
Submitted: IEEE Transactions on Reliability 

1 

Modeling and Stochastic Analysis of Embedded Systems Emphasizing Failure 

Severity, Coincident Failures and Usage-Profiles 

Kshamta Jerath and Frederick T. Sheldon 

Software Engineering for Dependable Systems Laboratory  

School of Electrical Engineering and Computer Science 

Washington State University 

Pullman, WA 99164. USA. 

kjerath@eecs.wsu.edu | sheldon@acm.org 
 
Key Words - Stochastic Modeling, Reliability, Coincident Failures, Usage-Profiles. 

Summary & Conclusions - The increasingly ubiquitous use of software systems has created the 

need of being able to depend on them more than before, and of being able to measure just how 

dependable they are. Knowing that the system is reliable is absolutely necessary for 

safety/mission-critical systems, where any kind of failure may result in an unacceptable loss of 

human life. This study models and analyzes the Anti-lock Braking System of a passenger 

vehicle. Special emphasis is laid on modeling extra-functional characteristics of severity of 

failures, coincident failures and usage-profiles - the goal is to develop an approach that is 

realistic, generic and extensible for this application domain. The strategy of modeling these 

characteristics (using empirical data) is innovative in terms of the approach used to integrate 

them into the Stochastic Petri Net and Stochastic Activity Network formalisms. The validation 

approach compares the results from the two separate models. The results were found to be 

comparable and confirm that the effect of modeling coincident failures, failure severity and 

usage-profiles is evident in determining overall system reliability. This work also provides a 

solid basis for modeling more complex systems and carrying out further supplementation and 

analysis. 
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I. INTRODUCTION 

The increasingly ubiquitous use of software systems has created the need of being able to 

depend on them more than before; and of being able to measure just how dependable they are. 

Knowing that the system is reliable is absolutely necessary for safety/mission-critical systems, 

where any kind of failure may result in an unacceptable loss of human life (or damage to the 

environment). Reliability is the probability that a system will deliver its intended functionality 

and quality for a specified period of “time” and under specific conditions, given that the system 

was functioning properly at the start of this “time” period [1]. Structured models of reliability 

allow the reliability of a system to be derived from the reliabilities of its components. A complex 

embedded vehicle system (like the Anti-lock Braking System) is composed of numerous 

components and the probability that the system survives (efficient or acceptable degraded 

performance) depends directly on each of the constituent components. The reliability analysis of 

a vehicle system can provide an understanding about the likelihood of failures occurring in the 

system and an increased insight to manufacturers about inherent “weaknesses” in the system [2]. 

In [3], the authors presented Stochastic Petri Net (SPN) models of a vehicle dynamic driving 

regulation (DDR) system. Sub-system representations of the Anti-lock Braking System (ABS), 

the Electronic Steering Assistance (ESA), the traction control (TC) and a combined model were 

developed and analyzed for critical failures. In this study we model and analyze the Anti-lock 

Braking System of a passenger vehicle, this is but one component of the total system and there is 

an implicit requirement that the developed model be easily extensible and fit into a larger 

complex context. Special emphasis is laid on modeling extra-functional characteristics of 

coincident failures, severity of failures and usage-profiles. 

One aspect of modeling failures occurring in the system is their severity. Severity of a failure 
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is the impact it has on the operation of the system. It is closely related to the threat (hazard) the 

problem poses, in functional terms, to the correct operation of the system [1]. Predicting the 

reliability/availability based on the characteristics of a model of the system provides more 

objective and concrete information that can be used in assessing the risk tradeoffs and integrity 

levels [4]. Severity is an important candidate to weight the data used in reliability calculations 

and must be incorporated into the model to determine the probability that the system survives, 

including efficient or acceptable degraded operation. Failure severity has been studied in the 

context of gracefully degrading systems – using Markov models to model a multiprocessor 

system in [5] and a portion of an air traffic control system (a set of radars) in [6]. 

Further, if a system does not contain any redundancy – that is, if every component must 

function properly for the system to work - and if component failures are statistically independent, 

then the system reliability is simply the product of the component reliabilities. Furthermore, the 

failure rate of the system is simply the sum of the failure rates of the individual components [7]. 

The assumption that failures occur independently (in a statistical sense) in hardware components 

is a widely used and often successful model for predicting the reliability of hardware devices. 

However, components generally interact with each other during operation, and a faulty 

component can affect the probability of failure of other components too [8]. Such failures are 

coincident in the sense that failure of one component increases the probability of failure of 

another.  

Several researchers have considered the problem of modeling correlation between failures. 

Two schools of thought emerged, differentiated by the definition of the basic events of interest, 

the two approaches are called Correlated failures and Differentiated causes [9]. The correlated 

failures approach was first considered by Eckhardt and Lee [10], and their work was later 
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extended by Littlewood and Miller [11]. The differentiated causes approach was first proposed 

by Arlat, Kanoun and Laprie [12] and later adopted by others. 

