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Abstract 

The increasingly ubiquitous use of software systems has increased the need to determine their 

reliability and the extent to which they can be depended upon. Structured models of systems 

allow us to do this, yet there are numerous challenges that need to be overcome to obtain 

meaningful results. This paper is an experiment to model and analyze the Anti-lock Braking 

System of a passenger vehicle using Stochastic Petri Nets. Special emphasis is laid on modeling 

extra-functional characteristics like coincident failures among components, severity of failure and 

usage-profiles of the system. Components generally interact with each other during operation, and 

a faulty component can affect the probability of failure of other components. The severity of a 

failure also has an impact on the operation of the system, as does the usage profile - failures 

which occur during active use of the system are the only failures considered (i.e., in reliability 

calculations). This paper gives emphasis to the importance of the extra-functional properties 

mentioned above, the challenges incurred in modeling, a detailed description of the models 

developed, and the results of the analysis carried out for realistically predicting the reliability of 

system components. 
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1. Introduction 

The increasingly ubiquitous use of software systems has created the need of being able to depend 

on them more than before; and being able to measure how much one can depend on them. 

Knowing that the system is reliable is absolutely necessary for safety-critical systems, where any 

kind of failure may result in an unacceptable loss of human life.2 Reliability is the probability that 

a system will deliver its intended functionality and quality for a specified period of “time” and 

under specified conditions, given that the system was functioning properly at the start of this 

“time” period (Vouk, 2000). 

Structured models of reliability allow the reliability of a system to be derived from the 

reliabilities of its components, which are often easier to estimate or known before the system is 

even built (Littlewood and Strigini, 2000). Markov Models have been used successfully in 

numerous instances to specify and evaluate the reliability of systems. However, practical issues 

that stand in the way of developing such models include: (1) obtaining reliability data of 

components, (2) a simple model can capture limited interactions among components, (3) the need 

to estimate fault correlation between components, and (4) reliability depends on how the system 

is used, thus usage information is an important part of reliability evaluation. 

1.1 Motivation 

A complex system (like an embedded vehicle system) is composed of numerous components and 

the probability that the system survives (efficient or acceptable degraded operation) depends 

directly on each of the constituent components. The reliability analysis of a vehicle system can 

provide an understanding about the likelihood of failures occurring in the system and an increased 

insight to manufacturers about inherent “weaknesses.” (Jerath and Sheldon, 2001) 

                                                 
2 For example, the PEIT (Powertrain Equipped with Intelligent Technologies, IST-2000-29542) project has recently 
qualified for funding from the European Commission. The “X-by-wire” project objectives are to set up new 
technologies for powertrains to create a nearly “collision free” vehicle. Such a vehicle's powertrain will not only 
reactively cope with dangerous situations it will also be able to predict such a situation and thus prevent an accident 
(including failsafe intelligent energy management system for electric energy supply). See 
http://www.cordis.lu/ist/ka1/trans_tourism/projects/projects2.htm 
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If a system does not contain any redundancy – that is, if every component must function 

properly for the system to work – and if component failures are statistically independent, then the 

system reliability is simply the product of the component reliabilities. Furthermore, the failure 

rate of the system is the sum of the failure rates of the individual components (Siewiorek and 

Swarz, 1992). The assumption that failures occur independently (in a statistical sense) in 

hardware components is a widely used and often successful model for predicting the reliability of 

hardware devices. However, components generally interact with each other during operation, and 

a faulty component can affect the probability of failure of other components too (Balbo, 2000). 

Such failures are not coincident in the sense that they occur simultaneously, but in the fact that 

failure of one increases the probability of the failure of another.  

Another aspect of modeling failures occurring in the system is their severity. Severity of 

a failure is the impact it has on the operation of the system. It is closely related to the threat the 

problem poses, in functional terms, to the correct operation of the system (Vouk, 2000). Severity 

is an important candidate to weight the data used in reliability calculations and must be 

incorporated into the model to determine the probability that the system survives, including 

efficient or acceptable degraded operation. 

The reliability of a system also depends on its usage profile – users interact with the 

system in an intermittent fashion, resulting in operational workload profiles that alternate between 

periods of “Active” and “Passive” use. Reliability is concerned with the service that is actually 

delivered by the system as opposed to a system’s capacity to deliver such service (Meyer, 2000). 

