
Suitability of Agent-Based Systems for Command and Control in Fault-tolerant, Safety-Critical

Responsive Decision Networks*

Thomas Potok1, Laurence Phillips2, Robert Pollock2, Andy Loebl1, and Frederick Sheldon1

*This manuscript has been authored by UT-Battelle, a contractor of the U.S. Government (USG) under DOE Contract DE-AC05-00OR22725. The U.S.
Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
Government purposes.

1Oak Ridge National Laboratory
Computational Sciences and Engineering

Oak Ridge, Tennessee 37831-6363
Phone: 865-576-1339/ Fax: 865-241-6275

sheldonft@ornl.gov

2Sandia National Laboratories, New Mexico
Advanced Information and Control Systems

Albuquerque, New Mexico 87185-0455
Phone: 505-845-8846/ Fax: 505-844-9641

lrphill@sandia.gov

Abstract
We assess the novelty and maturity of software (SW)
agent-based systems (ABS) for the Future Combat System
(FCS) concept. The concept consists of troops, vehicles,
communications, and weapon systems viewed as a “system
of systems” [including net-centric command and control
(C2) capabilities]. In contrast to a centralized, or platform-
based architecture, FCS avoids decision-making/execution
bottlenecks by combining intelligence gathering and
analysis available at lower levels in the military hierarchy.
ABS are particularly suitable in satisfying battle-space
scalability, mobility, and security (SMS) expectations. A
set of FCS SW requirements (SRs) was developed based
on needs aligned with current computer science technology
and inherent limitations. ABS advantages (i.e., SMS) are
enabled mainly through a stronger messaging/coordination
(MC) model. Such capabilities in an FCS environment do
not currently exist, though a number of strong (analogous)
agent-based systems have been deployed due to the lack of
information fusion and decision support. Nevertheless,
ABS can support most networked FCS C2 requirements
despite the lack of current empirical and theoretical
validation. Key Words: Intelligent SW Agents, Fusion
and Decision Support

1 Introduction
The FCS concept describes forces that must be flexible,
effective and efficient multi-mission forces capable of
projecting overwhelming military power worldwide [1]
across the full spectrum of engagement. This System-of-
Systems includes networked command C2 capabilities, a
significant departure from the historically centralized C2

system. To develop a networked capability, there are
several technical challenges. We highlight the significant
new SRs in assessing whether ABS technology is a
suitable means of addressing these technical challenges.

The FCS C2 concept provides dedicated battle space

visibility and support for a completely integrated
intelligence, surveillance, and reconnaissance (ISR). The
system works within an Objective Force (OF) consisting of
autonomous and non-autonomous vehicles that assure
command of a battle space tens-of-kilometers wide, in
three-dimensional space, vertically integrated, and
effectively interoperable among allied and joint forces.

The complexity of the future war-fighting environment
requires information be securely and reliably transmitted
over dynamic and potentially unreliable virtual and
physical networks. Data from a wide range of systems and
sensors are fused, analyzed, and summarized to support
rapid and effective decision-making. Creating complex
SW to manage this functionality poses a significant
challenge (i.e., quality, schedule and cost). We believe
ABS (incl. concomitant development conventions) give the
strongest capability for solving such a substantive
development challenge [2]. Technology that is suitable for
developing the FCS C2, particularly ABS, is examined.

2 Background
We begin with a review of the networked C2 in an FCS
environment and develop a set of SRs.

2.1 Command and Control (C2) Evolution
The main enhancement of the FCS system is the network-
centric core [3]. Historically, intelligence is sent to a
central location where military decisions are generated
from which C2 emanates. Decision makers have relied on
centralized structures meaning slower response time to
make and transmit decisions. As the operational tempo of
war increases to allow modern forces to succeed, the older
concepts of C2 become a liability.

Obviously advances in information technology have
enabled the concept of decentralized control and
centralized command. How exactly can current technology
be applied to realize the various FCS scenarios [4] as

Networked
Command, Control
& Communications

Figure 1. FCS concept of networked C2.

shown in Figure 1? Clearly, data will be produced by
numerous sources—every human and most machines
involved in an operation—and shared among numerous
entities, vertically integrated, and so broadly federated as
to define interoperability in a new venue.

2.2 C2 Requirements
Although FCS requirements have not been fully defined,
items 1–7 below, describe the functional requirements
(FRs) of the FCS C2 system [5]. We used these
requirements to develop a list of SW capabilities required
to support the system. These capabilities were used as a
basis for our evaluation. Each item is followed by an
analysis of the capabilities/behaviors required of the SW.

