
Proceedings of the AIAA Computing in Aerospace 10 Conference, pp. 317-326, March 28-30, 1995. AIAA-95-0996-CP

Copyright © 1995 by F.T. Sheldon. Published by the American
Institute of  Aeronautics and Astronautics, Inc. with permission.

1
American Institute of Aeronautics and Astronautics

RELIABILITY ANALYSIS OF CSP SPECIFICATIONS :
A NEW METHOD USING PETRI NETS

Frederick T. Sheldon*, Krishna M. Kavi and Farhad A. Kamangar
Department of Computer Science and Engineering

The University of Texas at Arlington
Arlington, Texas 76019

Abstract  *

Theoretical models like CSP and CCS describe
computation using synchronization.  Such models
define independent system entities or processes that
cooperate by explicit communication.  In safety critical
systems these communications represent visible actions
which, if they do not occur or are delayed beyond their
deadline, will cause a failure to occur.  This paper
describes the basic methodology for converting a formal
description of a system into the information needed to
predict system behavior as a function of observable
parameters.  Currently under development is a tool to
permit stochastic analyses of CSP-based system
specifications.  The CSP-based grammar used by this
tool is presented and  isomorphisms between CSP-based
specifications and Petri net-based stochastic models are
shown.  A brief example of the translation between
these two formalisms is given along with (1) an
analytical derivation of timing failure probability and
cost minimization, and (2) discrete and continuous time
Markovian analysis which provide reliability predictions
for candidate designs.  The translation process is
currently being automated.

Keywords: Formal specification, CSP, Stochastic
Petri Nets, Reliability analysis, Markov models.

1. Introduction
When computer systems are operating (e.g., civil

air transports, nuclear power generation, etc.), various
types of errors can occur both in hardware and in
software.  The source of such errors may include a wide
range of possible failure causalities.  For example,
untested manufactured imperfections or flaws (like
improper floating point division), software design and
implementation defects, timing errors, wear down,
transient errors induced by radiation, power surges and
other environmental factors.  The most prevalent types
encountered are highly dependent on the kind of system
being used, its operating environment, its workload and
the system design, manufacture, integration and testing
process.

The traditional fault/error/failure model where
underlying anomalies (faults) give rise to incorrect
values (errors), which may ultimately cause incorrect

                                                
*Sheldon, an AIAA student member,  is currently supported
by a NASA (LaRC) Graduate Student Research Fellowship
(Grant #NGT-50896).

behavior (failure), need to consider timing and
performance issues.  Indeed, embedded real-time systems
(e.g., often characterized by intense interaction with
sensors and actuators) possess the ability to tolerate
brief periods of incorrect interaction, either in values
exchanged or the timing of exchanges.14

Taking all these factors into account is a difficult
and complex undertaking, yet the systems designed and
built today have greater functionality and higher
performance.  Indeed such systems, due to the
confidence gained from many operational hours and
lessons learned, have evolved and been refined into
better products.  Whether these systems are more robust
and have greater reliability is a less obvious question.
Assuming they are more reliable, then the question
becomes at what price?  The challenge is to develop
cost effective methods, realistic models, and frameworks
for reasoning and evaluating the system under
development (prior to building expensive prototypes).  

This paper introduces our framework based on the
notion that formal mathematically precise methods
should be used to design such systems.1,13  Thus,
given a functional specification of a system and its
external constraints (e.g., topology, communications,
deadlines), what methods are available for avoiding or
tolerating faults/errors and how do they impact the
performance and reliability (i.e., performability) of the
system.6  This process can be visualized from Figure 1.

How do the 
externals 
impact the 
performance 
and 
reliability?

External constraints on 
the system

Topology

Fault 
tolerance

Deadline & 
resource 
allocation

Commun-
ications

Failure  
categories

Convert a Formal System Description into the Information Needed  
to Predict System Behavior as a Function of Observable Parameters

Functional 
System 

Specification 

Figure 1. Predicting reliability of formal specifications.

As specifications are refined into detailed designs,
the reliability and performance requirements can also be
refined to reveal the trade-offs in design alternatives.
Using this framework, the specifier/designer can:



2

1. Decide what are the critical elements of the
functional system specification.

2. Budget reasonable performance and reliability
requirements among subsystem components.

3. Decide what features of the system should be
changed to improve the system's reliability.

4. Validate performance and reliability goals using
stochastic system models.
Our approach converts a formal functional

description of the system into the information needed
for stochastic analysis.  A system is specified using our
CSP-based language (note, the CSP model is preserved
but the notations have been simplified to reduce the task
of translating into Petri nets).  Once the specification
has been translated, we enumerate modeling
assumptions, estimate model parameters, and solve the
model for specific values of the parameters using
Markov reward modeling.3,15  At this point it is easy
to introduce timing constraints among feasible
markings of the Petri net.

Numerous tools have been developed for stochastic
analysis of Petri nets (e.g., GreatSPN, SPNP,
GSPN).2,3,9  Petri nets however, are not very suitable
for reasoning about the functional correctness of a
system and this task is better left to refinement at the
initial CSP level.  Nevertheless, having converted our
specification into Petri nets allows us to analyze our
system model using any of the various Petri net tools
available.

In this paper we will demonstrate with a simple
example, (1) conversion of CSP specifications into
Petri nets, (2) supplementing the Petri nets with failure
modes, (3) how these failure modes can be converted
into CSP processes so that the feasibility of certain
failure modes can be examined by the user, and (4)
analysis of Petri nets for reliability using analytically
derived (user-level based) timing failure probabilities.

2. Formalisms for Specification – Analysis
Since CSP and other specification models are

compositional, the usefulness of an analysis is
improved by partitioning large systems into smaller
subsystems whose reliability can then be approximated
judiciously, giving greater comprehensibility and
reducing the analysis complexity.

2.1    Communicating     Sequential   Processes
The CSP model was developed by Hoare in the

early 80's and later, in 1986 extended by Olderog.5,12

The basic idea is that systems can readily be
decomposed into subsystems which operate concurrently
and interact with each other as well as with their
common environment (e.g., typical real-time).  Parallel
composition of such systems is as simple as that of
sequential composition using traditional languages
(e.g., Pascal).  The major benefits of using the CSP
model are to avoid many of the problems associated
with parallel programming (e.g., shared resources and
multi-threading), is a secure mathematical foundation
for the avoidance of errors, and for achievement of

provable correctness.  In addition, CSP provides a
complete mathematical definition of the concept of a
nondeterministic process which enables modeling of
stochastic processes at the Petri net level.  

A CSP program consists of n > 1 communicating
processes; this is normally represented using the parallel
composition operator (||), which is associative: P = {P1
|| P2 || .....|| Pn}.  Processes are assumed to have a
disjoint set of variables (or local symbols).  Processes
communicate synchronously by sending and receiving
messages: the sending and receiving actions (or events)
are indicated using the input (?) and output (!) actions.
Pi ? x is the action of receiving a value sent by process
Pi (or received on a channel Pi) into variable x.  Pj!
<expression> describes the action of sending the value
of the expression to Pj (or sending on a channel Pj).
Synchronization uses complementary input and output
commands by two communicating processes (using the
same channel).  Communication can be made selective
by providing guards, where one of the alternative
communication actions with a satisfied guard is
selected.  A guarded command has the general syntax of
the form <guard> → <command list>.  A command list
is a set of commands defining a sequence of actions,
alternative actions based on either deterministic or non-
deterministic choice, recursive actions, or a STOP
action.  STOP terminates (or deadlocks) a process.  The
following summarizes CSP syntax (| means 'or'):

P ::= STOP | (a → P) | (P\b) | (P  Q) |

 (P  Q) | ( P ||b Q) | (P; Q) | (µX •  P)

In CSP, capitalized names are process names, and
lower case characters denote visible actions.  Here, (a →
P) means, action 'a' followed by P, (P\b) is the same as
P except action b is hidden, (P Q) represents a non-

deterministic choice between P and Q, (PQ) represents
a deterministic choice between P and Q, ( P||bQ) shows
concurrent processes P and Q that synchronize on action
b, (P; Q) a sequence between P and Q, (µX• P) is used
for recursion.  For the purpose of reliability or
performance analyses, we need not be concerned with
the semantic model.  Thus, we need focus only on the
structural aspects of CSP and give a simple example to
illustrate this principle.

2.1.1      The      CSP-based      Language   Primitives

Systems are built from processes.  The simplest
process is an action (an assignment, input or output).
SKIP and STOP are both processes: they both start and
perform no action (i.e., engage in no event), but SKIP
terminates while STOP does not terminate (ever).
Larger processes are built by combining smaller
processes in a construction.  PAR (or ||), SEQ (or ;),

NDC (or ), DC (or ), and MU. (or µX• P) are
constructor primitives.  The CSP-based grammar (** is
a comment) is provided formally as a yacc specification:
**  Start symbol = "system"



3

%start system
**  Rules
** 1: system production */
system: Identifier Equals
                        processdeclist processlist1 Dot;
** 2: processdec (way to declare process names)
processdec: PROCESS Identifier Equals
                                processlist1 Semicolon;
** 2.5: processdeclist (list multiple decl under system)
processdeclist: | processdeclist processdec;
** 3: process definition
process: STOP
        | SKIP
        | LeftBrace stmtlist RightBrace
        | PAR LeftBrace processlist2 synclist RightBrace
        | SEQ LeftBrace processlist1 RightBrace
        | NDC LeftBrace processlist2 RightBrace
        | DC LeftBrace guardedproclst RightBrace
        | MU Dot LeftBrace processlist1 RightBrace
        | processcall;
** 4: processlist1
processlist1: | processlist1 process;
** 4.5: processlist2
processlist2: | processlist2 process process;
** 4.7: synclist
synclist: | LeftParen anyvarlist RightParen;
** 4.8: anyvar
anyvar: booleanvar | variable;
** 4.9: anyvarlist
anyvarlist: anyvar | anyvarlist Comma anyvar;
** 5: statement list
stmtlist: | stmtlist stmt;
** 6: statement
stmt:   implication
        | process
        | expression
        | input **looks like {channel ? variable}
        | output **looks like {channel ! variable};
** 6.3: implication (a statement event -> action)
implication: stmt Arrow process;
** 6.6: processcall (instance of a declared PROCESS).
processcall:  Identifier LeftParen RightParen
**Symbol lookup ensures identifier was declared ;
** 7: assignment is covered by expression in integer
** 8: input
input: channel InSym variable;
** 9: output
output: channel OutSym expression;
** 10: guarded process
guardedprocess: guard process;
** 11: guarded process list
guardedproclst:  | guardedproclst guardedprocess;
** 12: guard
guard:  input
        | booleanexpr
        | booleanexpr AND input
        | booleanexpr AND SKIP;
** 13: recursive definition (defined in process)
** 14: channel
channel: Identifier;