Specifically, while considering usage profiles, faults need not necessarily cause failures since 

they can be repaired; failures occurring during “active” use of the system only should contribute 

to reliability calculations. 

In (Sheldon et al., 2000), the authors presented Stochastic Petri Net (SPN) models of a 

vehicle dynamic driving regulation (DDR) system. Subsystem representations of the Anti-lock 

Braking system (ABS), the Electronic Steering Assistance (ESA), the traction control (TC) and a 
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combined model were developed and analyzed for critical failures. In this paper, we focus on the 

Anti-lock Braking system and develop Stochastic Petri Net models to model the coincident 

failures of components, severity of failures and usage-profiles.  Naturally this is but one 

component of the total system and the issue of scalability of this approach is a subject for future 

work.  

1.2 Organization of Paper 

This paper focuses on understanding and modeling the likelihood of a failure in the Anti-lock 

braking system of a passenger vehicle. Section 2 briefly describes the structural and functional 

aspects of an Anti-lock Braking System (ABS) and the Petri Net approach to modeling. The 

challenges faced in modeling, and the tools and environment used for modeling and analysis are 

also described briefly.  

Section 3 presents the assumptions, SPN models and results for the Petri-nets modeling 

coincident failures and severity of failures in the ABS. The assumptions, SPN models and results 

for Petri-nets incorporating usage-profiles are presented in Section 4. Finally, the challenges 

faced in this study and the scope for future work are discussed in Section 5. 

2. System Description and Modeling Approach 

In this section, we briefly examine the structural composition of an Anti-lock Braking System and 

its functionality. Stochastic Petri Nets (SPNs) were used to model the system and the Stochastic 

Petri Net Package (SPNP) to analyze the models. The modeling and analysis approach is 

discussed later in this section. 

2.1  Anti-lock Braking System 

Anti-lock Braking System is an integrated part of the total braking system in a vehicle. Applying 

excessive pressure on the brake pedal, or panic slamming the brake pedal, can cause wheels to 

lock up and possibly send the vehicle careening into a terrifying skid. Excessive brake pedal 

pressure often occurs in an emergency or adverse situations, such as wet or icy roads (Kolsky, 
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1997). The ABS prevents wheel lockup during an emergency stop by modulating the brake 

pressure and permits the driver to maintain steering control while braking.  

The ABS consists of the following major components (Nice, 2001): 

• Wheel Speed Sensors: These measure wheel-speed and transmit information to an 

electronic control unit. 

• Electronic Control Unit (Controller): This receives information from the sensors, 

determines when a wheel is about to lock up and controls the hydraulic control unit. 

• Hydraulic Control Unit (Hydraulic Pump): This controls the pressure in the brake lines of 

the vehicle. 

• Valves: Valves are present in the brake line of each brake and are controlled by the 

hydraulic control unit to regulate the pressure in the brake lines. 

Figure 1 displays the top-level schematic of the system showing the interconnections 

between the components. Under braking, the electronic control unit (ECU) “reads” signals from 

electronic sensors monitoring wheel rotation. If a wheel’s rate of rotation suddenly decreases, the 
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ECU orders the hydraulic control unit (HCU) to reduce the line pressure to that wheel’s brake. 

Once the wheel resumes normal operation, the controls restore pressure to its brake. Depending 

on the system, this cycle of “pumping” can occur at up to 15 times per second. The result is that 

the tire slows down at the same rate as the car, with the brakes keeping the tires very near the 

point at which they will start to lock up. This gives the system the highest steering capability. 

Anti-lock braking systems use different schemes depending on the type of brake in use 

(Bosch, 1993): (1) Four channel, four sensor ABS – There is a speed sensor on all four wheels 

and a separate valve for all four wheels; (2) Three channel, three sensor ABS – There is a speed 

sensor and a valve for each of the front wheels with one speed sensor and valve for both rear 

wheels; (3) Two channel, two sensor ABS – There are two speed sensors and valves for each of 

the two rear wheels. In the model developed we assume a four channel four sensor ABS. The 

model can be easily modified to represent other ABS schemes.  

2.2  Modeling and Analysis using SPNs 

A powerful tool for modeling systems composed of several processes (such as a failure process 

and a repair process) is the Markov Model. Markov Models are a basic tool for both reliability 

and availability modeling. The two central concepts of this model are state and state transitions. 

