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ABSTRACT 

EXTENDING MESSAGE SEQUENCE CHARTS FOR MULTI-

LEVEL AND MULTI-FORMALISM MODELING IN MÖBIUS 

Abstract 

by Zhihe Zhou, M.S. 
Washington State University 

May 2002 
 
 
Chair: Frederick T. Sheldon  
 

Message Sequence Chart (MSC) is a formal language to describe the communication 

behavior of a system. Möbius is an extensible multi-level multi-formalism modeling tool 

that facilitates interactions of models from different formalisms. We propose a new 

version of MSC, Stochastic MSC (SMSC), which is a stochastic extension to the 

traditional MSC. SMSC is suitable for performability analysis. Mappings from SMSC to 

Möbius entities are defined so that it can be integrated into the Möbius framework. 

Together with other formalisms of Möbius, SMSC can be used as a building block for 

large hybrid models. Users will have additional flexibility in choosing modeling 

languages in Möbius. Not like other formalisms so far included in Möbius, SMSC has 

both textual and graphical representations. Modeling with a text editor is the same as 

writing a traditional program while the graphical representation gives users a direct view 

of the system. 
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CHAPTER ONE 

1. INTRODUCTION 

In the past two decades, much research has been conducted in the area of formal 

methods. Various formalisms have been studied and the corresponding tools developed 

[1]. The use of formal methods has evolved as the choice to make software and hardware 

systems, which are undergoing ever-growing complexity, more dependable and of higher 

performance. However, except for some costly mission/safety critical systems, formal 

methods are seldom used. Factors that hamper the use of formal methods include initial 

cost, lack of expertise, etc. One major problem that system engineers face is how to 

choose an appropriate tool and formalism from a vast array when they decide to adopt 

formal method(s). Naturally, good tools will facilitate the popularity of formal methods. 

1.1 Problem Definition 

Message Sequence Chart (MSC) [2, 3] is a Specification Description Language (SDL) 

widely used in industry for requirement specification, design specification, as well as test 

case description. MSC is a formal language with a well-defined syntax and semantics. 

Systems modeled with MSC are decomposed to a number of independent message 

passing instances. System behavior is specified by a series of charts indicating 

interactions between those instances. 

Performance evaluation is an important branch of formal analysis of system properties 

[4, 5].  It regards the quality of service a system can provide. However, not all formalisms 

are suitable for performance evaluation. For example, Petri Net [6] and Process Algebra 
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[7] cannot be used for performance evaluation1 although they are two famous formal 

languages in system liveness, deadlock free, or other static property analysis. MSC is not 

for performance evaluation either.  

 The first problem that we addressed in this research is about how we can make MSC 

suitable for performance evaluation. Petri Net has been extended to Stochastic Petri Net 

(SPN)[8], which associates stochastic time information to transitions. This extension of 

Petri Net can be used to address performance measures, and SPN models are widely used 

for performance evaluation of a system. Similarly, there is an extension to Process 

Algebra, Stochastic Process Algebra (SPA)[9], in which events are associated with 

random time information. SPA is also used for system performance evaluation. Based on 

the same idea, we have extended MSC to Stochastic MSC (SMSC). The newly created 

SMSC can be used for performance analysis. Although many research works had been 

conducted [10, 11] after MSC was proposed, no one has tried to extend it with stochastic 

properties. 

The second problem that we addressed in this research is about how to create a tool for 

analyzing SMSC. We are not going to create a separate tool for SMSC. Instead, SMSC 

will be integrated into the Möbius framework[12]. Since Möbius is a well-defined 

framework for multi-formalism modeling and several formalisms (SAN: Stochastic 

Activity Network[13], PEPA: Performance Evaluation Process Algebra [14], etc.) had 

been successfully built in [15, 16], SMSC can be easily integrated into Möbius, which 

enables SMSC to interact with other formalisms in Möbius. By implementing the 

interfaces required by Möbius, we do not even need to provide analyzers or solvers to the 

                                                 
1 Stochastic PNs and PAs do, however, provide such capabilities. 
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SMSC models. The Möbius provided solvers are applicable to solving SMSC models. 

The SMSC formalism, together with others available within Möbius, can be used for 

dependability analysis (i.e., performance, availability and reliability or performability 

analysis). 

1.2 Performability Analysis 

Performability was coined to include both performance and dependability [17]. 

Performance is defined as “quality of service, provided the system is correct.” 

Dependability is “the property of a system which allows reliance to be justifiably placed 

on the service it delivers.” Dependability includes reliability, availability, safety and 

security. In the past, performance and dependability were evaluated separately. However, 

problems exist when using separate evaluations because system performance actually 

depends on all of the aforementioned properties. When failures occur in a system, it 

usually operates at a degraded performance level. Therefore, performance evaluation 

without taking into consideration dependability does not capture the whole behavior of 

the system. On the other hand, dependability analysis tends to be conservative because 

performance considerations are usually not taken into account. To determine the overall 

quality of service by relating and quantifying aspects of what a specific system is and 

does (i.e., how well it performs, or performance) with respect to what the system is 

required to be and do (i.e., how its functionality is affected by faults, or dependability), 

performability analysis came into existence.  

Performability analysis requires that models of the system be built prior to evaluation. 

Modeling, the process of building models, is the technique that hides the unimportant 

details while retains the essence of the important aspects of the system to be evaluated, 
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also known as abstraction. A real system is usually too complex to be analyzed directly. 

Most commonly, performability analysis is done before the system is actually built. 

However, at this stage an abstract model is all that is feasible. The abstract model 

simplifies the system complexity, and yet embodies the same (i.e., at least to the greatest 

foreseeable extent) structural and behavioral properties, while providing accurate 

performability predictions of the real system dynamics.  

The types of models we are building are based on the formalisms we are using. 

Generally, all formalisms have well-defined semantics and/or syntax rules. Models from 

different formalisms have different appearances. For example, a SAN model will be quit 

different from a PEPA model. A SAN model is a graph, in which circles represent places, 

bars represent activities, triangles represent input gates or output gates, and arcs are used 

to connect those components. While, in contrast, a PEPA model only consists of a 

number of lines of texts and symbols that describe the modeled system. No graphical 

component is included. Although those models could represent the same system, their 

appearance is usually very different.  

1.3 Modeling Tools 

Software tools are required to create models and analyze the models for certain system 

measures. For each formalism, there is one or more software tool(s) available. These 

tools not only enable users to create models based on the formalisms, but also provide 

methods of analyzing the models. Some of them even provide a report generator, which 

can automatically create well-formatted reports. 

The Petri Nets formalism has been studied for many years. According to the Petri Nets 

World website, there are roughly 100 tools registered[18]. These tools deal with various 
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types of Petri Nets, including timed PN, colored PN, stochastic PN, etc., and can run on 

any platforms, including Unix, Mac OS, Linux, Windows, DOS, etc.  

Queuing networks is another formalism that is often used for performance analysis. 

Tools based on queuing networks include DyQN-Tool [19], LQNS [20], QNAP2 [21], 

RESQ [22], and RESQME [23]. For the PEPA formalism, a software tool PEPA 

Workbench was developed to solve the PEPA models for performance measures [24]. 

UltraSAN is a tool for specifying and solving SAN modles [25]. 

1.4 Multi-formalism Tools 

In addition to software tools dealing with a single formalism, there are tools that can 

be used to specify and solve models from more than one formalism. These tools are 

referred as multi-formalism tools. 

Multi-formalism tools can be classified into two categories: software environment that 

incorporated multiple tools, and integrated multi-formalism modeling tools. Tools in the 

first category include IMSE (Integrated Modeling Support Environment) [26], IDEAS 

(Integrated Design Environment for ASsessment of computer systems and 

communication networks) [27], and Freud [28]. The approach to build such tools is to 

provide a common user interface with which users can switch from one tool to another. 

Tools in the second category aim to build large heterogeneous models by supporting 

multiple formalisms and solution techniques. One way to implement such a tool is to 

translate models from different formalism into a single universal modeling language. This 

is exactly the method adopted by DEDS (Discrete Event Dynamic System) [29]. The 

second approach is to connect different models by exchanging results. Tools that took 
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this approach include SHARPE [30, 31] and SMART [32]. The Möbius tool uses a 

different approach in which a framework is defined and models from different 

formalisms can share states and results. 

1.5 Organization of the Thesis  

The rest of the thesis is organized as follows. Chapter 2 describes the Möbius 

modeling tool in details. The idea for multi-formalism modeling is first introduced. Then, 

the Möbius entities and their implementations in the Möbius tool are provided. These 

entities form the base on which the whole idea of the Möbius framework is built. Finally, 

the method of building and solving models using the Möbius tool is described. 

Chapter 3 is about the Message Sequence Chart formalism. A message sequence chart 

contains a number of MSC components: instances, messages, local actions, etc. These 

components act as the building blocks of MSCs. A basic MSC describes a simple 

scenario of system behavior. Several MSCs can be composed together to describe a more 

complex scenario. The full behavior of a system may be described by a High-level MSC, 

which contains all the MSCs defined on the system.  

Chapter 4 describes our extension to the MSC formalism. Events defined on a 

Message Sequence Chart are associated with random times, which denote the time 

needed to finish the events. The extended MSC is called Stochastic Message Sequence 

Chart, or SMSC. 

In chapter 5, we provide a method of integrating the SMSC formalism into the Möbius 

framework. The components of SMSC are analyzed in order to derive state variables and 
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actions, which are the Möbius entities necessary to implement a formalism within the 

Möbius framework. 

Chapter 6 discusses an example of a network communication protocol. This example 

is used to demonstrate how SMSC models can be joined with models from other 

formalism. In the example, the stop-and-wait communication protocol is modeled as 

SMSC, while processes sending or receiving data through the stop-and-wait protocol are 

modeled as SANs. 

Chapter 7 concludes this thesis and provides future research directions regarding 

SMSC and the Möbius tool. 
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CHAPTER TWO 

2. MÖBIUS FRAMEWORK 

Software tools for performance, dependability, and performability evaluation of 

complex computer systems and networks have been widely used, and have contributed 

significantly to the conceptual integrity and dependability of such systems. The 

capabilities of such modeling tools have increased greatly over the last two decades. 

However, this increase is counteracted by the growth in both the complexity of systems 

to be analyzed and users' expectations of the tools. Modern systems tend to be complex 

combinations of computing hardware, networks, operating systems, and application 

software. Therefore, it is difficult, if not impossible, to characterize the performance 

and/or dependability of such systems using a single modeling formalism or single model 

solution technique. These challenges call for the development of 

performance/dependability modeling frameworks and software tools that can predict the 

performance of such systems.  

2.1 Introduction 

The Möbius framework is defined, and the Möbius tool developed, by the 

Performability Engineering Research Group (PERFORM) in the Center for Reliable and 

High-Performance Computing at the University of Illinois. The Möbius framework 

provides a method by which multiple, heterogeneous models can be composed together, 

each representing a different software or hardware module, component, or view of the 

system. The composition techniques developed permit models to interact with one 

another by sharing state, events, or results, and are scalable, in the sense that the solution 
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of an entire model is possible at a cost lower than for an equivalent unstructured model. 

This framework also supports multiple modeling languages, as well as methods to 

combine models at different levels of resolution. Furthermore, the Möbius framework 

supports multiple model solution methods, including both simulation and analysis, and 

permits the solution of complete models of complex computing and communication 

systems, and the applications executing on such systems. Finally, the Möbius framework 

is extensible, in the sense that it is possible to add new modeling formalisms, composition 

and connection methods, and model solution techniques to the software environment that 

implements the Möbius framework without changing existing tool components. 

The motivation for building the Möbius tool is the fact that no formalism has shown 

itself to be the best for building and solving models across many different application 

domains. Similarly, no single solution method is appropriate for solving all models. 

Furthermore, new techniques in model specification and solution are often hindered by 

the necessity of building a complete tool every time a novel concept is realized. Hence, 

the Möbius framework, in which new modeling formalisms and model solution methods 

can be easily integrated, is defined. In this context, a modeling framework is a formal, 

mathematical specification of model construction and execution. The key problem in 

implementing the framework is to define an Abstract Functional Interface (AFI), which 

is realized as a set of functions that facilitates inter-model communication as well as 

communication between models and solvers. The abstract functional interface also allows 

the modeler to specify different parts of the model in different formalisms.  

The Möbius framework provides a very general way to specify a model in a particular 

formalism. A formalism is defined as a language for expressing a model within the 
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Möbius framework, often using a subset of options available within the framework. A 

model is defined as a collection of some basic Möbius entities, including state variables, 

actions, reward variables, and groups expressed in some formalism. State variables hold 

the state information of the model. They could be as simple as integers, or complex data 

structures. Actions change the state of the model by assigning new values to state 

variables. They may have a general delay distribution and a general state-change 

function, and may operate by any one of several execution policies. Reward variables are 

used to measure something of interest about the model. A group is a collection of actions 

that coordinate behavior in some specific way. These basic entities are the building 

blocks of any Möbius model. 

Models are classified into certain types. The most basic one is the atomic model. An 

atomic model is a self-contained model (but not necessary complete) that is expressed in 

a single formalism. Atomic models often encapsulate the functionality of a small part of a 

large system. Thus atomic models are the building blocks of large models. Two or more 

atomic models (not necessary from the same formalism) can be structurally joined 

together to form a large model, which is called composed model.  It is allowed that a 

composed model be a component of another composed model. Models can also be 

loosely connected by sharing solutions. In this case, the model is called connected model. 

2.2. Möbius Entities and the Abstract Functional Interface 

The Möbius framework defines all models in terms of basic entities. These entities are 

state variables, actions and groups. These three basic entities are the building blocks for 

all models, including atomic models, composed models, and connected models. Each 

entity contains a portion of the model state and defines a set of functions. Reward 
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variables are excluded as a basic entity because they are not used for building models but 

for specifying a way to measure something of interest.  

The Möbius tool addresses the issue of allowing multiple formalisms and solution 

methods within a single tool by requiring models to exchange information with other 

models and solvers through the abstract functional interface (AFI). The AFI is a set of 

methods defined on a set of base classes that all formalisms must implement in order to 

work within the Möbius tool. The AFI is the mechanism by which heterogeneous 

modeling is possible within the Möbius tool. This interface defines a set of operations 

necessary for implementing any new formalisms or solvers within the Möbius tool. 

In addition to making the tool extensible, the AFI has the added benefit of providing a 

means for data encapsulation. In short, this means that formalism implementors are free 

to implement the AFI in the most efficient manner using whatever data structures and 

algorithms they deem appropriate. Therefore, one important benefit of the AFI and data 

encapsulation is that formalism implementors decide how they want to store and change 

model state in their formalisms.  

The AFI mainly acts as a communication interface between models and solvers. 

Solvers built in the Möbius tool communicate with models by calling methods in the 

abstract functional interface. These methods return generic information about the model 

and change the model’s state. Methods that return generic information about the model 

can also be used to interact with models specified in different modeling formalisms. 

Therefore, the abstract modeling framework facilitates the construction of heterogeneous 

models. This feature is of particular interest when modeling large systems, whose scope 

may encompass many different application domains. 
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The rest of this chapter describes how the Möbius modeling tool is built using the 

ideas defined in the Möbius framework. The AFI design represents a plan for 

implementing some of the ideas in the Möbius framework in a software framework. Now, 

let’s see how those basic entities are defined and implemented within the AFI. 

2.2.1 State Variables 

State variables are used for storing system state. In general, two functions are defined 

on a state variable: type and value. The function type maps the state variable to a set of 

possible values that the state variable can take. Theoretically, all possible types can be 

defined as in Table 1, in which T is the set of all possible types, Z refers to the set of all 

integers, R refers to the set of all real numbers, and S is a reference to a state variable. 

The function value returns an element from the state variable’s value domain, which is 

defined by its type, and this element is the value that the state variable currently holds.  

Table 1 Rules for constructing all state variable types 

1. TZ ∈  The set of integers 

2. TR ∈  The set of real numbers 

3. TS ∈  Reference to a state variable 

4. TTt t ∈∈ 2 then , if  Any subset of valid types is still a valid type. 

5. Ttttttt nn ∈××× ... then ,,...,, if 2121  The Cartesian product of valid types is a valid 
type. 

 

In Table 1, rule1 and 2 define integer and real number as valid types of state variables. 