** 15: variable
variable: Identifier;
** 16: boolean variable (AtSym to distinguish 15, 16)
booleanvar:  AtSym Identifier;
** 17: expression
expression: integerexpr
        | booleanexpr
        | relationalexpr;
** 18: boolean expression
booleanexpr:
          booleanvar
        | TRUE
        | FALSE
        | booleanexpr AND booleanexpr
        | booleanexpr OR booleanexpr
        | NOT booleanexpr
        | booleanvar VarAsgn booleanexpr;
** 19: relational expression
relationalexpr:
          operand LESym operand
        | operand LTSym operand
        | operand EQSym operand
        | operand NESym operand
        | operand GESym operand
        | operand GTSym operand;
** 20: integer expression
integerexpr: Negative operand
        | operand Plus operand
        | operand Minus operand
        | operand Star operand
        | operand Slash operand
        | operand VarAsgn operand;
** 21: operand
operand: Integer
        | variable
        | integerexpr
        | relationalexpr;
** 22: monadic operand (never used)
** 23: dyadic operand (never used)
** 24: integer is defined in lexer
** 25: digits are defined in lexer
** 26: digit is defined in lexer
** 27: declaration (currently undefined)
** 28: type (currently undefined)
** 29: selection (currently undefined)
** 30: conditional (currently undefined)
** 31: option (currently undefined)
** 32: loop (currently undefined)
** 33: relational operator (currently undefined)
** 34: timer (currently undefined)
** 35: hide (currently undefined)

An example construction would be: PROCESS
my_example = SEQ{P,Q,R}; where each process is
performed in succession.  A process need not be
declared.  But if so, then it must be used as a "process
call" and its parameter(s) will have been predefined.  In
this way, larger processes are formed.  A statement list
is a sequential list of n ≥ 1 statement(s).  A statement



4

can be an event (or trigger) which causes a process to
engage in an action (e.g., a → P).  This process is
defined as an implication.  Input and output require a
channel.  Channels provide unbuffered, unidirectional
point-to-point communication of values between two
concurrent processes.  A guarded process combines one
or more processes, each of which is conditional on an
input, a boolean expression or both.  An expression can
be integer, boolean or relational (boolean expressions
must consist of boolean variables prefixed with @).
Operands are either integers, variables, or integer or
relational expressions (distinct from boolean).

2.2   Stochastic     Petri      Nets
The Petri net (PN) in its simplest form is a directed

bipartite graph, where the two types of nodes are known
as places (circles) and transitions (bars).  Places
normally represent events while transitions represent
actions.  A transition is enabled if all its inputs contain
at least one token (dark spot inside a place).  When a
transition is enabled, it can fire, leading the PN into a
different marking.  A marking represents the
configuration of tokens in the places of the PN, it is the
state of the PN.  A marking is reachable if it is obtained
by a sequence of firings starting in the initial marking.
The reachability graph is the set of all reachable
markings connected by arcs representing the transition
firings.  In a stochastic PN, each transition has an
associated firing time, which can be zero (immediate) or
exponentially distributed with a parameter dependent on
the marking (timed).  

Completion of the action defined by a transition
causes a token to be assigned to each of its output
places.  When a place is the input to several transitions,
only one of the transitions is enabled based on a non-
deterministic choice.  If several conflicting immediate
transitions are enabled in a marking, a firing probability
must be defined.  A specification must be given for
every maximally fireable subset of conflicting
transitions in each vanishing marking (marking with at
least one immediate transition; otherwise it's tangible).
As transitions are enabled, the state of the PN moves
from marking to marking.  An inhibitor arc prevents a
transition's firing when its corresponding input place is
enabled (such arcs can model zero testing).  

A Stochastic PN (SPN) describes an underlying
stochastic process, captured by the "extended
reachability graph" (ERG), a reachability graph with
additional stochastic information on the arcs.  The ERG
has been shown to be reducible to a Continuous Time
Markov Chain (CTMC).10  Since a SPN permits a
probability distribution to be associated with arcs (or
transitions) they are very suitable for modeling system
performance and reliability.  Thus, each transition is
associated with a random variable that expresses the
delay from the enabling to the firing of the transition.
When multiple transitions are enabled, the transition
with a minimum delay fires first.  When the random
variable is exponential, the markings of the SPN are
isomorphic to the states of a CTMC.  The transition

rate from state Mi to Mj = qij is given by qij  = li1 + li2
+ . . .+lim  where lik  is the delay in firing a transition
tk which takes the Petri net from marking Mi to Mj
(when several transitions enable the firing from Mi to
Mj).  See [4 and 11] for more details and a survey of
PNs.

2.3     Mapping      CSP   to    Petri     Nets
An initial set of rules for translating CSP

specifications into Petri nets (PNs) is defined in [8].
The rules are based on the fact that in the CSP model
processes move from one action to another.  The
activities which enable the actions of processes can be
viewed as events which are represented by places, while
the actions are viewed as transitions.  Some example
translations are shown in Figures 2 and 3.

a b

a   bµX.(b    c → X)

cba b

a    b

Nondeterministic 
choice

Nondeterministic choice 
with recursive call

Parallel actions are 
transitions

Figure 2. Example CSP → PN translation rules.

The rules show an associated PN structure for the
majority of CSP process structures and compositions†.

Deterministic 
choice

Non- and deterministic 
choices run in parallel

Parallel actions 
synchronize on b

b

c e

a d

(a →b →c) ||{b} 

       (d →b →e)
(a   b) ||{a,b} (a  b)(a  b)

a b a b

From environmentFrom environment

Figure 3. Example CSP → PN translation rules.

A PN translation from a CSP specification need
not be unique since we must introduce dummy places or
transitions to maintain its bipartite nature.  Intuitively,
it is possible to reduce different PN equivalents into a
canonical form.  Our goal is to demonstrate the
feasibility of translating between CSP and PNs so that
stochastic properties deduced at the PN level can be
specified back at the CSP level.  An example of this
method is provided to demonstrate the process.

                                                
†The translations between the CSP and Petri net models
have not been formally verified to be isomorphic.



5

3. Stochastic Analysis: A Brief Example
One of the major objectives of our research is to

provide assistance to the user in specifying not only
functionality but also reliability, performance and
execution deadlines.  In this paper we show how this is
facilitated by the translation of CSP specifications into
SPNs.  Major benefits include how the PN structure can
facilitate discovery of potential design flaws and other
weaknesses that may lead to critical/non-critical failures
and timing dependencies. In the example below a timing
dependency makes necessary additional synchronization
to avoid a safety-critical failure.

3.1   The      CSP     for     a     Train      Crossing
At the intersection the gate closes for arriving

trains and remains closed until the train has completely
passed by.  The problem statement can be extended to
handle multiple trains, but only one train is specified
here (Appendix A has a CSP-based version):

TRAIN =
  (IN_TRANSIT);
  (GATE ! a → AT_INTERSECTION);
  (GATE ! d → TRAIN)
GATE =

(TRAIN ? a → CLOSE);
(TRAIN ? d → OPEN→ GATE)

RAIL_ROAD_CROSSING =

TRAIN {a,d} GATE

Two concurrent processes, the TRAIN and the
GATE communicate via two activity messages.  The
TRAIN outputs "a" (arriving) to the GATE when it is
about to arrive at the intersection.  Just before it has
passed through the intersection, it sends a "d" (departed)
to the GATE.  The GATE process receives the "a" and
closes the gate.  Once closed, the GATE waits for an
input of "d" before opening.  

Recent extensions to CSP permit the association of
time with actions.  Because CSP uses point-to-point
communication it is awkward to describe the case where
the GATE process accepts inputs from multiple TRAIN
processes.  A hazard exists since the TRAIN process
could transition to AT_INTERSECTION before the
gate closes, which is unsafe.  Likewise, the train may
depart while the gate remains closed (viewed as fail-safe
behavior).  The PN translation in Figure 4 reveals these
flaws more readily.

3.2   Petri      Net     for     the     Tr    ain      Crossing
The train and gate operate independently but must

communicate to accomplish their respective missions
(i.e., passing through the intersection and blocking
traffic to permit the train to pass safely).  In Figure 4
the messages being exchanged are represented by places
P5 and P6.  The gate will not begin to close until it
receives the approaching message.  This process
involves markings M3 (send approaching msg.), M4

(msg. received but gate is open), M5 (gate begins to
close), and M6 (gate closed).  In all four markings (M3-
6) the train is "approaching" which constitutes safe
conditions.  Markings Mcf and Mtf show that the train
is at the intersection but the gate is not closed.  In Mcf
either a mechanical or a communication "hard" failure
has occurred.  In both cases the result is unsafe (i.e.,
critical failure [cf]).  While in Mtf a timing failure has
occurred.