The state of a system represents all that must be known to describe the system at that instant. For 

reliability models, each state represents a distinct combination of working and failed components. 

As time passes, the system goes from state to state as components fail and are repaired. These 

changes are called state transitions (Siewiorek and Swarz, 1992). 

Stochastic Petri Nets (SPN) can be used to generate the (large) underlying Markov chain 

automatically starting from a concise description of the system. In such cases the SPN provides a 

high level interface for the specification of the underlying Markov model. Petri Nets are a 

powerful tool for the description and the analysis of systems that exhibit concurrency, 

synchronization and conflicts. Stochastic Petri Nets in which the basic model is augmented with 

time specifications are commonly used to evaluate the performance and reliability of complex 
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systems (Balbo, 2001). Stochastic Reward nets (SRNs) are SPNs augmented with the ability to 

specify output measures as reward-based functions, for the evaluation of reliability for complex 

systems (Muppala et al., 1994). 

The graphical nature of SPNs lends itself to a more intuitive understanding of the 

system’s inner workings and allows one to understand dependencies better. This enables one to 

identify conflicts and address localities where the overall system performance is more 

significantly affected. However, there are many challenges that need to be overcome in order to 

develop a meaningful model. 

2.2.1 Challenges in modeling 

Since the system we study here is very complex, this prevents us from making a direct analysis. A 

series of abstraction steps are needed to obtain system measures from the real system. Initially the 

system model is created at an abstract level and the data collected from system measurements are 

used to parameterize the abstract model. In the second abstraction step the computational model 

is created which allows an easier and more efficient system analysis (Sheldon and Greiner, 1999). 

The key element therefore in our modeling approach was to identify the essential components of 

the system, the different ways in which they interact and introduce various assumptions. The 

details of the models developed and the assumptions made are discussed in Sections 3 and 4. 

Two distinct problems that arise while using SPNs are largeness and stiffness 

(Popstojanova and Trivedi, 2000). The size of a Markov Model for the evaluation of a system 

grows exponentially with the number of components in the system. If there are n components, the 

Markov Model may have up to 2n states. This causes the analysis to take a great deal of time. 

Stiffness is due to the different orders of magnitude between the rates of failure-related events in 

different components. An approximate solution can be obtained by decomposing the original 

model into smaller sub-models, solving the sub-models in isolation and then combining the 

solutions into the solution of the original model. This doesn’t work in our case, since we are 
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trying to model coincident failures and the original model cannot be decomposed into 

independent sub-models. 

2.2.2 Tool and Environment 

A number of tools for specification and analysis/simulation of stochastic processes exist 

today. Some of them are listed in Table 1. We described the models in CSPL (C-based Stochastic 

Petri net Language) and the stochastic analysis was carried out using SPNP (Stochastic Petri Net 

Package). SPNP is a versatile modeling tool which allows the specification of SPN reward 

models, the computation of steady state, transient, cumulative, time-averaged and “up-to-

absorption” measures and the sensitivities of these measures (Ciardo et al., 1993). SPNP allows 

the prediction of the Mean Time to Failure (MTTF) of a system. The MTTF of a system is the 

expected time of the first system failure given successful startup at time zero.  

Table 1: Overview of Stochastic Analysis/Simulation Tools 

Tool Description Features Environments 
Möbius A tool for building performance and 

dependability models of stochastic, 
discrete-event systems. 

Graphical Editor, Atomic and 
Composite Model, Analytic Solvers, 
Discrete Event Simulator, Multiple 
Modeling Formalisms 

Unix, 
MS Windows 

Moses An integrated, extendable tool suite for 
specifying concurrent systems with a range 
of modeling formalisms. High level Petri 
Nets, Stochastic Petri Nets and Petri Nets 
with time are supported 

Graphical Editor, Token Game 
Animation, Fast Simulation, User-
extendable 

Sun 
Linux 
MS Windows 
Java 

PACE A widely used object-oriented simulator-
development system based on high-level 
Petri nets with time modeling. 

Graphical Editor, Token Game 
Animation, Fast Simulation, Net 
Reductions, Fuzzy Modeling 

Sun 
MS Windows 

PEP A tool to model, simulate, analyze and 
verify parallel systems by combining Petri 
nets and Process algebras. 