Rule 3 says that the reference of state variables is a valid type. This rule is important 

because it enables a state variable to take a value that refers to another state variable. 
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Hence, two state variables can take the same value and acts as one state variable. Rule 4 

tells us that any subset of a valid type, which is actually a set, is also a valid type. Rule 5 

allows the construct of structured state variable types, which contain structured data. 

Theoretically, a state variable can take infinite number of values if its type is integer or 

real. But, when implementing the Möbius tool based on the Möbius framework, the 

number of possible values must be finite so that the tool can be implemented on our 

common software platforms that have limited memories. Therefore, the types of state 

variable are redefined as basic types and derived types. The basic types consist of BOOL, 

char, int, float, double and short. The permissible values are defined in Table 2.   

Table 2 Basic Types and Their Permissible Values 

State Variable Types Permissible values 

BOOL 0 (false) and 1 (true) 

Char -128 to 127 

Int -2147483648 to 2147483647 

Float 32 bit 

double  64 bit 

Short -32768 to 32767 

 

The derived types can be constructed using the rule 3, 4 and 5 defined in the Table 1. 

The structured state variables allow one to create complex representations of the model 

state. It also enables the Möbius tool to accept formalisms with rich notation of state. 

A state variable is defined by its type and value. In the abstract functional interface, 

the type is a fixed attribute to a state variable and cannot dynamically change. Once a 

state variable is defined and instantiated, its type is fixed and defines a set of values that 

this state variable can hold. The value of a state variable can and will change over time. 



 14

The Möbius framework allows a state variable to have one or more value functions. In 

general, a value function returns the value of a state variable in a particular model state. 

But a function is just a mapping from one domain to another domain. The returned values 

may not be the same for different functions even though the state variable holds the same 

value.  

These value functions are further classified as primary value function and secondary 

value functions. The primary value function defined on a state variable is used to define 

state equivalence for a state variable. It always returns a value in the range defined by the 

state variable’s type. The secondary value functions defined on a state variable are used 

to simplify model specification or create functional sharing among two or more models. 

The secondary functions do not necessary return a value in the range defined by the type 

of the state variable. But the value returned must be a value in the range defined by the 

set of all valid types. 

The concept of primary and secondary value functions can be illustrated by an 

example. Suppose a state variable is defined to represent the state of a computer. The 

type of this state variable is a subset of integers, for example, {0,1,2}. Table 3 shows the 

state values and their corresponding computer states. 

Table 3 An example of a state variable 

State Value Computer State 

0 IDLE 

1 WORKING 

2 DEAD 
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The primary value function is an identity function that always returns the current sate 

value, which is 0, 1, or 2. A secondary value function, for example, alive may be defined 

on this state variable. The function alive returns 1 if the state value is 0 or 1, and 

otherwise returns 0. The secondary value function is a different interpretation of the state 

value for state variables.  

The relationship between primary value function and secondary functions is quite 

simple. In any two states of a model, if the primary value function returns the same value, 

each secondary value function must return same value. The value returned by one 

secondary value function is not necessarily the same value returned by other secondary 

value functions. This condition ensures that one only needs to test the primary value 

function when determining whether two state variables are equivalent. Therefore, it is not 

necessary to test secondary value function.  

2.2.2 Actions 

Actions are the fundamental Möbius entities used to change the values of state 

variables and thus the state of a model. Actions are the only entities in the Möbius 

framework that can change the values of state variables. Petri net transitions, SAN 

activities, and queuing network servers are all different realizations, in specific 

formalisms, of the abstract action entity. Möbius actions are generic to all modeling 

formalisms. There are no restrictions on how an action can change the state of a model’s 

state variables. The formalism and the specific model definition define the way an action 

changes state. 

Each action is uniquely defined by its set of action functions. Some of these functions 

are “predicates.” In this context, a predicate is a Boolean function expressed in terms of 
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the state of a model’s state variables. These action functions provide all the information 

necessary to specify an action’s enabling conditions, its state-dependent “firing” time 

distribution, and the state change function itself. The term fire means a specific change of 

a model’s state variables defined by the action. 

The exact meanings of the action functions are defined in [12], but we will briefly 

introduce each action function here to help explain its purpose. The Fire function defines 

how a model changes state when an action fires. The Fire function changes the value of 

the state variable state. The Enabled function defines the states in which the action can 

fire. WorkPolicy defines how the action behaves if it becomes enabled but does not fire. 

If an action can fire, then the Delay function defines a firing time distribution. In some 

cases, an action that is enabled and does not fire is viewed as doing “work”; the manner 

in which the action is affected by previous work is defined by the Work function. An 

action’s Rank function is used to define a priority-based execution policy, and its 

Weight is used to define a probabilistic execution policy. 

Table 4 summarizes the action functions for each action in the AFI. In addition to 

functions, each action has a set of attributes that further define its operation. These 

attributes are listed and described in Table 5. 
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Table 4 Functions defined on actions 

Function Name Function Definition 

Enabled { }falsetrue,→Σ  

Fire Σ→Σ  

ReactivationPredicate { }falsetrue,→Σ  

ReactivationFunction { }falsetrue,→Σ  

SampleDistribution [ ]( )1,0→→Σ +R  

Rank +→Σ Z  

Weight +→Σ R  

 

 
Table 5 Action attributes 

 

2.2.2.1 The Enabled function and the Fire function 

The Enabled function determines whether an action can fire. The Enabled function is 

a Boolean expression that evaluates the state variables values and returns either true or 

false.  Based on the Enabled function, two new concepts are defined: Enabling states and 

the set of enabled actions. An action’s Enabling states are a set of model states in which 

the action can change the state of the model, i.e., the Enabled predicate is true on these 

model states.  The set of enabled actions for a given model state is a set of actions whose 

Action Attribute Description 
Name The name of the action 

DistributionType The type of probability distribution used to define the firing 
time delay 

ExecutionPolicyType  The type of action execution policy 
GroupID The highest-level group to which the action belongs 

EnablingStateVariables The list of state variables whose state variable state defines the 
action’s Enabled function 

AffectedStateVariables The list of state variables whose state variable state is affected 
by the action’s Fire function 
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Enabled predicate is true in the model state. The Enabled function allows us to specify 

conditions under which a specific state change can occur. 

If an action is enabled, it may fire by executing the Fire function according to the 

action’s execution policy (see section 2.2.2.5). The firing of an action may change certain 

model state variables’ value. The set of all state variables affected by the action’s firing is 

called the action’s affected state variables. An ordered sequence of individual action 

firings will result in a sequence of model state changes. We call this sequence of state 

changes a trajectory through the model’s state space. The set of all such sequences 

represents the set of all trajectories through the model’s state space. 

2.2.2.2 ReactivationPredicate and ReactivationFunction 

These two functions are used to implement the action interrupt concept of the Möbius 

framework. The implemented concept is a reduced version of what is defined in the 

Möbius framework. The interrupt state is defined as a subset of integers in the Möbius 

framework so that more complicated interrupt policies can be specified. However, in 

implementing the Möbius tool, this reactivation state was redefined as a Boolean for 

easier implementation and better efficiency.  

The interrupt state of an action is defined by the action’s ReactivationPredicate 

function. The ReactivationPredicate is a mapping from model states to {true, false}. A 

“true” value means the action is “interruptible” or “restartable” and might be restated 

depending on its ReactivationFunction. The implementation in the abstract functional 

interface thus requires that the action function ReactivationFunction be evaluated only 

if the action is restartable. 
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The ReactivationPredicate function is evaluated in every state in which the action’s 

Enabled function is true, if the action’s Enabled function was false in the previous state. 

Additionally, an action’s ReactivationPredicate is evaluated when the action fires and 

remains enabled in the new state. 

The ReactivationFunction is to determine when and how an action should be 

interrupted. In the abstract functional interface, if the action’s interrupt state is true, then 

the ReactivationFunction is evaluated at every subsequent state change. 

ReactivationFunction yields a Boolean value that is used to determine if the action 

should be interrupted. The action taken upon interrupt depends upon the action’s 

execution policy type, which is summarized in Table 6. 

Table 6 Possible outcomes of interrupt 

 

2.2.2.3 The Rank and Weight Functions 

The Rank and Weight functions are defined on an action for the purpose of ordering 

the simultaneously enabled actions that are scheduled to fire. When two or more actions 

are enabled, the firing order is first determined by their rank values. If some actions have 

the same rank value, then their Weight is used to further decide their firing order.  

(ExecutionPolicy, ReactivationFunction)  Outcome 
(Race-Resample, True)  Reset 
(Race-Resample, False)  Reset 
(Race-Enabled, True)  Reset 
(Race-Enabled, False)  None 
(Race-Age, True)  Age 
(Race-Age, False)  None 
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Rank enables the modeler to implement a priority-based ordering algorithm for 

scheduling the firing of enabled actions. An action’s rank value can also be used to define 

a priority-based preselection algorithm for action groups. A priority-based selection 

policy implemented over a set of actions can replace a race-based execution policy. 

Each action has a state-specific integer rank value that represents its priority level for 

the enabling state. Higher numerical values imply higher priority, with 1 being the lowest 

priority an action can have. To resolve selection among similarly ranked actions, a 

probabilistic algorithm can be used to select a specific action. Each action has a weight 

function that determines the action’s weight for any given enabling state. Greater weight 

values imply that an action is more likely to fire. When used in action groups, an action’s 

weight is used to calculate the probability of selecting a representative member from a set 

of simultaneously enabled, equally ranked members. 

2.2.2.4 The SampleDistribution Function 

SampleDistribution is a function defined on an action that returns the time-to-

completion. The time-to-completion is a period of time in which the action finishes its 

task. This period of time starts when the action becomes enabled and ends at the time the 

action fires. Usually, the time-to-completion is a random variable with a certain 

distribution function. SampleDistribution is defined to facilitate model simulation. 

When using simulation to solve a model, especially the stochastic model, the solver 

randomly samples from the action’s time-to-completion distribution and determines the 

time to finish the action whenever the action is enabled.  
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The time-to-completion of an action, which is an important concept that is used in the 

SMSC extension, may have two different meanings. It may be viewed as the time it takes 

an action to complete the task it starts working on when the action becomes enabled. 

Alternatively, time-to-completion may be viewed as a scheduled event that will happen 

after that period of time. It may not correspond to any task. The first view is often 

referred to as work-centric notion, and the second as event-centric notion.  

For the event-centric notion, the action represents a part of the system that does not 

have a clear notion of work. When the action is enabled, it merely schedules a state-

changing event for some time in the future. The event may not correspond to any 

“underlying process” that has a concept of partial completion. It may simply represent an 

explicit state change at a specific time given that the action is not disabled before that 

specific time point. There would be no need to remember how close it came to the 

scheduled execution time. An example of an event-centric time-to-completion is the time 

specified by a timer for retransmission of a data packet in some communication protocols 

if the sender receives no acknowledgement. 

The work-centric view of the time-to-completion regards an action as performing work 

on a task starting from the time it becomes enabled, and ending when the specific period 

of time has passed. The task is completed at the end of that period of time. Completion of 

the task signals that the model is ready to change state. Since the action is performing 

work on some task, it may be a good idea if we can remember how much work has been 

done in the case that the action becomes disabled before the completion of the task. The 

amount of work done is saved in the action’s attribute – FractionComplete. The amount 

of work done is quantified by the fraction of time the action was enabled compared to the 
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sampled time-to-completion. Thus, the value of FractionComplete is always between 0 

and 1. When a disabled action becomes enabled, the amount of work done must be taken 

into account in determining the new time-to-completion.  

2.2.2.5 Action Execution Policy 

Each action also has a specific execution policy associated with it. The execution 

policy is a set of rules that govern how state changes occur as a function of time. 

Execution policy is particularly important in stochastic modeling because the actions’ 

time-to-completion is usually described by a continuous time random variable. This 

means that each of the enabled actions can fire at one of many possible discrete time-

points. One important problem regarding actions is what will happen if an action is 

enabled but does not fire. The execution policy is defined to resolve this problem. 

The AFI supports three race-based execution policies for actions. Racing is the 

phenomenon that two or more actions are all enabled in the same model state and any one 

can fire first. The next state change is determined by the action with minimum 

completion time. These execution policies are Race-Resample, Race-Enabled, and Race-

Age, respectively.  

Race-Resample is the simplest of all three race-based execution polices. An enabled 

Race-Resample action will do one of two things at the next state change. 1) It completes 

the action, executes its Fire function, and causes the state change. 2) It has not completed 

the action when a state change occurs, and it loses all the work it has done from when it 

becomes enabled to the to the point of this state change. If it is still enabled in the new 
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state, it acts as if it just became enabled, and the new time-to-completion is only a 

function of the new model state. 

Race-Enabled is a similarly simplistic execution policy for actions. If a Race-Enabled 

action is still enabled in the new state, the action will continue to perform work in 

accordance with the action’s time-to-completion at enabling time. If the action is not 

enabled in the new model state, a Race-Enabled action does not save the amount of work 

done up until that point. The next time the action is re-enabled, it acts as though no 

previous work has been done; thus, its time-to-completion distribution is only a function 

of the state variable’s state.  

Race-Age is the most complex one of the three execution policies. Actions with Race-

Age execution policy can remember the amount of work done during the enabling period. 

When a Race-Age action becomes disabled because another action has completed and the 

model state has changed, it saves the amount of work done in its attribute - 

FractionComplete.  When the action is re-enabled in the future, its FractionComplete is 

used to change the time-to-completion to reflect the fact that work has been 

accomplished. 

2.2.3 Group 

Groups are another entity of the Möbius framework. Since groups are not used when 

we map SMSC to the Möbius framework, we do not provide detailed description here. 

Refer to Appendix A for more information about groups. 
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2.2.4 The Möbius Models 

Given these basic entities, a model in the Möbius framework is a collection of state 

variables, actions, groups, and all functions defined on them. A model defines the 

behavior or a part of the behavior of a system. The system behavior is specified in terms 

of system state and the change of the system state as a function of the current system state 

and time. A model is essentially a container for state variables, actions and action groups. 

Models also have states and types. The type of a model is formalism specific and is 

defined by the formalism implementing the model. 

The model state consists of state variables state, actions state, and group state. The 

state of the state variable is defined by the value that the state variable currently holds. 

The action state includes the enabling status of the action in the previous model state, 

reactivation status, and FractionComplete. The group state contains information about 

what members did in past states. More specifically, the group state stores information 

about which members were selected in the previous states. 

Models can be combined to form larger models. A large model can be recursively 

decomposed to obtain the final set of state variables, actions and groups. The state of 

these entities is used to determine the state of the large model.  

Models define functions that are used to perform certain operations on the state 

variables, action, and groups contained in the models. These model functions represent a 

key design aspect that makes heterogeneous models possible. They communicate 

important information about the model to other models and solvers. Three functions, 

ListActions, ListGroups, and ListStateVaribles, are used to return a set of Möbius 
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entities corresponding to the function names. SetState is used to write the model state, 

usually the initial model state. CurrentState is for reading the current model state. 

2.3 Hierarchical Model Construction 

The Möbius framework is defined not only to support multiple formalisms, but also to 

enable the construction of large heterogeneous models hierarchically. Models in the 

Möbius framework are divided into four categories: atomic models, composed models, 

solvable models, and connected models. SMSC models can be used as atomic models in 

the Möbius framework. They can also be joined with other models to form composed 

models. 

2.3.1 Atomic Model 

An atomic model is a model that is built from a single formalism. Atomic models form 

the lowest level of the model hierarchy. Every large model must begin with the building 

of atomic models. Atomic models are building blocks for any other high-level models. 

An atomic model is often used to model a small part of the system. Although an atomic 

model does not need to be complete, it must be self-contained.  

2.3.2 Composed Model 

Two or more atomic models can be jointed together to form a composed model. In 

addition, a composed model may itself be joined with other atomic or composed models 

to form a new composed model. A composed model can be decomposed recursively to 

obtain a number of atomic models. These atomic models are not necessarily from the 

same formalism.  
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Models are joined together by sharing certain state variables. The most popular type of 

sharing relationship between two state variables is the equivalence sharing. Two state 

variables are said to have an equivalence sharing relationship if they have the same type 

and always hold the same value. If the value of one state variable changes due to action 

firing, the value of the other one changes accordingly. As a result, these two state 

variables still maintain the same value. When the two shared state variables belong to two 

different models, we say these two models are joined together by sharing the state 

variables. 