1 . Collect, display and disseminate a seamless, fully
integrated, multidimensional, and tailorable common
operating picture; and precision geospatial
environment information layers (modifiable digital
overlays) which support cognitive and dynamic mission
planning/rehearsal, thus creating a real-time virtual
decision making capability based on the commander’s
and battle staff’s detailed “knowledge” of the friendly,
enemy and physical environment.

Here, the SW system must maintain a real-time, easy-to-
understand, and accurate Common Operating Picture
(COP). The data stream from information distributed
throughout the battlefield sensors as well as networked
systems must be rapidly and accurately integrated,
analyzed and organized to support coherent military
decisions. For the COP to be common, it must either be 1)
produced in one place and distributed, or 2) produced
wherever needed using distributed information. The first
approach calls for centralized command, and becomes an
obvious bottleneck (i.e., delays or failure limit or prevent
responsive access). The second approach prevents
blockage because the FCS SW creates the COP from the
C2 network. Lacking a central creation point, the FCS

system could degrade gracefully under component
destruction or failure because no single component or
group of components is responsible for the COP. All FCS
components act to provide the COP information to the
network and any site with COP formation capability can
produce its own COP.

2 . Enable battle command on the move supported by
C4ISR architecture for continuous estimate of the
situation on the move. Share integrated common
operating picture to enable visualization and
dissemination of tactical scheme by combined arms
mission orders with graphic overlays. Changes in
leadership that occur during battle will be
automatically disseminated to appropriate levels with
shared COP to enable continuity of command.

This second FR expands on the first by adding the
capability of mobile command, decision-making, and ISR.
Here, the SW must move command securely from one
future combat vehicle and/or commander to another. This
type of command requires that the SW support the ability
to deliver orders when one or more of the participants are
moving. This function would also have to be tightly
integrated with the physical C2 network.

3. Objective force units must contain a mission-centric,
embedded information system that enables commanders
to effectively lead during dynamically changing and
offensive operations anywhere on the battlefield. This
includes the following tasks.

a . Maintain situational understanding at all times
(more than providing fused sensor data to the red
and blue COP): capability to collaborate with
subject matter experts, subordinate commanders and
staff in real time to develop a complete appreciation
of the situation.

b . Identify schemes of maneuver, opportunities,
decisive points, terrain and weather updates, enemy
vulnerabilities, and conceptualize solutions through
accelerated collaborative planning, rehearsal and
simulation.

c . Make reasoned decisions based on available
information: The commander leverages intelligent
agents to assist in filtering through vast amounts of
information to focus only on the most pertinent
information to assist in the decision process.

d . Commanders direct decisive action by conveying
orders, intent and supporting operational graphics
from the commander’s battle command system.

e. Commanders synchronize maneuver, fires and RSTA
[reconnaissance, surveillance, targeting and
acquisition].

FR 3 adds the concept of mission-centric situational
understanding in a dynamic environment where the
participants in command operations are not only mobile

but also in different locations. To meet this requirement,
the C2 SW and supporting ISR resources must rapidly and
accurately acquire and fuse mission-relevant data, assist in
analyzing and summarizing the data, and finally help
support command decisions.

4. Commanders and battle staffs will leverage automated
cognitive decision aids and real-time collaborative
planning support tools to achieve knowledge-based
course(s) of action development. Systems must be
mobile, fully interoperable in the joint multinational,
and interagency environment.

FR 4 poses a significant technical challenge in the area of
decision support and security. We believe that
commanders and their forces will use the most effective
technology available to help plan and make decisions.
However, many significant issues must be overcome in the
area of decision support and collaborative planning [6].
The sharing of coherent/secure information at various
classification levels with various joint/allied/coalition
forces requires, not only advanced functions but also high
reliability SW assurance.

5. The mission-centric, embedded information system will
provide a digital 3D mapping tool for high terrain
resolution to enable C2 of small unit tactical action in
close, complex terrain; virtual rehearsals; and terrain
analysis. Also allows visualization of inside buildings
and subterranean dimension.

FR 5 adds 3D and geospatial visualization to the concept.
These features require the SW to perform very complex
data analysis, summarization, and transformation viewed
in a comprehensive/understandable way. Creating 2D
images of large amounts of data is a difficult problem; 3D
portrayal dictates significant additional complexity.