The reliability of a system also depends on its usage profile – users interact with the system in 

an intermittent fashion, resulting in operational workload profiles that alternate between periods 

of “Active” and “Passive” use. Reliability is concerned with the service that is actually delivered 

by the system as opposed to a system’s capacity to deliver such service [13]. Specifically, while 

considering usage profiles, faults need not necessarily cause failures since they can be repaired; 

failures occurring during “active” use of the system only should contribute to reliability 

calculations. Some investigations in this field have been mainly experimental, using empirical 

data from measurements of real systems to correlate workload with various measures of 

dependability [14, 15]. On the analytic side, probabilistic models have been used to obtain 

workload-related dependability measures [5, 16-18]. 

This research contributes by incorporating the characteristics of failure severity, coincident 

failures and usage-profiles into the model developed for the Anti-lock Braking System of a 

passenger vehicle [19]. These characteristics have never been modeled together for this system, 

generating a potentially more realistic model (with real data being used to model failure rates). 

The modeling strategy adopted in this study is innovative in terms of the approach used to 

integrate the above characteristics into the Stochastic Petri Net (SPN) and Stochastic Activity 

Network (SAN) formalisms.  

SPNs and SANs provide concise representations of the system being modeled and can be used 

to automatically generate the underlying Markov models. The modeling approach needs to 

overcome the two most common challenges in modeling using Markov models – large state 

space and stiffness. Further, modeling and experiments on the real system (measurements) are 
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two totally different but complementary approaches in performance evaluation methodology. 

Since, it is beyond the scope (and the means) of this research to validate the results from the 

analytic experiments against real data, two different stochastic formalisms have been used to 

carry out the reliability analysis (see Fig. 13). The results, from the analyses of each of the (SPN 

and SAN) models developed, using the Stochastic Petri Net Package [20] and the UltraSAN [21] 

tools respectively, are discussed and compared. 

II. THE ANTI-LOCK BRAKING SYSTEM DESCRIPTION  

The Anti-lock Braking System (ABS) is an integrated part of the total braking system in a 

vehicle. Applying excessive pressure on the brake pedal, or panic slamming the brake pedal, can 

cause wheels to lock up and possibly send the vehicle careening into a terrifying skid. Excessive 

brake pedal pressure often occurs in an emergency or adverse situation, such as wet or icy roads. 

The ABS prevents wheel lockup during an emergency stop by modulating the brake pressure and 

permits the driver to maintain steering control while braking. 

A. Components and Functioning of the ABS 

The ABS consists of the following major components. (1) Wheel Speed Sensors - These 

measure wheel-speed and transmit information to an electronic control unit, (2) Electronic 

Control Unit (Controller) - This receives information from the sensors, determines when a wheel 

is about to lock up and controls the hydraulic control unit, (3) Hydraulic Control Unit (Hydraulic 

Pump) - This controls the pressure in the brake lines of the vehicle, and (4) Valves - Valves are 

present in the brake line of each brake and are controlled by the hydraulic control unit to regulate 

the pressure in the brake lines. 

Fig. 1 displays the top-level schematic of the system showing the interconnections between the 

components. When a driver applies brakes on an ABS-equipped vehicle, wheel sensors monitor 
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Fig. 1: Top-level schematic showing sensors, processing and actuators
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 to lock up. The ECU then orders the hydraulic control unit (HCU) to 

 that wheel’s brakes. The HCU reduces the pressure in that particular 

e valves present there. Once the wheel resumes normal operation, the 

o its brake. Depending on the system, this “pulsing” of brake line 

 15 times per second. The result is that the tire slows at the same rate 

akes keeping the tires very near the point at which they will start to 

em the highest steering capability. 
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ction steps are needed to obtain system measures from the real system. 
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 parameterize the abstract model. In the second abstraction step the 

eated which allows an easier and more efficient system analysis [22]. 

 in our modeling approach was to identify the essential components of 
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the system, the different ways in which they interact and introduce various assumptions. Table I 

provides a list of the parts that are considered in this analysis, along with the respective failure 

rates1 associated with critical failure states. 

 Table I: Component failure rates associated with critical failure states 

B. System Assumptions 

The various assumptions made about the system are: 

1) Three modes of operation: For the purpose of this discussion, the different modes of 

operation of the system (in presence/absence of failures of different severity) are assumed to be: 

(i) normal operation, (ii) degraded operation, and (iii) lost stability mode; in increasing order of 

severity. Critical failures seriously impact the operation of the system, and are assumed to cause 

loss of vehicle. Further, if sufficient components of the system have failed to impact the system 

operation (either degraded operation or lost stability mode), the sum of those failures is assumed 

to be critical, causing loss of vehicle. 

                                                 
1 The data was obtained from DaimlerChysler. The failure rates listed in Table 1 however are dummy values. The 

real values we had are protected under a non-disclosure agreement. 

