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Abstract

Formal methods such as CSP (Communicating Sequential Processes) are widely used for

reasoning about concurrency, communication, safety and liveness issues.  Some of these models

have been extended to permit reasoning about real-time constraints.  Yet, the research in formal

specification and verification of complex systems has often ignored the specification of

stochastic properties of the system under study.  We are developing methods and tools to permit

stochastic analyses of CSP-based specifications.  Our basic objective is to evaluate candidate

design specifications by converting formal systems descriptions into the information needed for

analysis.  In doing so, we translate a CSP-based specification into a Petri net which is analyzed

to predict system behavior in terms of reliability and performability as a function of observable

parameters (e.g., topology, fault-tolerance, deadlines, communications and failure categories).

This process can give insight into further refinements of the original specification (i.e., identify

potential failure processes and recovery actions).  Relating the parameters needed for

performability analysis to user level specifications is essential for realizing systems that meet

user needs in terms of cost, functionality, and other non-functional requirements.

An example translation is given (in addition, some general examples of CSP -> Petri net

translations can be viewed in Appendix A).  Based on this translation, we report both the discrete

and continuous time Markovian analysis which provides reliability predictions for the candidate

specification.  The term "CSP-based" is used here to distinguish between the notation of Hoare's

original CSP and our textual representations which are similar to occum.  Our CSP-based

grammar does not restrict consideration of the properties of CSP (traces, refusal sets, livelock,

etc.), but we are not considering those properties.  We are only interested that the structural

properties are preserved.  We define performability as a measure of the system's ability in

meeting deadlines, in the presence of failures and variance in task execution times.
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1. INTRODUCTION

Computers are increasingly used in every day life in today's society.  These systems are

monitoring and controlling complex and safety critical systems.  It has been supposed that

formal, mathematically precise methods should be used to design such systems.  Indeed, formal

specification of real-time systems has been the subject of intensive investigation over the past

several years.  See [Ostroff 92] for a survey of some of the formal approaches to the specification

and reasoning about time.  The research in formal methods, however, has often ignored the

specification of stochastic properties of the system.  While detailed analyses require a clear

understanding of the implementation (hardware/software failure modes, failure distributions,

service distributions, workload, etc.), the cost of providing real-time guarantees, and the desired

level of reliability or performance should be related to user level specifications, even if only in

terms of upper and lower bounds.

Real-time systems are characterized as those where correctness depends not only on the

logical computation being performed, but also on the time at which the results are produced.

Thus, for real-time systems, failures may be hardware related, software related, communications

related, or due to a missed deadline (i.e., timing failure).  Hard real-time systems can not tolerate

missed deadlines.  Therefore, tasks must be scheduled based on accurate worst-case execution

time estimates which effectively leads to inefficient use of resources.  This is problematic when

the worst case behavior is rare.  In soft real-time systems missed deadlines can be tolerated and

worst case execution time bounds are not necessary (in most cases).  Predicting how a system

tolerates missed deadlines is a matter of performability.  Performability is the probability that all

tasks in the system will complete by a specified deadline and it can be improved by adding in

slack time.  Slack time is usually based on average case execution time (or some estimate to that

effect).  Slack is the extra time added to the average case time so that the system may tolerate the

failure of some tasks to complete within their assigned execution times.  Adding more slack time

improves the chances that the system will not miss any deadlines.  Thus, we can trade-off the

guarantee of meeting all deadlines with the cost of such guarantees (in terms of expending



excessive amounts of processing resources).  Moreover, for the type of real-time considered here,

the system must also tolerate hardware, software and communication failures.  Therefore, task

deadlines must be planned to account for the possibility of re-executing tasks and/or migration of

tasks from failed units, in addition to other possible delays.  We use a simple model of

performability to determine the probability that the system will meet its deadlines in the presence

of hardware and software failures.4

Stochastic Petri-nets and discrete event simulations are typically used to analyze complex

distributed processing systems in terms of performance and reliability.  Numerous tools have

been developed for stochastic analysis of Petri nets (e.g., GSPN [Marsan 89], GreatSPN [Chiola

85], SPNP [Ciardo 89], [Geist 90]).  Petri nets however, are not very suitable for reasoning about

the functional correctness of a system.  Although there have been extensions to Petri nets to

permit such specification and verification, they have not gained popularity (e.g., predicate

transition nets [Genrich 86, Vautherin 87]).

We have developed an initial set of rules for translating CSP (Communicating Sequential

Processes) specifications into Petri nets [Kavi 93].  A translation is demonstrated here by a

simple example that includes: (1) identifying system failure modes by inspecting the Petri nets

(including failure to meet task deadlines), (2) identifying how failures can be handled, (3)

specifying the appropriate fault handling mechanism (e.g., additional synchronization, time-out-

retransmit) back at the CSP level (to be examined by the user/specifier), and (4) analysis of the

Petri nets for reliability/performability based on failure probability estimates.

Section 2 introduces our performability model, and Section 3 describes the significant

aspects of CSP and Stochastic Petri nets with respect to specification analysis.  Finally, in

Section 4 we illustrate how the CSP specifications are analyzed in terms of performability.