Constructing the PN and deriving the feasible
markings reveals that the train process could enter the
intersection before the gate closes.  If we assume that
the gate always opens and closes sooner than the time it
takes the train to reach the crossing, the PN can be
viewed as hazard free (except for the possibility of an
unsafe mechanical failure).
Obviously some mechanism is needed to ensure the
train will not proceed unless the gate is closed.  We
could redesign the system to force the train to wait until
the gate completes closing which would provide a fail-
safe environment.  Neither timing nor hard failures
could cause an unsafe condition if additional
synchronization provided an acknowledgment be sent
back to the train stating the gate is closed.  Thus, the
train would not proceed past some critical stopping
distance to the gate unless the acknowledgment was
received.  Incidentally, this only works if we assume
only one train can approach until the current train has
departed.  If this assumption is not made, another train
could rear end the train waiting to receive an
acknowledgment which itself could possibly be lost!
Thus, failure of any communication related actions may
lead to a deadlock (train halts), but synchronization
between the train and gate eliminates the possibility of
trains passing through the intersection un-guarded by an
open gate.  Failure to open the gate is not safety
critical, yet should be avoided to prevent congestion of
the associated infrastructure.  It may be possible to use
Reward nets (and performability analyses) to associate a
cost with delays in opening the gate.6,7

3.3    Failure     Modes     of the   Train
In the PN of Figure 4, all transitions can fail and

we permit at most one token at a place.  The Markings
demonstrate that there are two unique manifestations of
failures (i.e., critical and non-(safety)-critical).  To
illustrate the significance of timing correctness we
group both communication and mechanical failures into
Mcf and show Mtf separately (tf for timing failure,
which is also critical).  Mnc groups all three types of
(non-critical) failure mechanisms together!  Why should
these different mechanisms be given separate markings
(or states in the corresponding Markov state diagram)?
It is important to understand (1) how a failure occurs
(its cause) in order to prevent, avoid or mask
faults/errors, (2) to realize how much they may    



6

Markings:
  P1  P2   P3  P4   P5  P6   P7  P8   P9  P10  P11  P12  Description of marking (i.e., state of the system)
M1: (1    0    0    0    0    0    1   0    0     0     0     0) Train gone (i.e., idle state), gate open.
M2: (0    1    0    0    0    0    1   0    0     0     0     0) Train in transit (i.e., in transit), gate open.
M3: (0    0    1    0    1    0    1   0    0     0     0     0) Train sends approaching msg, gate open.
M4: (0    0    1    0    0    0    0   1    0     0     0     0) Train approaching, msg rcv'd and gate open.
M5: (0    0    1    0    0    0    0   0    1     0     0     0) Train approaching, msg rcv'd and gate closing.
Mcf*: (0    0    0    1    1    0    1   0    0     0     0     0) Train at intersection, approaching msg not rcv'd!
Mtf*: (0    0    0    1    0    0    0   0    1     0     0     0) Train at intersection, msg rcv'd and gate closing!
M6: (0    0    1    0    0    0    0   0    0     1     0     0) Train approaching, gate closed.
M7: (0    0    0    1    0    0    0   0    0     1     0     0) Train passing intersection, gate closed.
M8: (1    0    0    0    0    1    0   0    0     1     0     0) Train gone, departing msg sent and gate closed.
M9: (1    0    0    0    0    0    0   0    0     0     1     0) Train gone, departing msg rcv'd and gate closed.
M10: (1    0    0    0    0    0    0   0    0     0     0     1) Train gone, departing msg prcss'd, gate opening.
Mncf**: (0    1    0    0    0    0    0   0    0     1     0     0) Train gone, but gate fails to open properly!
*Critical condition: Train at intersection but gate is still open **Non-critical condition: Train departed intersection but the gate is still closed

TRAIN GATE

P1

P3

P4

P7

P11

P12

IN_TRANSIT

AT_INTER -
SECTION

! a

! d

OPEN

? a

Train sends message 
that it will be arriving 
at the intersection.

Train sends message 
that it is departing 
from the intersection.

t1

t2

t3

t4

t5

t9

t10

P8P2

Several possible failure modes exist: (1) communication 
failure [t2, t4, t5 and t8], (2) mechanical failure [t6 and t9], and 

(3) timing failure [t3 occurs before t7] (i.e., train arrives at 
intersection before the gate has completely closed).

Train gone Gate open

Msg rcv'd 
gate open

Msg rcv'd
gate 
closed

Train 
approaching

Train in transit

Train passing 
intersection

Msg sent 
but not 
rcv'd

Msg sent 
but not 
rcv'd

Msg 
processed 
gate 
opening

P9

P10

CLOSING

? d

t6

t7

t8

Gate closing

Gate 
closed

CLOSED

OPENING

P5

P6

Figure 4.  Train crossing with a potential timing hazard (feasible markings included).

contribute to the overall reliability of the system, and
(3) whether their manifestation could be catastrophic.  

In considering the criticality of timing, we see that
the slow  firing of transitions (?a [t5]), (Closing [t6]),
and (Closed [t7]) make it possible for the train to enter
the intersection before the gate has properly (or
completely) closed.  Similarly transitions (?d [t8]),
(Opening [t9]), and (Opened [t10]) make it possible for
the train to have departed and still, the gate is not open.

Missing from the PN are the corresponding places
Pcf, Ptf, and Pnc that consume the failed transition's
token.  When a transition fails to fire properly, the

token is consumed but does not fall into an operational
place.  Instead, the token causes a failure transition to
fire and the token is placed in this transition's output
place.  For simplicity's sake these transitions and
places have been omitted.  When constructing the
corresponding CTMC (or discrete time Markov chain,
DTMC) the failure states are not omitted since they
have been designated by a unique marking.  Yet, in
order to recognize what states can directly transition to
a failure (or absorbing) state, the arcs must be drawn so
that their respective failure transition rates (or
probability for DTMC) can be considered.  



7

The CSP specification (and the corresponding PN)
can be augmented to show how such failures should be
handled.  For example, the communication failures can
be handled using time-out and re-transmit techniques.
But still, should  the gate fail to close then the question
becomes what can be done to possibly avoid
catastrophe?  Perhaps an audible and visual alarm would
help to alert unsuspecting pedestrians and traffic.

3.4   Pa    rametric     Sensitivity      Analysis
Using conventional techniques such as those used

by stochastic PN tools (e.g., SPNP3), discrete and
continuous analyses can be performed.§  For the
purpose of this presentation, we have computed
reliability of the train crossing with different failure
rates (or probabilities) and service rates (e.g., speed of
the train, rate at which the gate mechanism operates).
The values used in this paper (and hence the results of
the analysis) are only for illustrating the approach.  It
is not our intention to attach significance to the failure
rates, MTTFs obtained, or the probability of detected
and undetected failures.  These analyses are useful in
exploring different fault-handling mechanisms and the
cost-benefit of providing fault tolerance.  In the four
subsections below we describe our approach to
parametric sensitivity using the results of train crossing
analysis.  The following topics are covered: (1) timing
failure probability (analytical derivation), (2) cost
function minimization, (3) discrete and (4) continuous
Markov reliability analysis.

3.4.1      Timing      Failure      Probability

Analysis of failure rates (and cost functions)
requires knowledge of the probability density functions
(pdfs) associated with the train travel time and the gate
closing time.¶  Lets assume that the pdf for the train
travel time (θ) is given by Pθ(θ), and the pdf for the
gate closing time (η) is Pη(η).  The joint pdf of θ and
η is Pθ,η(θ,η).  If θ and η are statistically independent
then Pθ,η(θ,η)= Pθ(θ)Pη(η). In this case, since both
the train and gate operate independent of each other, it
can safely be assumed that their probabilities are
independent.  The failure condition occurs iff, θ < η
(i.e., when the train arrival time is less than the gate
closing time).  Thus, the probability of failure is,

   
p

failure
= p

θ, η
θ, η dθdη

θ = 0

η

η = 0

∞

,

Since θ and η are statistically independent then,

                                                
§The classic steady-state solution method for stochastic
models that maps GSPN models to CTMCs is compared
with a method based on DTMCs in [4].  The DTMC method
is shown to perform best (sometimes).
¶ The train travel (or arrival) time begins from when the
message is transmitted (to the gate) and ends when the
train arrives at the intersection where the gate has closed.

   
p

failure
= p

η
η p

θ
θ dθ

θ = 0

η

dη
η = 0

∞

,

   
p

failure
= p

η
η

η = 0

∞

⋅ F
θ

η dη (1)

Where, Fθ(η) is the probability distribution function of
the train arrival time and presents the probability that θ
< η (the gate closing time).  

The same result can be obtained using conditional
probabilities.  Lets assume that the gate closing time is
fixed and given as Η, then the probability of failure can
be given as

   p
failure

(Η ) = p(θ < Η | η = Η )

Again, if θ and η are statistically independent, then,

   p(θ < Η | η = Η ) = p(θ < Η ) = Fθ(Η )

The total probability of failure would then be,
   

p(θ < η) = p
failure

= p
θ

Η F
θ

Η dΗ
Η=0

∞

 ,

which is the same as (1).
In a real circumstance, the pdf of θ and η would be

known based on empirical knowledge, but this was not
the case for our train example.  Yet, lets consider some
plausible analytical pdf from the stand point of an
engineer who is responsible to procure such a system.  

Typically the railroad tracks have a set speed limit
that would determine the distance from the gate at
which the "close gate" message must be transmitted.
This distance must be set so as to reasonably assure
that enough time will elapse for the gate to close.  If
the speed of the train was constant, then the train
arrival time will be a constant.**   However, there will
be some variability from one run to the next which,
over a period of say 25 years (with say five trains/day),
represents a fair amount of uncertainty.  The sources of
variability (e.g., prevailing winds and other weather
effects, time of the day, weight, type of load, and
various human factors) can be grouped together as
"undetermined" random events.  Lets assume that if no
random events occur, then the arrival time would be
some nominal value, call it MPT (for most probable
arrival time).  Lets also assume that the deviation
around MPT (we'll use lower case mpt to shorten
equations) is not symmetrical and the pdf of the
deviation is exponential given by,

                                                
** The time taken by the train to pass by the intersection
(once it has arrived) is ignored since that is dependent on
the length of the train and is independent from the design
parameters for the Train Crossing.