Probability Component # Base Failure Rate 
Degraded 
operation 

Loss of 
Stability 

Loss of 
Vehicle 

Wheel Speed Sensor  4 2.00E-11 0.38 0.62 - 
Pressure Sensor  4 1.50E-11 0.64 0.36 - 
Main Brake Cylinder  1 1.00E-11 - - 1.0 
Pressure Limiting Valve 2 6.00E-13 - 0.22 0.78 
Inlet Valve  4 6.00E-13 - 0.18 0.82 
Drain Valve  4 6.00E-13 - 0.19 0.81 
Toggle Switching Valve 2 6.00E-13 1.0 - - 
Hydraulic Pump 2 6.80E-11 - - 1.0 
Pressure Tank 2 2.00E-12 - - 1.0 
Controller 1 6.00E-12 0.2 0.4 0.4 
Tubing  1 3.00E-12 0.33 - 0.67 
Piping  1 4.00E-12 0.33 - 0.67 
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2) Lifetime of passenger vehicle: Essentially the average hours of operation for a passenger 

vehicle range from 300-600 hrs /year and the average lifetime is 10-15 years. Thus, the average 

life span of a passenger vehicle ranges from 3000 – 9000 hrs. This estimate is important while 

considering the duration for which to carry out the reliability analysis.  

3) Interdependencies between components: To model coincident failures, several 

dependencies among system components are 

assumed. Only those inter-relationships between 

components depicted as solid arrows in Fig. 2 are 

explicitly modeled in the stochastic models. All other 

possible inter-relationships between components 

(only some of them depicted as dashed arrows in the 

figure) have been ignored. Further, for modeling 

purposes, we assume a four channel four sensor ABS 

[23]. The model can be easily modified to represent 

other ABS schemes. 

III. STOCHASTIC PETRI NET

The SPN models developed to model severity of failures 

as well as the SPN models developed to model usage-prof

[19]. The SPNs were input to the Stochastic Petri Net Pac

based Stochastic Petri net Language). Here, the models are d

Code is presented for explanation wherever necessary. 

The ABS is represented as a combination of all the imp

shown in Fig. 3. The components are sorted into two group
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components 
 MODELS 

and coincident failures for the ABS, 

iles for the ABS are presented here 

kage (SPNP v. 6) tool in CSPL (C-

iscussed in Petri net form for clarity. 

ortant components it consists of, as 

s: central and axle. The components 
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under axle are further segregated 

according to the corresponding wheel 

– FRWheel (Front Right Wheel), 

FLWheel (Front Left Wheel), 

RRWheel (Rear Right Wheel) and 

RLWheel (Rear Left Wheel). This 

division into groups is representative 

of the number of a given component 

present in the system. A component 

like the Wheel Speed Sensor, one for 

each wheel, finds its place under each of the four wheel categories (FRWheel, FLWheel, 

RRWheel and RLWheel). A component like the Hydraulic Pump, one for each axle, finds its 

place in the axleCentral group under the axle place. A component like the Main Brake Cylinder, 

of which there is only one instance, finds its place under the central category. Each component 

has its own model, shown as dashed rectangles in Fig. 3.  

A. Modeling Severity of Failures 

The model shown in Fig. 3 also depicts the operation of the ABS under normal, degraded and 

lost stability conditions. The places degraded_operation, loss_of_stability and loss_of_vehicle 

model the severity of failure. The system is functioning normally when there are no tokens in 

any of these three places. The model is initialized with a single token in the start place. When the 

central_op and the axle_op transitions fire, a token is deposited in each place that represents a 

component of the ABS. The operation of each component is now independent of every other 

component (except where coincident failures are modeled explicitly as explained in the next 

 start 

braking 

axle central

central_op axle_op 

mbrakecyl controller tubing piping
FLWheel 

FRWheel RRWheelRLWheelaxleCentral 

loss_of_vehicle loss_of_stability degraded_operation 

Fig. 3: SPN model for the ABS 
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section).  

The model of a component of the ABS is shown 

in Fig. 4. The component depicted here is the 

controller. Every component either functions 

“normally” as shown by the controllerOp 

transition or “fails” as shown by the 

controllerFail transition. To allow a Markov 

chain analysis, the time to failure of all 

components is assumed to have an exponential 

distribution. A failed component may either cause 

degraded operation, loss of stability or loss of

controllerDegradedOp, controllerLOSOp and con

respectively). The probability of any one of these three

measures on the real system) is different for each compon

failure causes either degraded operation or loss of stabili

(token recycled back to the controller place), though the

orders of magnitude respectively. Loss of vehicle (ind

extreme loss of stability (indicated by three tokens in 

operation (indicated by five tokens in degraded_operation

the halting condition for the model. 
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To model coincident failures, several dependencies amo

shown in Fig. 2. Coincident failures are modeled in a 

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS
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Fig. 4: SPN model of the controller
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ent and is shown in Table I. When the 
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 failure rate increases by two and four 

icated by a token in loss_of_vehicle), 

loss_of_stability) or extreme degraded 

) signify critical failures and determine 

ng system components are assumed, as 

manner similar to severity of failures. 



“Coincidence” of failures of two components is modeled by causing the failure of one 

component (to degraded operation or loss of stability) to increase the failure rate of the 

dependent component. The failure of a component A to a degraded mode causes the failure rate 

of a “related” component B to increase by two orders of magnitude. The failure of component A 

to a lost stability mode causes the failure rate of a “related” component B to increase by four 

orders of magnitude. (There was no data available to confirm or validate this assumption for 

modeling coincident failures.) 