Graphical Editor, Token Game 
Animation, Condensed State Spaces, 
Net Reductions, Structural Analysis, 
Model checking, Petri Net Generators 

Sun 
Linux 

SPNP A Petri Net tool based on GSPN-like 
formalism and Markov Reward Model. 

Reachability Graph Construction, 
Transient and Steady-state 
performance and performability 
analysis  

Unix 

UltraSAN A software package for model-based 
evaluation of systems represented as 
Stochastic Activity Networks. 

Graphical Editor, Steady-state and 
transient simulation, Reduced Base 
Model Construction, Analytical 
solution 

Sun, 
Unix 

 

The transient analysis duration of the models developed was deliberately conservative. 

The period covered 50,000 hours even though the average life span of a passenger vehicle ranges 
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from 3000 – 9000 hours.3 The models were solved using Version 6 of SPNP installed on a Sun 

Ultra 10 (400Mhz) with 500MB of memory (dedicated to solving the models). The models took 

approximately 5 days of continuous execution before converging to solution. This time may have 

been drastically reduced we believe had the Multi-level solution method been available within the 

SPNP package (Greiner and Horton, 1996).  

3. Modeling Coincident Failures and Severity 

The assumption that failures occur independently is a widely used and often successful model for 

predicting the reliability of hardware devices. However, components generally interact with each 

other during operation, and a faulty component can affect the probability of failure of other 

components too (Balbo, 2000).  Severity of a failure is the impact it has on the operation of the 

system and is an important candidate to weight the data used in reliability calculations. In this 

section, we describe the Petri net models developed to model coincident failures and severity of 

failures for the Anti-lock Braking System. 

3.1  Assumptions 

In order to allow a Markov chain analysis, the time to failure of all components is assumed to 

have an exponential distribution. This signifies that the distribution of the remaining life of a 

component does not depend on how long the component has been operating. The component does 

not “age” or it forgets how long it has been operating, and its eventual breakdown is the result of 

some suddenly appearing failure, not of gradual deterioration (Trivedi, 1982). While this might be 

true for electronic components, the failure of other mechanical parts like valves might occur due 

to gradual deterioration. However, mechanical parts are generally replaced at regular intervals 

and essentially can be assumed not to age for our purposes. Hence, the assumption of an 

exponential distribution of failures for all components is justified. This assumption carries over to 

the models representing Usage-Profiles as well, as discussed in Section 4.1. 

                                                 
3 Essentially the average hours of operation for a passenger vehicle per year range from 300-600 hours/year 
and the average lifetime is 10-15 years. 
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To consider the severity of failures, every component is assumed to operate in three 

modes: normal operation, degraded operation or causing loss of stability. The system is assumed 

to fail when more than five components function in a degraded state or, more than three 

components cause loss of stability; or the failure of an important component causes the loss of the 

vehicle. A component operating in a degraded condition causes its failure rate to increase by two 

orders of magnitude, while a component causing loss of stability causes the failure rate to 

increase by four orders of magnitude. The correlation between failure rates of two “related” 

components (to model coincident failures) is consistent with the above scheme. 

Since the model is an abstraction of a real world problem, predictions based on the model 

must be validated against actual measurements collected from the real phenomena. A poor 

validation may suggest modifications to the original model (Trivedi, 1982). 

3.2 Model 

The ABS is represented as a 

combination of all the important 

components it consists of, as shown in 

Figure 2. It represents the operation of 

the ABS under normal, degraded and 

lost stability conditions. Loss of 

vehicle, extreme degraded operation 

and extreme loss of stability signify 

critical failures and determine the 

halting condition for the model. The 

model is instantiated with a single token in the start place. When the central_op and the axle_op 

transitions fire, a token is deposited in each place that represents a component of the ABS. The 

operation of each component is now independent of every other component (except where 

 

start

braking

axlecentral

central_op axle_op

mbrakecyl controller tubing piping
FLWheel

FRWheel RRWheelRLWheelaxleCentral

loss_of_vehicleloss_of_stabilitydegraded_operation

Figure 2: The ABS Model 
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coincident failures are modeled explicitly). The model of a component of the ABS is shown in 

Figure 3. 