8

   

p(θ) =
p

e
1
β e

θ ± mft βθ ± mft β if θ < mft

p
e

1
β e

pe mft ± θ
β 1 ± pe

pe mft ± θ
β 1 ± pe if θ ≥ mft

Where pe is the probability of train being earlier

than mpt, β2 is the variance of being early. In addition,
we'll assume the pdf for the gate p(η), is similar except
that different parameter values (i.e., different pe, β, and
mpt).  Figure 5 shows the pdf for the train travel time
for mpt=40, β=4, and pe=0.1.  Note, the area under the
curve for mpt<θ<∞ is 0.9.  In Figure 6 the probability

distribution of θ (Fθ(Θ) )is shown. Where Fθ(Θ) is the

probability of train travel time being less than Θ.

pe    = 0.1
β     = 4
mpt  = 40

mpt

P
ro

ba
bi

lit
y 

D
en

si
ty

Time Units

Figure 5.  Probability density function for the Train.

Time Units

pe    = 0.1

β     = 4
mpt  = 40

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n

mpt

Figure 6.  Failure probability distribution function.

The joint pdf of θ and η is shown in Figure 7.  
Note that the probability of failure is the volume under
that part of the surface where θ < η . This is shown in
the figure 7 by cutting the surface with plane P. The
p(θ<η) is the volume under the foreground surface.
The failure probability is calculated according to
equation (1) with parameters values substituted.  

3.4.2      Cost      Functions

A cost function is especially useful for trading-off the
optimal values of design parameters.  The function
itself relates a cost to some tangible property of the
system (e.g., time, reliability, failures, etc.).  And, in
general, calculating the probability of failure is most
useful in understanding the balance between reliability
and the cost of failure.  The cost function should be
defined with parameters that can be measured and/or
altered to minimize the potential losses (or costs).  For
example, more elaborate fault-handling and fault-
recovery mechanisms could be used to tolerate or
prevent safety critical failures, while less attention may
be paid to non-safety critical failures.  Failure to open
the gate may cause long delays for waiting traffic but
such failures can be handled by providing less
expensive mechanisms that will allow the gate to be
opened manually.  Conversely, failure to close the gate
is more severe, so the benefit of using more elaborate
mechanisms (e.g., increased redundancy, testing, and
verification) is worth the expense to ensure the system
uses an inherently more reliable design.

Gate closing time 

Jo
in

t P
ro

ba
bi

lit
y 

of
 θ

 a
nd

 η.

pe = 0.3,  β = 2,  gmpt  = 20
Gate parameters: Train parameters:

pe  = 0.1,  β = 4,  mpt  = 40 

Tra
in tr

ave
l ti

me

Figure 7. Joint pdf for the train crossing.

Lets assume a simplified cost function with three
components, the cost of delaying the traffic, the cost of
improving the gate reliability or speed, and the cost of
a failure.  The cost function is,

   
Q = ωp failure + φ θpθ θ dθ + ν

0

∞

(2)

where ω = cost of failure, φ = cost of delay / time
units, ν = cost of the gate / train passing and, the

   
average train travel time= θp

θ
θ dθ

0

∞

(3)

Equation 4 shows the gate cost as a function of the
gmpt.



9

   
ν(gmpt) =

40 ±gmpt 4 + 20,000

100
(4)

This equation implies that there is an initial cost
associated with installing the gate and the cost of the
gate rises as the speed of the gate increases.  The value
of denominator represents the number of times that the
gate operates before it needs to be replaced. It should be
noted that this is a hypothetical equation for
demonstration purpose and it is not based on any
empirical knowledge.  In fact, the actual function
includes many more parameters.

The cost function is a multidimensional function
of all the parameters of the system (mpt, gmpt, β, βg,
pe, peg [g subscript stands for gate parameters]).  In a
practical situation a subset of these parameters has to
be selected by the designer in such a way to minimize
the overall cost of operating the system.  Figure 8
shows a 3-dimensional plot of the cost as a function of
mpt and gmpt.  All other parameters are assumed to be
fixed known values. Using this function a designer can
minimize the cost by selecting the right values of mpt
and/or gmpt.  For example, if the gate's closing time
was fixed at 30 time units, then the optimal train
arrival time is around 52 time units.  Knowing the
optimal train arrival time easily gives us the distance
from where to send the open gate request message
(given the speed of the train).

G
at

e 
cl

os
in

g 
tim

e 

Cos
t

Train travel time

ω = 10,000,  φ= 20 / time unit.Cost parameters:

Gate parameters:   pe = 0.3,  β = 2
Train parameters:  pe  = 0.1,  β = 4 

Figure 8. Cost function for train crossing.

For smaller values of mpt and larger values of
gmpt the cost is mostly influenced by the cost of
failure (mpt= 30 and gmpt= 30).  For small values of
gmpt (such as gmpt= 10) the cost is mostly influenced
by both the cost associated with delaying traffic (i.e.,
delay cost increases as the train travel time increases)
and the cost to build a gate that can close faster.  If the
designer has the choice of selecting both mpt and gmpt,
then the optimal point will be mpt≅ 45 and gmpt≅ 25.

3.4.3      Discrete   Analysis

Table 2 presents the probability assignments for
our test runs of the train crossing ignoring deadline
related failures (i.e., Ptf= 0).  Four different trials were
run with differing failure probabilities (where Pc=
communication failure, Pm= mechanical failure either
in opening or closing).  In all runs Pm > Pc, and in
order to reduce the probability of critical failure in runs
2 - 4, we set Pm(close) > Pm(open) by the factors of
100, 3 and 5 respectively.
Hypothetically, using fault-tolerant methods, such
reliability improvements are possible.  Consequently,
the probability of critical failures (Pcf) are reduced by
the factors of 17.573, 1.975 and 2.974 respectively.
Such analyses showing the magnitude of improvement
associated with a given design (or specification) option
can be useful for deciding what level of fault tolerance
is appropriate (a practical approach especially in light
of budgets and schedules).  Note, Pncf is the non-
critical failure probability and the MTTF is given in
the number of discrete steps (or time units).  

Table 2. Discrete analysis (Ptf=0).

Descript. Run 1 Run 2 Run 3 Run 4
Pc .0001 .00001 .0001 .00001

Pm(close) .01 .00001 .01 .001

Pm(open) .01 .001 .03 .005

The results from DTMC-based analysis:
Pcf 0.5026 0.0286 0.2544 0.1690

Pncf 0.4974 0.9714 0.7456 0.8310

MTTF 490.26 9524.07 248.19 1656.21

3.4.4      Continuous   Analysis

The results of the continuous analysis are shown
in Figure 10.  These results are based on the CTMC
shown in Figure 9.  In the CTMC states represented by
the markings M1, M2, M6, and M7 are so called "safe"
because these states are transient and do not (directly)
give rise to failures (do not transition to absorbing
states).  The mechanical (λm), communication (λc) and
timing (τ) failure rates are shown associated with their
transition arcs.  The trade-off between the rate of train
arrivals (µ1), speed of the train (µ3), rate of the gate
mechanism (µ6, µ9) and the failure rates were
investigated.  

The unreliability of communications do not
significantly impact the MTTFs because we have set
those failure rates much lower than the rates associated
with the gate's open/close mechanism by a factor of
1,000 times (i.e., λm = 0.0001 > λc = 0.0000001).
Mechanical failures and the possibility of the gate not
closing (opening) in time are assumed to be greater
looking at the data (input parameters and the results



10

incontributors to the unreliability of the system.  In
Figure 10) an interesting relation is evident.  We
observe that, if the train's speed tends to bring it to the
intersection sooner than the gate has had time to close,
then an improvement in the gate's mechanical
reliability doesn't really help!  To improve the overall
system's reliability it is more important to provide the
additional synchronization between the train and gate
processes as described in ¶3.1, so as to avoid the
possibility of having the gate miss its deadline (τ5).

In general, it is interesting and (perhaps) important
to see how much the least reliable entity impacts the
overall system reliability.  In Figure 10, there are
incremental improvements seen in Rel[10,000] (the
reliability of the system at 10,000 time units) from 10-

40 to 10-5 (see how τ5 has been manipulated in runs 1
- 3), but by run 4 we have reached a point of
diminishing return.  The next most significant gain in
system reliability comes when the gate's failure rate is
improved by a factor of ten (note the difference between

run 6 and 7 in the graph).  In this case, the MTTF
improves by 6 times while the corresponding system
reliability improves significantly from ~2.6x10-5 to
~3.3x10-1.

4. Summary and Future Work
The objective of this paper was to show how CSP

specifications are translated into SPNs for the purpose
of reliability and performance analyses.  Such
translations will give insight into the failure modes,
and how fault handling mechanisms can be described as
a part of the CSP specification.  This approach
provides feedback to the designer so that a judicious
cost-benefit analysis for providing fault-avoidance and
fault-tolerance can be made.  We have illustrated this
approach by using a simple example.  The failure
probabilities used in this example (hence the results of
the analysis) are for illustrating our approach, no other
significance should be attached, the intention being to
show the complete process of specification and
analysis.  A tool is currently being developed for

Safe states

= communication failure rateλc
λm = mechanical failure rate

µ1 µ2 µ6µ4µ3 µ5 µ7 µ8 µ9

µ10

Tr
ai

n 
go

ne
, g

at
e 

op
en

Tr
ai

n 
in

 tr
an

sit
, 

ga
te

 o
pe

n

Tr
ai

n 
se

nd
s 

ar
riv

in
g 

m
sg

, g
at

e 
op

en

Rec
ei

ve
 a

rri
vin

g 

m
sg

, g
at

e 
op

en

St
ar

t g
at

e 
clo

sin
g

Tr
ai

n 
ap

pr
oa

ch
in

g,
 

ga
te

 c
lo

se
d

Tr
ai

n 
at

 in
te

rs
ec

tio
n,

 

ga
te

 c
lo

se
d

Tr
ai

n 
go

ne
, 

de
pa

rti
ng

 m
sg

 s
en

t

Rec
ei

ve
d 

de
pa

rt 

m
sg

, g
at

e 
st

ill 
clo

se
d

St
ar

t g
at

e
op

en
in

g

Non-Critical 
Failure

Timing Failure
Critical Failure

λ3 λ4

λ5

τ5 λ8 λ9 λ10

Mtf MncfMcf

M1 M2 M3 M4 M5 M7 M8 M9 M10M6

Train at intersection, 
msg rcv'd and gate 
closing!

