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Figure 1. Ontologies and agents organize heterogeneous data.
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Abstract

This case study demonstrates a flexible and dynamic
approach for fusing data across combinations of
participating heterogeneous sources to maximize
knowledge sharing. Software agents are used to generate
the largest intersection of shared data across any selected
data source subset. This ontology-based agent approach
maximizes knowledge sharing by dynamically generating
common ontologies for the data sources of interest.

We validated our approach using (disparate) data sets
provided by five national laboratories. A local ontology
was defined for each laboratory data source. The
ontologies specify how to format the data using XML to
make it suitable for query. Consequently, software agents
are empowered to provide the ability to dynamically form
local ontologies from the data sources. In this way, the cost
of developing these ontologies is reduced while providing
the broadest possible access to available data sources.

1. Introduction

D e v e l o p i n g  a
knowledge-sharing
capability across different
distributed data sources
continues to be a
considerable challenge.
Ontology-based
approaches show promise
b y  r e s o l v i n g
heterogeneity, if the
participating data owners
agree to use a common
ontology (i.e., mapping
among a set of common or
similar qualities). Such
common on to log ies
enable distributed data to
be virtually located in a
central repository. This

knowledge sharing may be achieved by determining the
intersection of similar concepts (i.e., qualities) from across
various heterogeneous systems. However, if information is
sought from a subset of the participating data sources,
there may be concepts common to the subsets that are not
included in the full common ontology, and therefore
cannot be shared. To overcome this dilemma, we construct
a series of ontologies, one for each possible combination
of data sources, which map the different qualities that
agreeable correspond. No concepts are lost, but the number
of possible subsets is prohibitively large.

Each Department of Energy (DOE) national
laboratory has evolved a unique business model for
managing research proposals over the past sixty years.
Given the historical nature of these evolutions, both the
business models, and their associated (heterogeneous) data
collections, are deeply rooted.  A way was needed to
merge data from the various systems as if the data was
gathered and stored in a centralized repository.

Figure 1 (upper left hand corner) illustrates how the
different labs within DOE
have a somewhat different
collection of research
proposal data.  Each
col lec t ion  and  i t s
corresponding ontology
are based on the unique
evolution of how each
separate lab used the data
within their respective
business models.  Moving
to a single common
ontology to resolve data
heterogeneity across all
laboratories will result in
an intersection of all data
concepts. Unfortunately,
only common concepts are
retained. Moreover, if two
or more labs have a
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Figure 2 Example of common and subset ontologies.

concept that is not common,
then (potentially) valuable
information is not being
represented. In this case, a
common ontology that results
in loss of such data has an
unacceptable impact on the
associated business models.

Figure 2 shows how
concepts are lost in a common
ontology. Consider three data
sets labeled A, B, and C each of
which contain three concepts,
Lab Name, PI Name, and one
other that is not common. Lets
examine the merged data from
data sets A and B. The first two
concepts match across all three
but the third concept is lost.
This is unfortunate because we are concerned only about
data from sets A and B (see Figure 2 right lower corner).
A better method is needed that would alleviate this
unfortunate problem.

In this example, we need to add Duration to the
ontology when only data sets A and B are considered. If
possible, then full visibility of all data across all
combinations of participating data sets could be
accomplished with a series of merged ontologies. The
ontologies are merged in a way that provides for each
possible combination of source data concepts, as compared
to a single common ontology. Alternatively, there are a
large number of possible combinations a user may choose
potentially generating a huge number of ontology
combinations. Current ontological approaches for merging
heterogeneous data sets have been successful, but require
all data owners to participate in building a single common
view.  For this reason (see Section 10, Appendix A), the
large number ontologies for every possibility cannot be
“pre-built.”  Instead, we propose to use software agents to
build the desired ontology combination on-the-fly for each
user-generated merge and query/search operation (as
shown in Figure 1 bottom half). In this way only relevant
merges are implemented, avoiding the need to generate all
possible combinations while satisfying the possibility for
merges that consider all possible combinations (including
the intersection of every data set).

2. Background

An early use of the term “ontology” was in
philosophy (Wolffe, C., Philosophia Prima Sive Ontologia,
1729) where its use means “a branch of metaphysics
relating to the nature and relations of being.”
Computational scientist’s adopted the general meaning of
the term to be the “relations of being” for describing how
data is related. Ontologies have proven to be a useful tool
for data integration across heterogeneous data sets.