2. PERFORMABILITY OF REAL-TIME SYSTEMS

In addition to the traditional reliability and performance measures (e.g., MTBF, reliability,

availability, throughput), we introduce a performability measure in our research.  The term

                                                
4 Thus, performability in our work involves more than just failure to meet deadlines.



performability was first introduced by Meyer to combine performance and reliability analyses of

fault-tolerant systems [Meyer 79].  Informally, performability can be defined as the probability

that a system performs at different levels of "accomplishment."  Markov processes often are used

to estimate the probability that a system is in one of several "capacity" states [Gay 79].  Chou

and Abraham [Chou 80] provided an availability model for gracefully degraded systems with

critically shared resources.  However, these models did not include failure to meet deadlines.

In this paper we define performability of real-time systems as the probability that the set of

tasks comprising the real-time system will complete their execution successfully by the deadline

defined for the system [Kavi 94].  This definition permits the inclusion of accomplishment levels

and  graceful degradation.  The failure of a task to successfully complete within its allocated time

may be due to the following reasons.

• For a particular instance the input data required longer execution time.

• Due to failures, the task had to be re-executed, migrated and restarted.

• The task was delayed (hence missed the deadline) due to the failure of a preceding

task to successfully complete.

We assume that tasks take different amounts of time to complete their execution for

different input data, and the actual execution time for a specific run is described by a probability

distribution Ei (Figure 1).5  Such a task profile can be used to estimate execution time.  In hard
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Figure 1 Execution Profile of a Task Ji.

                                                
5 Researchers are actively developing methods to estimate task execution times and designing languages that
facilitate execution time prediction (e.g., based on instruction counts and maximum number of loop iterations).
These approaches are within the scope of our model.  Figure 1 can be viewed as an empirical derivation of task
execution times using actual execution time measurements (or based on instruction counts and loop iteration
counts).



real-time systems, one would use Tmax as the execution time estimate.  In less stringent cases,

one would use the p percentile execution time (i.e., the task will complete execution with

probability p).  Let us denote this estimated execution time for task Ji as ti time units.  Typically,

deadlines Di along with task execution time estimates ti are used by scheduling algorithms (e.g.,

least-laxity-first, earliest deadline first) [Stankovic 88].  The performability of a real-time system

given a set of tasks can be computed based on the execution profile of each individual task (see

Figure 1), and the scheduling interdependencies among them.

It is possible to apply traditional stochastic processes to obtain an analytical solution to the

performability of a soft real-time system that incorporates hardware/software failures and timing

failures.  However, it would be more useful to a real-time system designer if a tool were

provided that can incorporate empirical data or that can simulate the various task execution times

in the presence of injected hardware or software failures.  Such a tool can be used to determine

the temporal redundancy needed to achieve a desired level of performability.6   In section 4, this

approach is shown by varying task execution times to see the effect on system reliability.

3. FORMALISMS FOR SPECIFICATION AND ANALYSIS: CSP AND PETRI NETS

This section briefly introduces CSP and Petri nets and shows how CSP specifications can be

translated into Petri nets for the purpose of stochastic (i.e., performability) analysis.

3.1. Communicating Sequential Processes

The CSP model was developed by Hoare and later extended by Olderog ([Hoare 85], [Olderog

86]).  A program in CSP consists of n > 1 communicating processes; this is normally represented

using the parallel composition operator (||), which is associative: P = {P1 || P2 || .....|| Pn}.

Processes are assumed to have a disjoint set of variables (or local symbols).  Processes

communicate synchronously by sending and receiving messages: the sending and receiving

actions (or events) are indicated using the input (?) and output (!) actions.  Pi?x is the action of

receiving a value sent by process Pi (or received on a channel Pi) into variable x.  Pj!

                                                
6 The design and implementation of the essential parts of our performability evaluation tool is complete.  This
implementation is being extended to consider different fault-tolerance strategies and evaluate their significance in
achieving performability objectives.



<expression> describes the action of sending the value of the expression to Pj (or sending on a

channel Pi).  Synchronization is accomplished by using complementary input and output

commands in the two communicating processes (or using the same channel for input and output

actions).  Communication can be made selective by providing guards, where one of the

alternative communication actions with a satisfied guard is selected.  A guarded command has

the general syntax of the form <guard> → <command list>.  A command list is a set of

commands defining a sequence of actions, alternative actions based on either deterministic or

non-deterministic choice, recursive actions, or a STOP action.  STOP terminates (or deadlocks) a

process.  The following summarizes CSP syntax:

P ::= STOP | (a → P) . (P\b) . (P  Q) . (P  Q) . ( P b Q) . (P; Q) . (µx • P)

In CSP, capitalized names are used for process names, and lower case characters are used

to denote visible actions.  Here, (a → P) means, action 'a' followed by P, (P\b) is the same as P

except action b is hidden, (P Q) represents a non-deterministic choice between P and Q, (P Q)

represents a deterministic choice between P and Q, ( P bQ) shows concurrent processes P and Q

that synchronize on action b, (P; Q) a sequence between P and Q, (µx • P) is used for recursion.

The quality of the reliability/performance analysis relies on the fidelity of the translation from

CSP to Petri nets which is a semantic question.  However, a detailed definition of CSP semantics

is beyond the scope of the present paper and is unnecessary.  Thus, we focus only on the

structural aspects of CSP and give a simple example to illustrate such.