The state variables retaining an equivalence sharing relationship require that the same 

value be assigned to each of them. Since they all have the same value, it is adequate to 

keep only one copy of the state variable’s value in memory, and this copy is shared by all 

these state variables. This is indeed the method used by the Möbius tool to implement 

shared state variables. In the class BaseStateVariableClass (Appendix B), there is no data 

member defined for keeping the state variable’s value. It is the requirement of formalism 

implementors to derive their own state variable classes and define the data member for 

holding state variable’s value. This data member must be declared as a pointer pointing to 

a variable with the type defined for this state variable. Note that every state variable has a 

type associated with it. When allocating memory for state variable value pointers, only 

one of the shared state variables’ pointers is assigned memory. All other pointers are set 

to point to the same memory area. Thus, the change of any shared state variable is 

reflected to any other shared state variables.  

Equivalence sharing requires that the shared state variables have the same type. 

Atomic models from the same formalism are easily joined through equivalence sharing 
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because the state variable’s types are consistent. There are no unknown state variable 

types between these models. If two heterogeneous models contain the same type of state 

variables, these state variables could be used to join the models through equivalence 

sharing. 

Another way of joining heterogeneous models through state variables is functionally 

sharing state variables. For functionally shared state variables, one state variable’s value 

is define as a function of another state variable’s value. There are two types of functional 

sharing: unidirectional, and bi-directional. 

Unidirectional functional sharing is an asymmetrical sharing relationship in which one 

state variable receives value from a function defined on another state variable. The 

receiving state variable can only look at its value. It has no method defined to change its 

value. This state variable is called the read-only state variable. This restriction is removed 

for bi-directional functional sharing in which the function is defined as one-to-one and 

onto. Actually, the equivalence sharing relationship is a special case of bi-directional 

functional sharing in which the function is an identity function.  

2.3.3 Solvable Model 

The purpose for modeling a system is to obtain certain performance, dependability, 

and performability measures through analysis of the model. The Möbius tool uses reward 

models (also known as reward functions) as a way of measuring such properties. After 

performance variables are defined for the atomic or composed models, these models are 

called solvable models, meaning they are ready to be solved for certain system measures. 
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Performance variables are reward variables defined on models. Reward variables can 

represent any aspect of the system. They are specified in terms of a common, 

uninterpreted unit of measure, called a unit of reward. The actual meaning of a reward 

variable is determined by giving “reward” a more specific interpretation. For example, 

one reward variable could represent the number of jobs in a buffer, and another one the 

number of working servers in a queue model. 

There are two types of reward variables: impulse reward variables and rate reward 

variables. Impulse reward variables are associated with actions. The impulse reward 

variable may obtain a unit of reward whenever the action to which it is associated fires. 

Rate reward variables are associated with the time spent in a model state. They can be 

used to measure how long the system is in certain state within a given period of time.  

Reward variables can be specified to be measured at an instant of time, or accumulated 

over an interval of time. The first kind of reward variables is also called instant-of-time 

reward variables, and the latter interval-of-time reward variables. For a rate reward 

variable, the instant-of-time measure takes the value of the reward variable at that 

moment. The instant-of-time measure for an impulse reward variable at time t is the value 

that the reward variable held when the action associated with reward variable completed 

before time t. As for interval-of-time measures, a rate reward variable accumulates during 

the time within the period that the model is in the state to which the reward variable is 

associated, and an impulse reward variable accumulates each time the action fires within 

the period. If the accumulated value of a reward variable is divided by the length of the 

time period, the reward variable is called time-averaged interval-of-time reward variable.  
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Reward variables are actually random variables, which implies they can take different 

values with different probabilities. Thus, we can speak of the distribution of a reward 

variable as well as its mean and variance. These properties are of our interest when 

measuring system properties. 

2.3.4 Connected Model 

It is not the case that models can always be joined together through sharing state 

variables. Some heterogeneous models may have quit different state variable types. It 

could be very difficult to even define functions for functionally sharing state variables.  

In other words, some models may not have a relationship in terms of state variables.  

However, being parts of the same system, models do have certain relationships. For 

instance, the average input data rate for a buffer should be equal to the average output 

data rate. In other words, these heterogeneous models have certain performability 

measures in common. The Möbius framework defines the connected model as models 

that share certain solutions. To distinguish it from the composed model, the connected 

model contains models that are loosely connected. 

2.3.5 Study Editor 

The Study Editor is used to assign a value or range of values to global variables 

defined in the model. Accordingly, it can generate a series of experiments, and each of 

them corresponds to a certain setting of global variables. The different settings represent 

the different model parameters. Reward variables of the model can be solved for each 

experiment. In this way, sensitivity analysis is conducted, which enables the modeler to 
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know which model parameters most significantly affect the performability measures, and 

what are the optimal parameter settings needed to achieve the most benefit. 

During the specification of atomic, composed, and reward models, global variables are 

often used to characterize model characteristics. However, the global variables are not 

given values during the model construction process. Valid global variable types are any 

C++ basic types, including int, short and double. Only after the global variables are 

assigned values can a model be solved. 

2.4 Solvers 

The process of using software tools to analyze a model for the purpose of obtaining 

certain performability measures from the system under study is called solving the model. 

The software tool used to calculate (either numerically or analytically) the measure of a 

model property is called a solver. The Möbius tool provides two classes of solution 

techniques: discrete event simulation and analytical/numerical technique. Refer to 

Appendix C for detailed information about how to use these solvers. 

2.5 Summary 

In this chapter we discussed the Möbius framework and the Möbius tool implemented 

based on the framework. Up to this point, one should have a general idea about how 

models are expressed in the Möbius framework, how a formalism is specified within the 

framework, and the constraints or rules about how heterogeneous models interact with 

each other as well as the solvers. 
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CHAPTER THREE 

3. 3. MESSAGE SEQUENCE CHART 

3.1 Introduction 

Message Sequence Charts (MSC) [3] is a language that is used to describe the 

interaction between a number of independent message-passing instances. According to 

[3], the main characteristics of the MSC are the following: 

• MSC is a scenario language. An MSC describes the order in which 

communications and other events take place. 

• MSC supports complete and incomplete specifications. It has the possibility to 

describe incomplete behaviors used in early analysis and for documentation 

purposes. 

• MSC is both a graphical and a textual language. The two-dimensional 

diagrams give an overview of the behavior of communicating instances. The 

textual form is used for exchange between tools and as a basis for automatic 

formal analysis. 

• MSC is a formal language. The definition of the language is given in natural 

language as well as in a formal notation. 

• MSC is a practical language. MSC can be used throughout the engineering 

process. Its use ranges from domain analysis and idea generation via the 

requirements capture at design phase to testing.  MSC is used in slightly 

different ways in the various phases, and it is important that MSC has formal 
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expressive power as well as an intuitive appearance (i.e., providing behavioral 

visualization).  

• MSC is widely applicable. It is not tailored for one single application domain. 

• MSC supports structured design. Simple scenarios described by Basic 

Message Sequence Charts can be combined to form more complete 

specifications by means of High-level Message Sequence Charts. MSCs are 

gathered into an MSC document. A modular design of scenarios is supported 

by mechanisms for decomposition and reuse. This feature fits perfectly into 

the Möbius framework for hierarchical model composition. 

• MSC is often used in conjunction with other methods and languages. Its 

formal definition enables formal and automated validation of an MSC with 

respect to a model described in a different language. MSC can, for example, 

be used in combination with SDL (i.e., Specification Description Language). 

The usual interpretation of a scenario specified in an MSC is that the actual 

implementation should at least exhibit the behavior expressed in the scenario. Alternative 

interpretations are also possible. An MSC can, for example, be used to specify disallowed 

scenarios. 

3.2 Basic Message Sequence Charts 

Basic Message Sequence Chart (BMSC) is the core of the MSC language. A BMSC 

describes a simple scenario of a part of the system behavior. The three important 

primitives for BMSC are instances, messages, and local actions. They are all highly 

abstract and can be used to represent objects in many different application domains. 
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An MSC can be expressed graphically or textually. Figure 1 shows an example of a 

graphical representation of one Basic MSC. The MSC is drawn as a frame containing the 

instances. The key word msc is followed by the name of the MSC and is placed inside the 

frame near the upper-left corner. Three instances exchange several messages with each 

other as well as with their environment. The environment is an imagined instance capable 

of sending and receiving messages. The instance i1 also performs a local action. 

 

Figure 1 Graphical representation of an MSC 
 

The textual representation can be done in two ways. First, an MSC can be described by 

giving the behavior of all its instances in isolation. This way of describing an MSC is 

called instance-oriented. Another way of representing an MSC is the so-called event-

oriented description. With the event-oriented descriptions, a list of events is given as they 

are expected to occur in a trace of the system or as they are encountered while scanning 

the graphical MSC from top-to-bottom.  The instance-oriented description of the same 

 msc example1 

i1 i2 i3 

m0 

m1 

m2 

m3 
a 



 

example is shown in Figure 2 (a). Figure 2 (b) shows the event-oriented description of the 

MSC. The keyword msc denoting the beginning of an MSC is followed by the MSC 

name. The MSC ends with the keyword endmsc. 

Figure 2 Textual repre

3.2.1 Instances 

Instances are the primary entities in an M

of interacting instances. In specific sys

component, for example, a process or a ser

events is specified. 

Graphically, an instance is drawn as a

symbol and ending with the instance en

rectangular box, and the instance end sym

describe the beginning and ending of the 

msc example1; 
  instance i1; 
    out m0 to env; 
    out m1 to i2; 
    action a; 
    in m3 from i2; 
  endinstance 
  instance i2; 
    in m1 from i1; 
    out m2 to i3; 
    out m3 to i1; 
  endinstance; 
  instance i3; 
    in m2 from i2; 
  endinstance; 
endmsc; 

(a) 

 

 

 

 

msc example1; 
i1: out m0 to env;
i1: out m1 to i2; 
i2: in m1 from i1;
i2: out m2 to i3; 
i3: in m2 from i2;
i1: action a; 
i2: out m3 to i1; 
i1: in m3 from i2;
endmsc; 
 
 
 
 
 
 

(b) 
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define the creation and termination of the instance. Each instance has a name associated 

with it. The name can be placed inside the instance head symbol or above it. In the 

system level, all instance fragments with the same name constitute the same instance.  

The textual representation of an instance begins with the keyword instance, and ends 

with endinstance. Between theses key words are ordered events defined for the instance. 

This representation is mainly used in an instance-oriented description. When using event-

oriented descriptions, one only needs to specify the instance name for each event. The 

instance name is followed by a colon, and then by an event attached to the instance. See 

Figure 2 (b) for an example. 

3.2.2 Messages 

Instances in an MSC interact with each other by exchanging messages. The graphical 

description of a message is an arrow that starts at the sending instance and ends at the 

receiving instance. A message sent to the environment is represented by an arrow from 

the sending instance to the surrounding frame. In the case that a message is lost, i.e., the 

message is sent but never consumed, the arrow ends at a black dot, which denotes a 

“black hole.” Symmetrically, a message can be found, meaning it originates from 

nowhere. In this case, the arrow starts at an open dot (“white hole”). A lost or found 

message is called incomplete message because there is either no sending instance or 

receiving instance associated with the message.  

A message exchange involves two events: the event of sending the message and the 

event of receiving it. Thus, the textural representation of a message consists of two event 

descriptions. The sending event is described as: 
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out <message_name> to <input_address> 

where out and to  are the keywords, <message_name> is the name of the message, and 

<input_address> is either the name of the instance that consumes the message or the 

keyword lost if this message is an incomplete one.  

The event of receiving a message is described as: 

in <message_name> from <output_address> 

where <output_address> is either the name of the instance that sends the message or 

the keyword found, which means that the message has no sending instance associated 

with it. 

An example of incomplete messages is shown in Figure 3. The left side is the 

graphical representation, and the right side is the corresponding textual description. 

 
Figure 3 Incomplete messages 

3.2.3 Local Actions 

In addition to message exchange the local action may be specified in MSCs. A local 

action describes an internal atomic activity of an instance. It contains either informal text 

 
 
msc incomplete_msg; 
i1: out m1 to lost; 
i2: in m2 from found; 
endmsc; 

i1 i2 
msc incomplete_msg 

m1 

m2 
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that describes the internal activity, or a formal data statement that defines operations on 

some data. 

Graphically, a local action is denoted by an action symbol on an instance with the 

action string placed in it. The action symbol is a box placed on the instance axis. The part 

of the axis covered by the action symbol turns invisible or is removed.  

The textual representation is very simple. A local action is textually described by the 

keyword action followed by the action string or data statements. Refer to Figure 1 

andFigure 2 for the two types of representation for local actions. 

3.2.4 Conditions 

Besides instances, messages, and local actions, another important construct for 

Message Sequence Charts is condition. Conditions can be used to restrict the traces that 

an MSC can take. There are two types of conditions: setting and guarding conditions. A 

condition can be a global condition shared by a number of instances or a local condition 

attached to only one instance.  

Setting conditions are used to set or describe the current global system state if the 

condition is global, or some non-global state if the condition is not global. Guarding 

conditions restrict the behavior of an MSC by only allowing the execution of events in a 

certain part of the MSC depending on their values. 

The value of a guarding condition is either a state that can be set by a setting 

condition, or a Boolean expression. When the Boolean expression evaluates to “true” or 

the system is in the state required by the guarding condition, we say the condition is met. 
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The events in the scope guarded by the guarding condition can only be executed if the 

guarding condition is met. 

A graphical condition symbol is defined as shown in Figure 4. For a setting condition, 

the condition name is placed in the condition symbol, meaning set the system to a 

particular state specified by the condition. For a guarding condition, the keyword when is 

placed in the symbol, and the condition name or a Boolean expression follows the 

keyword. It means when the system is in certain state or the Boolean expression is true, 

the events following the guarding condition can be executed. 

 

Figure 4 The condition symbol 
The textural representation of a setting condition is the keyword condition followed 

by the condition name. A guarding condition has the keyword when inserted between 

them. 

3.3 Event Ordering and Traces 

A Message Sequence Chart is intended to describe a number of executions of events. 

These events are either message exchanges among instances or local internal actions. One 

assumption about the execution of events is that all events are executed instantaneously, 

i.e., the execution of events consumes no time. Another important assumption is that no 

two events can be executed at the same time. Under these two assumptions, a message 

sequence chart in fact describes the possible orders in which the events can be executed. 
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To order the events, we must define ordering rules for Message Sequence Charts. The 

order in which events take place must comply with these rules. If we describe an 

execution of an MSC by a sequence of events in the order that they take place, this 

sequence forms a trace of the execution. A message sequence chart specifies the behavior 

of a part of the system through a set of valid traces. A valid trace is a sequence of events 

where the order of such events does not violate any ordering rules. The complete set of 

valid traces defines the possible behavior that this part of the system can have. An invalid 

trace is the one where its event order violates at least one ordering rule. 

The MSC language defines basic ordering rules, general ordering constructs, and the 

concept of coregions in the ordering of all events. The basic ordering rules are further 

described below. 

3.3.1 Basic rules 

There are two basic ordering rules. The first rule deals with the ordering of events of 

the same instance. This rule says that the events of an instance are executed in the 

same order as they are given on the vertical axis from top to bottom. One can say that 

the time along each instance axis is running from top to bottom. Therefore, the events 

specified on an instance are totally ordered in time. However, there is no scale of time 

associated with the instance axis. The instance only specifies the order for the events. It 

does not specify the elapse of time in between two consecutive events. It is possible that 

the first event is executed at 10 seconds and that the second event is executed at 30 

seconds or any time point that is later than 10 seconds. 

The second rule deals with the order imposed by messages. The key idea for defining 

this rule is that a message must be sent before it can be consumed. Intuitively, this is 
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obvious since a message cannot be received before it is sent. Therefore, the second rule is 

defined as the event of sending a message must happen before the event of receiving 

the same message. 

 In principle, the instances operate independently. No global notion of time is 

assumed. The only dependencies between the timing of instances come from the 

restriction of the second rule. In the example shown in Figure 1, this implies that message 

m2 is received by i3 only after is has been sent by i2, and, consequently, after the 

consumption of m1 by i2, while for local action a and message m2 no order is specified. 