The function that calculates the 

failure rate of the transition 

controllerFail is shown in Fig. 5. It 

is assumed that a tubing 

malfunction affects the operation 

of the controller. Hence, while calcul

increased by two orders of magnitu

(indicated by a token in the tubingDe

represented in the model. However, c

more than two components) can be

function (as in Fig. 5) of the relevant c

C. Modeling Usage-Profiles 

The global model of the ABS, repr

components, remains unchanged (Fig.

the model of each individual compon

shown in Fig. 6. The figure shows the

s 
Fig. 5: Variable failure rate function to model coincident failure
double controllerRate() 
{ 
       double controller_rate = 0.0000006; 
 
       if (mark("controllerLOS") > 0) return controller_rate * 10000; 
       if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0)) 
 return controller_rate * 100; 
       return controller_rate; 
} 
11 

ating the failure rate of the controller, the normal rate is 

de if the tubing has failed causing degraded operation 

graded place). Only a few coincident failures have been 

oincident failures between other components (or among 

 easily modeled by suitably modifying the failure rate 

omponents using the same rule. 

esented as a combination of all the important constituent 

 3). To incorporate the usage-profiles in the ABS model, 

ent, like the controller depicted in Fig. 4, is extended as 

 controller, with the bold lines indicating the additions to 



the model. In case of a failure (failedController), 

the model differentiates between the two 

situations regarding whether the system was in 

active use (along the branch to transition labeled 

mu) or not (along the branch to transition labeled 

alpha). The parameter 1/mu indicates the mean 

duration of active use while the parameter 1/alpha 

indicates the mean duration of passive use. The 

rate of active use is assumed to be exponentially 

distributed.  

In the case where the failure occurs during the 

active period (inUseController), the system either continues to operate in the degraded 

(controllerDegradedOp) or lost stability mode (controllerLOSOp), or causes loss of vehicle 

(controllerLOVOp). In the case where the failure occurs during passive use of the system 

(repairableController), the fault can be repaired and an infinite repair rate is assumed (all repairs 

occur instantaneously). The system continues to operate as if no failure had occurred. The model 

can be extended to associate a cost with each time the failed component must be repaired, if 

required. 

To work around the state 

explosion problem occurring 

due the evident increase in the 

number of states in the model 

as shown in Fig. 6, the model is  

Fig. 6: SPN model of  controller with usage-

parameters 

double controllerRate() 
{ 
 double controller_rate = 0.0000006; 
 
 // usage parameter 
 controller_rate += controller_rate * mu(); 
 
 if (mark("controllerLOS") > 0) return controller_rate * 10000; 
 if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0)) 
  return controller_rate * 100; 
 return controller_rate; 
}

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS

degraded_operation
loss_of_stability loss_of_vehicle

inUseController repairableController

alphamu

repair
Fig. 7: Variable failure rate function to model usage-parameters
12 
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simplified to incorporate the usage parameters while calculating the failure rate itself for each 

component. The modified function for calculating the failure rate in light of the usage-profile is 

shown in Fig. 7. Essentially, the failure rate (considering only usage-parameters) is the sum of 

the failure rates mu and lambda. The value of these usage parameters was factored by the actual 

failure rate of the component to avoid stiffness in the model. The value of mu is assumed to be 

2.5 for infrequent use periods (low-usage) and 250 for frequent active use periods (high-usage). 

D. Extensibility of the SPN Models 

The SPN models developed for modeling coincident failures and severity and usage-profiles 

are easily extensible. The global SPN Model can be extended to include other components 

deemed relevant to the ABS by including their corresponding sub-models. The sub-models, in 

turn, would be simple reproductions of the sub-models for other components with different 

failure rates and probabilities. The model, developed for the four channel four sensor ABS, can 

be adapted to model other schemes of the ABS, by suitably changing the numbers of the relevant 

components modeled (by either removing/adding the respective place, or updating the failure 

rate). Inter-dependencies between other components (or among more than two components) 

culminating in coincident-failures can be modeled by updating the failure rates of the relevant 

components.  

Different categorizations for severity of failure can be used by simply updating the sub-models 

of the components to include the necessary places depicting the severity level. For example, the 

model representing the controller component (Fig. 4) can be updated to have a transition (in 

addition to controllerDegradedOp, controllerLOSOp and controllerLOVOp) and a place (in 

addition to degraded_operation, LOS and LOV) to represent an additional failure severity level. 

The SPN model representing usage profiles can be updated to represent different usage-
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parameters or intensity of workload by simply changing the value of mu. The model can also be 

extended to associate a cost with each time the failed component must be repaired, by adding an 

additional place to keep track of the number of times the component has been repaired denoted 

by the number of tokens in this place. 

IV. STOCHASTIC ACTIVITY NETWORK MODELS 

The SAN models developed to assess severity of failures and coincident failures for the ABS, 

as well as the SAN models developed to model usage-profiles for the ABS are presented here 

[19]. The SANs were input to the UltraSAN (v. 3.5) tool graphically. Here, the composed model 

and the individual subnet Central_2 are discussed. Code is presented for clarity, wherever 

necessary. 