6. The mission-centric, embedded information system will
enable continuous mission planning from alert through
deployment to employment. Support continuous mission
planning, rehearsal, battle command, and ability to
integrate into gaining theater command during
movement by air, land, and sea.

This sixth FR is closely aligned with the second FR,
command on the move, and the fourth FR, real-time
collaborative planning support and course-of-action
development. No new SRs are envisioned. However, FR 6
emphasizes that the other requirements must be met
continuously, regardless of transport mode, beginning at
first alert and ending some time after force stand-down and
postmortem mission analysis. This is a non-functional SR.

7 . Enable command and control needed to synchronize
fire, maneuver, and RSTA in real time to close with and
destroy the enemy.

In an environment where command and control are
decentralized, it becomes necessary to coordinate and

synchronize activities. The use of the word “synchronize”
implies temporal requirements and constraints for all C2

functions. We assume that it must be possible to include
these concerns during planning and course-of-action
development, although this is not explicitly stated.

2.3 C2 Requirements Analysis
To satisfy the requirements as analyzed above, the
networked FCS C2 concept will be based on significant
SW technology advances in scalability, mobility, and
security. The new C2 network will be created in an ad hoc
fashion, with nodes entering and leaving the network at
unpredictable times yet maintain ultra high reliability and
security. Vital battlefield sensor information will broadcast
from thousands of locations, while at the same time; the
network must process this information rapidly and deliver
the correct information to the correct location(s) and
people at the correct time. For these reasons, a number of
new SW challenges are summarized in the following list:

1 . Distributed computing over an unreliable, ad hoc,
dynamic physical network.

2. Fault tolerance over a system in which, at any given
time, it is unclear what nodes are available within the
network.

3 . Network security and accessibility. Warfighters will
need immediate access to the network, but adversaries
need to be prevented from accessing or corrupting it.

4. Data fusion. Data from a wide range of systems and
sensors will need to be correctly related.

5. Information analysis and summary of vast data from
the C2 network on the basis of user needs.

6. Decision support. A network capable of supporting C2

decision making.
7 . SW development improvements to reduce the

complexity and risk in creating the proposed system.

Figure 2 maps the TRADOC FCS FRs to the expected SRs
(not an exhaustive list)†. However, the list is representative
of the challenges placed on SW technology. We now
evaluate how to meet these SW challenges.

3 State-of-the-Art SW Technology
SW development methods have been transformed over the
years from structured analysis methods, where processing
and data were kept separate [7], to Object-oriented (OO)
methods, where processing and data are combined into SW
entities called objects [8]. Object technology was further
enhanced with distributed capabilities, allowing an object
on one system to communicate with objects on other
systems [9]. Objects may be transmitted across a trusted
network and executed on another computer, commonly
known as mobile code [10].

Has SW technology reached a stage of sophistication that

† U.S. Army Training and Doctrine Command (TRADOC).

SW

Requirements

TRADOC
Requirements D

is
tr

ib
ut

ed
 c

m
pt

ng

Fa
ul

t T
ol

er
an

ce

Se
cu

ri
ty

M
ob

ile
 C

od
e

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

A
na

ly
si

s
Su

m
m

ar
y

D
ec

is
io

n
Su

pp
or

t

SW
 P

ro
du

ct
iv

ity

Common Operational
Picture

X X X X X X X

Mobile Command X X X X

Mission-Centric IS X X X X X X

Decision
Support/Planning

X X X X X

3D Visualizations X

Continuous Mission
Planning

X X X

Synchronized C2 X X X X

Figure 2. A mapping of TRADOC FCS functional
requirements to expected SW requirements.

will allow it to meet the seven FCS C2 SRs listed above?
A full analysis of these very broad requirements is beyond
the scope of this paper. Instead, we provide a general
review of the state-of-the-art and note some obvious
limitations with respect to the FCS environment.

3.1 Distributed Computing
Distributed or ubiquitous computing envisions devices
ranging from super computers to nanoscale CPUs acting in
concert to solve problems. Current distributed computing
approaches include the Common Object Request Broker
Architecture (CORBA) [11], the Distributed Component
Object Model (DCOM) [12], and Remote Method
Invocation (RMI) [13]. Each provides a way of executing a
SW function needed by one computer on a different
computer. Remote execution places a number of
constraints on the SW. For example, assume that a source
object‡ is attempting to execute some function on a target
object; the source object must have the capability to
resolve the network and computer memory address of the
target object. Next, the source object must have detailed
prior knowledge of the functions (methods) and parameters
available on the target object, as well as return
information. There are also assumptions that these remote
functions will be accessed synchronously and that the
network connections are available and permanent. If any of
these assumptions does not hold, then these distributed
interactions will fail [14]. It is very unlikely that all of
these above assumptions can be relied on in the dynamic
FCS environment. Therefore, a C2 system built on the
current distributed object models is unlikely to succeed
without significant enhancement.