3.1.1. The CSP for a Railroad Crossing.

In this example, a railroad crossing intersection is specified.7  The system to be developed

operates a gate at a railroad crossing and is presented in the form of a Petri net in Figure 2.  This

problem presents two basic properties that the system must satisfy: (1) safety property – the gate

is down during all occupancy intervals, (2) utility property – the gate is open when no train is in

the crossing.  This model encompasses the environment which includes the train(s) and the gate,

                                                
7 A commonly used specification of the Railroad crossing uses three tasks, the Train, the Gate and the Controller
[Heitmeyer 93, 94].  We are using a simplified version of this to illustrate our method.  We assume only one train
enters the intersection repeatedly.



as well as the interface between them.  Thus, the gate closes when a train arrives at the

intersection and remains closed until the train passes the intersection.  Although the problem

statement can be extended to handle multiple trains, only one train is specified here.

TRAIN = (IN_TRANSIT);
(GATE ! a → AT_INTERSECTION);
(GATE ! d → TRAIN)

GATE = (TRAIN ? a → CLOSE);
(TRAIN ? d → OPEN → GATE)

RAIL_ROAD_CROSSING = TRAIN {a,d} GATE

This specification shows two concurrent processes, the TRAIN and the GATE

communicating via two activities, "a" and "d."  The TRAIN outputs "a" (arriving) to the GATE

as it approaches the intersection; proceeds through the intersection and outputs a "d" (departing)

to the GATE as it leaves the intersection and then continues to behave as a TRAIN.  The GATE

process receives an "a" from the TRAIN, closes the gate, waits for an input of "d" from the

TRAIN before opening the gate and then behaves like a GATE.  A few comments about the CSP

specification are in order.  The original CSP did not permit specification of time with actions,

although some recent extensions to CSP permit the association of time with actions [Ostroff 92].

A careful examination reveals that the TRAIN process could enter the intersection

(AT_INTERSECTION) before the gate closes which leads to unsafe behavior.  This can be

eliminated by requiring the train to wait until the gate sends a message to the train as shown in

¶3.3.1, Figure 3.  For the purpose of illustrating our performability model, we will not require

such a synchronization.  Likewise, the train may depart while the gate is still closed which can be

viewed as non-critical behavior.  If however, a new train enters the state of being IN_TRANSIT

before the GATE has completely opened such behavior is deemed as non-critical failure

behavior.  Such erroneous behavior is characterized in Figure 4 (see the Mnctf markings).

For the purpose of performability analyses, we associate execution profiles with CSP

processes.  For example, we associate an execution profile with the gate CLOSing process and



with the train's IN_TRANSIT process.8  We also associate execution times with the sending and

receiving actions (i.e., it is possible to permit time-out and re-transmit actions specified at the

CSP level).  Likewise, other fault handling actions can be related to the CSP specification.  The

Petri net equivalent reveals these flaws more readily (compare Figures 2 and 3).

3.2. Stochastic Petri Nets.

The Petri net was originally due to Carl Petri.  This abstract model has received considerable

interest from researchers in concurrent processing, reliability, performance analyses, real-time

specifications, and software specifications.  There are numerous extensions to the original Petri

net definition, which are embodied in tools to permit various analyses of systems using a Petri

net model [Murata 89].  In its simplest form, a Petri net is a directed bipartite graph, where the

two types of nodes are known as places (shown as circles) and transitions (shown as bars).

Places normally represent events while transitions represent actions.  A transition is enabled if all

its inputs contain at least one token (shown as dark circles inside places).  Completion of the

action defined by a transition causes a token to be assigned to each of its output places.  When a

place is the input to more than one transition, only one of the transitions is enabled based on a

non-deterministic choice.  The state of a Petri net is indicated by the number and location of

tokens in places (known as a marking), and as transitions are enabled, the state of the Petri net

moves from marking to marking.  The complete set of markings of a Petri net can be obtained

using reachability algorithms.9  When a Petri net is restricted to contain at most one token in a

place (or a finite number of tokens, say k), such a Petri net is known as a safe net (or k-safe).

These initial concepts have been extended to permit probabilistic choices on the outputs of

a place, inhibitor arcs to transitions (i.e., a transition is enabled in the absence of a token at its

input place and such arcs can model zero testing), as well as the association of time and

distributions with either places or transitions.  We'll use the stochastic Petri nets that permit us to

associate various probability distributions with transitions to model system performability and

                                                
8 We will use these execution profiles of tasks to derive the probability that the gate's CLOSEing process meets its
deadline (i.e., the gate closes before the train arrives at the intersection).
9For example, SPNP mentioned in ¶1, employs such algorithms.



reliability.  A stochastic Petri net (SPN) is a Petri net where each transition is associated with

random variables that expresses either the delay from the enabling to the firing of the transition

or the failure of that transition.  When multiple transitions are enabled, the transition with a

minimum delay fires first.  When the random variables are exponential, the markings of the

stochastic Petri net are isomorphic to the states of a finite Markov chain.  The transition rate from

state Mi to Mj = qij is given by qij = λi1 + λi2 + . . .+λim where λik is the delay in firing a

transition tk which takes the Petri net from marking Mi to Mj (when more than one transition can

cause the transition from Mi to Mj) or the failure of the transition tk.  The performability and

reliability analyses of the system represented by the Petri net can be achieved by using the

equivalent Markov process.