Train at intersection, 
but approaching msg 
never received!

Train gone, but the 
gate failed to open 
properly!

m

mc c c c

Figure 9.  Continuous Time Markov Chain (CTMC) showing various failure mechanisms.

*Time units: each tick on the x-axis is 1000tus.  Assume a tu is a second then 
  there are  ~16mins/tick, and 10,000 ticks (full range of data) are ~2778hrs.

**Constants: µ1= 0.0001,  µ2-4, 7, 8= 1.0,  µ9, 10= 1.0,  while
    µ5 and µ6 = were held set at 0.1 and 0.01 respectively.

Run1

Run2
Run3

Runs 4, 5& 6 (no visible difference)

Run7

10,0008,0006,0004,0002,000

0.8

1.0

0.4

0.6

0.2

0.34

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7

Key:

Time units (tu)*

R
el

ia
bi

lit
y

Input Parameters:** 

1. τ5=0.00908          λ3, 4, 8, 9=1.0 x10-7    λ5, 10=1.0 x10-4

2. τ5=0.000908        λ3, 4, 8, 9=1.0 x10-7    λ5, 10=1.0 x10-4

3. τ5=0.0000908      λ3, 4, 8, 9=1.0 x10-7    λ5, 10=1.0 x10-4

4. τ5=0.00000908    λ3, 4, 8, 9=1.0 x10-7    λ5, 10=1.0 x10-4

5. τ5=0.0              λ3, 4, 8, 9=1.0 x10-7    λ5, 10=1.0 x10-4

6. τ5=0.0              λ3, 4, 8, 9=0.0            λ5, 10=1.0 x10-4

7. τ5=0.0              λ3, 4, 8, 9=0.0            λ5, 10=1.0 x10-5

Results:

Run1....Rel[10,000]=4.58042 x10-40   Mttf=1.09934 x105tus

Run2....Rel[10,000]=4.58554 x10-9   Mttf=5.20472 x105tus

Run3....Rel[10,000]=1.07427 x10-5   Mttf=8.73755 x105tus

Run4....Rel[10,000]=2.34974 x10-5    Mttf=9.37937 x105tus

Run5....Rel[10,000]=2.56342 x10-5   Mttf=9.45662 x105tus

Run6....Rel[10,000]=2.58888 x10-5   Mttf=9.46547 x105tus

Run7....Rel[10,000]=3.44604 x10-1   Mttf=6.15169 x106tus

Figure 10.  Continuous Analysis: System reliability as a function of operational time.



11

automatically translating CSP specifications based on
the grammar discussed in ¶2.1, into PNs in order to use
off-the-shelf SPN tools for the analysis.

Acknowledgment: Special thanks is extended to
Sherman Reed of the Electrical Engineering Department
(at The University of Texas at Arlington).

5. References

1. Butler, W.R. and Johnson, S.C., "Formal Methods
for Life-Critical Software," Proc: AIAA
Computing in Aerospace 9, San Diego CA, pp.
319-329, Oct. 1993.

2. Chiola, G., "A Software Package for the Analysis
of Generalized Stochastic Petri Net Models," IEEE
Proceedings: Third Int'l Wkshp on Petri Nets and
Performance Models, Kyoto Japan, pp. 136-143,
Dec. 1989.

3. Ciardo, G., Muppala J. and Trivedi, K.S., "SPNP:
Stochastic Petri Net Package," IEEE Proc: 3rd Int'l
Wkshp on Petri Nets and Perf. Models, Kyoto
Japan, pp. 144-151, Dec. 1989.

4. Ciardo, G., Muppala J. and Trivedi, K.S., "On the
Solution of GSPN Reward Models," Performance
Evaluation 12, North-Holland, pp. 237-253, 1991.

5. Hoare, C.A.R., Communicating sequential
processes, Prentice-Hall Int'l, London, 1985.

6. Kavi, K.M., Sheldon, F.T., Shirazi, B., and
Hurson, A.R., "Reliability Analysis of CSP
Specifications Using Petri Nets and Markov
Processes," IEEE Proc. HICSS-28, Honolulu, HI,
January 1995.

7. Kavi, K.M. and Sheldon, F.T., "Specification of
Stochastic Properties with CSP," IEEE Proc. Int'l
Conf. on Parallel and Distributed Systems, Taiwan
ROC, pp. 288-293, Dec. 1994.

8. Kavi, K.M. and Buckles, B.P., "Formal methods
for the Specification and Analysis of Concurrent
Systems," Tutor'l Notes, Int'l Conf. on Par.
Processing, Lake Charles, IL., Aug., 1993.

9. Marsan, M.A., Donatelli, S. and Neri, F., "GSPN
Models of Multiserver Multiqueue Systems," IEEE
Proc.: Third Int'l Wkshp on Petri Nets and
Performance Models, Kyoto Japan, pp. 19-28,
Dec. 1989.

10. Marsan, M.A., Balbo, G. and Conte, G., "A Class
of Generalized Stochastic Petri Nets for the
Performance Evaluation of Multiprocessor
Systems," ACM Trans. Comp. Sys., 2(2), pp. 93-
122, 1984.

11. Murata, T. "Petri Nets: Properties, Analysis and
Applications," Proceedings of the IEEE, pp. 541-
580, April 1989.

12. Olderog, E.R., TCSP - Theory of communicating
sequential processes, LNCS-255, Springer Verlag,
1986.

13. Ostroff, J.S., "Formal Methods for the
Specification and Design of Real-time Safety
Critical Systems," The Journal of Systems and
Software, pp. 33-60, April 1992.

14. Shin, K.G. and Kim, H., "Derivation and Use if
Deadline Information in Real-Time Control
Systems," Foundations of Dependable Computing:
Models and Frameworks for Dependable Systems,
Edited by G.M Koob and C.G. Lau, Kluwer AP,
Bost., pp.. 77-110, 1994.

15. Trivedi, K.S., Probability and Statistics with
Reliability, Queuing and Computer Science
Applications, Prentice-Hall, NJ, 1982.

6. Appendix A
This specification is based on the original CSP

formulated Train example described in ¶3.1.  The CSP-
based grammar is found in ¶2.1.1.  The '--' denotes a
comment , PROCESS is a key word declarative, braces
are grouping connectives defining process boundaries.
Process lists require processes be separated by commas
when contained in constructors (i.e., SEQ, PAR, etc.)
primarily for readability.  A semicolon completes a
process declaration and the period completes the system
declaration (1st symbol, "TrainXing" below).  By
convention, we define processes first and use a process
constructor to specify their interaction.  The {Arrive,
Depart} in the last line, are synchronizing messages for
the preceding Train and Gate processes.  Since both are
predefined, subsequent reference uses a process call
syntax "Process()."  View the parentheses as connoting
the existence of a body of events and actions.

TrainXing =
  -- Two processes Train and Gate
  -- consist of sequential actions
  -- run concurrently. A signal is
  -- required to open/close the Gate.
  -- Processdef:
  PROCESS Train =
    SEQ{
      InTransit(),
      {ToGate ! Arrive},
      AtIntersection(),
      {ToGate ! Depart}};
  -- Processdef:
  PROCESS Gate =
    SEQ{
      Closed(),
      {ToGate ? Depart},
      Open(),
      {ToGate ? Arrive}};
  -- Main body:
  PAR{
    Train(),Gate(){Arrive, Depart}}.



A
N

A
LY

S
IS

 O
F

R
E

A
L

-T
IM

E
 C

O
N

C
U

R
R

E
N

T
 S

Y
S

T
E

M
 S

P
E

C
IF

IC
A

T
IO

N
S

F
rederick T

. S
heldon, K

rishna M
. K

avi and F
arhad K

am
angar

D
epartm

ent of C
om

puter S
cience and E

ngineering
T

he U
niversity of T

exas at A
rlington

A
rlington, T

exas 76019-0015

A
IA

A
 C

O
M

P
U

T
IN

G
 IN

 A
E

R
O

S
P

A
C

E
 10 C

O
N

F
E

R
E

N
C

E
M

A
R

C
H

 28 - 30, 1995

S
A

N
 A

N
T

O
N

IO
, T

E
X

A
S

P
resented by:

F
rederick T

. S
heldon

A
ssistant Instructor and P

h.D
. C

andidate
301 N

edderm
an H

all
(817) 273-3629

S
heldon@

cse.uta.edu
O

r at N
A

S
A

 LaR
C

(704) 864-1692

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 2

A
G

E
N

D
A

•
M

otivation.

•
B

ody of core approaches.

•
O

ur A
pproach C

S
P→

 P
etri nets →

 M
arkovian analysis.

•
W

hy C
S

P
?

•
P

etri net overview
.

•
D

em
onstrate the concept using a 

sim
ple  exam

ple.

•
P

aram
etric sensitivity analysis.

•
T

im
ing failure probability derivation.

•
C

ost benefit

•
S

ystem
 reliability from

 discrete and continuous analysis

•
S

um
m

ary



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 3

C
O

M
P

R
E

H
E

N
S

IV
E

 M
O

T
IV

A
T

IO
N

•
W

hy should w
e be interested in reliability prediction?

√
S

afety critical nature of som
e system

s.

√
H

igh cost of loss due to failure.

√
A

bility to evaluate design im
plem

entation m
odels (candidate prototypes).

√
A

bility to m
ake design trade-offs.

H
ow

 do the 
externals 
im

pact the 
perform

ance 
and 
reliability?