It is therefore possible that action a is executed before m2 is sent, or after m2 has been 

received, or even between the sending and receiving of m2. Furthermore, because the 

asynchronous communication assumption, even the order of local action a and the 

consumption of message m1 is not specified. Local action a could be executed before or 

after the consumption of m1 by i2. But it can only be executed after m1 has been sent by 

i1. We can see that the execution of local actions is only restricted by the ordering of 

events of the instance it is defined on. 

The second rule also implies that a message output is not allowed to depend on its 

corresponding message input, directly or indirectly via other messages. In this case the 

Message Sequence Chart would specify that a message be received before its 

corresponding message is output. Such Message Sequence Charts are called inconsistent. 

Before we introduce any other concepts regarding the ordering of event, it is important 

to note that these two ordering rules imply that events defined on an instance can be 

totally ordered, while events between different instances may not be totally ordered. If 

two instances have no message exchange, we have no way to order the events between 
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them. Therefore, a Message Sequence Chart only imposes a partial ordering on the set of 

events being contained. 

3.3.2 Coregions 

So far the events of an instance are totally ordered in time according to the first 

ordering rule. In reality, it is quite possible that some events can happen in any order, i.e., 

the ordering of them does not matter in terms of the behavior of the system being 

specified. The concept of coregion is introduced to enable the specification of unordered 

events for an instance. 

To represent a coregion in a Message Sequence Chart, a new construct is defined. 

Graphically, a coregion can be drawn as a dashed vertical line that replaces the part of the 

vertical line representing the instance. Message arrows starting from or ending at the 

coregion define message events for the coregion. Local actions can also be placed in the 

coregion. Textually, a coregion is enclosed between two keywords: current and 

endcurrent. The keywod current begins a coregion, which is ended by endcurrent. 

Events defined on a coregion can take place in any order. This contradicts the first 

ordering rule. So the first ordering rule is revised as follows: 

• The events of an instance that are not in a coregion are executed in the 

same orders as they are given on the vertical axis from top to bottom. 

Events inside a coregion can be executed in any order, but these events can 

only happen bwtween the execution of the event specified immediately 

before the coregion and the execution of the event specified immediately 

after the coregion if such events exist.  
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Figure 5 shows an example of coregeion. 

 

Figure 5 Example of a Coregion 

3.3.3 General Orderings 

General orderings are introduced to describe the ordering between events when this 

ordering cannot be derived from the MSC according to the two basic ordering rules. In 

other words, general orderings are used to specify the ordering of events that have no 

direct or indirect relations. The two events associated with a general ordering can 

otherwise happen. In this sense, general orderings provide additional information to a 

Message Sequence Chart. 

A general ordering is graphically denoted by the general ordering symbol, which is a 

solid line with an arrowhead in the middle as shown in Figure 6. The symbol 

distinguishes the general ordering from normal messages where the arrowhead is always 

placed on one end of the line. Each of the two ends of the general ordering symbol is 

Figure 6 The general ordering symbol 

msc coregion; 
i1: out m1 to i2; 
i1: concurrent; 
  in m2 to i2; 
  out m3 from i2; 
  endconcurrent; 
i1: out m4 to i2; 
i2: in m1 from i1; 
i2: out m2 to i1; 
i2: in m3 from i1; 
i2: in m4 from i1; 
endmsc; 

i1 i2
msc coregion 

m1 

m2 

m3

m4 



 43

attached to an event. The arrowhead in interpreted as pointing to the event that happens 

later. Therefore a general ordering specifies the ordering of executions of two events in a 

similar way as a message does. To facilitate a textual grammar for general ordering, 

keywords before and after are defined. 

Usually, general orderings are used to specify the ordering of two events defined on 

different instances since the ordering of these events is often not defined. In a rare case 

that an instance has no communications with other instances, the ordering of events 

between this instance and those of others can only be specified through general orderings. 

 General orderings can also be used to describe the ordering of events from the same 

instance. When a general ordering is applied to two events in the same coregion, it does 

give additional information. A general ordering will explicitly specify the ordering of the 

two events in a coregein. General orderings for events outside coregions are allowed. But 

they are really not necessary since the ordering of these events is already defined. 

The use of general ordering must not cause conflicts. If the ordering of two events is 

defined directly or can be derived indirectly, the general ordering applied to the events 

should specify the same order. Otherwise, it introduces inconsistency.  

3.4 Composition of MSCs 

MSCs can be composed together to specify the behavior of large systems. The MSC 

language defines composition operators that specify the behavior of MSCs when they are 

put together. The three primary methods of combining MCSs are vertical composition, 

horizontal composition, and alternative composition. 
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3.4.1 Vertical Composition 

The vertical composition of two MSCs means placing one MSC at the bottom of 

another one and then connecting the instances they have in common thus obtaining a new 

MSC.  

In the new MSC, the ordering of events should be interpreted as follows: 

• For the common instances, events from an instance of the bottom MSC should 

happen after those from the same instance of the top MSC.  

• For the different instances, no new restriction is imposed by this composition. 

The ordering of the events is the same as if these instances were already in the 

same MSC. 

 Therefore, vertical composition does not necessarily mean that all events in the 

bottom MSC must happen after all events in the top MSC. Only events of the common 

instances are affected by the vertical composition. 

3.4.2 Horizontal Composition 

The horizontal composition of two MSCs means placing them next to each other. The 

behavior of the instances in common is the interleaving of the behaviors of these 

instances in the separate MSCs. The events of a common instance are ordered in such a 

way that the order of events imposed by the MSC before composition is preserved. If two 

MSCs have no common instance, their vertical composition is the same as horizontal 

composition. 
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3.4.3 Alternative Composition 

The alternative composition of two or more MSCs means a choice has to be made 

between or among them. The chosen MSC governs the further behavior of the system 

under study. 

In complex systems there are many points of deviating behavior. It is important to be 

able to indicate at which point alternatives occur. Alternatives are specified by different 

MSCs. The MSC language offers the alternative composition operator to cover such 

needs. An important aspect of the alternative mechanism in MSC is that the moment of 

choice between different scenarios is postponed until that choice can no longer be 

avoided. 

3.5 MSC Reference 

In an MSC one can refer to another MSC by means of an MSC reference. An MSC 

reference refers to another MSC by the name of the referred MSC. Therefore, the name 

of an MSC must be unique. It is not allowed that two or more MSCs bear the same name.  

Graphically an MSC reference is represented by a rounded frame with the referenced 

MSC name placed in it. The MSC reference symbol is drawn on top of a number of 

instances. To ensure a clearly defined event order for those common instances, there are 

two requirements that must be satisfied: 

• If an instance of the enclosing MSC is also present in the MSC reference, then 

the MSC reference symbol must overlap this instance. An instance is present 

in an MSC reference if at least one of the MSCs that are referenced in the 

expression has an instance with that name. 
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• If two MSC reference expressions in the same enclosing MSC share an 

instance then this instance must be drawn in the enclosing MSC. 

Intuitively, an MSC reference can be replaced by the referenced MSC. This process 

can be done recursively until we have a MSC without any MSC reference in it. The 

ordering of events in this MSC is the same as that of the MSC with MSC references. 

3.6 High-level MSC 

The High-level MSC (HMSC) provides another way to combine Message Sequence 

Charts. The graphical representation of a high-level MSC is a directed graph, where the 

nodes are formed by MSC references or another high-level MSC and arrows imply an 

order on the nodes. An example of HMSC is shown in Figure 7. 

Figure 7 An example of HMSC 

msc setup 

when disconnected 

connected 

failure connection 
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MSC references and conditions are valid constructs in an HMSC. MSC references are 

the primary constructs of an HMSC since the goal of creating HMSC is to organize a 

number of MSCs. Conditions are used to restrict the behavior of the HMSC. An HMSC is 

also a MSC in that an HMSC also describes the behavior of some system. Thus, it can be 

referenced in another HMSC. There are other elements defined for HMSC. Every HMSC 

must start with a start node, which is graphically represented by an upside-down triangle 

( ). Every other node must be reaching from the start node. Each node, except for the 

end node ( ), must have a successor. A node can also be a connection node, which is 

graphically represented by a circle ( ). The meaning of connection nodes is void. They 

are used to distinguish crossing lines from splitting lines. 

It is easy to explain the meaning of an HMSC. If two MSC reference nodes are 

connected via exactly one arrow, they are vertically composed. The arrow always points 

to the bottom MSC. If an MSC reference has more than one outgoing arrow, then all the 

successors of that node are alternatives for the vertical composition with that MSC 

reference node. Horizontal composition can be specified by a parallel frame. A parallel 

frame can contain more than one state node. Each state node indicates an operand for the 

horizontal composition operator. 

The HMSC also has textual representations. Figure 8 shows the textual representation 

of the example shown in Figure 7. We can see that the keyword seq  denotes the vertical 

composition, while alt means alternative compositions. Each node is defined as a label in 

the textual representation. 
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3.7 Data in MSC 

The MSC language also has the ability to declare and operate on data. Data is 

incorporated into the MSC language by allowing a number of primitives to define 

operations on data, such as local actions, messages, and MSC references. There are two 

types of data: static and dynamic. The value of static data can only be assigned once, but 

can be read many times. The dynamic data consists of MSC variables that can be 

assigned and reassigned values. 

Data statements can be defined on local actions. These statements include the 

declaring of variables, assigning values to the declared variables, and undeclaring 

variables. Note that a variable must be declared before it can be used. A variable can be 

undeclared, meaning the termination of its existence. After a variable is undeclared, any 

operation on that variable is illegal.  Local actions are used to dynamically declare and 

undeclared a variable.  

Figure 8 Textual representation of the HMSC 

msc setup; 
expr L1; 
  L1: condition when disconnected seq (L2); 
  L2: connect seq (L3 alt L4); 
  L3: (failure); seq (L1); 
  L4: (connection); seq (L5); 
  L5: condition connected seq (L6); 
  L6: end; 
endmsc; 
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Messages can also be associated with data as their parameters. The result of a message 

exchange is that the instance receiving the message receives the data associated with the 

message by assigning the value to a variable defined on the instance. 

An MSC can have a formal parameter list defined on it. When it is referenced in 

another MSC, the corresponding MSC reference must define a list of actual parameters. 

The parameters defined for an MSC are always static. Their values cannot be modified by 

data statements inside this MSC. Data expressions are allowed to reference the value of a 

parameter. Like function calls in C, the formal parameters are substituted by the actual 

parameters of an MSC reference. The values of actual parameters are defined in the MSC 

that encloses the MSC reference. 

The scope of a variable can be global, local MSC, or local instance. Global variables 

are accessible to any MSC and any instance in an MSC. A variable defined as local MSC 

is only accessible to instances within the MSC. No other MSC can see the value of the 

variable. If a variable is defined as local instance, only that instance can access the 

variable. The smallest scope of a variable is an instance. A variable can also be shared by 

several instances.  

3.8 Summary 

In this chapter, the MSC formalism was introduced, which is closely related to our 

stochastic extension version of MSC - SMSC. SMSC will be defined in the next chapter. 

A Message Sequence Chart describes the interaction between a number of instances 

through message passing. An instance can also perform internal actions. Messages and 

actions are further decomposed as events. An MSC specifies a partial order of the 
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execution of these events. MSCs can be composed to form larger MSCs through 

composition operations.  

All MSCs defined for a system are usually collected together as an MSC document. 

The name of MSCs must be unique in the MSC document. So is the global variable 

name. 
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CHAPTER FOUR 

4. STOCHASTIC MSC  

In this chapter, we provide a way to extend the MSC formalism to include stochastic 

information. The extended MSC is called Stochastic MSC or SMSC. SMSC has more 

expressive power than MSC, and enables the performance analysis to be performed on 

the system, which is modeled as an SMSC.  

4.1 Why Stochastic MSC? 

The MSC formalism defined in the ITU (International Telecommunication Union) 

standard [3] is commonly used to specify the behavior of systems by constructing a series 

of MSCs. Each MSC is a description of a part of system behavior. The system-wide 

behavior description is achieved by combining these MSCs using the composition 

operators. But what kind of information about the system can we get given that the 

system is modeled as MSCs? 

First, since an MSC describes a number of instances exchanging messages or 

performing some actions, we can know how many objects the system is made up of, what 

messages are exchanged, between which objects they are exchanged, and what actions 

are performed and by whom. Instances in an MSC actually represent objects of a real 

system. 

Second, certain properties of system behavior can be specified. More precisely, the 

possible orderings in which actions and messages can occur are defined. An MSC not 

only contains entities for specifying system objects and their actions, but also imposes a 

partial order for the events that the system can engage in. We say that only a partial order 
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is implied because there can be events without a defined execution order. These events 

can happen in any order without violating any rules defined in the MSC formalism. A 

total order requires that all events can be ordered, directly or indirectly. This is not the 

case for MSCs. In a summary, MSCs tell us what the system is, what the system does, 

and how the system should do it. That is why MSC is a Specification Description 

Language (SDL). 

The event ordering specified by MSCs is only one aspect of system behavior. Other 

properties regarding how well the system behaves, i.e. the performance of the system, 

cannot be ascertained from plain MSCs. This limitation is mainly due to the assumption 

made in the MSC formalism that all events are instantaneous. Under this assumption, 

MSC events cannot capture the characteristics of real system activities that do require 

time (or that have some relationship with time). 

As a scenario description language, MSC is a good candidate for performance 

modeling since a performance model also describes the system behavior. In the paradigm 

of performance modeling, stochastic process theory is dominant. A system is first 

modeled as a stochastic process. The behavior of the system is assumed to be the same as 

the behavior of the stochastic process. A well-developed theory for stochastic processes 

can be used to analyze the system model and evaluate the system performance. 

Therefore, we relaxed the assumption in MSC formalism that all events are instantaneous 

and enable events to be associated with random time. The random time denotes the time 

required to complete the event. The new language is a stochastic extension to MSC. 

Thus, we call it Stochastic MSC (SMSC).  
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In the development of formal methods, there are many examples of extending a 

formalism to include stochastic time information. Petri Net was first defined without time 

information. Transitions in a PN are also instantaneous. Later, the PN formalism was 

extended to allow transitions to have time information. The new PN formalism was called 

Stochastic Petri Net (SPN). SPN models enabled the performance of the modeled system 

to be analyzed. SPN was further extended by allowing timed transitions to be mixed with 

instantaneous transitions. This extension to SPN is named Generalized SPN (GSPN). 

GSPN is expressively more powerful than SPN. But GSPN also has an extension: 

Stochastic Activity Network (SAN). SAN defines new constructs to build a model and 

further enhanced the expressive power. Another example would be Process Algebras 

(PA) and the corresponding Stochastic Process Algebras (SPA). PAs is used for 

analyzing system properties other than performance, while SPA is suitable for 

performance modeling. In fact, the MSC language has a formal notation based on PA[2]. 

Communicating Sequential Process (CSP) and CCS are two typical formalisms from the 

PA domain. PEPA (Performance Evaluation Process Algebra) is defined based on CCS. 

All PEPA activities must have exponentially distributed random time. As its name 

suggests, PEPA is defined for performance analysis. 

4.2 Definition of SMSC 

We define SMSC based on the language of MSC: 

• A Stochastic Message Sequence Chart is a Message Sequence Chart in 

which all events are enhanced to behave as activities by associating 
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stochastic time information with them. The stochastic time associated with 

an activity defines the time needed to complete the activity.2 

“Event” is usually used to describe the occurrence of something. When an event is 

associated with time, we call it an “activity.” Activity means something that takes time to 

do. 

The type of distribution of the stochastic time associated with activities can be 

deterministic, exponential, beta, etc. There is no restriction on what type of distribution a 

stochastic time can take. However, to simplify the description, we use the exponential 

distribution as the default distribution in the rest of this chapter. Figure 9 shows an 

example of an SMSC. 