The communication topology of current distributed
computing models is another potential limitation. Most
topologies engage the client-server model (i.e., request and
wait). In the FCS, messages need to be drawn from a richer
model of interaction because the structure and stability of
the network is so dynamic (i.e., likely to change at any
time). Messages may need to be broadcast to several sites,
relayed by several objects, retransmitted, or postponed,
depending on the nature and status of the network, which
is a very complex challenge for the client-server model.

3.2 Fault Tolerance
Fault tolerance (FT) is concerned with making a
distributed system more reliable by handling faults within
the system. A great deal of work has been done,
culminating in formal FT models. FT systems possess the
properties of safety and liveness. Safety properties consist
of the set of acceptable system configurations, or
invariants, defining the operations that are legal within a
distributed system. Liveness concerns the progress of a
task within the distributed system. For example, safety

‡ For ease of discussion, we will refer to SW programs or functions as
objects.

properties may require that an FCS vehicle cannot fire on
friendly troops, while a liveness property may require that
a friendly troop notification arrive at the appropriate FCS
vehicle or force warrior.

Ideal FT provides that all safety and liveness properties are
guaranteed to be satisfied within a SW program. The
program is not FT when safety and/or liveness properties
are not guaranteed. If only safety properties can be
guaranteed, then the program will not violate system
invariants but may not complete the task (e.g., the system
will not fire if a friendly troop notification has not been
received, the system is failsafe). If only liveness properties
are met, the system will fire, but when the notification
arrives perhaps friendly troops were fired upon [15].

The key to FT is redundancy and the ability to detect and
correct faults. These concepts are mainly design principles
that need to be enforced during the SW construction.
However, there are some practical technology limitations
to FT based on current distributed computing models. The
client-server model limits the capability for message
redundancy within a distributed system. A client passes a
message to a server and waits for a response. If the client,
the message, or the server fails, the transaction will fail.
This can significantly limit the FT capability of current
technology in an FCS environment.

3.3 Security
Security ensures that data can be safely transmitted within
the FCS system. The nodes within the system can be
authenticated, and data securely communicated. Existing
security systems tend to be static; consequently, security
policies and mechanisms are very difficult to change once
the systems are installed. With systems that support a
ubiquitous and/or mobile computing environment, the

fundamental problem is to provide security that is
expressive and flexible enough to satisfy the specific needs
of diverse applications [16].

Security operations are typically based on a security policy
that defines which operations are proper and should be
allowed. Policy usually specifies access, accountability,
authentication availability, maintenance, violations
reporting and response, and support information about
interaction with entities that are either unknown or known
but non-local. If a policy can be enforced, and there are no
violations, the system is secure by definition. The goal is
to create SW than can enforce such a policy.

Certainly there exists SW that meet some of the demands
outlined above, but nothing capable of supporting the size,
distribution, and lifecycle requirements exist that will flow
from the relevant FCS scenarios. SW protecting individual
computers—firewalls, intrusion detection systems,
password mechanisms, Public Key Infrastructures (PKI),
and so on would make FCS operations, relatively, but not
absolutely secure. To meet FCS demands, it is imperative
that the FCS security system be unified, policy-based, and
dynamic. Current COTS systems are relevant but only
marginally capable of meeting such requirements.

3.4 Mobile Code
Mobile code refers to a capability whereby a combination
of data, code, and execution state is sent to another
machine and executed on that machine through a general
virtual machine. The virtual machine may take the form of
a distributed system layer, such as CORBA, or as a
computational environment, such as the Java Virtual
Machine. Currently, there are three design paradigms for a
mobile code system: (1) a code-on-demand system
allowing code to be transmitted to the data, (2) a remote
evaluation system allowing code and data to be moved to
another system, and (3) a mobile agent system allowing
code, data, and state§ to be moved to another system [17].

FCS levies very demanding requirements for mobile code.
There is no guarantee that any node in the C2 network will
be available at any one time. Therefore, the design
paradigms represented in 1 and 2 above provide limitations
if the source node is no longer available to hold the code or
state of a mobile transaction. The third paradigm, mobile
agents, will be discussed in the next section.