E
xternal constraints on the system

T
opology

F
ault tolerance

D
eadline &

 resource 
allocation

C
om

m
unications

F
ailure  categories

C
onvert a F

orm
al S

ystem
 D

escription into the Inform
ation N

eeded  
to P

redict S
ystem

 B
ehavior as a F

unction of O
bservable P

aram
eters

F
orm

al 
F

unctional 
S

ystem
 

S
pecification 

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 4

R
E

F
IN

E
D

 M
O

T
IV

A
T

IO
N

•
F

orm
al m

ethods for specification  and verification  of com
plex system

s do not
perm

it the specification and analysis of stochastic properties.

•
Stochastic m

odels are not useful in specifying functionality.

•
Is it possible to translate betw

een form
al m

odels and stochastic m
odels to

address both aspects of system
s?

•
N

eed to relate non-functional requirem
ents at user (top) level specifications.

√
E

valuate cost of providing a required level of reliability or perform
ance.

•
N

eed to develop tools to achieve the translation betw
een the m

odels.



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 5

B
O

D
Y

 O
F

 C
O

R
E

 A
P

P
R

O
A

C
H

E
S

G
E

N
E

R
A

L P
R

O
P

E
R

T
IE

S
 O

F
 RE

A
L-T

IM
E

 S
Y

S
T

E
M

S

E
vent D

riven

R
esource Lim

ited

D
ynam

ic schedule

T
im

e D
riven

R
esource 

A
dequate

S
tatic S

chedule

A
syn

ch
ro

n
o

u
s

S
yn

ch
ro

n
o

u
s

B
ased on the requirem

ents of a 
given system

 there is generally 
a strong need for 

(1) reproducible determ
inism

, 

(2) determ
inism

 that only 
guarantees m

eeting deadlines, 
and 

(3) priority based solutions up 
to a very general m

eans of 
providing tim

e-value or benefit 
accrual based m

echanism
s.  

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 6

B
O

D
Y

 O
F

 C
O

R
E

 A
P

P
R

O
A

C
H

E
S

T
O

P-L
E

V
E

L: IT
E

R
A

T
IV

E
 R

E
F

IN
E

M
E

N
T

 O
F

 S
Y

S
T

E
M

 M
O

D
E

LS

E
valu

ate

M
o

del 0.0

E
valu

ate

M
o

del n
.0

B
est D

esig
n

M
o

del 
D

evelo
p

m
en

t

E
valu

ate

M
o

del 1.0

Validate
Validate

Validate

P
rototypin

g

R
equirem

ents 
S

pecifica
tion

D
esign 

S
pecification

Im
plem

entation 
n

Im
plem

entation 
1

U
se

r 
N

eed
s

R
efin

em
en

t

S
im

u
lation

M
athem

a
tical

Testbed



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 7

O
U

R
 A

P
P

R
O

A
C

H
 IN

 G
E

N
E

R
A

L

P
R

E
D

IC
T

IN
G

 R
E

LIA
B

ILIT
Y

 O
F

 F
O

R
M

A
L S

P
E

C
IF

IC
A

T
IO

N
S

•
A

s specifications are refined into detailed designs trade-offs are m
ade:

1.
D

eterm
ine the critical elem

ents of the functional system
 specification.

2.
D

evelop translations betw
een C

S
P

 and S
tochastic P

etri nets.

3.
B

udget reasonable perform
ance and reliability requirem

ents am
ong

subsystem
 com

ponents.

4.
D

ecide w
hat features of the system

 should be changed to im
prove

the system
's reliability.

5.
V

alidate perform
ance and reliability goals using stochastic system

m
odels (analyze S

tochastic P
etri nets for stochastic properties).

6.
A

ugm
entation:  relate stochastic properties to top level (C

S
P

)
specifications (e.g., failure rates, error handling m

echanism
s).

7.
U

nderstand the effect these non-functional requirem
ents have on

cost.

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 8

F
O

C
U

S
E

D
 A

P
P

R
O

A
C

H:

P
R

E
D

IC
T

IN
G

 R
E

LIA
B

ILIT
Y

 O
F

 F
O

R
M

A
L S

P
E

C
IF

IC
A

T
IO

N
S

√ T
ranslating:

C
S

P
 →

(D
eveloping canonical translation rules)

P
etri N

ets →
 

(A
ssum

e R
V

s are exponentially distributed)

M
arkov P

rocesses
(C

ultivating stochastic properties)

√ E
stim

ating T
im

ing F
ailure P

robability

√ R
eliability A

nalysis

√ C
ost B

enefit



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 9

W
H

Y
 U

S
E

 C
S

P
?

•
C

S
P

 as a form
al specification m

ethod gives rigor . . . .
√

M
athem

atical abstraction of process  interactions (i.e., com
m

unication,
concurrency, recursion, etc.),

√
R

ules to help in the implem
entation of processes (i.e., law

s used to prove a
specification is satisfied),

√
H

o
w

 p
ro

ce
sse

s ca
n

 b
e

 
com

posed  to
g

e
th

e
r in

to
 syste

m
s w

h
e

re
com

ponents interact internally and w
ith their environm

ent,
√

D
efinition of a m

athem
atical 

theory for determ
inistic  and nondeterm

inistic
processes,

√
A

lgebraic law
s  w

hich describe the essential properties  of the various
operations that are useful in expressing new

 problem
s, solutions and

proofs.

•
H

ow
ever, for our purposes . . . .

√
D

em
onstrate the concept  using C

S
P

 because it is 
restricted, sim

ple,
concurrency constructs are 

generic, and the availability of occam
.

√
T

he C
S

P
-based gram

m
ar does not restrict considering C

S
P

 properties,
how

ever w
e are interested only that the structural properties be preserved.

√
Introduction of stochastic properties into that form

ally rigorous
specification environm

ent.

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 10

C
S

P
 SH

O
R

T
 C

O
U

R
S

E

•
O

riginally due to C
.A

.R
. H

oare, later extended by O
lderog (and others).

√
A

 system
 is defined as a set of concurrent processes that com

m
unicate and

synchronize.  E
ach process is sequential.

√
O

nly visible (com
m

unication) actions  are specified w
ith C

S
P

 processes.

√
H

ere 2 processes synchronize on m
atching input and output actions.

Input A
ction:

P
 ? V

ariable
O

utput A
ction:

P
 ! E

xpression

•
C

S
P

 G
ram

m
ar:

P
 ::=

 
stop | a ->

 P
 | P

 
  B

 | P
 

  Q
 | P

 
  Q

 | P
 

B  Q
 | µ

x
.P

stop
D

eadlocked P
rocess

a ->
 P

  
perform

 action a and behave like P

P
 

  B
sam

e as P
, but action B

 is not visible

P
 

  Q
 

E
ither P

 or Q
; choice is non-determ

inistic

P
 

  Q
D

eterm
inistic C

hoice

P
 

B  Q
 

P
 and Q

 in P
arallel w

ith synchronization on B
µ

x.P
R

ecursive D
efinition of a process



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 11

P
E

T
R

I N
E

T
S

 O
V

E
R

V
IE

W

•
P

etri N
ets are directed bipartite graphs

P
N

 =
 <

 P
, T

, E
, M0 >

w
h

e
re

,
P

 is the set of Places  (show
n as C

ircles)
T

 is the set of Transitions (show
n as B

ars)
E

 is the set of E
dges

M
0  is the initial M

arking

•
P

laces usually represent events.
√

O
ccurrence of an event is indicated by a token in that place

√
C

om
pletion of an action can be view

ed as an event.

•
T

ransitions usually represent actions (or functions or processes)

•
A

 m
arking indicates th

e
 location (&

 num
ber) of tokens in places,

and to represent the status (or state) of execution of a P
etri net.

•
A

 T
ransition is enabled for execution only 

w
h

e
n

 all input places
contain at least one token.

•
W

h
e

n
 a

 transition com
pletes execution, 

o
n

e
 to

ke
n

 from
 e

a
ch

 input
place is rem

oved and a new
 token is added to each output place.

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 12

C
S

P
 →

 P
E

T
R

I N
E

T
S

•
T

ranslations are based on the follow
ing rules:

√
A

ctions are represented by T
ransitions.

√
E

vents that trigger actions are represented by P
laces

•
In P

etri nets, the choice betw
een

tw
o actions (P

rocesses) is non-
determ

inistic.........................

•
D

eterm
inistic choice is possible

only w
hen additional inform

ation
is available...........................

•
S

ynchronization 
using 

input 
and

output actions........................
P

Q

Q
 ! exp

P
 ?

 V
ar

S
yn

ch
ro

n
iza

tio
n

 
E

ve
n

t



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 13

T
R

A
N

S
LA

T
IO

N
S:  C

S
P

 →
 P

E
T

R
I N

E
T

S

S
T

O
P

a     b

a
b

ab

a →
 b

a
b

a     b

S
T

O
P

b

µ
X

.(b →
 X

)
µ

X
.(b    c →

 X
)

c
b

(a →
b →

c) ||{b} 
                     (d →

b →
e)

b

a
d

c
e

b
c

a

a

c
b

a →
 (b    c) and (b    c) →

 a
a →

 (b    c) and (b    c) →
 a

b
c

a
b

a

c

(a →
 b →

 c) \ b)

τ
ac

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 14

T
R

A
N

S
LA

T
IO

N
S:  C

S
P

 →
 P

E
T

R
I N

E
T

S
 (C

O
N

T
IN

U
E

D)

a
b

(a    b) ||{a,b}  (a    b)

d
τb

c
a

d    ((a →
b)      

 
   (c →

b))
{b}

a
b

from
environ-
m

ent

from
environ-
m

ent
(a    b)

a

b
a

b

b

a

b

(a →
b →

c)     
 (d →

b →
e)) \ b)

a
d

c
e

τ

µX
.(a →

 X
    b)

{b}



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 15

D
E

M
O

N
S

T
R

A
T

E
 W

IT
H

 A
 S

IM
P

LE
 E

X
A

M
P

LE

•
C

onversion of C
S

P
 specifications into P

etri nets.