In the MSC language, there are two types of events: the events in message passing and 

the events for local actions. Hence, there are also two types of activities: message 

activities and local action activities or simply local activities. 
                                                 
2 An immediate or instantaneous event is an activity associated with zero time. 

Figure 9 An SMSC example 

 smsc example1 

i1 i2 i3 

m0(r1, r2) 

m1(r3, r4)

m2(r5, r6) 

m3(r7, r8) 

a(r0) 
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A message in the SMSC language consists of two activities: the activity of sending the 

message and the activity of receiving it. Graphically, a message is represented by an 

arrow, which starts from the instance of sending the message and ends at the instance that 

receives the same message. A name is associated with a message and is followed by two 

parameters. The first parameter specifies the time for the sending activity and the second 

defines the time for the receiving activity. For example, message m1 in Figure 9 has two 

parameters: r3 and r4.  r3 specifies the rate of an exponentially distributed random 

variable that gives the amount of time needed to send the message. r4 is for assigning the 

time to the activity receiving the message. Both r3 and r4 may be global variables so that 

their values can be easily modified later. The textural representation of messages is 

defined by adding a new keyword withrate to the MSC language as shown in Figure 10. 

Note that a new keyword smsc is defined to distinguish SMSC from MSC and is used in 

both the graphical and textural representations. 

Local activities are also assigned random time in the same way as messages. But only 

one parameter is required.  

Figure 10 Textual representation of SMSC 

smsc example1; 
i1: out m0 to env withrate r1; 
i1: out m1 to i2 withrate r3; 
i1: action a withrate r0;  
i1: in m3 from i2 withrate r8; 
i2: in m1 from i1 withrate r4; 
i2: out m2 to i3 withrate r5; 
i2: out m3 to i1 withrate r7; 
i3: in m2 from i2 withrate r6; 
endmsc; 
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4.3 Comparing MSC with SMSC 

The SMSC language is different from the MSC in that SMSC activities are not 

instantaneous. Therefore, SMSC provides more information about a system than MSC. 

However, one may ask the question “Can SMSC provide the information regarding the 

modeled system that MSC provides?” or “Is the partial order of events imposed by MSCs 

still applicable to SMSC activities?” After comparing these two formalisms, we 

amazingly found that the answer is YES. 

4.3.1 Constructs 

All constructs (instances, messages, local actions, conditions, etc.) defined on MSC 

can be used for SMSC. The graphical representation of a SMSC looks the same as an 

MSC except for the additional parameters mandatory to activities in the SMSC. 

As for textual representations, all the keywords defined in MSC are still defined on 

SMSC. Although new keywords are defined for SMSC, the method of describing SMSC 

is the same as that of MSC. 

Most of the new keywords deal with the specification of random times for activities 

except for the keyword smsc, which denotes the MSC specified is actually an SMSC. For 

example, if an activity is associated with exponentially distributed random time, the 

keyword withrate is used in the description and is followed by a parameter that specifies 

the rate of the exponential distribution. We only need to provide one such parameter 

because the exponential distribution requires only one parameter. Other distributions may 

be specified by defining the corresponding keywords and providing the required 

parameters. In this thesis, we focus on the exponential distribution only. 
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SMSC and MSC have the same composition operators. SMSCs can be combined 

vertically, horizontally, or alternatively. The semantics of these composition methods in 

SMSC are identical to that of MSC. 

High-level SMSC (HMSC) is defined in the same way as HMSC. HSMSC organizes 

SMSC references using the same nodes defined on HMSC. The interpretation of the 

organization is done in a similar way as what is defined for HMSC.  

4.3.2 Ordering Rules 

SMSC has different ordering rules. Under the new ordering rules, a SMSC imposes a 

partial order on its activities. This partial order is the same as that imposed by an MSC. 

The two assumptions made in MSC are for precisely ordering events. The assumption 

of instantaneous events is obvious. If events can last for a period of time, it would be quit 

possible that another events starts before an already stated event finishes. In this case, 

what is the order of these two events? The assumption that no two events can be executed 

at the same time means any two events have a specific order. An event either happens 

before or after the other one. Hence, the execution of events forms a trace that describes 

the system behavior. 

In SMSC, we relax the first assumption. As a result, the second assumption can no 

longer be held and is also relaxed.  

We have mentioned that activities cannot be ordered. But if we decompose an activity 

into two events, one for the starting of the activity and the other for the ending of it, we 

will find a new way to order activities. The order of activities can be defined as either the 
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order of starting events or that of the ending events. By this definition, the order of 

activities may not be unique for an execution of these activities.   

Since instances are independent in SMSC, activities are executed concurrently. Even if 

the starting times are different, two activities may finish at the same time because the 

execution time is a random variable. Therefore, it is possible that two events happen at 

the same time. If two events happen at the same time, they are treated as if they can be in 

any order.  

We will show later that these ambiguities in ordering activity events will not prevent 

us from defining the partial order the same as that defined in MSC. 

There are five ordering rules regarding the ordering of activities and activity events: 

1) The event of starting an activity must happen before the event of finishing the 

same activity.  

2) Activities attached to an instance are executed sequentially in the same 

order as they are given on the vertical axis from top to bottom. An activity 

can only start after the previous one finished. 

3) The activity of sending a message must finish before the activity of receiving 

the same message can start. 

4) Activities in a coregion can happen in any order, but their execution must 

abide by rule 1. 

5) If general orderings are used, they are treated as messages in terms of 

ordering these activities. In other words, the activity pointed to by a general 
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ordering symbol can only start after the activity from which the general 

ordering originates has finished. 

The first rule describes how to order the two events (start and finish) in an activity. 

Obviously, the starting event should always happen before the ending event. The second 

rule covers the ordering of activity events associated with the same instance. If each 

activity is treated as two consecutive events, the ordering of these events is the same as 

that defined for MSC.  

The third rule is for ordering events in a message. The order of activities of different 

instances can be derived from this rule. A message includes two activities, and hence four 

events: the event of starting to send the message, the event of starting to receive the 

message, the event of finishing the sending of the message, and the event of finishing the 

receiving of the message. The precise restriction for their order is that the event of 

starting to send a message must happen before the event of starting to receive the 

message, and the event of finishing the receiving of the message must happen after the 

event of finishing the sending of the message. In other words, a message must be sent 

before it can be received, and the sending of the message must have finished before the 

receiving of it can finish. However, we define a stricter rule: the sending of a message 

must have finished before the receiving of it can start. This rule is to prevent a message 

from being completely received before the end of sending the message has not occurred. 

The fourth and fifth rules are defined for ordering events in a coregion or for being 

controlled by general orderings. The interpretation is easy to understand. 

Under these ordering rules, whether using the order of starting events or the order of 

ending events as the order of activities, this order imposed by an SMSC is sure to comply 
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with the partial order imposed by the corresponding MSC if the time information is 

removed from the SMSC. Therefore, an SMSC imposes the same partial order on its 

activities as an MSC does on its events. This result is mainly due to the strict ordering 

rules defined for messages and general orderings in SMSC. 

Although we may have two different orderings for activities’ starting events and 

ending events, both of the orderings will comply with the partial order imposed by the 

corresponding MSC. Any two activities that can be orders differently must correspond to 

the events that have undefined order in the corresponding MSC.  

  4.3.3 Traces vs. Processes 

An MSC specifies a set of valid traces that the system can take. If we define the 

sequence of activities as a trace, an SMSC specifies a set of valid traces the same as an 

MSC. In addition, an SMSC also specifies a stochastic process. 

The main difference between the MSC and SMSC languages is that SMSC defines a 

stochastic process while MSC does not.  SMSC can describe the system behavior more 

precisely than MSC by providing users with more information about the system. The 

stochastic process enables users to do performance analysis about the system. This is the 

reason that we extend MSC to SMSC.  

4.4 The Underlying Stochastic Process 

To show that an SMSC defines a stochastic process, we use an indirect way. It is 

known that a Stochastic Activity Network defines a stochastic process [33]. It can be 

shown that a SMSC is equivalent to a SAN, hence a SMSC also defines a stochastic 

process. 
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4.4.1 SAN 

SAN is an extension to GSPN. In addition to the common constructs defined for 

GSPN: places, directed arcs, and transitions. SAN defines two new elements: input gates, 

and output gates. The transitions are called activities in SAN. 

Input gates are used to control the enabling of activities. Associated with each input 

gate are a predicate and a function. An activity can only be enabled if all its input gate 

predicates evaluate “true.” The input gate function defines the marking change if the 

activity to which it connects fires. An input gate must be connected to all places whose 

markings affect or are affected by the firing of the activity. The graphical symbol for an 

input gate is a triangle:> . 

An output gate contains a function, which defines the marking change if the activity to 

which it connects fires. The symbol for the output gate is also a triangle: > . To 

distinguish an input gate from an output gate, the arc that starts at one vertex of the input 

gate triangle always ends at an activity. For an output gate, the arc will end at a place. For 

example, the triangle in the left part of Figure 11. is an input gate, and the right one is an 

output gate. 

Gates enable the modeler to manipulate markings and control the activities in a more 

flexible way. Hence SANs is expressively more power than GSPNs. 

Figure 11 Gates in a SAN 
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4.4.2 SMSC to SAN 

A SMSC can be translated into a SAN. They specify the same underlying stochastic 

process. 

First, let us look at an independent instance with no message exchange. This instance 

just performs a series of local activities. Such an instance specifies a sequential process if 

no coregion is defined along the instance axis. The translation from a trivial instance to a 

SAN is trivial as well. Local activities are translated as SAN activities. Between any two 

consecutive activities a place is added. Also, we add one place before the first activity 

and another one after the last activity. This method of translation is illustrated in Figure 

12. 

The SMSC with one instance and three local activities is translated to a SAN with four 

places and three activities. Each place can at most have one token. In fact, only one of 

Figure 12 Translating an instance to a SAN 
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these places will contain a token at any time. The place that has a token denotes the 

current state of the SAN or the state of the corresponding instance.  

Next, a more complex example is discussed. In this example, there are two instances 

between them there are two messages. Each instance also performs a local activity. This 

example is shown in Figure 13. 

If we look at the instances individually, each instance also specifies a sequential 

process. However, the condition that an activity can be executed in one process depends 

on the state of the other one. Message exchanges impose new restrictions on the enabling 

of activities. 

According to the third ordering rule in section 4.3.2, the activity of receiving a 

message can only be executed after the activity of sending the same message has finished 

its execution. This means the activity of receiving a message can only be enabled after 

Figure 13 Translation of an SMSC to a SAN 
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the execution of the instance that sends the message has past a point, which denotes the 

end of sending the message. In the SAN model in Figure 13, activity RM1 represents the 

activity of receiving message m1, and SM1 denotes the activity of sending message m1. 

RM1 can only be enabled if there is a token in P21, P22 or P23. A token in either place 

means the sending of the message has finished. This restriction is modeled by the 

addition of an input gate. Note that the place P23 is excluded because there is activity 

before P23 that receives a message from the instance that executes RM1. Before finishing 

RM1, the instance cannot start SM2, and hence activity RM2 cannot be executed and it is 

impossible to have a token in P23. The predicate of the input gate should evaluate “true” 

if there is a token in either P21 or P22. Similarly, the enabling of RM2 is also controlled 

by an input gate that depends on the markings of P12 and P13. Of course, the enabling of 

an activity for receiving message also depends on the state of the instance that performs 

the receiving activity. 

A general ordering between two activities from different instances imposes the same 

restrictions on the enabling of the later activity as a message does. The general orderings 

defined on activities of the same instance have no special meanings except for activities 

in a coregion. If a coregion is specified, activities in the coregion can run concurrently. 

Before all the activities in a coregion have finished execution, the activity which follows 

the coregion cannot be executed. If a general ordering is specified between two activities 

in a coregion, these two activities are executed sequentially as specified by the general 

ordering. 
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Any SMSC can be translated to an equivalent SAN. The execution order of activities 

imposed by an SMSC is preserved in its SAN equivalence. Therefore, a SMSC defines a 

stochastic process equivalent to the one defined by its corresponding SAN translation. 

4.4.3 The Difference Between SMSC and SAN 

Although SMSC models can be translated into SAN models, SMSC language is 

different from SAN in several aspects. 

First, the purposed of modeling a system in SAN is to analyze the system 

performance. While a SMSC model not only enables performance analysis, but also 

describes the system behavior in terms of a specification description language. Therefore, 

SAN only cares about the internal dynamic behavior of the system and models the system 

as abstract as possible. A SAN model is usually complicated, and one is hard to capture 

the profile system to be modeled. SMSC can provide a clear overview about the modeled 

system. 

Second, SAN and SMSC use different components. The basic components in SAN are 

activities, places, and input/output gates. But SMSC uses messages, local activities, and 

instances as its basic components. The concept of message is unique to SMSC in that 

messages imply the execution order of activities between different instances.  

Finally, SMSC imposes a partial order on the execution of activities by carefully 

defining the ordering rules. There is no ordering rule defined on SAN actvitites. Although 

we can use SAN to mimic the behavior specified by the SMSC as we did in the previous 

examples, addition input gates have to be included in the SAN model. Since we need one 

extra input gate for any message and the input gate must connect to all the subsequent 
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places, too many input gates could be introduced for large models and the resulting SAN 

model would be a very complicated one comparing with the SMSC model. 

Therefore, SMSC can be used to specify a system more clearly and concisely than 

SAN. SMSC also enables the performance analysis to be conduced on the system model 

just as a SAN model does.  

4.5 Summary 

In this chapter, we defined a new formalism Stochastic Message Sequence Chart based 

on the MSC language. SMSC is an extension to MSC. SMSC can be used to describe the 

system behavior in the same way as MSC does. However, SMSC includes stochastic time 

information and is capable of performance analysis, which cannot be done with just 

MSC.  

The following chapter introduces a way to analyze SMSC models. 
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CHAPTER FIVE 

5. MAPPING SMSC TO MÖBIUS 

Now that we have defined the SMSC language and it is capable of performance 

modeling, we need to provide a tool to analyze the SMSC models. Instead of creating a 

new tool for solving SMSC models, we decide to integrate the SMSC formalism into the 

Möbius framework and use the Möbius tool to solve SMSC models. Since the Möbius 

tool supports multi-formalism modeling, building SMSC into the Möbius framework not 

only provides a tool for solving SMSC models, but also enables SMSC model to interact 

with models from other formalisms. In this chapter, we study the theoretical possibility of 

adding SMSC into the Möbius, and also give suggestions about how and what is needed 

for implementation. 

5.1 Motivations and Problem Definition 

To analyze an SMSC model, we can use one of the following three ways: 

1) Develop a tool specifically for solving SMSC models. 

2) Develop a parser to translate SMSC to SAN and use UltraSAN to solve the 

corresponding SAN model. 

3) Integrate SMSC into the Möbius framework and use the Möbius tool to 

analyze the SMSC model. 

We reject the first two methods and decide to adopt the third method due to the 

following reasons. 
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First, the Möbius tool provides discrete event simulators and analytical solvers that are 

capable of solving any models within the Möbius framework. Once a new formalism is 

integrated in the framework, the existing solvers are ready to solve models expressed in 

the new formalism. It is not necessary to develop solvers for the new formalism. All we 

need to do is to express our models using the Möbius entities.  

Second, SAN has been integrated into the Möbius framework. In fact, the Möbius tool 

borrowed lots of ideas from the UltraSAN tool, such as model replication, performance 

variable specification, study editor, etc. The solvers available in the UltraSAN tool are 

also available in the Möbius tool. We do not need to translate SMSC to SAN if we can 

use Möbius entities to describe the SMSC models.  

Finally, the most important advantage that we build SMSC formalism into the Möbius 

framework is that the SMSC formalism can be used for multi-formalism modeling. 

SMSC models can be easily joined with models from other formalisms (available within 

the Möbius tool) and form large heterogeneous models. Integrating the SMSC formalism 

into the Möbius framework enables the SMSC formalism to use the full features of the 

Möbius toolkit.  

The Möbius framework defines three basic entities: state variables, action, and action 

groups. These basic entities are the building blocks of any model. In addition, an abstract 

functional interface (AFI) is also defined. The AFI can be used by other models or 

solvers to access the model information or to control the execution of the model. These 

basic entities and the interface has been implement as base C++ classes in the Möbius 

tool.  
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The Möbius framework requires that any formalism in the Möbius must implement the 

AFI and describes its model based on these basic entities. To build the SMSC formalism 

into the Möbius tool would require that SMSCs be decomposed into a set of state 

variables and a set of actions. Groups are not used when we describe the SMSC models. 

The state change and the ordering of action firings are determined by the structure of the 

SMSC model.  

