
Recoverability Preservation:Recoverability Preservation:
A Measure of Last ResortA Measure of Last Resort

Ali Mili, Frederick Sheldon, Fatma
Mili, Jules Desharnais

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Reflections on Software/Reflections on Software/
Program Fault ToleranceProgram Fault Tolerance

Commonly used techniques of fault tolerance:
 Trigger Happy. Fire off as soon as the current

state is found to be incorrect.
 Heavy Artillery. Geared (unnecessarily) towards

producing a correct state.
 Inefficient. Involve heavy overhead in terms of

space (duplicating states) and time (check-
pointing etc).

 Panic Stricken. Resort to Emergency Measures
too soon, on unnecessarily strong conditions.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Reflections on Software/Reflections on Software/
Program Fault ToleranceProgram Fault Tolerance

We advocate a more measured approach:
 Triggered only when the state is unmaskable. No

false alarms.
 Aims only to produce a maskable state.

Minimizes computation, and required data.
 Uses only forward error recovery. No time/

space overhead.
 Uses the Panic Button as a Last Resort. Only

when the state is unrecoverable.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Recoverability PreservationRecoverability Preservation

We know how to characterize maskable,
unmaskable states, recovery routines. We
need to characterize Recoverable States.

Modeling device: We make recoverability
not a property of the state but a property of
the function that produces it. We call this
property: Recoverability Preservation.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Recoverability Preservation:Recoverability Preservation:
IllustrationIllustration

A Program/ System structured as the product
of two components/ functions

P; L:F.
(P: Past; F: Future; L: Label). Expected

functions:
 P(x) = x mod 6.
 F(x) = x mod 9 + 12.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, IIIllustration, II

 If Past Function is incorrect, and computes
P1 = (x mod 6 + 18)

then states produced by P1 are not correct
but they are maskable (the excess 18 will

be canceled by taking mod 9 in function F).
 No intervention is required.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, IIIIllustration, III

 If Past Function is incorrect, and computes
P2 = (x mod 12)

 then states produced by P2 are not
maskable, but they are recoverable.

 Recovery routine: apply (mod 6) to the
current state.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, IVIllustration, IV

 If Past Function is incorrect, and computes
P3 = (x mod 3)
then states produced by P3 are not
recoverable, but they are partially
recoverable.

 Probabilistic Recovery Routine: return x
(or x+3), with 0.5 probability of success.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, VIllustration, V

 If Past Function is incorrect, and computes
P4 = (x mod 7) then states produced by P4
are not recoverable.

 No recovery is possible, for knowing (x
mod 7) does not inform us on (x mod 6).

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Intuitive AnalysisIntuitive Analysis
 Q preserves recoverability for P if µ(Q)⊆µ(P),

where µ(R)=RR^ (level sets of R).
 Interestingly: condition involves how Q partitions

its domain but does not involve what value Q
assigns to each partition.

 If Q assigns the wrong image to a partition, that
can be corrected by the recovery routine

 But if Q partitions its domain wrongly (re: mod 7
rather than mod 6) nothing can be done.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Degrees of RecoverabilityDegrees of Recoverability

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

!

P ˆ P for Original P

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

preserves recoverabilitypreserves recoverability

!

P
2

ˆ P
2
, where P

2

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

preserves partial recoverabilitypreserves partial recoverability

!

P
3

ˆ P
3
, where P

3

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

does not preserve recoverabilitydoes not preserve recoverability

!

P
4

ˆ P
4
, where P

4

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Characterizing RecoverabilityCharacterizing Recoverability
PreservationPreservation

 Characterization by µ(Q)⊆µ(P) is intuitive,
but incomplete.

 For completeness: we must involve the
specification R that the system (P; F) must
refine.

 Because R is potentially non-deterministic,
we get an extra dimension of redundancy
(unexplored in the illustrative example).

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Sufficient ConditionsSufficient Conditions

 A past function Π preserves maskability
(i.e. produces maskable states) if it refines

κ(R,F),
where κ is the left quotient operator.

 A past function Π preserves recoverability
(i.e. produces recoverable states) if it
satisfies the following conditions

!

KL " #L $L " K ˆ L %#()KL

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Left quotient of Left quotient of RR by by FF

K(R,F) F

R

s’

s.R

s’.Fs

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Specifying the RecoverySpecifying the Recovery
RoutineRoutine

 If past function Π preserves recoverability with
respect to future function F and specification R
then

r = Γ(Π, κ(R,F))
is a specification of the recovery routine, where Γ
is the right quotient and κ is the left quotient
operator.

 Any routine that refines r will map recoverable
states into maskable states.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Π

K(R,F)s

Γ(Π, K(R,F))

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Hierarchy of Correctness LevelsHierarchy of Correctness Levels

Π(S0)
Recovery unnecessary

Maskable states

Partially recoverable states
→ Probabilistic recovery

Totally recoverable states
→ Total recovery necessary & sufficient

Unrecoverable states
→ Recovery insufficient

r

pr

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Linking to Intuitive DiscussionLinking to Intuitive Discussion

 If R is regular (R=RR^R) and the following
conditions hold

RF^L ⊆ ΠL ∧ ΠΠ^ ⊆RR^
then Π preserves recoverability.

 Generalizes the condition discussed upon
inspecting the sample example.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Application: Lean fault ToleranceApplication: Lean fault Tolerance

If not maskable(s) then recovery-
measures(s);

recovery-measures(s):
If recoverable(s) then deterministic-
recovery(s)

else
If partially-recoverable(s)

then probabilistic-recovery(s)
else failure(s);

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

 Recoverability Preservation, Recoverability Preservation,
a Substitute for Correctnessa Substitute for Correctness

 Prove recoverability preservation.
 Takes steps to recover.
 Substitutes/ complements correctness

proofs.
 Using safety condition for R.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Flight Control LoopFlight Control Loop

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Characterizing Fault ModesCharacterizing Fault Modes

 Fault Tolerant Flight Control System: A
system that can recover from some types of
faults, including loss of sensors, loss of
flight surfaces, loss of control of actuators.

 When these faults arise, the system must
alter its control law and make up for fault.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Characterizing Fault ModesCharacterizing Fault Modes

 Question: Which sensor-aircraft-actuator
faults can be handled by fault tolerant FCS?

 Those for which the aggregate sensor-
aircraft-actuator preserves recoverability.

 A highly speculative answer, we
acknowledge; perhaps difficult to model.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Concluding RemarksConcluding Remarks

 Introduced idea of recoverability
preservation.

 Shown its use for a more measured, more
efficient approach to fault tolerance.

 Shown its application for fault modeling.
 Genesis of the idea: analyzing a fault

tolerant flight control system (tolerates
damage to flight surfaces).

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

