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Abstract - In recent years, many quantum cryptographic schemes 
have been proposed.  However, it seems that there are many 
technical difficulties to realize them (except Quantum Key 
Distributions) as practical applications. In this paper, we propose 
a bank transfer  (i.e., funds or Electronic Funds Transfer) system 
utilizing both classical and quantum cryptography to provide 
theoretically unbreakable security. This system can be realized 
using current technologies (e.g., linear polarizers and Faraday 
rotators) and requires no additional authentication and no key 
distribution scheme. However, a trusted third party must keep 
all member banks’ private keys for encryption, authentication 
and also for functions to generate classical digital signatures. 
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I.  INTRODUCTION 
 Most practical encryption algorithms rely on 
computational complexity.  These algorithms are only secure 
when malicious users do not have computational power 
enough to break security within a practical amount of time. In 
1994, P.W. Shor showed that a quantum algorithm could 
factor large integers and find discrete logarithms in 
polynomial time [1], whereas classical (non-quantum) 
algorithms can do so only in much slower exponential time.  
Therefore, if a quantum computer [2] is built, the existing 
popular public-key encryption algorithms (e.g., Rivest-
Shamir-Adleman (RSA), elliptic curve cryptography [3].) may 
be compromised.  Shor’s discovery with such consequent 
speculations has accelerated the research on quantum 
cryptography, which theoretically promises an unbreakable 
cryptographic system. Thus, many quantum cryptographic 
schemes (e.g., authentication [4], key distribution [5], secret 
sharing [6]) have been proposed for the last decade.   
 The major difference between quantum and classical 
cryptography is the physical resource for data transmission.  
Instead of electrical (and optical) signals used in classical 
computer networks, quantum cryptography uses particles and 
therefore, does not rely on computational complexity, but on 
quantum mechanical properties such as the no-cloning 
theorem [2, 7] and quantum entanglement [8].  For example, 
the proposed BB84 quantum key distribution (QKD) protocol 
[9] uses the polarization or phase of a photon.   
 QKD schemes with both phase [10] and polarization 

encoding have been implemented in free space [11] and in 
optical fiber [12]. Gobby implemented a QKD system with a 
phase encoding of over 122 Km in a standard 
telecommunication optical fiber network [13].  Also, there are 
some commercial products of QKD schemes [14, 15].     
 In 2004, the first real bank transfer utilizing a QKD system 
took place [16]. The QKD system using polarization entangled 
photon pairs was installed between the headquarters of an 
Austrian bank and the Vienna City Hall, which were 
connected by 1.45 Km of optical fiber. Accordingly, QKD 
protocols seem to be the most practical quantum cryptographic 
schemes at the present time. 
 Unfortunately, because key distribution protocols do not 
generally guarantee that the origin of the message is genuine, 
they are subject to compromise (i.e., malicious user 
masquerades as legitimate). In fact, if an eavesdropper is 
capable of intercepting all data from a sender on both the 
quantum and classical channels and sending quantum data as 
well as classical data to a receiver without being detected, the 
man-in-the-middle attack against QKD schemes is possible 
[17].  As a result, a secure communication system with QKD 
still requires the security of authentication. Even if the sender 
can authenticate the receiver prior to key distribution using 
classical or quantum authentication protocols, the possibility 
that the eavesdropper is capable of applying the man-in-the–
middle attack right after the authentication, cannot be 
neglected.   Therefore, cryptographic systems using QKD (e.g., 
one-time pad with QKD) can be considered vulnerable to the 
man-in-the-middle attack, though QKD itself is 
unconditionally secure. 
  The proposed bank transfer system described here is 
immune to man-in-the-middle attacks utilizing both classical 
and quantum cryptography which theoretically provide 
unbreakable security. Our scheme requires neither an 
additional authentication nor key distribution scheme. Still, a 
trusted third party must keep all member banks’ reusable 
shared keys (for both encryption and authentication) and 
functions to generate digital signatures.  This scheme can be 
realized using current technologies (e.g., linear polarizers and 
Faraday rotators) similar to the quantum authentication 
protocol described in [18].  
 This paper is organized as follows: In section 2, we 
introduce classical commutative encryption and a brief 
overview of quantum commutative encryption (QCE) [18]. 
We present our bank transfer scheme in section 3, and the 



security analysis in section 4.  Finally, conclusions are 
presented in section 5. 
 