3.3. Mapping of CSP-Level Specifications into Petri Nets.

An initial set of rules for translating CSP specifications into Petri nets has been developed (see

Appendix A) [Kavi 93].  The translation relies on the fact that CSP specifications are based on

processes moving from (event) action to (event) action.  The activities enabling actions of

processes can be viewed as the events represented by places in a Petri net, while the actions can

be viewed as transitions in a Petri net.10   Although we have not formally verified an

isomorphism between our CSP and Petri net models, we have developed a set of rules for

transforming a majority of the CSP process structures and compositions.  Nevertheless, the Petri

net equivalent of a CSP specification need not be unique, because of the need to introduce

dummy places or transitions in Petri nets to maintain its bipartite nature.11  The dummy places

and dummy transitions are important for connecting (or composing) the resultant CSP process

structures (e.g., forking and joining) and do not affect the timeliness aspects of the analysis.

Our goal is to demonstrate the feasibility of translating between CSP and Petri nets so that

stochastic properties can be specified at the CSP level, and analyzed using stochastic Petri nets.
                                                
10 In modeling (see [Murata 89], page 542), using the concept of conditions and events, places represent conditions,
and transitions represent events.  A transition has a certain number of input places and output places representing the
preconditions and post-conditions of an event.  Using the notion in CSP of event-action pairings we have assumed a
slightly different abstraction where the conditions are the events that cause actions (transitions) to take place.
11 We believe, however, that it is possible to reduce different Petri net equivalents into a canonical form.  We are
developing the necessary rules to produce canonical Petri net representations of CSP specifications.



Some example translations between CSP specifications and Petri nets are shown in Appendix A.

Using these examples, we have converted the CSP example of ¶3.1.1 into a Petri net.

3.3.1. Petri Net for the Train Crossing Example.

The railroad crossing described in ¶3.1.1 is presented in Figure 2 in the form of a Petri net.  Our

model consists of two tasks which operate independently (in parallel) and must communicate to

coordinate closing the gate when the train nears the crossing.  The gate must remain closed at all

times while the train occupies the crossing (any violation is a safety critical failure).

Train = (In_Transit);
 (Gate ! a → At_Intersection);
 (Gate ! d → Train)
Gate =  (Train ? a → Close);
 (Train? d → Open → Gate)
Rail_Road_Crossing = Train    {a,d} Gate

TRAIN

In_Transit

At_Intersection

!  a

!  d Open

? a

Train sends message
that it will be arriving
at the intersection.

Train sends message
that it is departing
from the intersection.

t1

t2

t3

t4

t5

t8

Train gone Gate open

Msg rcv'd
gate open

Msg rcv'd
gate
closed

Train
approaching

Train in transit

Train passing
intersection

Msg sent
but not
rcv'd

Msg sent
but not
rcv'd

? d

t6

t7

Gate
closed

Closed

GATE

P1

P3

P4

P2

P7

P10

P8

P9

P5

P6

Figure 2. Train Crossing with Potential Hazard.

Though the Petri net of Figure 2 easily satisfies the CSP specification of ¶3.1.1, careful

scrutiny reveals a flaw.  In fact, the flaw is easily more visible (by inspection) in the Petri net

than in the CSP specification.  This flaw is safety critical because the TRAIN process could enter

the intersection (AT_INTERSECTION) before the gate closes which may cause detrimental

results.  A timing failure such as this will occur if the gate doesn't meet its "closed" deadline.  In

other words, by stepping through each of the feasible markings of the Petri net we were able to



expose a weakness in the system's real-time constraints.12  This timing hazard can be eliminated

by requiring a real-time deadline guarantee at the gate mechanism level.  In other words, we

must require the gate be closed by the time it takes the train to arrive at the intersection after

sending the "arriving" signal.  Another way of avoiding this hazard is to redesign the system

such that the TRAIN process will wait until the GATE process completes closing the gate.  The

Petri net of Figure 3 shows one possible way of implementing such a guarantee.  This solution

adds an additional synchronization point which, barring a communication failure, gives

permission to the TRAIN to proceed by sending a message that says in effect: the gate has

completely closed and its safe to proceed  (i.e., GATE sends an "OK" signal to the TRAIN).

One drawback is that a failure in any of the communication related actions may lead to a

deadlock.  In addition, failure

                                                
12 This does not say that such constraints could not be detected at the CSP level, just that in general such constraints
are more easily validated at the Petri net level.



Train sends message that it will
be arriving at the intersection.

Gate sends message that it has
completely closed (train cannot
proceed into the intersection
until this occurs).

Train = (In_Transit);
 (Gate ! a → Gate ? ok → At_Intersection);
 (Gate ! d → Train)
Gate =  (Train ? a → Close → Train ! ok);
 (Train ? d → Open → Gate)
Safer_Rail_Road_Crossing = Train    {a,d} Gate

TRAIN

In_Transit

At_Intersection

!  a

!  ok

? at1

t2

t3

t4

t6

t9

Train gone Gate open

Msg rcv'd
gate open

Msg rcv'd
gate
closed

Train
approaching

Train in transit

Train passing
intersection

? ok

t7

t8

Gate
closed

Close

GATE

P1

P3

P4

P2

P9

P12

P10

P11

P6

P8

!  d
t5

P5

Open
t10

P13

? d

P7

Train sends message that it will
be departing from the intersection.

Figure 3. Train Crossing with Hazard Eliminated.

to OPEN the gate is not safety critical, yet should be avoided to maintain the system's utility

property (i.e., prevent congestion of the associated infrastructure, traffic, etc.).  Also notice that

Figure 3 contains the CSP that corresponds to the "safer railroad crossing," which is an important

improvement to the original specification.