Security—most notably, how to prevent malicious SW
from entering a system—is a major issue. A typical
solution is to prevent state from being sent with the
code—i.e., mobile code is generally executed in a very
narrow computational space where the target memory is
not accessible and can only communicate with the source

§ State is a description of a partially completed process, including the
values of all program variables and which step of the process is the next
to be executed. State information is necessary in order for another
computer to complete a process that another has begun.

system. This approach may not be viable for the FCS.

3.5 Information Fusion
Fusing data from different sources is a difficult problem.
The most promising technique uses a metadata tag
language such as Extensible Markup Language (XML)
[18]. With this approach a common ontology or set of
XML tags is developed. Specific data is tagged using this
common ontology and can then be combined with data
from other sources [19]. Kim argues that ontologies are
best for reducing uncertainty, while XML is most effective
in reducing the complexity of the shared data [20].

This approach shows great promise. Unfortunately,
tagging data does not necessarily ensure that the data can
be fused. There are many examples where it is technically
impossible to fuse data derived from different relative
scales or with differing assumptions. The ultimate goal of
data fusion is for the SW to understand and manipulate the
data, which has been an open issue for decades.

3.6 Information Analysis and Summary
After data are fused, there is likely to be a need to analyze
the data for a wide variety of reasons. Typically, this
analysis will result in reducing the size of the data for
faster processing and transmission. There are a number of
mathematical techniques for analyzing and reducing
data—feature extraction, dimensionality reduction,
principle component analysis, and cluster analysis, etc.
These topics are orthogonal to state-of-the-practice SW
methods but are very important to addressing the
networked C2 challenge of FCS.

3.7 Decision Support
After data has been gathered, fused, and analyzed, the
information is used to make military decisions. A number
of decision-support methods and systems can be used to
perform this task. As with information analysis, decision
support models are not dependent on the state-of-the-
practice SW methods, yet are very important to addressing
the networked C2 challenge of FCS.

3.8 SW Development Productivity
The FCS networked C2 functionality will be very large and
particularly complex by today’s standards (challenging in
both effort and risk). OO methods have been shown to
produce simpler designs and provide greater capability for
reuse than other methods. However, OO technology does
not improve SW development productivity in a
commercial environment [21]. While simpler designs are
clearly desirable in building new SW systems, the need for
improved productivity is a significant concern.

3.9 FCS Imposed SW Development Challenges
In analyzing the impact of key FRs to SRs we determined
that the distributed computing requirement poses the

SW

Requirements

SW

Limitations D
is

tr
ib

ut
ed

 c
m

pt
ng

Fa
ul

t T
ol

er
an

ce

M
ob

ile
 C

od
e

Se
cu

ri
ty

In
fo

rm
at

io
n

Fu
si

on

In
fo

rm
at

io
n

A
na

ly
si

s
Su

m
m

ar
y

D
ec

is
io

n
Su

pp
or

t

SW
 P

ro
du

ct
iv

ity

Higher-level
Interfaces X X

Asynchronous
Interaction

X

Sporadic Network
Support

X X X

Security X X

Peer-to-peer
Models

X X

SW Productivity X

Figure 3. A mapping of the SW requirements to the
limitations of the current SW technology

greatest SW challenge. Information fusion, information
summary and analysis, and decision support are only
tangential to SW technology advances (see Figure 3). Our
analysis indicates six key SW challenges:

1 . Providing higher-level interfaces to distributed
objects.

2. Allowing asynchronous object interaction.
3. Providing message support for sporadic network

connections.
4 . Providing secure object communication and

information system operation.
5 . Providing support for richer peer-to-peer

programming models.
6. Increasing SW development productivity.

Let’s now consider the suitability of agent technology
against these six challenge areas.

4 Agent Technology
ABS is an evolving paradigm that strives to create SW that
can mimic certain human behavior. Agents are typically
endowed with human-like characteristics. For example,
agents are normally considered to be autonomous,
adaptable, social, knowledgeable, mobile, and reactive
[22]. Lets consider therefore, how a computer scientist
would view these characteristics to focus on the
comparative benefits of agent technology.