The composed model for the ABS is shown in Fig. 8.  The model consists of three individual 

SAN sub models: Central_1, Central_2 

and Wheel. The Wheel subnet is 

replicated four times to model the four 

wheels of the vehicle. The division into 

these three sub-categories is done to 

facilitate the representation of coincident 

failures. As depicted in Fig. 2, the inlet 

valve and the drain valve (in the Wheel subnet) are correlated, and so are the components listed 

under the group Central_2 (gray-colored subnet). All components under Central_1 are assumed 

to be independent of each other (for the purpose of this study). Such a distribution/categorization 

avoids replicating of subnets where unnecessary (for modeling severity and coincident failures) 

and thereby mitigates the state explosion problem. 

Fig. 8: The composed model of the ABS 
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A. Modeling Severity of Failures 

All subnets when combined to form the composed model share some common places: 

degraded, LOS, LOV and halted. The first three places model the severity of failure, while the 

halted place is used to determine the halting condition. The Central_2 subnet is shown in Fig. 9. 

The presence of tokens in degraded, LOS and LOV represent degraded system operation, loss of 

stability and loss of vehicle respectively (the same concept used in the SPN models). The system 

is operating normally when there are no tokens in any of these three places.  

The subnet is instantiated with a single token in the central_2 place. The central2_op activity 

fires and deposits a token in each of the five places: hydraulicPump, pressureTank, toggleSwitch, 

controller and tubing. The portion of the subnet for the controller component is highlighted in 

central_2 central2_op

central2_out

hydraulicPump

pressureTank

controller

tubing

hydraulicPumpFail

pressureTankFail

controllerFail

tubingFail

toggleSwitchDegraded_out

controllerLOS_out

tubingDegraded_out

toggleSwitchDegraded

controllerLOS

tubingDegraded

LOV

LOS

degraded

halt_test
halttoggleSwitch toggleSwitchFail

controllerDegraded_out

controllerDegraded

halted

HPFailInhibit

PTFailInhibit

TSFailInhibit

haltInhibit

CFailInhibit

TFailInhibit

Fig. 9: Central_2 subnet with the controller component highlighted 



Fig. 9 and discussed here in the context of severity of failures. The controllerFail activity models 

the failure of the controller. There are three possible outcomes of this activity. The controller 

either fails causing degraded operation (with probability 0.2, output gate  

 controllerDegraded_out), or causes loss of stability (with probability 0.4, output gate 

controllerLOS_out), or causes loss of vehicle (with probability 0.4, output to LOV). In the former 

two cases the controller continues to operate in a degraded manner, as is evident by the recycling 

back of the token to the 

controller place. Further, the 

failure rate in this situation 

increases by two (for 

degraded) and four (for loss of 

stability) orders of magnitude 

respectively. The code snippet 

that achieves this is shown in Table I

UltraSAN requires the failure rate

special if-then-else construct avai

controllerFail activity. If the 

MARK(controllerDegraded)!=0), it c

the controller place, and the failure r

magnitude (i.e. controllerRate*100). 

MARK(controllerLOS)!=0), (again) i

to the controller place, and the failur

of magnitude (i.e. controllerRate*100

co

hyd

s 
Table II: Activity rates model severity and coincident failure
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I.  

 to be specified in a single statement, hence the use of the 

lable in the C programming language. Consider the 

controller fails causing degraded operation (i.e., 

ontinues to function manifest by recycling the token back to 

ate for the controllerFail activity increases by two orders of 

Similarly, if the controller fails causing loss of stability (i.e., 

t continues to function manifest by recycling the token back 

e rate for the controllerFail activity increases by four orders 

00). 

Probability Activity Rate 
Case 1 Case 2 Case 3 

ntrollerFail 

MARK(controllerLOS)!=0? 
controllerRate*10000: 

(MARK(controllerDegraded)!=0 || 
MARK(tubingDegraded)!=0 

?controllerRate*100 
:controllerRate) 

0.4 0.4 0.2 

raulicPump
Fail 

MARK(controllerLOS)!=0? 
hydraulicPumpRate*10000: 

(MARK(controllerDegraded)!=0  ? 
hydraulicPumpRate*100 : 

hydraulicPumpRate) 

1.0 - - 
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B. Modeling Coincident Failures 

As in the SPN models, “coincidence” of failures of two components is modeled by causing the 

failure of one component (to degraded operation or loss of stability) to increase the failure rate of 

the dependent component. The failure of a component A to a degraded mode causes the failure 

rate of a “related” component B to increase by two orders of magnitude. The failure of 

component A to a lost stability mode causes the failure rate of a “related” component B to 

increase by four orders of magnitude. Table II shows the rates for the activities modeling the 

failure of the controller and the hydraulic pump (other component failure rates as modeled in a 

similar manner).   

Since UltraSAN requires the failure rate to be specified in a single statement, the special if-

then-else construct available in the C programming language is used. Consider the controllerFail 

activity. Since a failed tubing (in degraded mode) is assumed to affect the failure rate of the 

controller, if the number of tokens in the tubingDegraded place is not zero (i.e., 

MARK(tubingDegraded)!=0), the failure rate for the controller increases by two orders of 

magnitude (i.e., controllerRate*100). Similarly, for the hydraulicPumpFail activity, we have 

assumed that a failed controller affects the failure rate of the hydraulic pump. Thus, the failure 

rate for the hydraulic pump increases by four orders of magnitude if the controller has failed 

causing loss of stability. Also, the failure rate for the hydraulic pump increases by two orders of 

magnitude if the controller is operating in a degraded mode. Only a few coincident errors have 

been modeled. However, coincident failures between other components (or among more than 

two components) can be modeled in a similar fashion. 