II.  CLASSICAL AND QUANTUM COMMUTATIVE 
ENCRYPTION 

 When data are encrypted more than once by a 
commutative encryption algorithm, the cipher text is generated 
irrespective of the order of encryptions. For example,  

[ [ [ [ ]]] [ [ [ [ ]]]
Ka Kb Kb Ka Ka Kb Ka Kb
D D E E M D D E E M M= = , 

where Ka  and Kb  are encryption keys, E  and D  represent 
encryption and decryption, respectively.  Most encryption 
algorithms are not commutative, but there are some 
commutative encryption algorithms.  For example, in [19, 20], 
a commutative encryption system is introduced as 
[ ] mod

k
kE M M p= , where k is a secret key and p is a large 

public integer. 
[ [ ]] ( mod ) mod mod

( mod ) mod [ [ ]]

B A B A

A B

A B

B A

k k k k
k k

k k
k k

E E M M p p M p

M p p E E M

!
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Clearly, the cipher text can be determined irrespective of the 
order of encryptions.  The weakness of this scheme is that the 
security of these classical commutative encryption schemes 
depends upon computational complexity, as mentioned above.   
 Recently, a quantum commutative encryption (QCE) 
scheme has been proposed and used in a quantum 
authentication protocol [18].  The encryption scheme uses a 
single photon to transfer one-bit information.   Unlike BB84, 
one orthogonal polarization base (e.g. {horizontal, vertical}) is 
used for encoding and decoding (i.e., measurement).  Here, the 
horizontally and vertically polarized photons represent the 
logic-zero and logic-one states, respectively.  Encryption and 
decryption are performed by rotating the polarization of each 
encoded photon.  The angle of the rotation is considered as an 
encryption key. (Henceforth, key and angle are used 
interchangeably.) When a polarized photon is represented as a 

vector: ! = ( )0 1 0
T

=  and ( )1 0 1
T

= , the rotation 

can be represented as 
cos sin

( )
sin cos

R
! !

!
! !

" #
= $ %

&' (
, where !  is a 

rotation angle.  Therefore, when the data bit 0M = , the 
encrypted data bit is represented as  
[ ] ( ) 0 cos 0 sin 1E M R! ! ! != " = # , or more generally 

2 2
[ ] 0 1 , 1E M! " # " #= + + = , where !  and !  are 

called “probability amplitude,” which are determined by !  
and ! .  This state is called the quantum superposition state.  
According to quantum mechanics, the measurement of the 
superposition state collapses the original state and only one of 
two states (i.e., 0  or 1 ) will be observed; 0  will be 

observed with the probability 2
! , and 1  with 2

! . No 
information regarding the angle of rotation is left after the 

measurement.  Therefore, when eavesdroppers try to read the 
quantum state, they will obtain zero or one randomly because 
the rotation angles were chosen randomly for each transmitted 
photon. Since the measurements by the eavesdroppers cause 
an increase of the transmission error rate, we can also detect 
the existence of eavesdroppers by observing the transmission 
error rate.  Moreover, an eavesdropper cannot make a copy of 
the transmitted data based on the no-cloning theorem. This 
property makes it extremely difficult (if not impossible) for 
eavesdroppers to apply cryptanalysis to the transmitted data.    
 Each encryption for a photon requires a rotation with an 
angle.  We can represent the data encrypted more than once as 
follows: 
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where 
i
!  ( i  = 0, 1, 2….) is an arbitrary angle chosen 

randomly as an encryption key.  Evidently, the encrypted data 
are irrespective of the order of encryptions. The decryption 
requires the rotation by 

i
!" (i.e., the rotation by 

i
!  in the 

opposite direction of encryption).   Therefore, the 
commutative relation of decryptions is trivial.    
 Similar to classical one-time pad schemes, this encryption 
scheme allows users to modify the original message (plain 
text) in the encrypted data (cipher text) without decrypting the 
cipher text if the users know the plain text.  For example, let 
us assume that the plain text is a single bit, say, logic-one 
(i.e., 1M = ).  Now, a sender encrypts it with an angle ! , 

[ ] ( ) 1 sin 0 cos 1E M R! ! ! != " = + .  If the sender wants to 
change the plain text, logic-one to logic-zero after the 
encryption, they simply rotate the quantum state by / 2! .  

( / 2) [ 1 ] ( / 2) ( ) 1 ( / 2) 1

cos( ) 0 sin( ) 1 ( ) 0 [ 0 ]

R E R R R

R E

!

!

" " ! ! "

! ! !