A representative agent architecture by Sycara et al. [23]
proposes planning, communication and coordination,
scheduling, and execution monitoring of agent activities.
In this architecture, the agents’ access shared information,
implemented through a coordination model that can be
both domain specific or independent. Another architecture
is offered by Griss et al. [24] who provide generalized
agent architecture with facilities for locating and
communicating with mobile and unconnected agents, and

for gathering information about groups of agents. Griss’s
architecture provides services and support for mobility,
security, management, persistence, and naming of agents.

In general, most agent architectures include support for C2

aspects through a general MC paradigm (i.e., any agent
can communicate with one or more agents). This approach
encapsulates messages that agents send and receive [22].
OO methods utilize the concept of data encapsulation,
which provide for simple SW functions to access an
object’s data. These functions, not direct data access, are
responsible for data retrieval and update. This capability
limits the SW that must change when minor changes are
made to the data. The agent paradigm extends
encapsulation from data to messages sent among agents
through an agent coordination model [25]. The model
defines how agents communicate among themselves, and
can be seen as coordinating communication based on the
time a message is sent (temporal) or the names of the
target agents (spatial). These models provide the ability for
communication that is encapsulated and asynchronous
with the use of blackboards, and tuple space models and
associated pattern matching, such as Linda [26]. Agents
that use a blackboard or Linda type coordination provide a
level of indirection for agent communication (i.e., agents
post messages to a blackboard, while subscribers to the
blackboard retrieve the message). The agent that sent the
message may have no idea who actually receives it. This
concept allows for asynchronous and encapsulated
communication among a collection of connected or
disconnected agents, a capability not currently available in
non-agent systems.

Messages are written in an agent control language [27]
(ACL) such as KQML or the FIPA ACL, which provide a
structured means of exchanging information and
knowledge among agents. ACLs support a higher-level
communication protocol that currently does not exist with
distributed objects. On this basis, lets consider how the
FCS concept challenges ABS SW development.

4.1 Higher level interfaces to distributed objects
Agent technology is based on a flexible MC scheme and
agent control languages. Agents conceptually are
connected to blackboards, not other agents. The
encapsulation of messages allows for agent interfaces to
change, requiring only minor modifications to a
blackboard, not to all calling agents [22]. This capability
provides for a more robust interface than is currently
available in distributed object systems. Moreover, ACLs
provide the ability to pass propositions, rules, actions, and
states among agents. In this way, messaging is not merely
a way of activating a function on a remote host, but
provides a way of sending information to another agent.
This information can be used to describe what
requirements need to be met for an agent to take action,
what states the sender and receiver will be in after the

action takes place, or what states the agents will be in
when the overall transaction is complete [27]. Information
sent from one agent to another may also be informative or
declarative thereby causing no agent action.

The challenge of implementing such an agent interface is
selecting both an MC architecture and an ACL. Currently,
no universally accepted MC architecture or ACL means
that for an ABS to take advantage of this high-level
interface, there must be very specific and precise
specifications on how agents will communicate (i.e., using
precise ACL syntax).

4.2 Asynchronous object interaction
Griss et al. [24] points out that ABS typically have simple
interfaces, and derive capability from loose coupling and
asynchronous messaging (i.e., messages are sent and
retrieved through a loosely coupled temporal agent
coordination model). Cabri et al. [25] reference two
coordination models that provide asynchronicity. The first
model is blackboard-based and provides a shared area
where agents’ send/retrieve messages. Messages posted to
the blackboard can be read by any authorized agent. Other
agents determine whether to retrieve the message based on
the sending agent’s identifier and therefore knowledge of
the agent identifiers is required. The second is based on the
Linda coordination model, which defines a messaging
protocol, made up of a tuple of information (e.g., a tuple
may include the data format, the date of creation, the
classification, or a list of keywords). These tuples are then
placed in a shared area, such as a blackboard. Agents
access these messages, not based on agent identifiers, but
on a query of the tuple information, (i.e., an agent may
retrieve all messages created yesterday with the “Taliban”
keyword). This model is asynchronous, and does not
require knowledge of the agent identifier.

Both of these model types are mature and widely used.
They provide the type of asynchronous behavior needed
but suffer from single-point failure outages. Thus, a single
blackboard ABS is exposed to security and performance
failures and requires multiple blackboards to provide FT.

4.3 Message support for sporadic networks
One main advantage that ABS provide is flexibility (i.e.,
ability for agents to change location) along with
communication path redundancy. Vogler et al. [28]
propose a distributed transaction model using a two-phase
commit protocol to verify message delivery. The model
must support storage of undelivered messages within the
agent, or support the ability to rollback the transaction, if
synchronous transactions are required. If a transaction has
not completed, then various network/graph theory
algorithms can be used to determine a viable path prior to
reattempting the transaction. Alternatively, agents can
move to another location and try again. If a physical path
cannot be found then the transaction is not possible.