The performability of the original system can be improved by giving more "slack" time to

the GATE process, and is achieved by having the TRAIN process send the "arriving" signal

sooner.  In ¶4.2.1 we analyze the reliability of the original CSP specification (from ¶3.1.1 based

on the hazardous  Petri net of Figure 2) under various failure modes.  And, in ¶4.2.2 we analyze

the performability of the same by changing the slack time.

4. SPECIFICATION OF STOCHASTIC PROPERTIES



One of the major objectives of this research is to provide assistance to the user in

specifying not only functionality but also reliability, performance and execution deadlines.  In

doing so, we demonstrate the idea of modeling stochastic aspects and relating them back to the

original CSP specifications.  This approach is concerned only with translating the specification's

structural properties as needed, and not all aspects of a CSP specification.  The benefit, as we

have presented in Section 3 (which is perhaps an oversimplified case), is in determining how the

equivalent Petri net (PN) can elucidate the need to strengthen structural characteristics by adding

(or possibly deleting) control structure(s) (e.g., synchronization points, redundancy, etc.).

Figures 2 and 3 illustrate the case where, in order to avoid a safety-critical failure, an additional

transmission is added (a message that the gate has closed and it is safe for the train to proceed).

4.1. Failure Modes for the Train Crossing

Using the Petri net of Figure 2, we will assume that all transitions can fail (except where noted).

Furthermore, because transitions represent tasks of the system, task execution profiles (defined in

Section 2, and Figure 1) can be associated with these transitions.  It is then possible to determine

the performability of the system using failure rates and execution profiles.  The failure modes

associated with transitions can be translated into failure modes of the corresponding CSP actions.

When interpreting the failures of those actions, the user identifies failure modes that are critical.

Users can easily eliminate improbable failures identified in the Petri net (i.e., some transitions

may not realistically fail or can be reasonably tolerated [e.g., t1 and t3]).  Such evaluations of the

Railroad Crossing example could lead to the augmented stochastic Petri net shown in Figure 3.

The Markings are also shown in the figure to provide for easy correlation between the markings

and the different states of Petri nets.  Note that Pcf and Pncf are places not identified in the Petri



Markings (operational and failure states):
  P1  P2   P3  P4   P5  P6   P7  P8   P9  P10  Pcf Pncf Description of marking (i.e., state of the system)
M1: (1    0    0    0    0    0    1    0    0    0    0    0)    ..... Train gone (i.e., idle state), gate open.
M2: (0    1    0    0    0    0    1    0    0    0    0    0)    ..... Train in transit (i.e., in transit), gate open.
M3: (0    0    1    0    1    0    1    0    0    0    0    0)    ..... Train sends approaching msg, gate open.
M4: (0    0    1    0    0    0    0    1    0    0    0    0)    ..... Train approaching, msg rcv'd and gate open.
M5: (0    0    1    0    0    0    0    0    1    0    0    0)    ..... Train approaching, msg rcv'd and gate closed.
M6: (0    0    0    1    0    0    0    0    1    0    0    0)    ..... Train at intersection, gate closed.
Mcf: (0    0    0    0    0    0    0    0    0    0    1    0)    ..... Critical (communication / mechanical) failure.
Mctf:* (0    0    0    1    0    0    0    1    0    0    0    0)    ..... Train at intersection, gate still open!
M7: (1    0    0    0    0    1    0    0    1    0    0    0)    ..... Train gone, departing msg sent and gate closed.
M8: (1    0    0    0    0    0    0    0    0    1    0    0)    ..... Train gone, msg rcv'd and gate closed.
M9: (1    0    0    0    0    0    1    0    0    0    0    0)    ..... Train gone, gate opening (dummy state = M1).
Mncf: (1    0    0    0    0    0    1    0    0    0    0    1)    ..... Non-critical (communication / mechanical) failure.
Mnctf:**  (0    –    –    –    0    –    –    0    0    –    0    0)    ..... Six markings combined (non-critical timing failure).
*Critical condition: Train at intersection but gate is still open.  **Non-critical conditions (see above): Train departs the intersection but the gate stays closed (– is a 0 or 1).

There are several possible failure modes: (1) communication failure [t2, t4, t5 and t7], (2) gate mechanical failure [t6
and t8], and (3) timing failure (train arrives at intersection before the gate has closed or the gate opens too slowly).

TRAIN

In_Transit

At_Intersection

!  a

!  d Open

? a

Train sends message
that it will be arriving
at the intersection.

Train sends message
that it is departing
from the intersection.

t1

t2

t3

t4

t5

t8

Train gone Gate open

Msg rcv'd
gate open

Msg rcv'd
gate
closed

Train
approaching

Train in transit

Train passing
intersection

Msg sent
but not
rcv'd

Msg sent
but not
rcv'd ? d

t6

t7

Gate
closed

Closed

GATE

(a) 0100010010
(b) 0010010010
(c) 0001010010
(d) 0100000001
(e) 0010000001
(f) 0001000001

λ2 = failure rate (or probability) of t2

λ5 = failure rate (or probability) of t5

λ6 = failure rate (or probability) of t6

τ6 =  based on missed deadline

λ4 = failure rate (or probability) of t4

λ7 = failure rate (or probability) of t7

λ8 = failure rate (or probability) of t8

τ8 = based on missed deadline

Note: t1, and t3 assumed not to fail.

Transition Fail rates:

Mnctf = any of the following
markings can be assumed (a - f):

P1

P3

P4

P2

P7

P10

P8

P9

P5

P6

Figure 4. Failure Modes and Markings for the Railroad Crossing example.13

net but are used to designate critical and non-critical failure events respectively.  These places

represent failure states of the corresponding Markov process.

