

   *         function operates 

   *  @param TheCheckArray The array to be checked 

   *         against the LocalActionss array 

   *  @return True if all the members match, else 

   *          false 

   */ 

  friend bool checkLocalActions(SMSCModel* TheObject, 

    SMSCActivity** TheCheckArray); 

     

  /* This variable shows if the model is active, only active 

model can 

   * have enabled activities * 

   */ 

   bool Enabled; 

    

   /* This variable is used to break the possible infinite 

loops when 
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    * recursively check submodels 

    */ 

   bool Marked; 

    

   /* These variables are defined to facilitate 

vertical/alternative/loop 

    * compositon of SMSC models  

    */ 

   int NumSubModels; 

   SMSCModel **SubModelList; 

   /* when all activities of this model have completed, 

    * one of the submodels may be set to active according 

    * to their weights  

    */ 

   double *SubModelWeight;  

    

 void SetSubModels(int TheNumOfSubModels, SMSCModel** 

TheListOfSubModels, double* TheWeightOfSubModels);  

  

  

 /* activate the model by setting Enabled = true, and reset 

all instance 

  * state variables to zero  

  */ 

 void Activate(); 

 

protected: 

  /**  

   * An array of pointers to instances defined within the 

SMSC model 

   */ 

  SMSCInst** LocalStateVariables;  

  /** 

   *  An array of pointers to all the conditions  

   *  in the SMSC model.  The value of these instances  

   *  are not considered in the SetState, CurrentState, 
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   *  or StateSize method since their value is a function 

   *  of some other part of state. 

   */ 

  SMSCCond** Conditions; 

 

  /** 

   *  This is the number of conditions in the  

   *  SMSC Model.   

   */ 

  int NumConditions; 

   

  /**  

   * An array of pointer to activities defined within the 

SMSC Model 

   */ 

  SMSCActivity** LocalActions;  

   

  /**   

   *   This method is used in the Initialize method to 

create all the  

   *   appropriate data structures for the SMSC instances. 

   * 

   *   @param TheListOfInstances An array of pointers to 

SMSC Insances 

   */ 

  void SetInstances(SMSCInst** TheListOfInstances); 

 

  /**   

   *   This method is used in the Initialize method to 

create all the  

   *   appropriate data structures for the SMSC conditions. 

   * 

   *   @param TheListOfConditions An array of pointers to 

SMSC  

   *          conditions 

   */ 
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  void SetConditions(SMSCCond** TheListOfConditions); 

 

 

  /**  

   *  This method is used in the Initialize method to create 

all the  

   *  appropriate data structures  for the SMSC activities. 

   * 

   *   @param TheListOfActivities An array of pointers to 

SMSC activities 

   */ 

  void SetActions(SMSCActivity** TheListOfActivities);  

 

  /**  

   *  This method is used in the Initialize method to create 

all the  

   *  appropriate data structures for the SMSC activity 

groups. 

   * 

   *   @param TheListOfGroups An array of pointers to SMSC 

groups 

   */ 

  void SetGroups(BaseGroupClass** TheListOfGroups); 

  }; // end SMSCModel class  

 

#endif // end SMSCModel 
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