Therefore, before we can use the Möbius tool to solve a SMSC, the following three 

problems must be solved: 

1) How to define SMSC states and the corresponding state variables. 

2) How to define SMSC actions. 

3) How to organize state variables and actions to represent the same model structure 

as defined in the SMSC. 

The following three sections will answer these questions. 

5.2 Identifying State Variables in SMSCs  

To define the state of an SMSC, we must examine the components to see that the 

SMSC contains what necessary information for specifying the state of the system. An 

SMSC contains a number of independent instances. The instances send messages to each 

other and/or perform some local activities. SMSC may contain conditions that govern the 

execution of some activities. Local activities can also perform operations on local or 

global data. These constructs are used to model a system and contain the information that 

describes the system state. 
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5.2.1 Instance state 

In section 4.4.2 we have shown that an SMSC can be translated into a SAN. The given 

example also showed that an instance with three activities corresponds to a SAN with 

four places. Places in the SAN model represent the system states. This implies that 

instances do have states. 

The state of an instance should reflect which activity has been executed. Since an 

instance specifies a sequential execution order of its activities, it is important to keep the 

information about the execution of activities so as to ensure the sequential order. Initially, 

the instance is in a state that no activity has been executed. After executing the first 

activity, the state of the instance evolves to a new state that reflects the fact that the first 

activity has been executed. This process goes on until the last state has been reached, 

which shows all activities have finished. 

The number of states that an instance can have depends on the number of activities 

associated with the instance. First, if an instance has no coregion defined on it, the 

number of states is given by the following equation: 

                        1+= eActivitesNumInstanceStatesNumInstanc                           (5.1) 

where NumInstanceStates is the number of states, and NumInstacneActivites denotes the 

number of activities on the instance. 

We have two methods of representing the instance states. One method is to define a 

Boolean variable for each state. This method comes from the SAN equivalence of a 

SMSC. We have said in section 4.4.2 that each place in the SAN model can have at most 

one token, so a Boolean variable can be used to represent the state. But we reject this 
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method because the number of variables would be too many if an instance has a large 

number of activities attached. Actually we can use only one variable to hold the state 

information. 

An instance that has no coregion specifies a strict sequential process. Activities can 

only be executed in the order they are given from top to bottom along the vertical 

instance axis. The execution of a later activity implies that all previous activities have 

finished. Therefore we can represent the instance state using an integer variable that holds 

the value of how many activities have been executed. Initially, the value is 0, meaning no 

activity is executed. The value increments by 1 after each activity is executed. From the 

value of this variable, we can immediately know which activity has finished and which 

activity is the next one to execute. It gives us no less information than a large number of 

Boolean variables. Furthermore, it uses less memory and is easy to manage. As long as 

the number of activities is within the rang of integer values (this is always the case), the 

state of an instance can be kept simply by using an integer variable. 

Second, if a coregion exists in an instance, equation (5.1) no longer holds. Activities in 

a coregion can be executed in any order. A coregion brings additional states to the 

instance. To represent the state of a coregion, we have to associate each activity in the 

coregion with a Boolean variable. The “true” value denotes the finish of the execution of 

the activity, while the “false” value denotes the activity has not been started. The number 

of additional states brought by a coregion is at most  

snActivitieNumCoregio2                     (5.2). 
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If we exclude the coregion activities from the instance activities, equation 5.1 can be 

used to calculate the number of instance states. The total number of the states is the sum 

of this number and the number of states contributed by the coregion. Finally, if more than 

one coregion appears in an instance. Each coregion contributes at most the number of 

additional states given by (5.2). 

5.2.2 Conditions 

As defined in the MSC language, conditions represent system state. Therefore, 

conditions are good candidates for state variables. Depending on how many states a 

condition represents, the type of the state variable for a condition can be either Boolean 

or integer. 

5.2.3 Data 

SMSC can also perform operations on data just as MSC does. Data defined on SMSC 

are also state variables. The change of the data value represents the state change of the 

model. The type of the state variable for a data member is the same as the type of the data 

member. 

5.2.4 Special Entities 

Some special entities are defined in the MSC language. They are capable of sending or 

receiving messages. Theses entities include the environment, lost and found. Messages 

can be sent to or received from the environment. There is no order defined on 

environment. Therefore, we cannot consider the environment as an instance. Messages 

that are sent but not received by an instance are called incomplete messages. Incomplete 
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messages are considered to be directed to an entity: lost. Similarly, a found message is 

the one that no instance sends and is considered to originate from an entity: found. 

To represent these special entities in the Möbius framework, we define one state 

variable for each. The state of the environment may contain the number of messages 

sent and received. So we can define a structure that contains two integers which represent 

the type of state variable for the entity environment. The state of lost can be used to 

count how many messages are lost. Thus, an integer is used to represent its state. The 

state of found is actually fixed. It must act as if the sending of the message has finished 

and enable the activity of receiving the found message. 

5.2.5 Shareable vs. Non-shareable State Variables 

The Möbius framework uses the concept of state sharing to join models from the same 

or different formalisms. If a state variable is shared with other models, the value of the 

state variable can be changed by other models too. The change of value represents the 

state change. Therefore, the behavior of the model is affected by the behavior of other 

models.  

Not all the state variables we defined are shareable. For example, if the state variable 

defined for an instance is shared with other models, the increase of the state variable’s 

value by other models may cause some actions to be considered finished even though 

they have not been executed. This is referred as state jump. Whether the state jumps 

ahead or back, the sequential execution order will be disturbed. Therefore, state variables 

from instances are not shareable. 
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Conditions and data will not affect the sequential order and hence these state variables 

are shareable. There is no need to share the special state variables for environment, lost 

and found because they are special state variables used only for SMSC.  

5.3 Identifying Actions in SMSCs 

By definition in the Möbius framework, actions are the only entities that can change 

the system state by changing the values of state variables. Thus any components in 

SMSC that can change the value of state variables will give us actions. These 

components include local activities, message activities, and setting conditions. Although 

data operations change the value of state variables that represent the data, data operations 

are not considered as actions because they are not components of SMSC. Data operations 

are performed by local activities or message activities. 

5.3.1 Local Activities 

Local activities can perform data operations and the completion of an activity must 

also increment the state variable that represents the instance to which the activity is 

attached. Thus, local activities are Möbius actions. If data operations are defined on the 

local activity, the execution of this local activity must also change the state variable 

representing the data. The execution time distribution for the action coming from a local 

activity takes the same distribution function as that of the local activity.  

5.3.2 Message Activities 

A message consists of two activities. The sending activity is performed by the instance 

that sends the message, and the receiving activity is performed by the one that receives 

the same message. Data operations can also be defined for message exchange. When the 
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activity of sending the message completes, it must adjust the state variable to reflect the 

fact that the message has been sent. Likewise, the completion of receiving a message 

should change the state of the instance that receives the message. Therefore, a message 

can be represented by two Möbius actions. 

5.3.3 Setting Conditions 

Conditions have two forms: setting conditions and guarding conditions. Setting 

conditions set the system to some particular state. Guarding conditions control the system 

behavior by restricting the execution of certain activities. 

The setting conditions are Möbius actions since they change the system state. 

The following figure (Figure 14) shows an example of an SMSC and its corresponding 

state variables and actions. Action rm1 corresponds to the activity of sending the message 

m1, and sm1 corresponds to the receiving of message m1. Action la is for the local 

Figure 14 State variables and actions from an SMSC 
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activity a. The same naming rules apply to other action names. The state variables s1, s2 

and s3 represent the state of instances i1, i2, and i3, respectively. 

In summary, the SMSC constructs and their corresponding Möbius entities are shown 

in Table 7. 

Table 7 Mapping SMSC constructs to Möbius entities 

SMSC Constructs Möbius Entities 

Instances State Variables 

Messages Actions 

Local Activities Actions 

Conditions State Variables 

Setting Conditions Actions 

Data State Variables 

Special Components (env, lost, and found) State Variables 

General Orderings Taken care of by Actions 

5.4 Expressing SMSC Models in Möbius Framework 

To express SMSC in Möbius, we must define state variables and actions. State 

variables represent the model state. Actions can change the state variables’ value and 

hence the state of the model. Since SMSC imposes a partial order on the execution of 

activities, the firing of actions must comply with this partial order. Therefore, these state 

variables and actions must be organized in a way that the partial order is ensured. 

5.4.1 Deriving SMSC State Variable Classes 

Based on the Möbius BaseStateVariableClass (see Appendix B), we can derive state 

variables classes for SMSC models. These state variable classes include 

SMSCInstanceClass, SMSCSharabelStateVariableClass.  
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SMSCInstanceClass must contain all the information necessary to describe an instance 

including its state, its coregion, activities associated with it, and especially the order of 

the activities. The data members defined on the SMSCInstanceClass are shown in Table 

8. 

Table 8 Data members defined on SMSCInstanceClass 

 

In general, the data member Current reflects the current state of the instance by 

maintaining a value that equals to the number of activities that have been executed. The 

value of the data member Current increases by 1 after each activity finished execution. 

For example, a value 3 means the first three activities have finished execution. But if the 

last finished activity (suppose it is the number 6 activity) is in a coregion, this number 

does not necessarily mean that the first 6 activities have finished. The finish of an activity 

in a coregion is recorded in a separate array: CoregionState. One must further refer to 

the CoregionState array to find out whether the number 6 activity has finished. 

Data Members Descriptions 

int Current;  The number of activities that has been 
executed sequentially 

BOOL **CoregionState 
Point to an array of Boolean variables 
whose true value means the corresponding 
activity has finished; 

int NumCoregin; The number of coregions defined on this 
instance; 

struct {int start; int end} *coregion; 

Point to a series a coregion structures that 
defines the starting and ending of coregions 
by the sequence number of the activities 
staring from 0. 

ActivityClass *Activities A list of activities in the order as they are 
given in the SMSC.  
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Another important data member is Activities, which maintains a list of activities 

defined on the instance. The order of the activities, together with the value of Current, is 

used to determine which activity can be enabled and which activities have finished 

execution. 

As we have pointed out, instance state variables are not shareable. We need to define 

some sharable state variables so that SMSC models can be joined with other models. 

SMSCSharableStateVariableClass are used to define shareable state variables. Since their 

types could be integer, Boolean, or a structured type, it would be better to define them as 

template classes. A template class can take type as a parameter when it is instantiated. 

Therefore, Within the class definition, we define a pointer that points to the state 

variable’s value. This is important when sharing this state variable with others because 

these shared state variables can point to the same memory location that stores the current 

state variable’s value. A template class can be defined as: 

template <Class T> Class SMSCSharableStateVariableClass{ 

T *state; // point to the state value. 

} 

5.4.2 Deriving SMSC Activity Classes 

Activity class is derived form the Möbius BaseActionClass (see Appendix B). 

Although there are three different activities in SMSC: local activity, message activity, 

and the activity of setting conditions, we only need to define one activity class.  

Two important properties regarding an activity are under what condition it is enabled 

and what state change it causes after it is executed. The activity class must contain 
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information necessary to specify its enabling condition and its firing effect. For a local 

activity, it can only be enabled if the one that precedes it has finished. For message 

activities, the sending activity’s enabling condition is the same as a local activity. While 

the enabling of the receiving activity depends on not only the previous activity of the 

same instance but also the state of the sending activity of another instance. Only after 

those two activities have finished can the receiving activity be enabled. The setting 

condition activity has the same restriction as a local activity. Therefore it is not necessary 

to distinguish message activities from local activities or setting condition activities if we 

include enough information in the SMSCActivityClass. 

The SMSCActivityClass is defined with two new data members in addition to those 

defined on the BaseActionClass. Their meanings are described in Table 9. 

Table 9 Data members defined on SMSCActivityClass 

Data Members Descriptions 

SMSCActivityClass *previous; Point to a list of activities that must have 
been executed in order to enable this 
activity; 

SMSCInstanceClass *MyInstance; Point to the instance this activity is 
attached to. 

 

General orderings imposes same restriction on activities as messages. The effect of 

general orderings can be taken into account using the same idea for messages. 

The firing of an activity will change the instance state variable, may change a 

condition state variable if it is a setting condition activity, and may perform data 

operations and change data state variables. 
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5.4.3 Deriving SMSC Model Class 

The SMSCModelClass is derived from the Möbius BaseModelClass (see Appendix 

B). The SMSCModelClass is used to organize the state variables and activities for a 

SMSC model. In addition to what is defined in the BaseModelClass, the 

SMSCModelClass contains additional data members as shown in Table 10. 

Table 10 Data members defined on SMSCModelClass 

Data Members Descriptions 

SMSCInstantClass *SMSCInstances; All instances in a SMSC 

SMSCActivityClass * SMSCActvities; All activities in a SMSC 

SMSCModelClass **NextSMSCs;  SMSC Models following this model 

Short NumSMSCs; The number of SMSCs in the NextSMSC list; 

BOOL Enabled; The current SMSC is enabled if “true” 

 

The structural information of a SMSC is kept in the SMSCActivityClass and 

SMSCInstanceClass rather than the SMSCModelClass. The SMSCModelClass only acts 

as a container of state variables and activities. In addition, the SMSCModelCalss also 

provides methods of composing two or more SMSC models. 

One additional data member defined on the SMSCModelClass is the Boolean variable 

Enabled. Enabled is used as the guarding condition for all the activities in the SMSC. 

Activities in an SMSC can only be enabled when this variable is set to TRUE.  

5.4.4 Model Composition 

The default methods of combining two models by joining the shared state variable in 

the Möbius framework may not work when combining two SMSCs. The reason is that 

SMSCs impose a partial sequential order on the execution of activities. SMSCs can be 
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joined vertically, horizontally, or alternatively. This is beyond what can be expressed by 

the Möbius joining operations. But the Möbius joining operation is valid when joining 

SMSCs with other models through shareable state variables for the purpose of forming 

the Möbius composed models.  

The SMSC formalism defines its own model composition methods. We can use 

SMSCModelClass to specify these compositions. First, the vertical composition is 

achieved by setting NextSMSCs to point to the next SMSC and NumSMSC to 1. This 

setting means there is one SMSC that immediately follows the current SMSC, and after 

all activities of this SMSC have finished, the execution continues to the next SMSC that 

is specified by the pointer: NextMSCs. 

For alternative composition, there are two or more SMSCs following the current 

SMSC. The number of SMSCs that follow this SMSC is stored in the data member 

NumSMSCs. The variable NextMSCs is a pointer array of which each pointer points to a 

SMSC that follows the current SMSC. Probabilities may be assigned to each subsequent 

SMSC to determine which one should be executed after the execution of the current 

SMSC. 

Horizontal composition cannot be specified using this mechanism because it involves 

changing the common instance into a coregion. This requires significant changes to the 

structure of the current SMSC. If horizontal composition is specified, it must be resolved 

before using an SMSCModelClass variable to represent it. 
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5.5 Solving SMSC Models 

Once the SMSC models are described using the Classes derived from the Möbius base 

classes. It is relatively easy to analyze it. The Möbius built-in solvers can be used to solve 

SMSC models. 

If all activities are associated with exponentially distributed random time, the 

underlying process is a Markov process. The Möbius analytical solvers can be used to 

quickly solve the model. Before using any analytical solvers, the state space must be 

explicitly generated. This implies that the model has to have finite states and if so, then 

the Möbius tool provides the utility to generate the state space.  

The Möbius simulators can be used to solve any model regardless of the type of 

distribution associated with activities. If the underlying process is not Markov, then 

discrete event simulators are the only choice when solving the model for performance 

measures. Before solving the model, performance variables must be defined for 

measuring the desired system properties. 

5.6 Summary 

In this chapter, we provide a way to define actions and state variables for the SMSC 

models, and also give the requirement in deriving the corresponding C++ classes. Some 

model composition methods are discussed as to how thay can be easily implemented. 

SMSC is well suited for integration into the Möbius framework and provides a new 

atomic modeling formalism for Möbius users. 

The next chapter will provide an example to show how SMSC can be used with other 

formalisms to model a system. 
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CHAPTER SIX 

6. A NETWORK COMMUNICATION EXAMPLE 

In this chapter, we provide an example to illustrate that SMSC models can be joined 

with models from other formalisms, such as SANs, through equivalence sharing. SMSC 

formalism provides a new type of atomic models in the Möbius framework. The 

heterogeneous model can be solved using the Möbius solvers. 