The component depicted here is the 

controller. Every component either functions 

“normally” as shown by the controllerOp 

transition or “fails” as shown by the 

controllerFail transition. A failed component 

may either cause degraded operation, loss of 

stability or loss of vehicle. The probability of 

any one of these three transitions occurring is 

different for each component. When the failure 

causes either degraded operation or loss of 

stability, the component continues to operate, though the failure rate increases by two and four 

orders of magnitude respectively.  

Coincident failures are modeled in a similar manner. The rule for calculating failure rates 

is shown in Figure 4. The failure of a component 

A to a degraded mode causes the failure rate of a 

“related” component B to increase by two orders 

of magnitude. The failure of component A to a 

lost stability mode causes the failure rate of a 

“related” component B to increase by four orders of magnitude.    

The function that calculates the failure rate of the transition controllerFail is shown in 

Figure 5. It is assumed that tubing malfunction affects the operation of the controller. Hence, 

while calculating the failure rate of the controller, the normal rate is increased by two orders of 

magnitude if the tubing has failed causing degraded operation (indicated by a token in the 

tubingDegraded place).  

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS

degraded_operation loss_of_stability loss_of_vehicle

Figure 3: The SPN Model of a component 

function failureRateForB() 
{ 
        // other calculations for severity of failure 
 
        // coincident failures 

if failedA(degraded) then 
failureB = failureB * 100; 

else if failedA(loss of stability) then 
failureB = failureB * 10000; 

} 

Figure 4: Rule for failure rates 
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Only a few coincident 

failures have been represented in the 

model. However, coincident failures 

between other components can be 

easily modeled by suitably 

modifying the failure rate function of the component in question using the rule shown in Figure 4. 

The model is easily extensible to include other components deemed relevant to the ABS. 

3.3 Results and Discussion 

The Stochastic Petri Net Package (SPNP) allows the computation of steady state, transient, 

cumulative, time-averaged, “up-to-absorption” measures and sensitivities of these measures. 

Steady-state analysis of SRNs is often adequate to study the performance of a system, but time-

dependent behavior is sometimes of greater interest: instantaneous availability, interval 

availability, reliability, response time distribution, and computational availability. The reliability 

of the system at time t 

is computed as the 

expected 

instantaneous reward 

rate at time t 

(Muppala et al., 

1994).  

Transient 

analysis of the ABS 

model was carried out 

and the reliability was 

measured between 0 and 50K hours. The expected values of reliability at various time instances 

were determined and plotted as a function of time. The measure was predicted at 169 different 

double controllerRate() 
{ 
       double controller_rate = 0.0000006; 
 
       if (mark("controllerLOS") > 0) return controller_rate * 10000; 
       if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0)) 
 return controller_rate * 100; 
       return controller_rate; 
} 

Figure 5: Variable rate to model coincident failures
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points along the range. The interval between the points did not remain constant along the entire 

time range; instead the time range was divided into four segments. Each of these segments has a 

different time interval. 

In Figure 6, the Y-axis gives the measure of interest - the reliability; while the time range 

(0 to 50K hours) is shown along the X-axis. The shape of the curve is not a property of the system 

but of how the data was collected from the Petri net model. As expected, the reliability steadily 

decreases with time. The blue line indicates the reliability function when coincident failures are 

modeled and the pink line indicates the reliability function when coincident failures are not 

modeled. For the limited number of coincident failures that were modeled, it is clear that the 

Mean Time to Failure (MTTF) for the model with coincident failures (784,856.4 hrs) is 

approximately 421 hours less than the model without coincident failures (785,277.6 hrs). 

Figure 7 

displays the 

difference between 

the two reliability 

functions more 

subtly. The 

reliability functions 

diverge starting 

around 350 hours of 

operation, and the 

difference becomes 

discernible after 

around 13K hours of operation. The difference continues to increase with time. It is significant to 

note that the difference in Mean Time To Failure between the two cases becomes marked only 

beyond the average lifetime of the vehicle. For the limited number of coincident failures that have 

Difference in reliabililty functions

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0
30

0
60

0
90

0
16

00
28

00
40

00
52

00
64

00
76

00
88

00
10

00
0
11

50
0
13

30
0
15

10
0
16

90
0
18

70
0
20

50
0
22

30
0
24

10
0
26

00
0
29

00
0
32

00
0
35

00
0
38

00
0
41

00
0
44

00
0
47

00
0
50

00
0

Time (in hours)

D
iff

er
en

ce

 
Figure 7: Difference in reliability functions 



15 

been modeled, the difference of 421 hours in the two cases is considered well within the 

confidence interval. However, it is evident that the model representing the coincident failures 

predicts the system reliability closer to the real picture. 

