
Innovations Syst Softw Eng (2005) 1: 54–62
DOI 10.1007/s11334-005-0004-2

ORIGINAL PAPER

Ali Mili · Frederick Sheldon · Fatma Mili
Jules Desharnais

Recoverability preservation: a measure of last resort

Received: 28 October 2004 / Accepted: 13 January 2005 / Published online: 11 March 2005
© Springer-Verlag 2005

Abstract Recoverability preservation is the property of a
system to maintain recoverability even when it does not main-
tain correctness; recoverability, in turn, is the property of a
system to avoid failure, even when system states have errors.
In this paper, we argue that fault tolerance techniques could
be more streamlined, less intrusive, and more effective if they
focused on the criterion of recoverability preservation instead
of the traditional criterion of correctness preservation. To this
effect, we briefly introduce, motivate, illustrate, and analyze
the concept of recoverability preservation, then we explore
some of its applications.

Keywords Programming calculi · Relational mathematics ·
System fault tolerance · Recoverability preservation ·
Recovery routine

A. Mili (✉)
College of Computing Science,
New Jersey Institute of Technology,
Newark, NJ 07102-1982, USA
E-mail: mili@cis.njit.edu

F. Sheldon
U.S. DOE Oak Ridge National Lab,
P.O. Box 2008, MS 6085, 1 Bethel Valley Rd.,
Oak Ridge, TN 37831-6085
E-mail: sheldonft@ornl.gov

F. Mili
School of Engineering and Computer Science,
Oakland University,
Rochester, MI 48309-4401,
E-mail: mili@oakland.edu

J. Desharnais
Département d’Informatique et GL,
Université Laval,
Québec PQ G1K 7P4 Canada
E-mail: Jules.Desharnais@ift.ulaval.ca

1 Motivation: recoverability preservation as a minimal
requirement

It is common to distinguish between three broad families of
methods for dealing with the presence and manifestation of
faults in complex systems:

– Fault avoidance, which is based on the premise that it is
possible to avoid faults in the design of complex systems
and takes steps to design fault-free systems.

– Fault removal, which concedes that fault avoidance is
unrealistic for complex systems and takes steps to iden-
tify and remove faults after system design.

– Fault tolerance, which concedes that both fault avoid-
ance and fault removal are unrealistic and takes steps to
prevent system faults from causing system failure.

In this paper, we focus on fault tolerance, which we analyze
in light of the concept of recoverability preservation. For the
purposes of this discussion, we adopt the fault tolerance ter-
minology and definitions of Laprie [16]:

A system failure occurs when the delivered service
deviates from fulfilling the system function, the lat-
ter being what the system is intended for. An error is
that part of the system state which is liable to lead to
subsequent failure; an error affecting the service is an
indication that a failure occurs or has occurred. The
adjudged or hypothesized cause of an error is a fault.

Fault tolerance refers to the set of measures and provi-
sions that a system makes to avoid failure after faults have
caused errors. Steps to provide fault tolerance include:

– Error detection, which consists in checking some cor-
rectness conditions during the execution of the system.

– Damage assessment, which consists in assessing the extent
of the damage sustained by the system state, so as to
determine an optimal / adequate recovery action.

– Error recovery, which consists in retrieving a correct state
either from the current state (forward error recovery) or
from a previously saved state (backward error recovery)
and resuming the computation.

Recoverability preservation 55

– Fault diagnosis and removal, which (unlike all three of the
other steps) is carried out offline and consists in identify-
ing and removing the fault that has (presumably) caused
the error.

Traditionally, fault tolerance techniques that focus on correct-
ness present some inherent weaknesses, which we formulate
by the following premises:

– Trigger-happy error detection. The focus on correctness
leads us to trigger fault tolerance measures in cases when
that is not necessary. We argue that, while the discovery
of errors should always trigger fault removal, it does not
have to systematically trigger error recovery.

– Tedious error recovery. The focus on correctness leads
us to require that recovered states be correct, which is
often unnecessary. We argue that error recovery does not
have to produce an error-free state and that it is possible
to avoid failure without retrieving a strictly correct state.

– Inefficient checkpointing. The focus on correctness man-
dates that we maintain copies of past correct states, at
the cost of much time and space overhead. We argue that
avoiding failure does not require such radical measures.