6.1 A Communication System 

We consider a simple system with two computers connected through a cable. The 

processes running on one computer send files to those running on another computer. The 

communication protocol used by the data link layer is the stop and wait protocol[34]. 

The sending process first opens a file for transmission. The data in the file is then 

broken into small data blocks and each block corresponds to a frame. The frame is the 

smallest data block to transmit. Data blocks are then handed to a process that creates a 

frame and stores the frame into a sending buffer. Whenever there is a frame in the 

sending buffer, the sending process will try to send the frame over to the other computer 

using the stop and wait protocol. 

The receiving process is the inverse of the sending process. A received frame is kept in 

a receiving buffer. If the frame is correctly received, it will be handed up to a data block 

buffer. After all the data blocks have been received, they will be combined into a file. 

The sending and receiving processes are molded as SANs. The stop and wait protocol is 

modeled as an SMSC. 
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6.2 Model the Stop and Wait Protocol 

The stop and wait protocol is the simplest communication protocol that can coordinate 

the communication between two entities that run at different speeds and have limited 

buffer space. The sender sends out a data block and then waits for the receiver to 

acknowledge the receipt of the data. Before the sender gets the acknowledgement, it 

cannot start sending the next block of data. This is necessary to prevent a fast sender from 

flooding the slow receiver if the receiver has limited receiving buffers.  

If the stop and wait protocol is used on an unreliable channel, i.e., data in transmission 

may be damaged due to errors that occur in the channel, then the technique of 

retransmission must be adopted. The sender starts a timer after it transmits a data block. 

If the timer goes off before it receives the acknowledgement, the data is considered lost 

and the sender retransmits the same data block. Upon receiving a data block, the receiver 

first checks if the data is correct. If correct, then the receiver sends back a positive 

acknowledgement. Otherwise, a negative acknowledgement is sent back. Note that the 

receiver may receive duplicated data if the acknowledgement is lost. In our example 

system, we assume an unreliable channel is used. 

To model the stop and wait protocol, we need four SMSCs. Each of them describes a 

scenario for the behavior of this protocol. The four scenarios are shown using SMSCs in 

Figure 15. 
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The first SMSC shown in Figure 15 (a) represents the success of the data exchange. 

The data is correctly received and so is the acknowledgement. No data got lost in the 

channel. Figure 15 (b) describes the scenario where an error occurred during the 

transmission. In this case, a negative acknowledgement is sent back. The scenario shown 

in Figure 15 (c) happens if the data is completely lost in the channel. The receiver did not 

Figure 15 The 4 scenarios of the Stop and Wait protocol 

 smsc done; global int rbuf;

sender receiver

data(r1, r2)

pack(r3,r4)

rbuf++ 

 smsc dataerr;

sender receiver

data(r1, r2)

nack(r3,r4) 

 smsc datalost; 

sender receiver

data(r1, r2)

delay(r5) 

 smsc acklost;

sender receiver

data(r1, r2) 

delay(r5) 

(a) (b) 

(c) (d) 
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receive anything at all. So it can perform no action. The sender has to resend the data 

after a period of time specified by the delay activity. The delay activity is used to 

simulate a timer. Figure 15 (d) represents the scenario that an acknowledgement is lost. 

Since the sender did not receive the acknowledgement, it will resend the data after some 

time. 

Figure 16 provides an additional SMSC, GetFrame, in order to specify how the 

sender gets data from the sending buffer. This SMSC serves as the starter for the stop and 

wait protocol. The full behavior of this protocol can be described by combining these five 

SMSCs. Figure 17 shows the composition methods. The GetFrame SMSC describes the 

behavior of the sender when it fetching a data frame from the sending buffer. After a data 

frame is acquired, the execution proceeds into one of the alternative four scenarios. The 

SMSC done represents the success of data exchange. If done is chosen and has finished, 

the execution goes back to GetFrame. The SMSCs done and GetFrame form a loop. If 

Figure 16 The GetFrame SMSC 

 smsc getframe; global int sbuf, rbuf;

sender receiver 

getframe 
sbuf--; 

when sbuf>0 

when rbuf<max 
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done is not selected as the follower of GetFrame in this execution, the execution has to 

loop among the four scenarios indefinitely until the SMSC done is selected.   

6.3 Modeling the Data Sending and Receiving Processes 

The data sending and receiving processes are modeled as Stochastic Activity 

Networks. The SAN model for the sender is shown in Figure 18. 

Figure 17 The model of the Stop and Wait protocol  

Figure 18 The SAN of the sender 

GetFrame

done dataerr acklost datalost 

sbufBufNotFull

departsdata

CreateFrame

split sblks
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The data sending process or the sender works in this way. A token in the place sdata 

represents a large block of data, for example a file, is ready to transmit. The SAN activity 

depart fires, and the output gate split defines the number of tokens that are put into the 

place sblks, which represents the block buffer of the sender. The SAN activity 

CreateFrame can fire if at least one token exists in sblks and the predicate of the input 

gate BufNotFull evaluates to true. This predicate is true if the sending buffer is not full. 

Each time CreateFrame fires, a token is dropped into the place sbuf. Each token in sbuf 

represents a data frame that will be sent using the stop and wait protocol. subf represents 

the sending buffer. 

The SAN model for the data receiving process or the receiver is shown in Figure 19. 

The procedure of processing the received frames is the inverse of what is done by the 

sending process. Whenever there is a token in the place rbuf, the SAN activity 

DecodeFrame will fire and deposit a token in the place rblks. When the number of tokens 

accumulated reaches a certain value, the input gate that controls the enabling of the SAN 

activity combine may evaluate true on its predicate. Then, combine fires and a token is 

Figure 19 The SAN of the receiver 

rbuf 

combine

rdata 

rblks
DecodeFrame CanCombine 



 89

put in the place rdata. This token represents the same large block of data as the one in the 

place sdata.  

6.4 A Heterogeneous Model of the Whole System 

The heterogeneous model can be constructed using the Möbius Join and Replicate 

mechanism as shown in Figure 20. 

In Figure 20, sender and receiver refer to the SAN models of the sender and receiver. 

protocol refers to the SMSC model of the stop and wait protocol. The sender and receiver 

models may be duplicated several times so that the behavior of a system with several 

senders and receivers can be studied without building a complicated model in which the 

sender and receiver models are drawn several times. 

Before the models are joined, we must specify the shared state variables. The Join 

construct in Möbius uses the shared state variable to join different models together, 

whether they are from the same formalism or different formalisms. In our example, rbuf 

and sbuf are shared state variables. In the SAN model, places rbuf and sbuf are defined as 

state variables in the Möbius representation. The global data rbuf and sbuf in the SMSC 

Figure 20 Construct the system model 

sender 

Replicate Replicate

receiver protocol 

join 



 90

are also defined as state variables. These state variables are shareable. In fact, they 

represent the same system components in different models. The number of tokens in the 

place sbuf of the SAN model can be seen by the SMSC model when it checks its global 

data sbuf. The decrement of sbuf in SMSC model means the removal of a token from the 

place sbuf in the SAN model. The increment of the global data rbuf in the SMSC model 

will be interpreted by the SAN model as a token in put into its place rbuf. Through these 

shared state variables, the SAN model and the SMSC model can affect the behavior of 

each other. The behavior of the whole system is described by models from both 

formalisms.  

6.5 Summary 

In this chapter, we described a simple communication system including two 

computers. Processes running on one computer send data to another computer through a 

cable. The communication protocol used here is the stop and wait protocol.  

The stop and wait protocol are described by four scenarios and modeled as SMSCs. 

The data sending process and data receiving process are modeled as SANs. The SAN 

model and SMSC model are connected together using the Möbius Join and Replicate 

techniques. Shared state variables are defined in both types of models. 

This result shows that the SMSC formalism is able to interact with models from other 

formalisms and that the Möbius tool can solve the SMSC models. 
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CHAPTER SEVEN 

7. CONCLUSIONS AND FUTURE STUDY   

The Message Sequence Chart formalism and the Möbius multiple modeling 

framework were studied. Based on the MSC formalism, we defined a new formalism – 

Stochastic Message Sequence Chart, which is an extension to the MSC formalism. SMSC 

can be used to describe the system behavior in the same way as the MSC language. 

Furthermore, SMSC models contain more information regarding the system than their 

corresponding MSC models. By associating with each activity a stochastic execution 

time, the SMSC models specify an underlying stochastic process. System performance 

measures that cannot be derived from MSC models can be studied by using SMSC 

models. In this sense, the SMSC language is more powerful than the MSC language. 

The possibility of integrating the SMSC formalism into the Möbius framework was 

investigated. On the basis of this investigation, we discovered that the SMSC formalism 

can be well fitted into the Möbius framework. The key issue for building the SMSC 

formalism into the Möbius framework is to specify the SMSC models using the Möbius 

entities: actions and state variables. We defined the SMSC state variables and SMSC 

activities, which correspond to the Möbius state variables and actions, respectively. The 

structural information of the SMSC model is retained when the model is specified in 

Möbius framework. We also provide the primitive requirement about how to define some 

C++ classes that are used to specify SMSC models. Some of the model composition 

methods specified in the SMSC formalism can be realized using the C++ classes, namely, 

vertical composition and alternative composition. Loop is a special vertical composition 

and is also realizable within the Möbius framework. 
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The next step in this work would be to implement the SMSC formalism into the 

Möbius framework. This requires the implementor to collaborate with the Möbius group 

at University of Illinois at Urbana-Champaign. As another formalisms in the Möbius 

framework, SMSC will provide a user interface and the interface should be implemented 

in Java in order to make it platform neutral. The front-end user interface will enable users 

to specify SMSC models in the Möbius tool. Eventually, the graphical or textural SMSC 

models are translated to C++ source files, which are further complied and linked with the 

Möbius C++ libraries to generate an executable model which is either simulated or solved 

analytically.  

Some constructs of the SMSC language, including inline expressions, horizontal 

compositions, and SMSC references, have not been defined within the Möbius 

framework. Further research will reveal how this can be accomplished. 

Another area of future work is to define the action-sharing method for SMSC. Instead 

of sharing state variables, an SMSC model may be composed with other models by 

sharing activities/actions.  
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APPENDIX 

A. MÖBIUS GROUPS 

 A group is a collection of actions and/or groups that have a specific execution policy. 

The actions and groups contained in a group are called the members of the group. Actions 

in a group can compete or cooperate in a specialized way. In other words, a group can 

reduce the number of states in which a member action can fire. In a given model state, as 

a member of a group, an enabled action may not fire depending on whether it is chosen to 

represent the group. Only the group representative member can fire at any given state. 

Therefore, groups allow a formalism to implement non-race-based execution policy 

among a subset of actions. Groups control the execution policy of their members by 

implementing a selection process, which is an algorithm for determining which group 

member can fire at a given state.  

A group defines a number of functions and data members. The Members is a set that 

contains groups and actions that are the members of this group. There is also a data 

member called Actions, which is the set of members of the group that are actions but 

groups. Similar to actions, the Enabled function defined on a group is a Boolean function 

to determine whether there is an enabled member in the group. The function Enabled 

returns TRUE if there is at least one enabled member in the group. The Select function 

defines how the individual member is selected from the set of enabled members. And the 

ReslectPredicate and ReselctFunction define when and how a group reselects another 

group member as its representative. 
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In implementing the group entity, a superset of functions defined on actions is 

implemented. Two additional functions implemented are Select and Probability. The 

Select function is the algorithm used by the group to select a unique member to be the 

group’s representative action. Group members include actions and other groups. If the 

selected member is a group, then the Select function is called in a recursive fashion on 

the selected group until the selected member is an action. The Probability function is 

used to calculate the value of the probability that an enabled member can fire in a given 

state. This function uses the action’s rank and weight values, and is used by the Select 

function when selecting the representative of a group. 

Groups are divided into two main subdivisions: preselection groups and postselection 

groups. Preselection groups choose their representative actions at activation time, 

whereas postselection group choose their representatives at firing time.  

In the Möbius framework, preselection groups are further classified into two 

categories based on how the reselection conditions are defined. Reselection conditions 

are rules that define when a preselection group selects its representative member since 

there are many different time points at which a group can select its representative. The 

two categories are variable preselection groups and persistent preselection groups. A 

variable preselectoin group selects its representative whenever there has been a change in 

the enabling conditions of one or more group members, and there is at least one enabled 

member in the new state. The change of enabling conditions means that there is a change 

in the enabling status of at least one group member. The reselection conditions for a 

persistent preselection group require that the group reselect its representative in the state 

in which there is no enabled group member in the previous state, and at least one enabled 
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member in the current state. A persistent preselection group also reselects its 

representative when the representative member fires and the group is still enabled in the 

new state. 

Postselection groups select their representatives at the firing time. For this selection 

policy to make sense, certain restrictions exist for group members. First, all member 

actions must have same firing time distribution. Thus, the Möbius tool can use any group 

member’s distribution function to determine the scheduled time to completion of the 

group. Second, all member actions must have the same enabling conditions. This means 

that either all member actions are enabled or none of them is enabled. Finally, to prevent 

changes in the enabling membership while a postselection group is enabled, the abstract 

functional interface also requires that all the members’ reactivation predicates and 

functions also be identical. This prevents two enabled members from the same group 

from having different firing time distributions over the same interval. In summary, all 

action functions of all members in a postselection group must be identical, except for 

Rank, Weight, and Fire. 

As is said before, a group can have another group as its member. In this case, the 

parent is called group a multi-level group. Preselection groups and postselection groups 

are different in terms of creating multi-level groups.   

Preselection can have any levels. The member groups of a preselection group can be 

preselction groups or alternatively postselection groups. When the top-level group 

chooses its representative, it calls its Select function. If the selected member is a group, 

its Select will be called. The process continues (as mentioned above) until an action is 

returned.  
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Preselection groups cannot be members of a postselection group because preselection 

groups do not have the same restrictions on their actions while postselection groups do. A 

postselection group may contain another postselection group as its member. But this 

implies actions in these two groups all have the same firing distribution, the same 

enabling condition, and identical reactivation function and predicate. It is better to 

organize these actions into one group rather than dividing them into two groups. 

Therefore, multi-level postselection groups are not necessary. Postselection groups are 

implemented to support only one level. 
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B. IMPLEMENTATION OF THE MÖBIUS TOOL 

 All the Möbius entities are implemented as C++ classes. These classes serve as base 

classes for all formalisms. Therefore, the implementation of these classes are not 

formalism-specific, instead, they are implemented in a more general way so as to provide 

general building blocks for formalism in Möbius. Each class also defines methods that 

provide a common interface through which solvers and models of different formalism can 

communicate with each other. For example, solvers built in the Möbius tool can 

communicate with the model by calling methods of the interface. The methods return 

generic information about the model. The same methods can also be used to exchange 

information between models specified in different formalisms.   

Methods that require formalism-specific implementation are declared as pure virtual 

methods. In C++ terminology, pure virtual functions are functions that are declared on a 

parent class without any specific definition. The child class derived from the parent class 

is responsible to provide an exact definition. The base classes are called “the abstract 

classes” because the methods are not completely defined. Hence, every formalism must 

define its formalism-specific operations for methods of the abstract classes.   

Each Möbius entity corresponds to a base class. Taking into account the base class for 

the Möbius model, there are totally 4 classes. They are BaseStateVaribleClass, 

BaseActionClass, BaseGroupClass, and BaseModelClass. 
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• BaseStateVariableClass 

BaseStateVariableClass defines methods and data members necessary to implement 

state variables. Methods defined on BaseStateVariableClass are summarized in Table 11. 

These methods are categorized into three types: those that deal with state variable’s state, 

those that are used for state sharing, and those that manipulate the data members that 

store the list of actions affected by or affecting this state variable. 

The state manipulation methods are defined as virtual functions. They are SetState, 

StateSize, CurrentState, and PrintState. The state change of a model is closely related to 

the formalism that specifies the model. The BaseStateVaribleClass has no specific 

definitions of these methods, but provides the description of what these methods intend to 

do. The formalism implementor is responsible to fulfill the requirements of the state 

manipulation methods. SetState is used to set the state of the state variable by copying 

data from a specific memory location pointed by a void pointer. A void pointer is able to 

point to any type of data. Hence, the formalism specific data type is not important in the 

definition of this method. Actually, SetState is only used when the entire model needs to 

be reset by solvers. The action-firing-related state change is formalism specific, and must 

be implemented in the derived class.  
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Table 11 Methods defined on BaseStateVariable Class 

Method Name  Description 

int StateSize()  This method returns the number of bytes of compact 
state variable representation. 