4. Modeling Usage-Profiles 

A software-based product’s reliability depends on just how a customer will use it. The operational 

profile – quantitative characterization of how a system will be used – is essential in software 

reliability engineering (Musa, 1993). The same basic concept can be extended and applied for 

predicting the system reliability. We extend the idea of operational profiles – considering the use 

of a software system during testing; into usage profiles – the usage of the system (hardware and 

software) for modeling and reliability analysis. Reliability is concerned with the service that is 

actually delivered by the system as opposed to the system’s capacity to deliver such service. The 

usage profile considers the intermittent use of a system – alternate periods of active and passive 

use. Such intermittent use influences the mean time to failure and reliability of the system 

(Meyer, 2000). In this section, we describe the Petri net models developed to model usage-

profiles for the Anti-lock Braking System. 

4.1  Assumptions 

Unlike traditional reliability models where repair of components is not considered, when 

considering intermittent use it is important to note that faults need not necessarily cause failures. 

Faults occurring only during the active use cause failures while those occurring during passive 

use can be repaired. Hence repair can affect reliability calculations. For simplicity, we assume an 

infinite repair rate of all components. 

Further, in order to comprehend the significance of intermittent use on reliability, we 

assume two usage-profiles exceedingly different in degree. The first profile models sparse use of 

the Anti-lock Braking System e.g. a driver who is extremely cautious while driving the vehicle 

(longer periods of passive use). The second usage profile models dense use of the anti-lock 
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braking system e.g. a driver in perilous conditions like driving over ice (frequent active use 

periods).  

Again, for simplicity and to allow Markovian analysis, the active period duration is 

assumed to be exponentially distributed, as are the failure rates of the components. The second 

usage-profile is assumed to have a rate two orders of magnitude greater than the first usage 

profile. In order to work around the stiffness problem in Petri nets caused by the difference in 

magnitude between the failure rates of the components and the active period duration distribution 

rates, the duration distribution rates are assumed to be factored by the failure rates of individual 

components. 

4.2 Model 

In order to incorporate the usage-profiles 

scenario in the ABS model, the model of 

each individual component as depicted in 

Figure 3 could be extended as shown in 

Figure 8. The figure again shows the 

controller component with the additions to 

the model marked in red. In case of a failure 

(failedController) one determines whether 

the system was in active use or not. The 

parameter 1/mu indicates the mean duration 

of active use while the parameter 1/alpha indicates the mean duration of passive use.  

In case the failure occurs during the active period (inUseController), the system either 

continues to operate in the degraded (controllerDegradedOp) or lost stability mode 

(controllerLOSOp) or causes loss of vehicle (controllerLOVOp) – the severity of failure as 

described in Section 3. In case the failure occurs during passive use of the system 

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS

degraded_operation
loss_of_stability loss_of_vehicle

inUseController repairableController

alphamu

repair

 
Figure 8: SPN model with Usage parameters 
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(repairableController), the fault can be repaired and an infinite repair rate is assumed. The 

system continues to operate as if no failure had occurred. 

To work around the 

state explosion problem that 

occurred due the apparent 

increase in the number of states 

in the model as shown in Figure 

9, the model was simplified to 

incorporate the usage parameters while calculating the failure rate itself for each component. The 

modified function for calculating the failure rate in light of the usage-profile is shown in Figure 9. 

The value of mu was assumed to be 2.5 for infrequent active use periods and 250 for frequent 

active use periods. As stated in the assumptions and shown in Figure 9, the value of these usage 

distributions was factored by the actual failure rate of the component to avoid stiffness in the 

model. 

4.3  Results and Discussion 

Transient analysis of the ABS model developed was carried out and the reliability was measured 

between 0 and 50K hours. The expected values of reliability at various time instances and 

different usage profiles was determined and plotted as a function of time. Again, the measure was 

predicted at 169 different points along the range. The interval between the points did not remain 

constant along the entire time range; instead the time range was divided into four segments. Each 

of these segments has a different time interval. The results are depicted in Figure 10. 