In  effect ,  ontology
specifies a vocabulary that is
used to discuss a problem
domain.  For example, an
ontology for baseball would
include terms such as ball, bat,
glove, strike, foul, etc.  But it is
not so much what terms are
used , but what those terms
mean that reaches to the core of
how ontologies are used.  For
example,  changing the
language of the ontology from
English to French changes the
terms used, but does not change
the concepts specified by the
terms [1].  Gruber sums this up
well when he describes
ontology as an “explicit
s p e c i f i c a t i o n  o f  a

conceptualization” [2].

Cross-platform exchange of information increases the
demand for a uniform view of related sources. Most
approaches employ an agent to capture data semantics (the
information content of each source [3]) using descriptive,
domain independent, and semantic metadata. Metadata
descriptions are used to resolve schematic and structural
differences [4] and are constructed using terms, which
stem from a given vocabulary, domain, or common sense
ontology, like Cyc or WordNet [5]. This type of
conceptualization of real-world notions reusable across
shared domains is the key to reconciling semantic
differences. Tools for building such ontologies include
standard modeling and markup languages such as UML
[6], XML [7], RDF [8], ontology/conceptual knowledge
markup language (OML/CKML), SHOE (Simple HTML
extension for Web page annotation), XML-based ontology
exchange languages OIL and XOL, and description logics
[9, 10].

In several revisions from 1993 to 1995, Gruber [2]
represents a foundational set of design criteria to guide the
development of ontologies in support of knowledge
sharing activities.  Gruber applies formal engineering
discipline to ontology design using a core set of five
design criteria as follows.  The ontology should provide
clarity in defining terms and coherence by being logically
consistent.  It should provide extendibility to allow
expansion without affecting existing definitions, and
should have minimal encoding bias so that the notation
used to describe a concept does not restrict alternative
ways to understand the concept.  Finally, an ontology
should have Minimal ontological commitment, meaning
that the description of concepts should be as loose as
possible to permit flexible use of the described concepts.
These seminal design criteria form the basis for a series of
ontological studies.
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Figure 3 Software agents used to build ontologies.

Recent in this series, Holsapple and Joshi [11] adopt
Gruber’s view and give a taxonomy of five approaches to
Gruber’s ontology design criteria.  First lets consider the
inspirational approach. In this case, an individual uses
their own insights and viewpoint to develop an ontology of
the domain that is then (hopefully) adopted by other users.
The inductive approach builds an ontology based on a
specific (set of) case(s) within the domain and is refined by
evolving toward a more generalized ontology. The
seductive approach moves in the opposite direction,
beginning with an ontology built upon general principles
of the domain and evolving toward fulfilling specific
cases.  The synthetic approach is a combination of existing
ontologies into a single all-encompassing ontology that
describes the combined domain.  Finally, in the
collaborative approach, a team of individuals incorporates
aspects of the other approaches to build an ontology using
the combined viewpoints and (possibly) using existing
ontologies as an anchor.  Holsapple and Joshi find the
collaborative approach the most useful for their problem,
and present a case study.

These various ontology based approaches, from
Gruber to Holsapple and Joshi, provide methods to
discover the homogeneity that may be found among
heterogeneous data sets, and from that, build a common
ontology.  However, these approaches assume that
participants are capable of migrating their data to a new
ontology; this was not the case in our problem. The varied
data collections within DOE are tightly coupled to their
associated business processes.  So much so, that it became
unclear whether the business model drives the data or the
data drives the business model.  Migrating the data to a
common ontology would necessitate a prohibitively
expensive change to long and well-established business
models.  Thus, these powerful approaches are not suited to
our problem without a variation from previously seen
ontology-based data fusion.

3. Our approach

Given the aforementioned ontological approaches to
data merging we decided that the power of these tools
showed great promise.  Current ontological approaches to
the merging of heterogeneous data have been successful,
but require the owners of the data to participate in the
adoption of a single
common ontology.  In our
case, we cannot go to a
single, all encompassing,
common ontology because
of the importance of
concepts occurring in most,
but not all data sources. The
solution to this would be to
build a series of ontologies
f o r  a l l  p o s s i b l e
combinations of the
underlying data sets.