Markings M3, to M4 to M5  are critical markings because the slow  firing of transitions (?a

[t5]) and (Close [t6]) will result in Mtf because, again, it is possible for the train to enter the

intersection before the gate has properly (or completely) closed (violation of the safety property).

Similarly marking Mnctf occurs due to the slow  firing of transitions (?d [t7]) and (Open [t8]).  In

                                                
13 Marking Mnctf is a non-critical timing failure and can assume any of the following markings: a) 0100010010, b)
0010010010, c) 0001010010, d) 0100000001, e) 0010000001, and f)  0001000001



this second case, which is not safety critical, since the train may depart long before the gate has

properly (or completely) closed, the utility property would be compromised.  This Petri net is

modeled by the Markov process of Figure 5 which comprehends failures due to hardware,

communication related errors and failures due to missed deadlines.

λ2 = Communication fail (sending)

λ5 = Communication fail (receiving)

λ6 = Mechanical fail (closing)

λ4 = Communication fail (sending)

λ7 = Communication fail (receiving)

λ8 = Mechanical fail (opening)

τ3 = Critical timing fail (gate misses close deadline)

τ9 = Non-critical timing  fail (gate opens too slowly )

µ1 µ2 µ4µ6µ5 µ3 µ7

µ9
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Figure 5. State diagram of the railroad (i.e., train/gate).

For this analysis we have grouped failures into deadline or time-related failures (TF),

mechanical or communication, which are either safety-critical (CF) or non-(safety-)critical (NC).

A failure in sending or receiving the approaching ("a") message and the closing of the gate are

safety-critical whereas such failures for the departing ("d") message (including opening of the

gate) are not.  The CSP specification (and the corresponding Petri net) can be augmented to show

how such failures should be handled.  For example, communication failures can be handled using

time-out and re-transmit techniques.  Failure of the gate closing action can be handled by

sounding a loud alarm to alert pedestrians and traffic.  However, since this is a critical deadline

and it is safety related, such a handling mechanism may not adequately satisfy the requirements.

Tolerance to time-related failures can be maintained by permitting more (or less) slack time for

the gate CLOSing process.  For instance, requiring the Train to send the "arriving" message from

a point further from the intersection adds more slack time to the gate's deadline.  In other words,

the gate closure task must complete execution in a time less than the following:



  Distance to the gate from where the "arriving" message was sent
Speed of the train

.

4.2. Stochastic Analysis.

Using conventional techniques or stochastic Petri net tools (e.g., SPNP), discrete and continuous

analyses can be performed.  For this analysis, the reliability of the Railroad Crossing example is

presented based on differing the failure rates (or probabilities) and service rates (e.g., speed of

the train, rate at which the gate mechanism operates).  For the performability analysis we have

evaluated the specification's sensitivity to the train speed (µ3) and the speed with which the gate

closes (µ6).14  In doing so, we have defined the following failure rates:

Mechanical failures of the gate: λ6 and λ8

Communication failures (send/receive) λ2, λ5, λ4 and λ7

This kind of analysis is useful in exploring different fault-handling mechanisms and the

cost of providing fault-tolerance.  For example, more elaborate fault-handling and fault-recovery

mechanisms may be used to tolerate or prevent safety critical failures, while less attention may

be paid to non-safety critical failures.  Failure to open the gate violates the utility property for the

system (not to mention all the angry people waiting at the crossing) but such failures can be

handled inexpensively like providing a mode for the gate to be opened manually.  On the other

hand, failure to close the gate is much more detrimental and so traffic at the crossing must be

alerted reliably and automatically.

In the following two sub-sections (¶4.2.1 and ¶4.2.2) the results from both the discrete and

continuous analyses are presented.  It is important to note that the values used in this paper (and

hence the results of the analysis) are only for illustrating the approach.  It is not our intention to

attach any significance with respect to the failure rates or MTTFs we've obtained.

                                                
14 The results from this analysis come from the core model used by the performability tool.  This tool can be used to
compute the performability of the system in assuring that the gate closes before the train arrives at the intersection
with and without hardware and communication failures.



4.2.1. Discrete Analysis.

Tables 1-3 present our discrete analysis findings (i.e., top half of each table gives the input

parameters and bottom half gives the results).  In all three tables (all runs) the mechanical

systems are assumed to have a higher failure probability than that of transmission failures (i.e.,

communication of synchronization messages).  Table 1 shows the results ignoring deadline

related failures.  In the four runs shown the mechanical and communication failure probability is

varied and in fact, there is a difference between gate closing and gate opening reliability.  The

communication failure probability is 0.0001 for runs 1 and 3 and is 0.00001 otherwise.  This

reduces, in effect, the probability of critical failures for runs 2, 3, and 4 (i.e., we can assume that

fault-tolerant mechanisms are utilized to improve the gate closing mechanism's reliability as

compared to the gate opening mechanism) by the factors of 100, 3, and 5 respectively.15  This

strategy achieves a reduction in the probability of critical failures by the factors: 17.59, 1.98, and

2.97 (respectively).  This approach is useful because it shows the results from stepwise

improvements in the probability of critical failures and can be easily correlated with the

Table 1. Discrete analysis without considering timing failures.16

Run 1 Run 2 Run 3 Run 4 Description

Ptf 0.0 0.0 0.0 0.0 Probability of critical timing failure

Pcomf 0.0001 0.00001 0.0001 0.00001 Probability of communication failure

Pgcf 0.01 0.00001 0.01 0.001 Probability of gate closure failure (mech.)