– Panic-driven damage assessment. The focus on correct-
ness leads us to declare failure too early, as soon as we
determine that we cannot retrieve / recover a correct state.
We argue that a state can be severely damaged and still
contain enough information to avoid failure.

The concept of recoverability preservation, which we discuss
in this paper, can be introduced intuitively as part of a hierar-
chy of properties, ranked in decreasing order of correctness:

– Correctness, i.e., a system’s ability to operate without
producing errors.

– Maskability, i.e., a system’s ability to avoid failure spon-
taneously (without recovery action) even when errors
arise.

– Recoverability preservation, i.e., a system’s ability to
avoid failure, possibly by means of recovery action, even
when errors arise.

– Partial recoverability preservation, i.e., a system’s ability
to reduce the likelihood of failure, by means of probabi-
listic recovery action, even when errors arise.

Using this hierarchy, we submit the following premises as
guidelines on how to enhance the fault tolerance capability
of a system in a lean, efficient, nonintrusive manner.

– We argue that the important test, for the purposes of error
detection, is not whether a state is correct, but whether a
state is maskable.

– We argue that the most important test, for the purposes of
damage assessment, is whether the current state is recov-
erable, possibly whether it is partially recoverable.

– We argue that the purpose of a recovery routine is not to
produce a correct state but only to produce a maskable
state.

– We argue for the need to derive recovery routines (deter-
ministic recovery, probabilistic recovery) by calculation
rather than by inspection using the parameters of the sys-
tem at hand.

– For extra generality, we argue that maskability and
recoverability should be defined, not with respect to the
expected function of the system, but rather with respect to
the specification that the system is expected to satisfy. By
and large, we can make the system fault tolerant, not with
respect to the overall specification, but rather with respect
to a selected subspecification that represents a property
of interest (e.g., safety).

– We argue in favor of forward error recovery rather than
backward error recovery; interestingly, this restriction
does not in fact exclude backward error recovery but
rather formulates error recovery in a way that encom-
passes both forms. Backward error recovery on a state s
can be formulated as forward error recovery on a com-
pound state 〈s, s〉, where s is the copy of s that is used to
store checkpoint values of the state.

– We argue that fault tolerance should be used with cor-
rectness proofs, as some functional properties are bet-
ter verified statically at design time (hence candidates
for correctness verification) and others are better veri-
fied dynamically at run time (hence candidates for fault
tolerance methods) [17,18].

– We argue that fault tolerance methods should be mod-
eled using the same mathematics as program verification
and programming calculi to enable their deployment in
concert, as advocated above.

We believe that the combination of these premises produces
fault tolerance methods that are reasoned in their reaction (do
not rush into panic mode [24]), measured in their response
(do only as much as is needed, not much more), and sparing in
their needs (obviate many of the drawbacks of checkpointing
in terms of time and space overheads). Recoverability pres-
ervation plays a role in the formulation and rationalization of
the proposed approach.

2 Recoverability preservation: intuitive illustrations

In this section, we introduce recoverability preservation by
means of a simple/simplistic example. We wish to draw the
reader’s attention to the extent to which a function may devi-
ate from its correct behavior but still preserve recoverability.
As background for our discussions, we briefly introduce some
mathematical notation. A relation R on set S is a subset of
S × S. Constant relations on S include the identity relation,
denoted by I , and the total relation, denoted by L. Operations
on relations include, in addition to the set theoretic operations
of union and intersection, the inverse, defined by

R̂ = {(s, s ′)|(s ′, s) ∈ R},
the complement, defined by

R = L/R or L − R

and the composition, defined by

R ◦ R′ = {(s, s ′)|∃ t : (s, t) ∈ R ∧ (t, s ′) ∈ R′}.

56 A. Mili et al.

When no ambiguity arises, we may denote R ◦ R′ by RR′. A
relation R is said to be total if and only if RL = L or, equiv-
alently, if I ⊆ RR̂. A relation R is said to be deterministic
if and only if R̂R ⊆ I . When a relation is deterministic, we
say that it is a function. Given a total function F on S, we
know that FF̂ is an equivalence relation (i.e., FF̂ ⊆ ̂FF̂ ,
I ⊆ FF̂ , and FF̂ (F F̂) ⊆ FF̂). The equivalence classes of
this relation are called the level sets of F [20,19]. We say that
a relation R is regular if and only if RR̂R = R.