# = # # = +
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By using this technique, receivers can perform exclusive-OR 
(XOR) operations between the encrypted states and classical 
bits. For instance, if a receiver wants to perform an XOR 
operation between three encrypted photons [ ']E M!  and three 
binary bits “101”, they simply rotate the first and the third 
photons by / 2!  without decrypting [ ']E M! . 
 Note that, although the receivers can change the original 
message, they can not read the data without errors nor can 
they make copies of the data unlike a one-time pad. Such 
quantum superposition states could be realized by linear 
polarizers and faraday rotators. An example of experimental 
realization of the QCE scheme was given in [18]. 
 



III. BANK TRANSFER OVER QUANTUM CHANNEL 
 In this section, we introduce a bank transfer system, which 
is theoretically unbreakable and can be realized using current 
emerging technologies.  We assume a simple realistic scenario 
as follows: there are many member banks and a trusted third 
party (Carol) that will verify all transactions.  A member bank 
(Alice) transfers money from her account to another member 
bank (Bob) by endorsing and transmitting an encrypted digital 
check to Bob. Bob endorses the received check and sends it to 
Carol. Carol verifies the validity of Alice’s check and 
signature. Then, Carol sends a confirmation notice to Bob. 
This scenario can be implemented as follows:    
1) Carol knows all information about the member banks’ 
identification. Each identification consists of a set of 
encryption keys and a function f (e.g., one-way hash, 
symmetric encryption [21]) that generates a digital signature 
since an encryption does not guarantee the integrity of the 
message.  A transaction starts with Alice’s request.  Carol 
generates both a set of random numbers 1 2 3( , , )

S S S
R R R  and a 

set of session keys 1 2 3( , , ).
S S S
K K K  She encrypts 

1 2 3( , , )
S S S
R R R  with 1 2 3( , , )

S S S
K K K , respectively. Then, Carol 

sends { }( ) || ( ) || ( )a b c  as a blank check to Alice. 

1 1

2 2

3 3

[ ] ..... ( )

[ ] ..... ( )

[ ] ..... ( )

KS S

KS S

KS S

E R a

E R b

E R c

 

2) Alice generates a random number 
A
R . She decides the 

amount to transfer, M and calculates a digital signature  
( ).Af M  Also, she performs an exclusive-OR (XOR) operation 

between { }, , ( )A A A AR R M R f M! !  and { }( ) || ( ) || ( ) ,a b c  
respectively by the method introduced in section 2. (The 
symbol ‘! ’ indicates a bit-wise XOR operation.) Alice also 
encrypts the resulting states with her encryption keys 

1 2 3( , , ),
A A A
K K K  respectively. Then, Alice sends 

{ }( ) || ( ) || ( )d e f  to Bob.   

1 1 1 1 1 1
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E E R R E E R R d

E E R R M

E E R R M e

E E R R f M

E E R R f M f
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! !

= ! !

! !

= ! !

 

3) Bob generates a random number 
B
R  and performs an XOR 

operation between { }, ,
B B B
R R R  and { }( ) || ( ) || ( )d e f  

respectively by the method introduced in section 2.  He also 
encrypts the resulting states with his encryption keys 

1 2 3( , , ),
B B B
K K K  respectively. Then, Bob sends 

{ }( ) || ( ) || ( )g h i  to Carol.   

1 1 1 1

2 2 2 2

3 3 3 3

[ [ [ ]]] ..... ( )

[ [ [ ]]] ..... ( )

[ [ [ ( ) ]]] ..... ( )

KB KA KS S A B

KB KA KS S A B

KB KA KS S A A B

E E E R R R g

E E E R R M R h

E E E R R f M R i

! !

! ! !

! ! !

 

4) Carol knows both 1 2 3( , , )
S S S
R R R and 1 2 3( , , )

S S S
K K K  and 

also knows all information of member banks’ identifications 
including both 1 2 3( , , , )A A A AK K K f  and 1 2 3( , , , )B B B BK K K f . 
Since both encryption and XOR operation are simple rotating 
operations, she can calculate an angle for the decryption and 
XOR operation for each one of ( ), ( ), and ( )g h i . (Actually, 
she can calculate them when she generates the session keys.) 
Carol performs decryptions and XOR operations with 

1 2 3( , , )
S S S
R R R  by rotating the polarization of ( ), ( ), and ( )g h i , 

by the three calculated angles, respectively. Carol measures 
the resulting states (i.e., photons) { }( ) || ( ) || ( )j k l    

..... ( )

..... ( )

( ) ..... ( )

A B

A B

A A B

R R j

R M R k

R f M R l

!