In Figure 10, the Y-axis gives the measure of interest - the reliability; while the time 

range (0 to 50K hours) is shown along the X-axis. The shape of the curve is not a property of the 

system but of how the data was collected from the Petri net model. As expected, the reliability 

steadily decreases with time. The blue line indicates the reliability function when the usage of the 

system is infrequent and the pink line indicates the reliability function when the usage of the 

double controllerRate() 
{ 
 double controller_rate = 0.0000006; 
 
 // usage parameter 
 controller_rate += controller_rate * mu(); 
 
 if (mark("controllerLOS") > 0) return controller_rate * 100; 
 if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0))
  return controller_rate * 100; 
 return controller_rate; 
} 

Figure 9: Variable rate to model usage parameter 
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system is frequent. Interestingly, the reliability of the system with heavy usage decreases 

alarmingly within the 

first 1K hours of 

operation, while the 

reliability of the 

system with not so 

heavy usage decreases 

perceptibly only after 

2.5K hours of 

operation and then 

steadily afterwards. 

Also, the mean time 

to failure (MTTF) for the high usage case is 771022.9 hours as opposed to 775111.7 hours for the 

low usage case, a difference of approximately 4089 hours.  

An important fact to consider is that some components are used only for a few minutes 

during the entire lifetime of the vehicle (10-15 years) while other components like the tubing are 

used all of the time during that period. Hence, the usage of different components is different even 

within a given usage profile and might affect the actual reliability. However, what is important is 

the approach we used and the results clearly indicate that it is important to consider the usage 

profiles while determining the reliability for any given system. 

5. Conclusion and Future Work 

In this paper, we have shown how to model coincident failures, severity and usage-profiles in the 

Anti-lock Braking system of a passenger vehicle using Stochastic Reward Nets. To specify and 

analyze the system, we made some simplifying assumptions in order to manage the complexity of 

the system being modeled apart from handling the general challenges in the modeling like state 

explosion and stiffness. The Stochastic Petri Net models were developed for a four channel four 

Reliability Analysis with Usage Profiles
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sensor ABS. The model, however, is easily extensible to model other schemes of ABS. Other 

coincident failures between components can be easily modeled by suitably modifying the failure 

rate function of the component in question. Similarly, other profiles with different usage 

parameters can be easily incorporated and analyzed. SPNP was used to specify the system and 

carry out the reliability analysis. 

Modifications to the model can be carried out with the goal of predicting the behavior of the 

system. Parts of the model can be removed or changed in an effort to investigate the cause and 

effects of proposed enhancements or adaptations. Refining the system model can reveal trade-offs 

in design alternatives such as deciding what features of the system should be changed to improve 

the system’s reliability or validating certain assumptions with respect to various performance 

goals. Once a system is validated, it may be used to perform sensitivity analysis, which can be 

used to support or discredit the modeling assumptions and analysis conclusions (Sheldon et al., 

2002). 

A major obstacle in modeling using SPNs was the persistent state explosion problem. 

This caused the programs to abort due to insufficient memory while solving the Markov chains. 

Stochastic Activity Networks (SANs) (Sanders and Meyer, 2001) are a stochastic extension to 

SPNs and are used for performability evaluation. Composed models in SANs exploit symmetries 

in the model to reduce the number of reachable states. Since, SANs are a more expressive tool for 

modeling systems, the goal is to develop SAN models for the Anti-lock braking system. The 

models can be specified and analyzed using UltraSAN, a software tool for model-based 

performance, dependability and performability evaluation of computer, communication and other 

systems (Sanders, 1994-95). The goal of future work is to specify SAN models for the Anti-lock 

braking system, analyze them using UltraSAN and compare the results obtained for SPN models. 
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Further, the Anti-lock Braking 

system is a small part of the DDR (Dynamic 

Driving Regulation) system. Figure 11 

shows the Finite State Machine 

representation of the DDR system which 

consists of subsystems like the Anti-lock 

Braking system (ABS), the Electronic 

Steering Assistance (ESA), the traction 

control (TC) (Sheldon et al., 2000). Another 

goal is to develop a model that scales well 

for the combined system with emphasis on 

representing coincident failures, severity of 

failures and usage-profiles and analyze it for critical failures. 
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