Given a program or program part P on space S, we denote
by [P] the function that P computes on its space, i.e., the
mapping that it defines between its initial states and its final
states. When this raises no ambiguity, we may, for the sake
of convenience, confuse program P with its function [P].

We consider the space S defined by an integer variable x,
and we consider the following simple program

P; L : F ,

where L is a label and P (past) and F (future) are defined by
their (expected) functions as follows:

[P] = x mod 6 ,

[F] = x mod 9 + 12 .

If the computation starts with initial state x0, then at label L
we must have state (x0 mod 6). This is the only correct state
at label L.

If the past function is incorrect, and instead of computing
([P] = x mod 6) it computes

[P1] = x mod 6 + 18 ,

then the states that P1 produces are not correct, but they are
still maskable, in the sense that application of the future func-
tion (which takes the mod by 9) after P1 will cancel out the
error produced by P1 (which mistakenly adds 18 to the cor-
rect result).

If the past function is incorrect, and instead of computing
([P] = x mod 6) it computes

[P2] = x mod 12,

then the states that P2 computes are not even maskable, but
they are recoverable, in the following sense: If we know what
(x mod 12) is, we can derive (x mod 6). We say that P2 pre-
serves recoverability with respect to the expected past func-
tion P . It is possible to recover from errors caused by P2 by
simply applying (mod 6) to the current (potentially errone-
ous) state.

If the past function is incorrect, and instead of computing
([P] = x mod 6) it computes

[P3] = x mod 3,

then the states that P3 computes are not even recoverable,
but they are partially recoverable, in the following sense: If
we know what (x mod 3) is, we may not know exactly what
(x mod 6) is, but we know something about it. For example,
if (x mod 3) = 1, we know that (x mod 6) is either 1 or 4. We
then say that P3 preserves partial recoverability with respect

to the expected past function [P]. We can envision a prob-
abilistic recovery routine that preserves the current state or
adds 3 to it and has a 0.5 probability of retrieving the correct
state.

If the past function is incorrect, and instead of computing
([P] = x mod 6) it computes

[P4] = x mod 7

then the states that P4 produces are neither recoverable nor
partially recoverable, for the following reason: knowing (x
mod 7) gives us no information whatsoever on the value of
(x mod 6).

A superficial, intuitive look at this example seems to indi-
cate that a function P ′ preserves recoverability with respect to
an ideal functionP if the level sets ofP ′ refine (in the sense of:
define a finer partition) the level sets of P ; we will revisit this
characterization later, in Proposition 5. Note, interestingly,
that this relation does not involve how P ′ maps inputs to out-
puts, as that is a correctness preservation consideration, not
a recoverability preservation consideration. What is impor-
tant, from the standpoint of recoverability preservation, is not
what values P ′ assigns to each level set (if that were wrong,
the recovery routine can always correct it), but rather how P ′
partitions its domain into level sets (as that reflects whether P ′
maintains sufficient information to compute the correct final
result, which is the essence of recoverability preservation).
For all these cases except the last, it is possible to recover
from errors, using exclusively the current state, with perhaps
less than 1.0 probability of successful recovery.

The condition that the level sets of P ′ refine the level sets
of P has a simple intuitive interpretation: if P and P ′ are total,
this condition is necessary and sufficient for the existence of
a total function r that satisfies the equation

P ′ ◦ r = P .

The proof of sufficiency can be articulated as follows:

P ′P̂ ′ ⊆ P P̂

⇒ {multiplying both sides by P }
P ′P̂ ′P ⊆ P P̂P

⇒ {because P is a function, P̂ P ⊆ I }
P ′P̂ ′P ⊆ P

⇒ {Let r ′ be a function such that r ′ ⊆ P̂ ′P ∧
r ′L = P̂ ′L}

∃r ′ : P ′r ′ ⊆ P

⇒ {let r = r ′ ∪ (I ∩ r ′L), then rL = L and

Pr ′ = Pr}
∃r : P ′r ⊆ P ∧ rL = L

⇒ {P ′r and P are both total functions}
∃r : P ′r = P ∧ rL = L.

Recoverability preservation 57

Fig. 1 Degrees of recoverability. a P P̂ , for original P . b P2P̂2, where P2 preserves recoverability. c P3P̂3, where P3 preserves partial recoverability.
d P4P̂4, where P4 does not preserve recoverability

The proof of necessity can be articulated as follows:

∃r : P ′r = P ∧ rL = L.