! !

! !

 

and retrieves both M and ( )Af M  by classical XOR operations 
between (j) and (k) and between (j) and (l).  If she cannot 
verify ( )Af M , she aborts the transaction. 
5) When Carol can verify Alice’s digital signature ( )Af M , 
she keeps it and creates the confirmation notice for Bob. First, 
she calculates ( )Bf M  and generates a random number 

4S
R . 

Carol encrypts { }4 4 4, , ( )S S S BR R M R f M! ! with Bob’s 
encryption key 1 2 3( , , )

B B B
K K K . Then, she sends 

{ }( ) || ( ) || ( )m n o  to Bob. 

1 4

2 4

3 4

[ ] ..... ( )

[ ] ..... ( )

[ ( )] ..... ( )

KB S

KB S

KB S B

E R m

E R M n

E R f M o

!

!

 

6) Bob decrypts { }( ), ( ), ( )m n o and measures the resulting 
states. He calculates ( )Bf M  and compares it with the 
measured ( )Bf M .  If he then verifies ( )Bf M , the transaction 
is successfully completed.  If he cannot verify ( )Bf M , he 
announces the abortion of the transaction.   
 
 

 
Figure 1: Bank Transfer  



IV. SECURITY OF THE PROPOSED SYSTEM 
4.1  Quantum Commutative Encryption (QCE) 
 QCE is similar to a one-time pad since it requires one 
encryption key (i.e., an angle) for each message bit.  The 
significant difference between QCE and a one-time pad is that 
the encryption keys of QCE can be theoretically reusable if the 
system with QCE satisfies the two conditions: (1) no 
malicious user knows the plain text, and (2) the data bits 0  

and 1  are used randomly for an encryption key, on average.  
Since an eavesdropper (Eve) cannot read the transmitted data 
bits without knowing the rotation angles, she has to find the 
encryption keys first.  However, it is not possible for her to 
identify the rotation angle with a couple of intercepted 
photons (i.e., transmitted data bits) because the information 
regarding the rotation angle is lost when she measures it.  
Therefore, her only possible means of attack is to use a 
statistic with a large amount of sample photons. Since the 
transmitted data bit cannot be copied (due to the no-cloning 
property), Eve must intercept a large amount of transmitted 
photons.  Furthermore, she must continue to collect a small 
fraction of transmitted photons spending a long period of time 
so that both a sender and a receiver cannot distinguish 
between errors caused by noise and by Eve’s interceptions.  If 
Eve knows a transmitted data (i.e., a plain text) and has 
collected hundreds of photons, it is not so difficult for her to 
identify the encryption key.  For example, when the data bit is 
0 and encrypted with an angle ! , if the transmission axis of 

the linear polarizer (called analyzer,) is set to horizontal, the 
probability that a photon is detected behind the analyzer is 

2

0 cos( )P != . (When the data bit is 1 , the probability is 
2

1 cos( / 2)P ! "= + .)  When she measures sample photons 
changing the angle !  between the horizontal axis and the 
transmission axis from 0 to ! , she can guess the angle !  
from the plot of the detection counts.  However, when Eve 
does not know the plain text where both data bit 0  and 1  
appear randomly in the plain text, the probability that a photon 
is detected is  

{ }

2 2

2 2

1 1cos( ) cos( 90 )
2 2

1 1(cos( )) (sin( ))
2 2

P ! " ! "

! " ! "

= # + # + °

= # + # =
. 

In short, even if she measures a large number of sample 
photons, she cannot identify the rotation angle because a flat 
line appears near to the probability 1

2
 in the plot of the 

detection counts.  
 
4.2 Bank Transfer System 
4.2.1 General 
During transmission, all data are encrypted by QCE.  
Therefore, Eve cannot read the data during the transmissions. 
Consequently, no data during the transaction can be altered 