C. Modeling Usage-Profiles 

The composed SAN model for the ABS remains unchanged while modeling usage-profiles. 
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The individual component’s model within each subnet needs to be updated to handle usage, as 

done in the SPN models.  

To avoid the state explosion problem occurring due the increase in the number of states in the 

model (for a component in passive and active modes), the model is simplified to incorporate the 

usage parameters while calculating the failure rate itself for each component. The modified 

construct calculating the rate for each 

failure activity in light of the usage-

profile is shown in Fig. 10. The 

translation to the simple C if-else 

statement is also presented for clarity. 

The parameter 1/mu indicates the mean 

duration of active use of a given 

component. To calculate the failure rate of the co

active usage rate (mu factored by the actual fail

difference in the orders of magnitude). The rem

failures remain unchanged. The value of mu is 

periods (low-usage) and 25 for frequent active use 

D. Extensibility of the SAN models 

The SAN models developed for modeling coinc

are easily extensible. The composed SAN model 

deemed relevant to the ABS by adding other subne

existing subnet. A new component is modeled in

with its own failure activity and the corresponding

 
Fig. 10: Construct to model usage-profiles
MARK(componentBLOS)!=0 ? 
(componentARate+componentARate*mu)*10000 : 
(MARK(componentBDegraded)!=0 ? 
(componentARate+componentARate*mu)*100 : 
(componentARate+componentARate*mu)). 
 

Is Equivalent to: 
 
if(MARK(componentBLOS)!=0) 
    return (componentARate+componentARate*mu)*10000; 
else if(MARK(componentBDegraded)!=0) 
    return (componentARate+componentARate*mu)*100; 
else return (componentARate+componentARate*mu); 
mponent, the actual failure rate is added to the 

ure rate to avoid stiffness due to the evident 

aining constructs for severity and coincident 

assumed to be 2.5 for infrequent active use 

periods (high-usage).  

ident failures and severity, and usage-profiles 

can be extended to include other components 

ts, or including the component(s) as part of an 

 the same way as other existing components, 

 output cases and probabilities.  
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Adding more components into the model can however aggravate the state space explosion 

problem due to the interleaving of the different token configurations within the subnet as well as 

among all the subnets in the composed model. The strategy should avoid using multiple places to 

denote multiple instances of the same component where possible e.g. instead of using two places 

to denote two axles, use a single place with the associated activity having a failure rate twice the 

failure rate for one axle. If it is absolutely imperative to model the two axles separately, then use 

Replicate, because then UltraSAN can take advantage of the State Lumping Theorem that allows 

the generation of a smaller state space. 

The model, developed for the four channel four sensor ABS, can be adapted to model other 

schemes of the ABS, by suitably changing the numbers of all the relevant components modeled 

(by either removing/adding the respective place, or updating the failure rate as described above). 

Different categorizations for severity of failure can be realized by simply modifying the 

component sub-models to include the necessary places representing the severity level. The levels 

of severity can also be altered by changing the number of tokens in each of the “severity” places 

necessary to cause the system to halt (i.e., the halting condition). Different levels of severity can 

also be modeled by multiplying the failure rate of the affected component by a different scalar 

(other than 100 and 10000 for degraded mode and lost stability respectively). Inter-dependencies 

between other components (or among more than two components), which cause coincident-

failures, can be modeled by updating the rates of the activities that model failure of those 

components. 

The SAN model representing usage profiles can be updated to represent different usage-

parameters or intensity of workload by simply changing the value of mu in Fig. 10. The model 

can be extended to associate a cost with each time the failed component must be repaired; by 
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adding an additional place to keep track of the number of times the component has been repaired 

(denoted by the number of tokens in this place). 

V. RELIABILITY ANALYSIS RESULTS AND COMPARISON 

The reliability of the system at time t is computed as the expected instantaneous reward rate at 

time t. To determine the reliability of the system, transient analysis of the developed models was 

carried out and the reliability measured between 0 and 50K hrs. The time duration was 

deliberately conservative, even though the average life span of a passenger vehicle ranges from 

3000 – 9000 hrs, the reliability measures were determined for up to 50K hrs. The transient 

analysis was carried out using the Stochastic Petri Net Package (SPNP) version 6 (for the 

developed SPN models) and UltraSAN version 3.5 (for the developed SAN models) on a Sun 

Ultra 10 (400 MHz) with 500MB memory.  

Since, it is beyond the scope (and the means) of this research to validate the results from the 

analytic experiments against real data, two different stochastic formalisms have been used to 

carry out the reliability analysis. The transient analysis of the developed SPN models resulted in 

164,209 tangible markings, of which 91,880 were absorbing. The approximate running time of 

the solver on the models was 144-168 hrs. The developed SAN models were solved at a 

tolerance of 1e-09, and resulted in the generation of 859,958 states. The approximate running 

time of the solver on the models was 120-144 hrs. The results, from the analyses of each of the 

(SPN and SAN) models developed, using the SPNP and the UltraSAN tools respectively, are 

presented and compared in this section. 