⇒ {substitution}
P ′rP̂ ′r = P P̂

⇒ {relational identity}
P ′rr̂P̂ ′ = P P̂

⇒ { because r is total, I ⊆ rr̂ }
P ′P̂ ′ ⊆ P P̂ .

The condition

∃ total function r : P ′r = P

can be interpreted as saying that if, by mistake, we applied
function P ′ rather than P , we may recover the result of
applying function P by applying function r after P ′. If no
such r exists, then nothing can be done after application of P ′
to retrieve the result of function P . This is a useful illustration
of recoverability preservation.

Figure 1 illustrates the hierarchy between the various
properties that we have discussed:

– Figure 1a represents the partition of the domain of P by
the equivalence relation P P̂ . This is the same partition
as that defined by P1P̂1, which preserves maskability.

– Figure 1b represents the partition of the domain of P by
the equivalence relation P2P̂2. This function preserves

recoverability, because if we know what partition we are
in by P2P̂2, then we know what partition we are in by
P P̂ .

– Figure 1c represents the partition of the domain of P by
relation P3P̂3. This function preserves partial recoverabil-
ity, because if we know what partition we are in by P3P̂3,
then we can infer a limited set of possible partitions by
P P̂ .

– Figure 1d represents the partition of the domain of P by
relation P4P̂4. This function does not preserve recover-
ability, because knowing what partition we are in by P4P̂4
gives us no indication as to what partition by P we are
in; the two partitions are perfectly orthogonal.

3 Characterizing recoverability preservation

For the sake of readability, we will keep our discussion free
of detailed mathematics, referring the interested reader to
[8]. We will instead present without proof some propositions
that characterize correctness preservation, maskability pres-
ervation, and recoverability preservation, and try to interpret
the results in terms of the illustrative examples presented in
Sect. 2. We use homogeneous binary relations to represent
specifications and program functions, and we use relational
algebra as a tool for relational manipulations and representa-
tions. Our main sources are [4,6,23], though we may depart

58 A. Mili et al.

from them in terms of notation, in trivial and recognizable
ways.

We define an ordering relation on relational specifications
under the name refinement ordering: A relation R is said to
refine a relation R′ if and only if

RL ∩ R′L ∩ (R ∪ R′) = R′ .

We abbreviate this property by R � R′ or R′ R. In con-
junction with the refinement ordering, we introduce a com-
positionlike operator, which we denote by R R′, refer to as
the monotonic composition, and define by

R R′ = RR′ ∩ RR′L .

The main characteristic of this operator, for our purposes,
is that, unlike traditional composition, it is monotonic with
respect to the refinement ordering, i.e., if R � Q and R′ �
Q′, then R R′ � Q Q′. We introduce two related division-
like operations on relations that will play a crucial role in our
subsequent discussions. Because the monotonic composition
is not commutative (nor is the simple composition), we need
two divisionlike operators: a right division and a left division.

Definition 1. The (conjugate) kernel of relation R with rela-
tion R′ is the relation denoted by κ(R, R′) and defined by

κ(R, R′) = RR̂′ ∩ LR̂′ .

The (conjugate) cokernel of relation R with relation R′ is the
relation denoted by �(R, R′) and defined by

�(R, R′) = (κ(R̂, ̂(RL ∩ R′)))̂ .

The kernel is due to [9]; it is similar to operators introduced
by [1–3,5,12–15,22]. When � is a function, we know (from
[9]) that R�̂ = κ(R, �).

From an intuitive standpoint, the most useful interpreta-
tion of the kernel of relation R with relation R′ is that it is
the least refined solution in X to the equation

X R � R′ .

Likewise, the cokernel of R with relation R′ can be inter-
preted as the least refined solution in X to the equation

R X � R′ .

We consider a system/program structured as the compo-
sition of two sequential components, say � and �, and we
let K be the label that we reach after completing �. We are
interested in the state of the program at label K for some
initial state s0; equivalently, we are interested in the degree
of correctness (or faultiness?) of the past function. Because
we are investigating whether the past function is correct, we
will distinguish between the actual past function � and the
ideal/expected past function π . In the sequel, we give defi-
nitions that characterize levels of correctness of a state s at
label K; then, for each level, we provide propositions that
characterize past functions that are guaranteed to produce
states at that level of correctness.