•
Identifying system

 failure m
odes by inspecting the P

etri nets.

•
H

ow
 the identified failure m

ode can be handled.

•
H

ow
 to specify the appropriate fault handling m

echanism
 (e.g., additional

synchronization, tim
e-out-retransm

it) back at the C
S

P
 level (to be

exam
ined by the user/specifier).

•
A

nalysis of P
etri nets for reliability using analytically derived (user-based)

tim
ing failure probabilities.

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 16

A
 S

IM
P

LE
 C

O
M

P
LE

T
E

 E
X

A
M

P
LE:   R

A
ILR

O
A

D
 C

R
O

S
S

IN
G

T
w

o B
asic P

roperties the system
 m

ust satisfy**:
(1) S

afety property – the gate is dow
n during all occupancy intervals

(2) U
tility property – the gate is open w

hen no train is in the crossing.

O
ur solution in general term

s:
T

w
o P

rocesses: T
he T

R
A

IN
 and the G

A
T

E

•
T

R
A

IN
 

se
n

d
s 

a
n

 "arriving" 
signal 

to
 th

e
 G

A
T

E
 

a
s 

it nears 
the

intersection and proceeds tow
ards the intersection.

•
G

A
T

E
, u

p
o

n
 receiving th

e
 signal, closes the ga

te
 a

n
d

 rem
ains closed

until the train departs.

•
T

R
A

IN
 sends a "departing" signal after leaving the intersection.

•
G

A
T

E
, upon receiving the signal opens the gate and rem

ains open.

•
T

he tw
o processes repeat continuously.

**T
his m

odel encom
passes the environm

ent w
hich includes the train(s) and the gate, as w

ell as the interface
betw

een them
.  T

hus, the gate closes w
hen a train arrives at the intersection and rem

ains closed until the train
passes the intersection.



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 17

C
S

P
 SP

E
C

IF
IC

A
T

IO
N

 →
 S

T
O

C
H

A
S

T
IC

 P
E

T
R

I N
E

T

T
R

A
IN

 =
(IN

_T
R

A
N

S
IT

);
(G

A
T

E
 ! a →

 A
T

_IN
T

E
R

S
E

C
T

IO
N

);
(G

A
T

E
 ! d →

 T
R

A
IN

)
G

A
T

E
 =

(T
R

A
IN

 ? a →
 C

LO
S

E
);

(T
R

A
IN

 ? d →
 O

P
E

N→
 G

A
T

E
)

R
A

IL_R
O

A
D

_C
R

O
S

S
IN

G
 =

T
R

A
IN

 
{a,d}  G

A
T

E
T

R
A

IN

P
1

P
3

P
4

P
7

P
10

IN_T
R

A
N

S
IT

A
T_IN

T
E

R
-

S
E

C
T

IO
N

! a

! d
O

P
E

N

?
 a

T
rain sends m

essage 
that it w

ill be arriving 
at the intersection.

T
rain sends m

essage 
that it is departing 
from

 the intersection.

t1t2t3t4

t5t8

P
8

P
2

T
rain gone

G
ate open

M
sg rcv'd 

gate open

M
sg rcv'd

gate 
closed

T
rain 

approaching

T
rain in transit

T
rain passing 

intersection

M
sg sent 

but not 
rcv'd

M
sg sent 

but not 
rcv'd

P
9

?
 d

t6t7

G
ate 

closed

C
L

O
S

E
D

P
5

P
6

G
A

T
E

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 18

T
H

E
 A

S
S

O
C

IA
T

E
D

 M
A

R
K

O
V

 C
H

A
IN

T
he behavior of the T

rain and G
ate is m

odeled by a M
arkov process.

S
afe sta

te
s

=
 com

m
u

nic
ation

 fa
ilure

 ra
te

λ
c

λ
m

=
 m

e
chanical fa

ilure
 ra

te

µ
1

µ
2

µ
6

µ
4

µ
3

µ
5

µ
7

µ
8

µ
9

µ
1

0

N
o

n-C
ritical

F
a

ilure

T
im

in
g F

ailu
re

C
ritical F

a
ilure

λ
3

λ
4λ

5

τ
5

λ
8

λ
9

λ
1

0

M
tf

M
n

cf
M

cf

M
1

M
2

M
3

M
4

M
5

M
7

M
8

M
9

M
1

0
M

6

T
ra

in a
t intersection

,
m

sg rcv'd
 a

nd g
a

te
clo

sing!
T

ra
in a

t intersection
,

b
ut a

pproachin
g m

sg
n

ever re
ceived!

T
ra

in g
o

ne, but th
e

g
ate fa

iled
 to

 o
p

en
p

ro
p

erly!

m

m
c

c
c

c

Train gone, gate openTrain in transit, gate openTrain sends arriving

msg, gate open
Receive arriving msg,

gate open

Start gate closingTrain approaching,

gate closed

Train at intersection,

gate closed

Train gone, departing

message sent

Received depart msg,

gate still closed.Start gate opening



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 19

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS
†

•
C

onventional techniques are used (sim
ilar to those in S

P
N

P
 G

S
P

N
).

1.
A

nalytical derivation of tim
ing failure probability.

2.
C

ost function m
inim

ization.

3.
D

iscrete and continuous M
arkov reliability analysis.

•
R

esults of item
 1

 provide th
e

 basis for graphing a
 

co
st function. Ite

m
 2

allow
s choosing an appropriate 

tim
ing th

a
t will e

n
su

re
 th

e
 right level of

reliability w
ith

 re
sp

e
ct to

 th
e

 co
sts i

nvolved in choosing th
e

 tim
ing

bounds.

•
If w

e have chosen 
"optim

al" tim
ing criteria, w

e
 can integrate the

 tim
ing

failure probabilities (or rates) into the overall system
 m

odel (item
 3).

 

•
T

he system
 models assume

 th
a

t a
n

y of th
e

 P
N

 transitions ca
n

 fail by
any of several other 

failure m
o

d
e

s (i.e., m
echanical an

d
 com

m
unication,

tim
ing... depending on wh

a
t p

a
rt of th

e
 syste

m
 th

e
 

particular transition
represents).

                                                
† T

he values used in this w
ork (and hence the results of the analysis) are only for illustrating our approach.  D

o not attach any
 significance

to the input values used or the output results.

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 20

T
IM

IN
G

 F
A

ILU
R

E
 P

R
O

B
A

B
ILIT

Y
*

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

   
p

failure =
p

θ,η θ,η
dθdη

θ
=

0

η

η
=

0

∞

.

S
ince θ and η

 are statistically independent then,

   
p

failure =
p

η η
p

θ θ
dθ

θ
=

0

η

dη
η

=
0

∞

,

   
p

failure =
p

η η
η

=
0

∞

⋅F
θ η

dη
(1).

W
here, Fθ (η

) is the probability distribution function of the train arrival tim
e and

presents the probability that 
θ <

 η
 (the gate closing tim

e).

                                                
* A

ssum
e that the pdf for the train travel tim

e (
θ) is given by Pθ (θ), and the pdf for the gate closing tim

e (
η

) is Pη
(η

).  T
he joint pdf of θ and η

 is Pθ,η
(θ,η

).  If
θ and η

 are statistically independent then P
θ,η

(θ,η
)=

 Pθ (θ)Pη
(η

). In this case, since both the train and gate operate independent of each other, it can safely be
assum

ed that their probabilities are independent.  T
he failure condition occurs iff, 

θ <
 η

 (i.e., w
hen the train arrival tim

e is less than the gate closing tim
e).



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 21

T
IM

IN
G

 F
A

ILU
R

E
 P

R
O

B
A

B
ILIT

Y

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

T
he sam

e result can be obtained using conditional probabilities.  Lets assum
e

that the gate closing tim
e is fixed and given as 

Η
, then the probability of failure

can be given as

   
p

failure (Η
)

=
p(θ

<
Η

|η
=

Η
)

.

A
gain, if θ and η

 are statistically independent, then,

   
p(θ

<
Η

|η
=

Η
)

=
p(θ

<
Η

)
=

F
θ (Η

).
.

T
he total probability of failure w

ould then be,

   
p(θ

<
η

)
=

p
failure =

p
θ Η

F
θ Η

dΗ
Η

=
0

∞

,

w
hich is the sam

e as (1).

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 22

T
IM

IN
G

 F
A

ILU
R

E
 P

R
O

B
A

B
ILIT

Y

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

T
rain A

rrival T
im

e
p

(θ )
=

pe
1β

e
θ

–
m

pt
β

θ
–

m
pt

if
θ

<
m

pt

pe

1β
e

pe
m

pt–
θ

β
1

–
pe

pe
m

pt–
θ

1
–

pe
ifθ

≥
m

pt

T
rain A

rrival T
im

e
G

ate C
losing T

im
e

Probability Density

Probability Distribution

Probability Distribution
Probability Distribution

Probability Distribution

Probability Distribution

Probability Distribution

Probability Density

Probability Density

Probability Density

Probability Density

Probability Density

G
ate C

losing T
im

e

T
rain A

rrival T
im

e

T
rain A

rrival T
im

e
G

ate C
losing T

im
e

G
ate C

losing T
im

e
T

rain A
rrival T

im
e

T
rain A

rrival T
im

e
G

ate C
losing T

im
e

G
ate C

losing T
im

e

m
pt 

=
 40 tus

pd 
=

 .9

pe
 

=
 1-pd

β 
=

 4

gm
pt =

 20 tus
gpd 

=
 .9

gpe
 

=
 1-gpd

gβ 
=

 1

m
pt 

=
 40 tus

pd 
=

 .8
pe

 
=

 1-pd

β 
=

 4

gm
pt =

 20 tus

gpd 
=

 .9
gpe

 
=

 1-gpd

gβ 
=

 1

m
pt 

=
 40 tus

pd 
=

 .9
pe

 
=

 1-pd

β
 

=
 1

gm
pt =

 20 tus

gpd 
=

 .9
gpe 

=
 1-gpd

gβ 
=

 1



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 23

T
IM

IN
G

 F
A

ILU
R

E
 P

R
O

B
A

B
ILIT

Y

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

T
rain A

rrival T
im

e

T
rain A

rrival T
im

e
G

ate C
losing T

im
e

Probability Density

Probability Distribution

Probability Distribution

Probability Density

G
ate C

losing T
im

e

m
pt 

=
 40 tus

pd 
=

 .9
pe 

=
 1-pd

β
 

=
 4

gm
pt =

 20 tus
gpd 

=
 .9

gpe 
=

 1-gpd
gβ

 
=

 1

0.9
0.1

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 24

T
IM

IN
G

 F
A

ILU
R

E
 P

R
O

B
A

B
ILIT

Y
:  JO

IN
T

 P
D

F
 O

F
 θ

 A
N

D
 η

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

•
T

he probability of failure is the volum
e under that part of the surface

w
here θ <

 η  is show
n on left.