However, in our case this is an intractable problem and we
decided to explore the possibility of using software agents
to perform the ontology building tasks automatically.

Foundational to our approach is the use of the
Extensible Markup Language (XML) as the mechanism
for capturing data [7].  Each laboratory has a different
mechanism for capturing data, from databases, to
spreadsheets, to ad hoc text files and various combinations.
Using a series of specialized software tools, the various
data formats are converted into XML.  XML provided an
efficient mechanism to bring the distributed and
heterogeneous data formats into a powerful, flexible, and
common format thereby providing a standard ontology-to-
software agent interface [12]. Consequently abstracting
unnecessary details from the underlying datasets proves to
be a sufficiently rich environment for the software agents
to perform the merging of ontologies.

Next, we designed the coordinator for the system, a
mechanism that would allow software agents to understand
the various data sets and enable the agents to merge
ontologies.  While formal ontologies have a great many
strengths, one potent drawback is the learning curve
associated with using them.  In our problem, the data
owners who understood the data did not have the time for
such a learning curve. To address this conflict, we devised
a simple system that specifies data concepts by defining
the equivalence relations between a data owner’s local data
concepts and other participating data concepts. Our
technique works in the same way that the concept for
“table” can be specified by showing equivalence to an
already understood concept of the Spanish word “mesa,”
and/or the French word “tableau,” and/or the Italian word
“tavolo,” Although intentionally informal in its execution,
the specification of the data concepts by their relationships
meets Gruber’s definition of an ontology.

For example, as shown in Figure 3, the first data set,
Data Owner A provides a simple list of data elements.  In a
parallel column the list of elements is repeated.  The first
column is labeled Local Data Concept List; the second
column is labeled Master Data Concept List. Together
they represent a simple ontology, i.e., a specification of the
data concepts represented by a mapping from the Local
Data Concept List to the Master Data Concept List.  Next

we incorporate data from
Data Owner B where data
owners A and B know each
other’s data.  This is the
case across most of the
DOE system; most data
owners know their data as
well as its relationship to a
small number of the other
da ta  sys tems .  This
k n o w l e d g e  c o n t e x t
provided the basis for
constructing composite



ontologies (i.e., master data concept).

For the second data set, Data Owner B looked at Data
Owner A’s ontology mapping.  Data Owner B could then
provide us the knowledge needed to build a new ontology
mapping, mapping B’s data to the Master Data Concept
List. Each data concept in a local data list was mapped to
the same concept in the Master Data Concept List. If Data
Owner B had data that was not in the Master Data Concept
List, a new entry was added to the Master Data Concept
List.  Conversely, if a data concept in the Master Data
Concept List was not present in the local ontology then
there was no mapping established from his Local Data
Concept List to the Master Data Concept List.  In the end,
the system consists of three elements: (1) Master Data
Concept List, (2) Local Data Concept List to Master Data
Concept List Ontology for Data Set A, and (3) Local Data
Concept List to Master Data Concept List Ontology for
Data Set B.

This process continues for each new data set.  Each
new data owner uses the previous work to help determine
their ontology as a specification of the mapping from their
Local Data Concepts List to the Master Data Concepts
List.  Questions pertaining to proper mappings are resolved
(through discussion) between the new data owner and the
data owner that previously added the data concept to the
Master Data Concepts List.

Thus, in this process, the Master Data Concepts List is
a union of the data concepts across all participating data
sets, and a given data set’s ontology is a mapping
specifying the relationships between the intersection of
that data set’s local data concepts and the master data
concepts.  Relationships among a selection of the local
data sets’ ontologies can be determined using the Master
Data Concepts List as a point of common reference.  It is
interesting to note that there is no centralized ontology for
the entire system.  Instead, it is distributed across the
ontology mappings of the individual data sets and the
Master Data Concepts List.  For example, Data Set A’s “PI
Name” specifies the same concept as Data Set B’s “Project
Lead” but this cannot be directly determined at one
centralized point; rather it is determined via the data set
ontologies and the Master Data Concepts List.  Software
agents use this distributed ontology to provide the
functionality of a centralized ontology along with the
ability to be flexible in meeting the varied needs of the
users.