Definition 2. State s at label K is said to be correct for initial
state s0 with respect to (ideal) past function π if and only if

(s0, s) ∈ π .

An (n actual) past function � is said to preserve correctness
if and only if it produces nothing but correct states at label
K .

If and only if state s is not correct at label K do we say that
we are observing an error at label K . Error detection relies
on the condition of correctness to detect errors.

Proposition 1. An actual past function � is correctness pre-
serving if and only if � � π .

If function π is total, then � � π is equivalent to � = π ;
the only way to refine a total function is to be equal to it.

Definition 3. A state s is said to be maskable at label K with
respect to specification R for initial state s0 and future func-
tion � if and only if

(s0, �(s)) ∈ R .

An n actual past function � is said to preserve maskabili-
ty if and only if it produces nothing but maskable states at
label K .

We have the following proposition, which characterizes in
closed form past functions that preserve maskability.

Proposition 2. An n actual past function � preserves mask-
ability at label K with respect to R if and only if

� � κ(R, �) .

A state is recoverable if and only if it contains all the nec-
essary information to produce a maskable state. It may fail to
be maskable itself, but it does have to contain all the required
information to produce a maskable state.

Definition 4. A state s is said to be recoverable with respect
to R at label K for initial state s0 and future function � if
and only if there exists a function, say r , such that r(s) is
maskable at label K for state s0 and function � with respect
to specification R. An n actual past function � is said to
preserve recoverability at label K if and only if it is guaran-
teed to produce nothing but recoverable states at label K .

Implicit in this definition is the requirement that r not be
dependent on s, of course: the same function r must recover
all states that are recoverable at the given label. We have the
following proposition.

Proposition 3. Given specification R and future function �,
a past function � preserves recoverability if and only if

HL ⊆ �L ∧ L ⊆ ̂(HL ∩ �)HL ,

where H is short for κ(R, �).

Recoverability preservation 59

Fig. 2 A hierarchy of correctness levels

The specification of recovery routines is derived by com-
putation (rather than by inspection) from the parameters of
the program (the expected past function, the expected future
function, the specification, etc.). The following proposition
provides a specification of recovery routines.

Proposition 4. If past function � preserves recoverability
with respect to future function � and specification R, then

ρ = �(�, κ(R, �))

satisfies the equation: � ρ � κ(R, �).

In other words, if � preserves recoverability and recovery
routine r refines specification ρ, then (because is mono-
tonic with respect to refinement) the function � r preserves
maskability (by virtue of Proposition 2.).

In the example discussed in Sect. 2, the reader may have
gained the intuition that a function � preserves recoverabil-
ity with respect to an expected function π if and only if the
equivalence relation ��̂ defines a finer partition of dom(�)
than the equivalence relation ππ̂ . The following proposi-
tion, which provides a sufficient condition for recoverability
preservation, reflects this intuition, though in more sophisti-
cated/more general form.

Proposition 5. Given a specification R and a future function
�, if R is regular and the following conditions are satisfied:

R�̂L ⊆ �L and ��̂ ⊆ RR̂ ,

then � preserves recoverability with respect to future func-
tion � and specification R.

The reader may be interested to know that when R is regular,
RR̂ is also an equivalence relation (as it is for deterministic
relations); hence this proposition is still imposing a condi-
tion to the effect that the kernel of � refines the kernel of the
specification, R.

We have not yet explored characterizations of partial re-
coverability preservations, nor how to perform probabilistic

recovery; this is currently under investigation. Figure 2 shows
the logical hierarchy between the various correctness levels
of the past function; for the sake of completeness, we ought
to also show the properties that represent maskability and
recoverability with respect to a nondeterministic specifica-
tion, but we forgo this to keep the figure simple.

4 Using recoverability preservation

In this section, we explore applications of recoverability pres-
ervation in the context of software fault tolerance.

4.1 Enhanced fault tolerance

The insights afforded by recoverability preservation allow us
to sketch the outlines of a streamlined/economical method
for fault tolerance, whose outline reads as follows:

if not maskable(s) then
recoverymeasures(s);

where recoverymeasures(s) reads as follows

if recoverable(s)
// proposition 5
then

deterministicrecovery(s)
// proposition 4

else
if partialllyrecoverable(s)

// section 2
then

probabilisticrecovery(s)
// section 2

else
failure(s);

60 A. Mili et al.

Function recoverable(s) would be derived from Prop-
osition 5, using the specification R that represents the prop-
erty we want to maintain; and function deterministi-
crecovery(s) would be derived from Proposition 4, for
the same specification. Functions partiallyrecover-
able(s) and probabilisticrecovery(s) are not
specified as of yet; we depend on the discussions of Sect. 2
to convey our intention on these.