A. Results for Models Representing Coincident Failures and Severity of Failure 

The results for both SPN and SAN models representing coincident failures and failure severity 

are shown in Fig. 11. The Y-axis gives the measure of interest - the reliability; while the time 



range (0 to 50K hrs) is shown along the X-axis. The interval between the points did not remain 

constant along the entire time range and therefore the X-axis is not linear and should be 

considered (i.e., the interval size increases with time) when viewing the results graphs. As 

expected, the reliability steadily decreases with time. The box highlights the range of average 

lifetime of a vehicle. 

The curves for the two SPN models for coincident failures (the model representing severity 

and coincident failures and the 

model not representing them) are 

completely overlapped. The 

Mean Time to Failure (MTTF) 

for the model with coincident 

failures (784,856 hrs) is 

approximately 421 hrs less than 

the model without coincident 

failures (785,277 hrs). For the 

limited2 number of coincident 

failures that have been modeled, 

the difference of 421 hrs in the two case

For the SAN models, the reliability

operation, and the difference continue

dropped down to 0.21 when coincident

                                                 
2 One may speculate that there is some kind of r

modeled and the difference observed in the grap
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s is considered well within the confidence interval.  

 functions diverge perceptibly after around 1K hrs of 

s to increase with time. At 50K hrs, the reliability has 

 failures are modeled, and down to 0.30 when coincident 

elationship (perhaps linear) between the number of dependencies 

hs and the MTTF values. 



failures are not modeled, a difference of 0.09 in reliability in the two cases within 50K hrs. The 

MTTF at 50K hrs when coincident failures are not considered is 29,167 hrs, and when 

considered is 25,409 hrs, a difference of 3,758 hrs. 

The difference in the range of reliability values produced by the two different formalisms may 

be attributed to the way the reliability reward is defined in each. The SPN reward rate was 

defined as a single set of discrete 0/1 values, while the SAN reward rate function models a range 

between 0 and 1 (a function of the number of tokens in the degraded, LOS and LOV places). 

Therefore, the different 

rewards accumulate at different 

rates, and this explains the 

disparity in the reliability 

values at any given point in 

time.  

It is evident that representing 

severity and coincident failures 

in the model contributes to 

system reliability prediction. 

Such a prediction may be 

closer to how the real system will behav

B. Results for Models Representin

The results for both SPN and SAN m

are shown in Fig. 12. For the SPN m

decreases alarmingly within the first 1K
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e under the assumptions that have been made.  

g Usage-Profiles 

odels representing coincident failures and failure severity 

odels, the reliability of the system with heavy usage 

 hrs of operation, while the reliability of the system with 
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moderate usage decreases perceptibly only after 2.5K hrs of operation and then steadily 

afterwards. Also, the MTTF for the high usage case is approximately 771,023 hrs as opposed to 

775,112 hrs for the low usage case, a difference of 4,089 hrs. 

For the SAN models, the reliability of the system with heavy usage starts decreasing 

alarmingly after the first 100 hrs of operation, while the reliability of the lightly used system 

decreases only perceptibly after 100 hrs of operation and then steadily afterwards. Considering 

the expected lifetime period of the vehicle (3,000-9,000 hrs), the reliability for the high-usage 

profile drops from around 0.55 down to approximately 0.05. For the same duration, the reliability 

for the low usage drops from 0.9 to only 0.5, a difference of approximately 0.45 after 10K hrs of 

operation. Thus, aggressive use of the system, causes the reliability to drop more rapidly (as 

expected) than when the system is used conservatively. 

 Table III: Comparison of criteria and results for SPN and SAN models 

 Table III provides a tabularized summary listing the comparison criteria and results from both 

the SPN and SAN models. As stated before, the assumptions and the environment/platform used 

for the analysis were the same in both cases, while the reliability reward measure was different. 

Criteria/Results SPN Model SAN Model 

Assumptions  Same Same 
Reliability Measure Defined as a set of 0/1 rewards Defined as a function of the 

number of tokens in degraded, 
LOS and LOV places 

Number of states generated 164,209 states 859,958 states 
Environment/Platform Same Same 
Running Time of Solvers 144-168 hrs  120-144 hrs  
Reliability at 9K hrs (With severity 
and coincident failures vs. without)  

      0.95792578 vs.         
0.95792653 

         0.73672 vs.                
0.786 

Difference in reliability at 9K hrs 
(Without severity & coincident 
failures minus with) 

0.00000075 0.04928 

Reliability at 9K hrs (Low Usage vs. 
High Usage)  

     0.89621556 vs.              
0.76658329 

     0.4455167 vs.                
0.3130521 

Difference in reliability at 9K hrs 
(Low Usage minus High Usage) 

0.12963227 0.1324646 
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The number of states generated for the SPN models was much lower than the number for the 

SAN models. However, the running time of the solvers was longer for the SPNs. The reliability 

results at 9K hrs (the expected end-of-life time point) are also provided. 