•
B

y cutting the surface w
ith plane P

, the p(
θ<η

) can be seen as the
volum

e under the surface in the foreground (show
n on right).

C
o

st

G
ate C

lo
se T

im
e

0

200

0

40

0.001

0.004

0

200

0

40

0.001

0.004

C
o

st

Train Arrival Time

G
ate C

lose Tim
e

Train Arrival Time

100
100

T
he pdf for the train travel tim

e (q) is given by P
q(q), and the pdf for the gate clo

sin
g

 tim
e

 (h) is P
h

(h
).  T

he jo
in

t pdf o
f q and h

 is Pq,h(q,h).  If q and h
 are

statistically independent then P
q,h(q,h)=

 P
q(q)P

h(h). In this case, since both the train and gate operate independent of each o
ther, it can safely be assum

ed that their
probabilities are independent.  T

he failure condition occurs iff, q <
 h (i.e., w

hen the train arrival tim
e is less than the gat

e closing tim
e).



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 25

D
E

R
IV

A
T

IO
N

 O
F

 T
H

E
 C

O
S

T
 F

U
N

C
T

IO
N

$

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

T
he cost Q

 is, 

   
Q

=
ω

p
failure

+
φ

θp
θ θ

dθ
+

ν
0 ∞

w
here ω

 =
 cost of failure, φ =

 cost of delay / tim
e units, 

ν =
 cost of the gate /

train passing and the integral is the average train arrival tim
e:

 
   

average
train

traveltim
e

=
θ

p
θ θ

dθ
0 ∞

.

G
ate cost per run as a function of the gm

pt (gate m
ost probable closing tim

e):

   
ν(gm

pt)
=

40
±gm

pt
4+

20,000

100
.

                                                
$ T

hese num
bers have been exaggerated intentionally to m

ake the variations of the cost function m
ore visible.  T

he delay is defi
ned from

the tim
e the gate receives the arriving m

essage until the train arrives at the intersection.  W
e did not consider the gate open

ing tim
e and the

train length (i.e., assum
e a train length of zero).  N

otice that this am
ount of tim

e only depends on the train param
eters.

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 26

3-D
 G

R
A

P
H

 O
F

 C
O

S
T

 F
U

N
C

T
IO

N

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

•
E

valuate (judiciously) the costs (and benefits) for providing fault-avoidance and/or
fault-tolerance using a cost function to optim

ize design param
eters.

Train A
rrival Tim

e

Gate Close Time

C
o

st

2000

4000

40

100
10

30

Q
=

ω
p

failure
+

φ
θ

pθ
θ

d
+

ν
0 ∞∞ ∞∞

=
θ

p
θ

dθ
∞∞ ∞∞0

....w
here w

 =
 cost of failure, f =

 cost of delay/tim
e units, n =

 cost of the
gate/train passing and the average

 train travel tim
e is

ν
(gm

pt)=
40

–gm
pt

4+
20,000

100
....is the gate cost per run as a function of the gm

pt (gate m
ost probable

closing tim
e).

†
T

hese num
bers have been exaggerated

intentionally to m
ake the variations of the cost

function m
ore visible.  O

therw
ise, a gate that cost

$20,000 plus better operate m
ore than just 100 tim

es!

70

20

3000

θ

θ



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 27

3-D
 G

R
A

P
H

 O
F

 C
O

S
T

 F
U

N
C

T
IO

N
 E

N
LA

R
G

E
D

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

T
rain A

rrival T
im

e
G

ate C
lose T

im e

C
ost

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 28

D
IS

C
R

E
T

E
 A

N
A

LY
S

IS
  (P

T
F  =

 0)
P

A
R

A
M

E
T

R
IC

 S
E

N
S

IT
IV

IT
Y

 A
N

A
LY

S
IS

•
In all runs Pm

 >
 Pc , and in order to reduce the probability of critical failure

in runs 2 - 4, w
e set Pm (close) >

 Pm
(open) by the factors of 100, 3 and 5

respectively.

•
C

onsequently, the probability of critical failures (P
cf ) are reduced by the

factors of 17.573, 1.975 and 2.974 respectively.

D
escription

R
un 1

R
un 2

R
un 3

R
un 4

Pc
.0001

.00001
.0001

.00001
Pm

(close)
.01

.00001
.01

.001
Pm

(open)
.01

.001
.03

.005
T

he results from
 D

T
M

C
-based analysis:

Pcf
0.5026

0.0286
0.2544

0.1690
Pncf

0.4974
0.9714

0.7456
0.8310

M
T

T
F

490.26
9524.07

248.19
1656.21

Pncf  is the non-critical failure probability and the M
T

T
F

 is given in the num
ber of discrete steps (or tim

e units).



A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 29

C
O

N
T

IN
U

O
U

S
 A

N
A

LY
S

IS

P
A

R
A

M
E

T
R

IC
 S

E
N

S
IT

IV
IT

Y
 A

N
A

LY
S

IS

•
Increm

ental im
provem

ents from
 runs 1 to 7 M

T
T

F
: 1.1x10

5 to 6.2x10 6 ....a 6x gain!

•
λ

m
e

ch  is reduced by 10x M
T

T
F

 im
proves by 6x M

T
T

F
 and  

λ
sys im

proves by~
 1x10 4.

•
In runs 1-4 only the tim

ing failure rates are changed giving 
λ

sys : 5x10 -40 to 2x10 -5 by
run four a point of dim

inishing returns has been reached.

*T
im

e units: each tick on the x-axis is 1000tus.  A
ssum

e a tu is a second, then 
  there are  ~

16m
ins/tick, and 10,000 ticks (full range of data) are ~

2778hrs.

**C
onstants: µ1 =

 0.0001,  µ2-4, 7, 8 =
 1.0,  µ

9, 10 =
 1.0,  w

hile
    µ5 and µ

6 =
 w

ere held set at 0.1 and 0.01 respectively.

R
un1

R
un2

R
un3

R
uns 4, 5&

 6 (no visible difference) R
un7

10,000
8,000

6,000
4,000

2,000

0.8

1.0

0.4

0.6

0.2

0.34

R
un 1

R
un 2

R
un 3

R
un 4

R
un 5

R
un 6

R
un 7

K
ey:

T
im

e units (tu)*

Reliability

Input P
aram

eters:** 
1. τ

5 =
0.00908          λ

3, 4, 8, 9 =1.0 x10 -7    λ
5, 10 =1.0 x10 -4

2. τ
5 =

0.000908        λ
3, 4, 8, 9 =1.0 x10 -7    λ

5, 10 =1.0 x10 -4

3. τ
5 =

0.0000908      λ
3, 4, 8, 9 =1.0 x10 -7    λ

5, 10 =1.0 x10 -4

4. τ
5 =

0.00000908    λ
3, 4, 8, 9 =1.0 x10 -7    λ

5, 10 =1.0 x10 -4

5. τ
5 =

0.0 
             λ

3, 4, 8, 9 =1.0 x10 -7    λ
5, 10 =1.0 x10 -4

6. τ
5 =

0.0 
             λ

3, 4, 8, 9 =0.0  
          λ

5, 10 =1.0 x10 -4

7. τ
5 =

0.0 
             λ

3, 4, 8, 9 =0.0  
          λ

5, 10 =1.0 x10 -5

R
esults:

R
un1....R

el[10,000]=4.58042 x10 -40 
  M

ttf=
1.09934 x10 5tus

R
un2....R

el[10,000]=4.58554 x10 -9 
  M

ttf=
5.20472 x10 5tus

R
un3....R

el[10,000]=1.07427 x10 -5 
  M

ttf=
8.73755 x10 5tus

R
un4....R

el[10,000]=2.34974 x10 -5  
  M

ttf=
9.37937 x10 5tus

R
un5....R

el[10,000]=2.56342 x10 -5 
  M

ttf=
9.45662 x10 5tus

R
un6....R

el[10,000]=2.58888 x10 -5 
  M

ttf=
9.46547 x10 5tus

R
un7....R

el[10,000]=3.44604 x10 -1 
  M

ttf=
6.15169 x10 6tus

A
IA

A
 C

om
puting in A

erospace 10 - M
arch 29, 1995:  P

age 30

S
U

M
M

A
R

Y
 A

N
D

 F
U

T
U

R
E

 P
LA

N
S

•
T

ranslating betw
een logical specification m

odels and 
stochastic m

odels.

√
P

erm
it the specification of stochastic properties

√
E

rror handling activities
√

F
ault-tolerance activities

•
A

nalyze for stochastic properties.

•
C

urrently developing tools to autom
atically convert betw

een C
S

P
 and P

etri nets

•
A

nd Integrating w
ith S

P
N

P
 for analysis

•
O

ther than C
S

P
 m

odels.

•
G

C
S

R
 perm

its specification of tim
e, resource sharing, priorities, exceptions, and

interrupts.

•
W

e are w
orking on translations betw

een G
C

S
R

 and P
etri nets.