4.2 Combining fault tolerance and fault avoidance

In a complex system, where it may be unrealistic or unreliable
to prove that the past function produces only correct (or mask-
able) states, we may instead want to prove that the past func-
tion preserves recoverability and takes measures to recover
when needed. Because recoverability preservation is a much
weaker property than maskability (especially for largely non-
deterministic specifications), the former may be easier and
produce more dependable conclusions. We are mindful of the
complications that arise when we apply this kind of mathe-
matics to large-scale, complex systems, and we are exploring
methods to control the attending complexity by a variety of
means (using refinement-compatible decomposition/compo-
sition operators, using induction, budgeting formality, etc.).

Also, we may break down a complex specification into
simpler components and prove the program correct with re-
spect to some components while making it fault tolerant with
respect to others. In [18], we showed the complementarity of
this heterogeneous approach.

4.3 Cataloging fault modes

The research discussed in this paper stems from an earlier
project whose purpose was to model, specify, and analyze a
fault-tolerant flight control system [7,11]. The key idea of
this system is that it should be able to continue flying an air-
craft even after the aircraft has lost some flight surfaces or
the control of some flight surfaces or the feedback from some
sensors; clearly, this is possible only for a limited amount of
damage. We argue that the condition of recoverability preser-
vation can be used to catalog those fault modes that can indeed
be recovered from, and eventually, what recovery action must
be applied for these fault modes. Some faults are so extensive
(e.g., loss of major surfaces, loss of control of major actua-
tors) that there is no way to recover, no matter what the flight
control system does. The condition of recoverability pres-
ervation allows us to distinguish between faults that can in
principle be recovered from (with appropriate provisions in
the flight control system) and faults that cannot be recovered
from (and the flight control system is not to blame).

We consider a simplified flight control loop defined by a
flight control system and an airframe (along with sensors and
actuators), and we decompose/unwind the loop as follows:

– The past function, �, is the function of the aggregate
made up of the airframe and the sensors and actuators

attached to it. This function maps the current state of the
aircraft and current actuator inputs into a new state of the
aircraft, represented by the sensor outputs, as shown in
Fig. 3.

– The future function, �, is the function of the flight control
software (FCS), which analyzes the state of the aircraft
(represented by sensor outputs) and the pilot commands,
as well as any navigation signals (e.g., ILS) and computes
the actuator inputs (which are then fed to the actuators).

– The specificationR represents a relation we wish to impose
between the current state of the aircraft, navigation sig-
nals, and the pilot commands on the one hand, and the
new state of the aircraft on the other hand. Specification
R can be used, for example, to enforce a minimal safety
requirement that must be preserved at all times to ensure
the safety of the flight.

The condition of recoverability preservation can be inter-
preted as the minimal requirement that the past function
� (implemented by the aggregate actuators-airframe-sen-
sors) must satisfy at all times to ensure the survivability of
the flight. On the other hand, the specification of a recov-
ery routine, given by Proposition 4., represents the minimal
requirement that must be satisfied by a recovery routine that
must be invoked prior to FCS whenever an error is suspected.
According to Proposition 4., application of this recovery rou-
tine prior to FCS ensures that we satisfy the safety require-
ment R even in the absence of an error that results from a
fault in the past function.

Under normal (fault-free) operating conditions, the ag-
gregate of actuators, airframe, and sensors delivers function
π . But under fault-prone conditions, this aggregate may pro-
duce a different function, say �. In [10] we discuss how we
can derive the specification of a behavioral envelope that cap-
tures all the possible functions defined by � under a variety
of precataloged fault modes. What Proposition 3. provides
is the minimal requirement that � must satisfy (refine) to
ensure recoverability; as long as � refines this minimal re-
quirement, FCS can, theoretically, apply a corrective action to
recover. This condition can also be used to test fault hypoth-
eses: a fault mode for which � does not refine the minimal
requirements should not be supported, because it cannot be
recovered from.