VI. CONCLUSIONS AND FUTURE WORK 

The objective of this research was to develop a generic (including extensible and realistic) 

framework for analyzing an embedded vehicle system focusing on severity of failures, 

coincident failures and usage-profiles using SPNs and SANs. This objective was achieved by 

representing these characteristics in the special case of an Anti-lock Braking System of a 

passenger vehicle. Modeling challenges of state explosion and stiffness were overcome by 

limiting the state space size. This may be bore out by increasing the state space that makes the 

models intractable. The basis of creating the models was an industrial-strength system 

characterized by empirical data. The modeling strategy was explained and the extensibility of the 

models developed was discussed.  Two different stochastic formalisms – Stochastic Petri Nets 

and Stochastic Activity Networks, were used to analyze the developed models for reliability 

measures. The results from both formalisms were compared and discussed, in the absence of 

other validation procedures (see Fig. 13). The goal of developing an approach that is generic and 

extensible for this application domain was achieved by discussing the extensibility of the 

developed models to incorporate greater complexity and and/or modifications with respect to the 

aforementioned assumptions. 

A. Conclusion 

The characteristics of failure severity, coincident failures and usage-profiles were successfully 

incorporated into the model developed for the Anti-lock Braking System of a passenger vehicle. 

This resulted in generating a potentially more realistic model (with real data being used to 
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determine failure rates). This study established the degree of complexity and the level of 

abstraction that is feasible to model and solve utilizing the available resources. Comparison of 

the models developed using the two separate modeling formalisms, SPNs and SANs, indicate 

that there is no clear winner between the two formalisms. Even though SANs provide more 

expressive power and compactness to the models developed, the details that are clearly visible in 

the SPN models are hidden in the SAN models, making some details less intuitive. 

The results from the analyses of the models developed indicate the divergence of reliability 

measures in the cases when the extra-functional characteristics of severity and coincident failures 

were and were not modeled. The difference in reliability measures for markedly different system 

workloads was also identified. Because the model is an abstraction of a real world problem, 

predictions based on the model must be validated against actual measurements observed from the 

real phenomena. Using two different stochastic formalisms for analysis and comparing the 

results did not compensate for the absence of validation procedures for analysis results. Yet, the 

results justified the modeling strategy adopted. They also highlighted the importance of 

modeling severity, coincident failures and usage-profiles while examining system reliability. 

Suitable validation procedures can provide helpful feedback for refining the model and making it 

even more realistic. Analysis of such a realistic model provides the basis for verifying that the 

requirements for system safety have been satisfied. These results can also help to determine 

prognostics (predict when to schedule maintenance).  

This research has successfully established a framework for investigating system reliability. The 

contribution of this research to the automotive industry offers greater insight into the strategy for 

developing realistic models. The information from the results is also useful in making design 

decisions. Results provide greater insight to manufacturers about “weak links” in the system, and 



increased understanding of which components need to be highly reliable to potentially increase 

overall system reliability. This study can also be the basis of numerous other studies, building up 

on the framework and investigating other areas of interest, as presented in the next section. 

B. Future Work 

The Anti-lock Braking 

system is a small part of 

the DDR (Dynamic 

Driving Regulation) 

system, which consists of 

other subsystems like the 

Electronic Steering 

Assistance (ESA), the 

traction control (TC), and 

the power transmission 

(PT) as shown in Fig. 13. Mod

well. To achieve a more real

closely related sub-systems a

sensitivity. To extend the fram

with the composition of mul

because the model already exp

Both the SPN and SAN mo

models developed so far can

study/development to identify

* Sensitivity Analysis
* Simulation
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Fig. 13: Schematic showing research process and scope for future work
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els can be developed for the ESA, TC and the PT sub-systems as 

istic model, this work can be extended to incorporate the other 

nd analyze the composed model for reliability/availability and 

ework established for modeling the ABS sub-system for dealing 

tiple sub-systems, a new strategy would need to be developed 

loits the maximum degree of complexity that is feasible to solve.  

dels lend themselves to sensitivity analysis at various levels. The 

 be used to carry out sensitivity analysis of the system under 

 the components that are most likely to fail, thereby making the 
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system susceptible to critical failures. Armed with such knowledge system and software 

architects can make more informed decisions as to the inherently reliable and safe choices and/or 

make economic/cost tradeoffs. 

The DDR system is a very complex system, and a model capturing all its essential 

features/characteristics would itself be very complex, precluding any possibility of an analytical 

solution. In this case, the model must be studied by means of simulation i.e., numerically 

exercising the model for the inputs in question to determine how they affect the output measures 

of performance [24].  

The automotive industry has several experimental studies in progress that record the effect of 

various system components and their failure rates on the vehicle’s safety and reliability 

properties. The technical strategy for validation includes the measures (techniques) and 

procedures that would be used for confirming that each safety function conforms to the specified 

system safety requirements [4]. One would like to have data collected that was comprehensive 

enough to account for the contribution of coincident failures and usage information, data about 

(1) the effect of degraded operation/loss of stability on component failure rate, (2) the correlation 

of failures between components, (3) the effect of demand/usage on failure rates and, (4) 

quantization of workload durations. Such data can provide sufficient evidence to corroborate 

and/or validate the results obtained from these analyses or the basis for evolution of the 

developed models to more realistic models characterized by measurements from real 

experiments. 
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