(by Eve). Also, our proposed system is designed to satisfy the 
two critical conditions introduced at section 4.1. No one 
knows the amount to be transferred except a bank that requests 
the transaction (Alice) and the trusted third party (Carol).  The 
purpose of the exclusive-OR operations with random numbers 
in this system is to make both 0  and 1  bits appear 
randomly on each data bit. Although a classical digital 
signature is used in the protocol, it does not degrade the 
security level of our cryptosystem because Eve cannot apply 
cryptanalysis without reading the data (i.e., plain text). Also, 
non-repudiation is assured because a trusted third party 
(Carol) observes and guarantees the transaction. Carol verifies 
both the sender and the amount to transfer and keeps the 
digital signature from a bank that requests the transaction. 
Additionally, no classical channel is used except the 
transaction request from Alice. Even if Eve knows who 
requests the transaction, she does not have any useful attack 
strategy against this system because the 
data{ }( ) || ( ) || ( )a b c has no information regarding Alice. The 

data { }( ) || ( ) || ( )g h i  becomes meaningful only for Carol when 

{ }( ) || ( ) || ( )a b c  is encrypted by both Alice and Bob. 
 
4.2.2 Man-in-the-middle-attack 
 There are only four places that Eve may try to apply the 
man-in-the-middle attack. 
i) Eve takes over one of four quantum channels  
 In this case, any modification made by Eve results in the 
abortion of the transaction (i.e., denial of service).  Since Eve 
does not know the session key nor the random number 
generated by Carol, Carol cannot verify ( )Af M . Bob cannot 
verify ( )Bf M  because Eve does not know Bob’s secret keys.  

ii) Eve takes over both quantum channels between Carol and 
Alice and between Alice and Bob 
 Eve intercepts { }( ) || ( ) || ( )a b c  and sends a message with 

all 0 s.  Since Alice cannot detect the existence of Eve at this 
point, she will process the data as described at step 2 
(Section 3). The output will be as follows: 

1 2 3[ ] || [ ] || [ ( )]KA A KA A KA A AE R E R M E R f M! !  
All plain texts are randomized by the XOR operation with the 
random numbers 

A
R , which is used only for this session. 

Therefore, the system still satisfies the conditions introduced 
in section 4.1.     
iii) Eve takes over both quantum channels between Alice and 
Bob and between Bob and Carol 
 In this scenario, Eve intercepts { }( ) || ( ) || ( )d e f  and sends 

a message with all 0 s.  Since Bob cannot detect the 
existence of Eve at this point, he will process the data as 
described at step 3 (Section 3). The output will be as follows: 

1 2 3[ ] || [ ] || [ ]
KB B KB B KB B
E R E R E R  



Although all plain text use the same random number
B
R , its 

use is only for this session (one-time-use). This fact prevents 
Eve from finding the encryption key because 1 2 3( , , )

B B B
K K K  

are different keys and the system still satisfies the critical 
conditions introduced in section 4.1. 
 
4.3 Other Issues 
 There are two reasons that a one-time pad cannot be 
replaced with QCE. First, the encryption keys of a one-time 
pad are not reusable. If the keys are used multiple times, Eve 
can compromise the system.  For example, in the case 
described in Section 4.2.2-iii, Eve can collect 

1 2B B
K K!  

because she can read and copy the transmitted data if a one-
time pad is used. By using 

1 2B B
K K! , Eve can read “the 

amount to transfer” without being detected when Bob requests 
the transaction.  Second, although we do not reuse the 
encryption keys of a one-time pad when a QKD protocol is 
introduced into the system, cryptographic systems with QKD 
are considered to be vulnerable to the man-in-the-middle 
attack [17] as mentioned in section 1.  
 

V.  CONCLUSION 
 We proposed a bank (electronic funds) transfer system 
model utilizing both a quantum commutative encryption and a 
classical digital signature to provide theoretically unbreakable 
security. We showed that the system is immune to the man-in-
the-middle attack unlike systems with QKD though it is still 
vulnerable to the denial of service attack. The system is 
designed to utilize QCE with shared reusable keys, requires no 
additional authentication and no key distribution scheme.  In 
this system, QCE is utilized to provide confidentiality and 
authentication of the transaction while the classical digital 
signature is used to provide authentication, integrity, and 
non-repudiation, assuming the third party is trusted. We did 
not discuss the function which generates a digital signature to 
simplify our discussion however it is straightforward to 
include such classical cryptographic techniques (e.g., time 
stamp) into the proposed system.  Furthermore, note that a 
classical digital signature used in the system does not degrade 
the security level of the whole system because Eve cannot 
apply cryptanalysis without knowing the plain text. We 
believe that this system can be realized using current 
technologies (e.g., linear polarizers and Faraday rotators) and 
can be extended to a personal digital check system when 
quantum memory becomes available. (The development of 
quantum memory for light has been partially realized in 
laboratory experiments [22, 23].)  
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