SetName(char*)  This method sets the name of the state variable. 
void SetState(void*)  This method sets the state of the state variable 

void CurrentState(void*)  This method writes the state variable’s current state to 
the specified memory location 

void printState()  This method prints the state of the state variable to 
standard out 

bool getShared()  This returns true if the state variable is shared with 
another state variable 

bool getStored()  This returns true if the state variable is using a local data 
member to store its state 

Bool getFunctionallyShared() This methods returns true if the state variable value is 
functionally shared 

Const Listt<BaseActionClass>* 
getAffectingActions()  This method returns the affecting actions data structure 

Const Listt<BaseActionClass>* 
getEnabledActions() This method returns the enabled actions data structure 

int getSharingCount()  This method returns the number of state variables that 
are shared with this state variable 

const BaseActionClass* 
getAffectingAction(int) 

This method returns the specified element from the 
SVAffectingActions data member 

const BaseActionClass* 
getEnabledAction(int)  

This method returns the specified element from the 
SVEnabledActions data member 

Int getNumAffectingActions()  This method returns the number of affecting actions 
Int getNumEnabledActions()  This method returns the number of enabled actions 
Void 
appendAffectingAction(BaseAction
Class*) 

This method appends the specified action to the state 
variable’s object SVAffectingActions 

Void 
appendEnabledAction(BaseAction
Class*) 

This method appends the specified action to the state 
variable’s SVEnabledActions object 

Void 
copyAffectingActions(List<BaseAc
tionClass>*) 

This method copies the data structure passed in and uses 
it as its list of affecting actions 

Void 
copyEnabledActions(List<BaseActi
onClass>*) 

This method copies the data structure passed in and uses 
it as its list of enabled actions 

Void 
updateAffects(BaseStateVariableCl
ass*) 

This method will notify all the actions on the state 
variable’s SVAffectingActions and SVEn-abledActions 
lists to inform them that this state variable is part of a 
sharing set 
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CurrentState writes the value of the state variable to a specific memory location. 

StateSize is used to determine how many bytes are needed to store the state variable state. 

PrintState displays the state variable’s value on the standard output device of a computer. 

Usually, this is the screen. 

State-sharing methods are used to access the state-sharing-related data members.  

These data members are usually Boolean variables indicating whether the state variable is 

shared, whether it is functionally shared, and if the state variable’s state is store locally. 

For example, GetShared, GetFunctionallyShared, and GetStored. The method 

GetSharingCount returns the number of state variables that share state with this state 

variable. It returns 1 if the state variable is not shared. 

BaseStateVariableClass contains data members that store the information about 

actions related to a state variable. Two lists of actions are defined in this class. 

SVEnabledActions is a list of all actions that are enabled by the state variable’s value. 

SVAffectingActions contains all actions that their firing will affect the state of this state 

variable. These two data members are implement as list data structures that contain 

pointers pointing to the actual actions. The set of actions used to initialize these data 

structures for each state variable must be structurally determined from the model 

specification. 

• BaseActionClass 

BaseActionClass is the implementation of the Möbius entity action. This 

implementation is quite straightforward. Table 12 shows the methods defined on this 

class and their corresponding description. Most of the methods are virtual functions 

because their exact definitions are determined by the formalism that implements them.  
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Table 12 Methods defined on BaseActionClass 

Method Name  Description 

bool Enabled()
This method determines whether the action is 
enabled in the current state 

double Weight()
Weights are used to determine the probability of 
selecting an action from the set of enabled actions in 
the current state 

double Rate()
This method returns the rate with which an 
exponentially timed action fires 

bool
ReactivationPredicate()

This method determines whether an action is 
reactivatable 

bool
ReactivationFunction()

This method determines whether an action whose 
ReactivationPredicate is true should 
restart after a state change in which the action is still 
enabled 

double
SampleDistribution()

This method samples the action’s distribution and 
returns the action’s time-to-completion 

double*
ReturnDistributionParam
eters()

This method returns the set of distribution 
parameters 

void SetFired()
This method sets the Fired data member on an 
action to record the fact that the action fired  

BaseActionClass* Fire()
This method defines how the action changes the 
state of the model 

int Rank()
This method returns the action’s priority value for a 
given state 

bool EnablingChange()
This method determines whether there has been a 
change in the enabling condition since the last time 
the Enabled method was called 

bool
IsAMember(BaseActionCla
ss*TheAction)

This returns true if the specified action is equal to 
the this object 

double
Probability(BaseActionC
lass*TheAction)

This method returns 1.0 if the specified action is 
equal to the this object, or 0 otherwise 

 

In addition to these methods, BaseActionClass also defines important methods and 

data members that facilitate efficient analysis of the model. Among them, two data 

members are AffectedStateVariables and EnablingStateVariables. AffectedStateVariabes 

is a list of state variables whose states are affected by the firing of the action. 

EnablingStateVariables stores a set of state variables that are used to determine whether 
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the action is enabled. To initialize these two data members, the corresponding set of state 

variables must be deduced from the structure of the model. Four methods are defined to 

change the value of these data members. They are addEnablingSV, addAffectedSV, 

replaceEnablingSV, and replaceAffectedSV. The last two methods are used when a state 

variable is shared. In this case, the pointer stored in these data members might need to be 

replaced by a pointer pointing to another state variable, which is the head of the list of 

shared state variables. 

Action attributes (shown in Table 13) include GroupID, ExecutionPolicy, 

ActionName, and DistributionType. GroupID specifies the group to which this action 

belongs. ExecutionPolicy take one value from RaceResamping, RaceEnabled, and 

RaceAge. It governs the behavior of the action when it is interrupted. DistributionType 

defines the probability distribution used for describing the action’s firing time 

distribution. The supported types of distributions are listed in Table 14. 

 

Table 13 Action attributes 

Attribute Name  Description 

int GroupID  The group to which the action directly 
belongs. 

ExecutionPolicyType ExecutionPolicy The type of race-based execution policy 
that should be applied to the action. 

char* ActionName  The name of the action. 

Distribution DistributionType  The type of distribution function used for 
the action’s firing time distribution. 
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Table 14 Supported distribution functions 

Distribution Name  Parameters 
Exponential  Rate 
Deterministic  Val u e 
Geometric P 
Weibull βα ,  
Normal 2,σµ  
Lognormal 2,αµ  
Erlang m,β 
Triangular a,b,c 
Gamma βα ,  
Beta 1,1 βα  
Uniform UpperBound, LowerBound 
Binomial t, p 
NegativeBinomial s, p 
HyperExponential rate1, rate2, p 

 

Table 15 Performance variable related data members 

Data Structure  Description 

ActionAffectsElement* Affects Linked list of state variables affected by the 
firing of action 

int* PVAffects  The list of performance variables whose 
reward functions are affected by the action 

int NumPVImpulseAffects  The length of the PVImpulseAffects array 

int* PVImpulseAffects  A list of performance variables whose 
impulses are affected by this action 

int** PVImpulseAffectsImpulses  The list of impulses on the affected 
performance variables 

int*** PVImpulseAffectsImpulseWorkers The list of workers defined on the impulse-
affecting impulses. 

int*NumPVImpulseAffectsImpulses  The number of the impulse workers array 
in PVImpulseAffectsImpulse 

int** 
NumPVImpulseAffectsImpulseWorkers  

The length of the impulse workers array in 
PVImpulseAffectsImpulseWorkers 

int* NumPVWorkers  The number of PVWorkers defined on each 
performance variable 

int **PVWorkerList  An array of PVWorker arrays 

int TotalNumCollected  The total number of performance variables 
collected to date 

int TotalNumAffects  The length of the TotalNumAffectsList 

int* TotalPVAffects  A complete list of performance variables 
affected by this action 
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 BaseActionClass also defines several different data structures that are used to 

implement performance reward variables. When the action fires, the affected 

performance variables are updated. Table 15 shows the complete list of the performance 

variable related data structures and their corresponding meanings. 

• BascGroupClass 

The C++ class BaseGroupClass is a derived class from the BaseActionClass. Since at 

any given model state only one action in a group can fire, the group functions as an action 

in that sense. Functions defined on actions are also the functions defined on groups. The 

formalism specific functions for actions are defined as virtual functions for groups too. In 

addition to these action functions, BaseGroupClass also contains methods and data 

members for manipulating group members. A complete list is shown in Table 16.  

Group members are kept in two lists: ActionMembers and GroupMembers. 

ActionMembers contains the list of group members that are actions. GroupMemebers is a 

list of the members that are groups. The functions appendGroup and appendMembers are 

used to add members to a group. Both of them require a group pointer as the parameter. 

The method appendGroup makes the group, which is passed in as the method’s 

parameter, as a member of this group in the group member list: GroupMembers. While 

appendMembers does not make that group as a member of this group, instead, it makes 

the members of that group as members of the current group.  

The SelectAction method is used to select an action from the group members as the 

representative of the group. The algorithm uses the actions’ rank and weight to determine 

which enabled action should be selected. 
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Table 16 Methods defined on BascGroupClass 

Method Name  Description 

Void appendGroup(BaseGroupClass*) This method adds the specified group to the 
list of member groups 

Void appendMembers(BaseGroupClass*) This method adds the specified group’s 
members to this group 

Void SelectAction()  
This method performs the selection 
algorithm on the group and defines which 
of the group’s actions is selected 

double CalculateWeightDistribution() 
This method is used to calculate the 
probability of selecting each member 
action in the current state 

double Probability(BaseActionClass*) 

This method returns the probability of 
selecting the specified member action from 
among the set of enabled member actions 
in the current state 

bool IsAMember(BaseActionClass*) 
This method checks to see whether the 
specified action is a member of the action 
group 

int getNumMembers()  This method returns the number of group 
members 

int getNumGroupMembers()  This method returns the number of group 
members that are groups 

int getNumActionsMembers()  This method returns the number of group 
members that are actions 

BaseActionClass* getSelectedAction() This method returns the action selected by 
the group 

BaseGroupClass* getGroupMember(int) This method returns the ith member that is 
a group 

BaseActionClass* getActionMember(int) This method returns the ith member that is 
an action. 

void printGroup()  This method hierarchically prints out a 
group’s membership 

 

• BaseModelClass 

Models act as containers of actions, state variables, and groups. The BaseModelClass 

defines methods that are used by solvers or other models to access the Möbius entities in 

a model. Table 17 shows all the methods defined in the BaseModelClass. These methods 

can be categorized as list methods, state methods, and composed model methods. 
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Table 17 methods defined on BaseModelClass 

Method Name  Description 
void listModels(char*, 
List<BaseModelClass>*) 

The function returns a list of references to all 
the other models with the specified name 
defined within a model, including itself 

void 
listActions(List<BaseActionClass>*) 

This returns a reference to all of the actions 
contained in a model 

void listActions(char*, 
List <BaseActionClass>*) 

This method returns all the actions contained 
in the model with the specified name 

void 
listGroups(List<BaseGroupClass>*) 

This returns a reference to all of the action 
groups contained in a model 

int getNumActions()  This returns the number of actions in a model 
int getNumGroups()  This method returns the number of groups 

contained in the model 
int StateSize()  This function returns the size of the memory 

needed to save the model’s current state 
bool CompareState(void*,void*) This function compares two model state 

representations and determines whether the 
two representations are the same model state 

void listSVs(char*, char*, 
List<BaseStateVariableClass>*, 
List <BaseModelClass>*) 

This method returns a list of references to 
state variables that have a specific name in a 
specific model (as specified by the caller) 

int CountAffectedVars(char*,char*) This method returns the number of state 
variables with a specific name and in a 
specific model 

void CurrentState(void*,void*) This method writes the model’s current state 
to a specified memory location 

BaseStateVariableClass* 
getMainSharedVariable( 
BaseStateVariableClass*) 

This method hierarchically determines the 
highest-level state variable that the state 
variable has been shared with through the 
composer tree 

void printState()  This method prints the state of the model to 
stdout. It is used for debugging purposes 

SharedStateVarLink* 
getListOfSharedVariables( 
BaseStateVariableClass*) 

This method is used to hierarchically build 
groups of equivalent state variables shared at 
each level in the composer tree 

updateAffectsList(BaseStateVariable
Class*, BaseStateVariableClass*) 

This method changes the data structures of all 
actions in the model such that the actions use 
a new location for a specified state variable 

void SetState(void*)  This method sets the state of the model  
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The list methods include listModels, listGroups, listActions, and listSVs. We can see 

by their names that they each return the corresponding entity set to solvers or other 

models.  

The state methods (SetState, CurrentState, CompareState, and StateSize) are defined to 

perform operations on the model’s state variables. SetState is used to set the model to a 

specific state based on the passed memory pointer. CurrentState returns the current model 

state to a memory location specified by a pointer. CompareState is used to compare two 

model states and see whether they are equivalent. It is worth pointing out that one must 

use this method to compare two model states. Comparing the memory data of two model 

states byte by byte is not a good way to check the equivalency of two model states. The 

reason is that the difference between memory data does not ensure that the two model 

states are not equivalent. Finally, StateSize returns the number of bytes needed to store 

the model state, which is similar to the definition in BaseStateVariableClass.  

The composed model methods are necessary for building composed models through 

state sharing. When two models are joined together by sharing state variables, the shared 

state variables are said to be in the same sharing set. Every sharing set has one state 

variable declared as the leader. The method getMainSharedVariable returns a pointer of 

the leader. But the method getListOfSharedVariables returns the head of a linked list, 

from which all the members in the sharing set are accessible.  

Besides these methods, BaseModelClass also defines data members. Most of them are 

used to summarize the entities contained in the model.  Table 18 shows the defined data 

members.  
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Table 18 Data members defined on BaseModelClass 

Data Structure  Description 
int NumStateVariables  The number of state variables in the model 

int NumSharedStateVariables  The number of state variables that are shared through 
equivalence sharing 

int NumActions  The number of actions in the model 
int NumGroups  The number of groups in the model 
int NumPVs  The number of performance variables in the model 
char* Name  The name of the model 
BaseGroupClass** GroupList  The list of all groups in the model 
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C. THE MOBIUS SOLVERS 

•  Discrete Event Simulation   

The Möbius tool has two discrete event simulators: a transient simulator and a steady-

state simulator. The transient simulator is used to obtain transient measures, i.e., the 

measures at time t, given that ∞<t . The steady-state simulator uses batch means with 

the deletion of an initial transient to solve for steady-state instant-of-time reward 

variables. The estimated statistical properties for reward variables include mean, 

variance, and distribution. For mean and variance, confidence interval can be specified. 

The advantages of using simulation are: 

• Simulation is applicable to any models, regardless the action’s time-to-

completion distribution. 

• Simulation does not require the generation of the entire state space. 

• Simulation does not require the model have a finite state space. 

However, simulation could take quite a long time if either the rare event problem 

arises, or higher accuracy is desired [25]. 

• Analytical Solvers 

The Möbius tool has incorporated 7 analytical solvers. They are Accumulated Reward 

Solver (ARS), Transient Solver (TRS), Adaptive Transient Solver (ATS), Direct Stead-

State Solver (DSS), Iterative Steady-State Solver (ISS), Deterministic Iterative Steady-

State Solver (DISS), and Advanced Iterative Steady-State Solver (ADISS).  
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How to choose an appropriate solver depends on the model type, reward variable type, 

and the desired measure. ARS is used for solving transient interval-of-time reward 

variables. It gives the accumulated reward, as well as the time-averaged accumulated 

reward over the interval. TRS and ATS solve for instant-of-time reward variables with 

∞<t . All the steady-state solvers solve for instant-of-time reward variables with ∞→t . 

They use different techniques. DISS should be used when there is at least one 

deterministic action in the model.  

Before using any analytical solver, the state space of the model must be explicitly 

generated. This implies the model has to have a finite state space. Another restriction for 

using analytical solvers is that the model must imply a Markov or Semi-Markov process. 

In other words, actions’ time-to-completion must have exponential distribution and there 

is at most (for semi-Markov) one action with deterministic distribution. 
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