As described above, we applied this approach on data
from five national laboratories. These laboratories are very
large and present massive data sets across a diverse set of
repositories (e.g., databases, spreadsheets, and simple
ASSCI files, etc.). We manually created the local
ontologies, and used these ontologies to create XML
representations of the data at the laboratories. From this
base, we then applied our approach to building dynamic
on-the-fly ontologies using agents.

4. Implementation Using Software Agents

For each data set, a Data Agent is assigned the task of
retrieving data from the underlying data repository based
on the defined ontology. The agent must present the data to
the overall system for merging using the ontology defined
for that particular local data set.  The mapping provided by
the particular ontology allows the data agent to understand
both the local and master concepts.  Based on the master
data concepts side, the agent understands the language of
the agent community; based on the local side, the agent
understands how to retrieve local data. Ultimately, the
agent uses this mapping to translate between the local and
master. On the fly, a Data Integration (DI) Agent
assembles merged ontologies, coordinating the activities of
all the data agents in the community according to the
user’s requirements. This agent therefore accepts requests
from a Graphical User Interface (GUI) Agent, another
important type of bilingual agent, which translates user
requests into the language used by the agent community.
The results of the merging are subsequently derived into
visualization for the user.   The DI Agent distributes the
GUI Agent’s requests to the appropriate data agents,
merges the results from the data agents, and passes the
merged data back to the GUI Agent for visualization as
shown in Figure 4. Missing agents cannot contribute data
to a merging but do not prevent a merging from occurring.
The agents and ontology approach provides an eloquent
efficient and extensible solution to avoiding the
combinatorial number of possible combinations.

5. Software agents build a common ontology

When a user of the system first brings up the GUI, the
GUI Agent asks the Data Integration Agent for a list of
available data sets, that is, a list of available data agents.
The Data Integration Agent then checks the list of data
agents that are registered, and verifies the availability of
each.  This agent then reports the availability to the GUI
Agent, who displays the available data sources to the user.
The user then selects the desired data sources and the
software agents dynamically create a merged ontology for
the selected data sources.

To create this merged ontology, the Data Integration
Agent sequentially distributes the Master Data Concepts
List to the data agents chosen by the user.  The first data
agent compares this concept list to his local ontology, and
deletes from this list the data concepts that are not found
(i.e., the data concepts that are not in the local ontology).
The data agents then hands the reduced data concept list
back to the Data Integration Agent who then passes the
reduced list to the next data agent selected by the user.
This process continues for each of the user-selected agents
until all have seen the list.

The trimmed data concepts list resulting from this
process is the intersection of the data concepts captured
within the participating systems.  Note how this process is
the reverse of the way the Master Data Concepts List was
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Figure 4. Agents are used to integrate various ontologies

originally generated.  In
building the Master
Data Concepts List, the
data owners each added
concepts from their
local data sets that are
new concepts to the
Master Data Concepts
List.  Here, the data
agents remove data
concepts that are not
part of their local
ontology from a copy of
the  Master  Data
Concepts List

The final reduced
data concepts list, in
conjunction with each
participating data agent’s ontology, constitutes a shared
ontology across the participating data sets. This ontology is
dynamically generated based on a request from a user, and
is evaluated against the latest information from each local
data source. Participating agents can each understand and
provide information about all the data concepts that are
shared across the participating systems, which significantly
increase the capability of current ontologies.  Moreover,
the full system addresses Gruber’s five ontology design
criteria.  Using relationships to specify concepts provides
Clarity and Coherence.  Extendibility has been shown in
the process by adding new data sets.  And the succinct
specification renders Minimal Encoding Bias and Minimal
Ontological Commitment.   This process could also be
thought of as the software agent version of Holsapple and
Joshi’s collaborative approach to ontology design,
producing results in much the same way a group of
collaborating humans would have done, but significantly
faster, and with far greater accuracy.

6. Querying over merged data

The GUI offers the human user an interface to specify
a query over distributed data as if it were collected in one
location under a single schema.  Our version of the GUI
was designed to provide the user with rich query
capabilities to permit users to specify down to the data
fields of interest (as in an SQL select) and, at the same
time, permitting constraints on data field values (as in an
SQL where).