Pgof 0.01 0.001 0.03 0.005 Probability of gate open failure (mech.)

Pnctf 0.0 0.0 0.0 0.0 Probability of non-critical timing failure

MTTF 440.49 8570.67 222.50 1489.67 Mean-Time-To-Failure

Pcf 0.50256 0.02857 0.25442 0.16902 Critical failure probability

Pncf 0.49744 0.97143 0.74558 0.83098 Non-critical failure probability
Key:  Ptf = critical timing fail prob.,  Pcomf = communication fail prob.,  Pgof = mechanical (open) fail prob.,  Pgcf
= mechanical (close) fail prob.,  Pnctf = non-critical timing fail prob.,  Pmechf = mechanical fail prob.

incremental costs associated with determining the right level of fault-tolerance necessary for a

given application.

                                                
15 The ratio of Pgcf/Pgof is (runs 1→ 4) is 1, 100, 3 and 5.
16 MTTF values are in number of discrete steps (or time units).



The significance of deadline-related failures (Ptf or Pnctf ) can be seen in Table 2 which

presents the MTTF values and overall failure probabilities associated with (1) critical, (2) non-

critical and, (3) timing failures.  Note, the critical timing failure probability (i.e., probability that

[train arrival time < gate closing time]) is varied from 0.00001 up to 0.01.

Table 2. Discrete analysis considering all failures including timing failures.

Run 1 Run 2 Run 3 Run 4 Description

Ptf 0.00001 0.0001 0.001 0.01 Probability of critical timing failure

Pcomf 0.0001 0.0001 0.0001 0.0001 Probability of communication failure

Pgof 0.01 0.01 0.01 0.01 Probability of gate open failure  (mech.)

Pgcf 0.01 0.01 0.01 0.01 Probability of gate closure failure  (mech.)

Pnctf 0.00001 0.00001 0.00001 0.00001 Probability of non-critical timing failure

MTTF 440.06 438.14 419.82 295.65 Mean-Time-To-Failure

Pcf 0.50208 0.49991 0.47920 0.33882 Critical failure probability

Ptf 0.00049 0.00485 0.04651 0.32885 Critical timing failure probability

Pncf 0.49695 0.49476 0.47383 0.33201 Non-critical failure probability

Pnctf 0.00048 0.00048 0.00046 0.00032 Non-critical timing failure probability

To emphasize the significance of deadline-related failures (Ptf or Pnctf ), all other failure

rates (mechanical and communication) were set to zero in Table 3.  This table illustrates the

significance of assuring deadline guarantees even if no other failure exists.

Table 3. Discrete analysis considering only timing failure.

Run 1 Run 2 Run 3 Run 4 Description

Ptf 0.00001 0.0001 0.001 0.01 Probability of critical timing failure

Pcomf 0.0 0.0 0.0 0.0 Probability of communication failure

Pmechf 0.0 0.0 0.0 0.0 Probability of mechanical failure: open/close

Pnctf 0.00001 0.00001 0.00001 0.00001 Probability of non-critical timing failure

MTTF 450000.2 81815.2 8907.0 895.1 Mean-Time-To-Failure

Ptf 0.50000 0.90910 0.99011 0.99901 Critical timing failure probability

Pcf / ncf 0.0 0.0 0.0 0.0 Critical / Non-critical failure probability

Pnctf 0.50000 0.09090 0.00989 0.00099 Non-critical timing failure probability



The input parameters used for the transition probabilities are related to the Lambda and Tau

variables in the Markov model given in Figure 5 as follows:

Ptf = critical timing failure probability: τ3

Pcomf = communication failure probability: λ2, λ5, λ4 and λ7

Pgof = mechanical (gate open) failure probability: λ8

Pgcf = mechanical (gate close) failure probability: λ6

Pmechf = mechanical failure probability: λ6 and λ8

Pnctf = non-critical timing failure probability: τ9

4.2.2. Continuous Analysis.

The results of the continuous analysis are shown in Figures 6 and 7.  The sensitivity of the

system failure rate (i.e., performability) to varying speeds of the train and the gate mechanism

can be surmised from comparing the different curves  (Runs 1-3) shown in Figure 6.

*Time units: each tick on the x-axis is 1000tus.  Assume a tu is a second then there are  ~16mins/tick, and 10,000 ticks (full range of data) are ~2778hrs.

**Constants: µ1, 9 = 0.0001,  µ2, 5, 4, 7 = 1.0,  µ9, 10 = 

1.0,  whileµ6 and µ3 = were set at 0.02 and 0.002 

respectively.  The µ6 was doubled for run 2 and again for 

run 3 effectively speeding up the gate closure time for 

each run. Hence the timing related failure rates were 

corespondingly reduced by 10x.Time units (tu)*
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Input Parameters:** 
Run1: τ3               =0.0000908            τ9      =0.00000908

            λ2, 5, 4, 7  =1.0 x10-7  λ6, 8 =1.0 x10-4

Run2: τ3               =0.00000908  τ9      =0.000000908

            λ2, 5, 4, 7  =1.0 x10-7  λ6, 8  =1.0 x10-4

Run3: τ3               =0.00000908   τ9     =0.000000908

            λ2, 5, 4, 7  =1.0 x10-7 λ6, 8  =1.0 x10-4

Results:
Run1....Rel[10,000]=1.52063 x10-3   Mttf=1.55357 x105tus

Run2....Rel[10,000]=4.87748 x10-1   Mttf=1.39069 x106tus

Run3....Rel[10,000]=8.863 x10-1   Mttf=580867 x106tus

Run 1 Run 2

Run 3

Figure 6. Performability for different gate closing speeds.