Both messaging and mobility can be effectively used to
communicate over a sporadic network; however, if the
network degrades too much, communication becomes
infeasible. Distributed transaction protocols are very useful
for verifying the success of transactions, and can be used
to ensure network security with the caveat that this
capability will limit overall system response time.

4.4 Secure Communication Operations
As Abadi [29] notes, it is practically impossible to
construct a truly secure information system.
Communications are secure if transmitted messages can be
neither affected nor understood by an adversary; likewise,
information operations are secure if information cannot be
damaged, destroyed, or acquired by an adversary.

Security in a distributed system can be enforced through
system wide policies, which are often static, and difficult
to modify and enforce [16]. ABS can enforce a security
policy defining what must be done and what must not be
done when information is moved, stored, created, or
destroyed. ABS provide multiple, standalone, persistent
processes that can act at high speeds to ensure that all the
rules are always followed. Encapsulated instructions
concerning what actions to take under what circumstances
enables agents to execute very complex operations,
enabling participation in complex collaborative security
protocols (e.g., key updating/multiparty authorization).

4.5 Peer-to-peer programming models
Through the use of blackboard and Linda type
coordination models, the programming model of agents
can be very general. Any number of agents can send
messages to one or many blackboard(s), and any number
of agents can receive messages from one or many
blackboard(s). This provides the ability to create virtually
any topology, and allows for very broad scalability of the
network. Care must be taken in defining the bandwidth,
messaging rates, and processing requirements and will
require tuning to enhance FT and performance.

4.6 Increasing SW development productivity
There are indications that agent technology may provide
some SW development productivity improvement [24].
While there exists no empirical evidence to support this,
the theory claims that ABS increase the level of SW reuse.
Agents are SW components that have their messaging,
functionality, and location encapsulated thus increasing
productivity. Likewise, if standard MC protocols and
ACLs can be defined, the agent development teams may
require less communication overhead because the
interfaces are far richer than with traditional programming.

5 Discussion and Conclusion
This paper derives a set of SRs for the FCS networked C2

system based on TRADOC FRs. The SRs provide a

credible and representative list of the challenges awaiting
the SW designers of FCS. A comparison of these
requirements with the capabilities of existing SW
technology reveals the limitations of low-level interfaces,
synchronous interactions, and requirements for continuous
network availability, limited redundancy, and limited
productivity improvements. Current technology would
require major enhancements (if even feasible) to enable the
FCS concept. Moreover, the main strength provided by
ABS is derived from the MC model. These models enable
better solutions to the FCS challenges than existing OO
technology.

Three main questions remain: 1) should FCS be built on
enhancements to existing technology? 2) Is ABS
technology mature enough for the FCS concept? And, 3)
can the theoretical capabilities/advantages of the MC
model be realized in practice. Although no reference
system exists that endorses/sanctions the marriage of ABS
to FCS we believe that ABS is the best architecture for
ensuring success and delivering a comprehensive,
flexible/extensible, FT and reliable solution. This
recommendation is based on the similarities between the
conformity of FCS requirements and the fundamental and
structural characteristics provided by ABS. The
intellectual integrity and congruency gained by mapping
the FCS requirements onto the ABS model gives a
compelling and natural consistency. Furthermore, ABS can
support the FCS FRs including security, information
analysis/summary, and decision support, but the
technology does not explicitly provide these capabilities,
and these are challenging problems.

The FCS concept presents a significant number of
requirements and issues that surpass the capabilities of
existing SW technology in combining scalability, mobility,
and security. ABS provide a number of significant
advantages in these areas, due to a stronger more flexible
MC model, ABS are theoretically better suited to satisfy
the FCS requirements than existing technology.

6 References

[1] Col. W. Johnson, Pgm Mgr, “Future Combat Systems,”
DARPA/Army Collaborative FCS Demonstration Pgm,
at http://www.arpa.mil/tto/programs/fcs.html, 4/30/02.

[2] T. M. Carrico, “Vision and Concepts: Agent-Based
Command and Control for FCS,” The UltraLog White
Paper Series, DARPA Technical Report.

[3] DARPA/Army Collaborative Future Combat Systems
Demonstration Program, “FCS Public Briefings,” at
http://www.arpa.mil/fcs/public.html, accessed 4/30/02.