Queries are passed to the Data Integration Agent who
partitions the query out to the selected set of data agents.
Agents are then responsible to fulfill the query over their
local data set.  The underlying XML data set may be stored
in any manner usable by the data agent.  Each data agent
uses the local ontology mapping to convert the query
request from the Data Integration Agent into a format
usable against the respective data set.  The answer to the
query is then translated back into the format used by the
software agent community and returned to the Data

Integration Agent. For
example, from Figure 3
a general search for a PI
Name of “smith” would
be translated to a search
over a Project Lead with
the name “smith” within
System B. Both the
query and the response
are XML format.  The
XML format enables the
Data Integration Agent
to  assemble  the
individual responses
from the data agents.
The data integration
agent then passes the
a s s e m b l e d  q u e r y
response back to the

GUI agent for presentation to the user.

7. Results

After completing the system design, five data owners
were contacted and asked for their assistance by
participating in a prototype demonstration. This selection
was of sufficient size to test our approach; five data sets
producing (25-1) or 31 possible combinations of merged
data sets over which a user might wish to query (see Figure
5).  This number is too large for the data owners to build
all 31 possible ontologies; yet large enough to test the
strength of our software agent enabled ontology-building
approach.

The data owners were enthusiastic about the potential
solution yet skeptical about using software agents as
described above.  In fact, all prior efforts with the same
goal were unsuccessful.  These data owners are extremely
busy; they could only give small amounts of time to help
validate our approach. Indeed, the approach proceeded
better than expected.  It took more time to explain the
approach to the data owners than to actually incorporate
their data.  Some data took longer than others to
incorporate (i.e., define in terms of a compliant ontology)
because varied native formats, but none of the data took
more than a couple of days.

The system performed without a glitch.  Acquisition
times for query results were negligible, with network
latency being the bottleneck.  Delays were similar to
downloading a web page of typical complexity, well
within most typical users’ tolerances for delay.  The
sponsor deemed the prototype a success. Due to the
success of the prototype, the DOE decided to implement
the system across all of its installations, estimating a cost
savings of $39 million per year. Consequently, the DOE
has now begun the process of building a production system
based on our prototype.



Figure 5. Pascal’s Triangle illustrates the combinatorics of merging data sets.

Full visibility of all data across all combinations of the underlying data sets could be accomplished with a series of
merged ontologies, one for each possible combination. However, there are a large number of possible combinations a
user may select from the underlying data sets. With twenty-six DOE laboratories, and perhaps twenty different systems
to be merged, there could be as many as 520 different data sets if each laboratory has a unique variation on every
system.  In reality, there is not uniqueness at every possibility.  Still, 520 can serve as an upper bound and perhaps 20
can serve as a very optimistic lower bound.  This means the number of possible combinations a user may wish to select
would be between an upper bound around 3.5X10156 and a lower bound of 1,048,575 – still a prohibitively large
number of possible combinations.

8. Conclusions and future work

Ontology based merging of data has proven to be a
viable technology in a great many instances, but not all
problem domains succumb to these techniques.  We have
described a problem domain where data owners have data
that they wish to share, but they cannot move to a single
common ontology because of the potential loss of
information (incoherency). One inadequate approach uses
a series of ontologies for all possible (i.e., brut-force)
combinations of data, but is prohibitively expensive.

Using our approach we have demonstrated the use of
software agents to dynamically create merged ontologies,
which significantly reduce the cost of developing brut-
force ontologies, while providing the broadest access to
distributed information. These ontologies meet the
requirements stated by Gruber and others producing a
shared ontology across the participating data sets. In this
approach, ontologies are dynamically generated based on a

user request that is evaluated against the latest ontological
information from each local data source. Participating
agents can each understand and provide information about
all the data concepts that are shared across the participating
systems, which significantly increases the capability of
current (i.e., latest agent derived) ontologies.  The
implementation of this approach produced significant
financial benefit, and will soon see broad deployment.

One idea that kept occurring as each new data set was
added was the automation of ontology production.  The
idea would be that software would make an initial draft of
a new data set’s ontology.  The time required to generate a
final draft of the ontology would then be reduced,
requiring only a final editing and/or verification by the
data owner.  We envision building ontologies by using
clustering techniques; new data concepts would naturally
cluster close to matching data concepts that have already
been incorporated.
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