The following transition rates were assumed (see the figure caption for exact values)..  The

(constant) train arrival rate (i.e., rate at that trains enter the system) is µ1 at 10-4.(or one every

10,000 tus).  It takes 1 time unit for sending or receiving a signal (=1/µ2= 1/µ5=  1/µ4 = 1/µ7)

and includes any possible communication delays..  The average time it takes for the train to reach

the intersection after sending the signal (i.e., train approach) is given by 1/µ3 while the average

time it takes for the gate to close (or open) is given by 1/µ6 (1/µ8).  Failure rates for signal



transmission of messages (=λ2= λ4= λ5  = λ7) are set equal to 10-7 while mechanical failures

associated with the gate closing(= λ6) and opening (=λ8) are set equal to 10-5.  In Figure 6

(Run1), it takes an average of 50 time units for the gate to close while it takes the train an

average of 500 time units to approach (i.e., actually arrive at) the intersections.  In Figure 6

(Run2) these numbers are 25 and 500 while in Figure 6 (Run3) they are 12.5 and 500.  As can be

seen from the graphs, the performability of the system increases as the slack time increases.

To emphasize the significance of timing failures (i.e., the train arriving at the intersection

before the gate closes [and similarly for opening the gate]) we show the reliability of the system

without timing failures in Figure 7 (Run2).  The performability of the system with only timing

failure and no mechanical or transmission failures is shown in Figure 7 (Run1).  Note that Figure

6 (Run1) (which includes timing, transmission and mechanical failures combined) is set up

identical to both runs in Figure 7 (except for the zeroing of either the τ's or the λ's).  Clearly, the

timing failures have a pronounced effect on the overall system performability.  In this example

they dominate the systems performance overall other types of failure.

*Time units: each tick on the x-axis is 1000tus.  Assume a tu is a second then there are  ~16mins/tick, and 10,000 ticks (full range of data) are ~2778hrs.

**Constants: µ1, 9 = 0.0001,  µ2, 5, 4, 7 = 1.0,  µ9, 10 = 

1.0,  while  µ6 and µ3 = were set at 0.02 and 0.002 

respectively.  
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Input Parameters:** 
Run1: τ3              =0.00009                 τ9      = 0.00000908

            λ2, 5, 4, 7 =0.0                     λ6, 8  = 0.0

Run2: τ3              =0.0                      τ9      =0.0

            λ2, 5, 4, 7 =1.0 x10-7 λ6, 8  =1.0 x10-4

Results:
Run1....Rel[10,000]=1.63339 x10-3   Mttf=1.57131 x102tus

Run2....Rel[10,000]=9.29664 x10-1   Mttf=7.10728 x106tus

Run 1 (all λ's set to zero)
(only timing failures considered)

Run 2 (all τ's set to zero)
(timing failures ignored)

Figure 7. Comparison of system performability and reliability.

Once again, it is not our intention to attach any significance to the numbers; our only

purpose is to illustrate the usefulness of these analyses in designing real-time systems with

sufficient slack times and fault-tolerance to achieve a desired level of performability.



5. SUMMARY AND FUTURE WORK

Our objective in this paper was to show how the CSP specifications can be translated into

Stochastic Petri nets for the purpose of performability and reliability analyses.  Such translations

can give insight into further refinements of the original specification (i.e., identify potential

failure processes and recovery actions).  Relating the parameters needed for performability

analysis to user level specifications is essential for realizing systems that meet user needs in

terms of cost, functionality, and other non-functional requirements [Sheldon 95a].  Our approach

provides the needed feedback to a designer so that judicious cost-benefit analysis in providing

fault-tolerance and deadline guarantees can be made.  We have illustrated this approach in the

railroad crossing example.17   We recently completed a tool for automatically translating CSP

specifications into Petri nets that enables us to utilize other stochastic analysis tools (viz., SPNP

[Ciardo 89]).  The canonical translation rules are slightly modified from those presented here

(see [Sheldon 96]).  The Performability tool is also being extended to permit evaluation of the

various scheduling algorithms, and fault-tolerant mechanisms (e.g., task retries, task-migration).

We hope to extend this environment to include reasoning about concurrency, safety, liveness and

other real-time properties by employing the power of other tools that are available in this

domain.
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APPENDIX A: GENERAL EXAMPLES OF CSP/PN TRANSLATIONS

A.1 CSP TO PN DEFINITIONS:

Figures A.1 through A.3 define a small set of equivalent CSP symbols/expressions and Petri net

structures as a basis for the translations demonstrated in this paper. Also, there exists some set of

composition rules that define how such structures should be composed (broad spectrum of

interpretation). Our goal is to translate CSP specifications into irreducible PNs that are easily

analyzed. Figure A.4 is a simple composition to illustrate this process.

a b
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a d

c ecb

µX.(b    c → X)
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a b
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Figure A.1 CSP/PN Synonyms and Equivalent Expressions and Constructs.
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Figure A.2 CSP/PN Equivalent Expressions and Constructs (CSP top, PN bottom).
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