[4] T. Lee and S. Ghosh, “Simulating Asynchronous,
Decentralized Military Command and Control,” IEEE
Comp. Sciences & Engineering 3, No. 4 (1996): 69–79.

[5] U.S. Army TRADOC Briefing, given at Eatontown, N.J.
FCS Integrated Study Team Workshop, December 2001.

[6] G. Fischer and J. Ostwald, “Knowledge Management:
Problems, Promises, Realities, and Challenges,” IEEE
Intelligent Systems 16, No. 1 (2001): 60–72.

[7] T. Demarco and P. J. Plauger, Structured Analysis and
System Specification, Prentice Hall, New York, 1985.

[8] G. Booch, Object-Oriented Design with Applications,
Benjamin/Cummings Pub, Redwood City, Calif., 1991.

[9] R. S. Chin and S. T. Chanson, “Distributed, Object-Based
Programming Systems,” ACM CS 23, No. 1 (1991).

[10] T. Thorn, “Programming Languages for Mobile Code,”
ACM CS 29, No. 3 (1997).

[11] See the Object Management Group’s (OMG’s) CORBA
web site, at http://www.corba.org, accessed 4/30/02.

[12] M. Horstmann and M. Kirtland, “DCOM Architecture,”
7/23/97, at http://msdn.microsoft.com/, accessed 4/30/02.

[13] “Java Remote Method Invocation - Distributed
Computing for Java,” White Paper, accessed 4/30/02 at
http://java.sun.com/marketing/collateral/javarmi.html

[14] K. Geihs, “Middleware Challenges Ahead,” IEEE
Computer 34, No. 6 (2001): 24–31.

[15] F. Gartner, “Fundamentals of Fault-Tolerant Distributed
Computing in Asynchronous Environments,” A C M
Computing Surveys 31, No. 1 (1999): 1–26.

[16] Z. Liu, P. Naldurg, S. Yi, R. Campbell, and M. Mickunas,
“Pluggable Active Security for Active Networks,” in
IASTED Proc. Int’l Conf. PDCS, Nov. 2000

[17] A. Fuggetta, G. Picco, and G. Vigna, “Understanding
Code Mobility,” IEEE TSE 24, No. 5 (1998): 342–361.

[18] Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006.

[19] T. Potok, M. Elmore, J. Reed, and N. Samatova, “An
Ontology-based HTML to XML Conversion Using
Intelligent Agents,” in Proc. HICSS, Jan. (2002).

[20] H. Kim, “Predicting How Ontologies for the Semantic
Web Will Evolve,” CACM 45, No. 2 (2002): 48–54.

[21] T. Potok, M. Vouk, and A. Rindos, “Productivity
Analysis of Object-Oriented SW Development in a
Commercial Environment,” SW—Practice and
Experience 29, No. 10 (1999): 833–847.

[22] N. Jennings, K. Sycara and M. Wooldridge “A Roadmap
of Agent Research and Development” Jr. of Autonomous
Agents and Multi-Agent Systems 1, No. 1 (1998): 7-38.

[23] K. Sycara, A. Pannu, M. Williamson, and D. Zeng,
“Distributed Intelligent Agents,” IEEE Expert 11, No. 6
(Dec. 1996): 36-46

[24] M. Griss and G. Pour, “Accelerating Development with
Agent Components,” IEEE Computer May 2001: 37-43.

[25] G. Cabri, L. Leonardi, and F. Zambonelli, “Mobile-
Agent Coordination Models for Internet Applications,”
IEEE Computer 33, No. 2 (Feb 2000): 82-89

[26] D. Gelernter and N. Carriero, “Coordination Languages
and Their Significance,” CACM 35 (Feb. 1992): 96-107.

[27] Y. Labrou, T. Finin, and Y. Peng, “Agent
Communication Languages: The Current Landscape,”
IEEE Intelligent Systems 14 No. 2 (March 1999): 45-52.

[28] H. Vobler, T. Kunkelmann, and M. Moschgath, “An
Approach for Mobile Agent Security and Fault Tolerance
using Distributed Transactions,” PDS (1997): 268-74.

[29] M. Abadi, “Secrecy by Typing in Security Protocols,”
Journal of the ACM 46, No. 5 (Sept 1999): 749-786.

[30] J. Mankins “Technology readiness Levels: A White
Paper”; Adv. Concepts Office, NASA Office of Space
Access and Technology ; (April 1995);