4.4 Fail safety

Following the suggestion of Parnas [21], we have considered
the integration of this hierarchy of recoverability levels with
the concept of fail safety and have subscribed to the following
premises:

– Safety is not fundamentally distinct from correctness, in
the sense that it can be viewed as correctness of the sys-
tem with respect to a specification that reflects a (minimal)
safety property. While we denote the specification of the
system as R, we refer to the specification of the safety
property as T .

Recoverability preservation 61

Fig. 3 Outline of a flight control loop

Fig. 4 Integrating correctness and safety concerns

– We assume that R refines T , i.e., that a correct system
does not violate safety constraints.

– We assume, without proof, that the properties of mask-
ability and recoverability are monotonic with respect to
refinement, i.e., if they hold for a specification R they
hold for any specification T that is refined by R. While
this appears quite trivial, we have not proven it yet, though
we expect it to hold.

A possible (simplistic) approach to this integration consists of
revisiting procedure recoverymeasures(s) presented
in Sect. 4.1 and replacing the clausefailure(s)in this pro-
cedure by an altered version of recoverymeasures(s)
in which all the conditions (maskability, recoverability, par-
tial recoverability, etc.) are defined in terms of T rather than
R. But this approach is not sufficiently integrated; we wish to
juggle the concerns of correctness (R) and safety (T) simulta-
neously.To see how this can be done, we draw a plan of action,
presented in Fig. 4, which considers all possible degrees of
recoverability with respect to R and T . In each entry, we rep-
resent (by its specification) the suggested recovery action and
(in the lower right corner of the entry) the outcome we expect
from resuming execution after recovery. We will denote the
specification of the recovery routine with respect to specifi-
cation R by ρR; its formula is given in Proposition 4.. Also,
we will denote by βR the specification of the probabilistic
recovery with respect to specification R; though we have no
explicit formula for it, we assume that it is defined. For the
sake of uniformity, we represent the case where no recov-

ery is necessary by the identity relation (specification). We
assume that all the joins written in the table are defined (i.e.,
the specifications can be refined simultaneously); this matter
is under investigation.

5 Prospects

As for the prospects for this work, we envision the following
extensions:

– Characterizing the property of partial recoverability pres-
ervation by equivalent conditions and by simple sufficient
conditions.

– Characterizing the specification of probabilistic recov-
ery routines as a function of the degree of recoverability
preservation.

– Exploring applications of these mathematics to assess
their usefulness in practice.

– Combining and analyzing ideas of recoverability preser-
vation with ideas of fail safety to derive a broad plan of
action.

References

1. Backhouse R, DeBruin P, Malcolm G, Voermans E, Van der Wo-
ude J (1990) A relational theory of data types. In: Proceedings of
the workshop on constructive algorithms: the role of relations in
program development, Hollum Ameland, Holland

62 A. Mili et al.

2. Berghammer R, Schmidt G, Zierer H (1986) Symmetric quotients.
Technical Report TUM-I8620, Technische Universität München,
Munich

3. Berghammer R, Schmidt G, Zierer H (1989) Symmetric quotients
and domain constructions. Inf Process Lett 33:163–168

4. Berghammer R, Schmidt G (1993) Relational specifications. In:
Rauszer C (ed) Proccedings of the XXXVIII Banach Center semes-
ter on algebraic methods in logic and their computer science appli-
cations. Banach, vol 28, Warsaw, Poland, pp 167–190

5. Birkhoff G (1967) Lattice theory. American Mathematical Society,
Providence

6. Brink Ch, Kahl W, Schmidt G (1997) Relational methods in com-
puter science. Springer, Berlin Heidelberg New York

7. CortellessaV, MiliA, Cukic B, Del Gobbo D, Napolitano M, Shere-
shevsky M (2000) Certifying adaptive flight control software. In:
Proceedings of ISACC 2000: the software risk management con-
ference, Reston, VA

8. DelGobbo D, Shereshevsky M, Cortellessa V, Desharnais J, Mili
A (2005) A relational characterization of system fault tolerance.
Science of computer programming (in press)

9. Desharnais J, Jaoua A, Mili F, Boudriga N, Mili A (1993) A rela-
tional division operator: the conjugate kernel. Theor Comput Sci
114:247–272

10. Del Gobbo D, Cukic B (2001) Validating on-line neural networks.
Technical report, Lane Department of Computer Science and Elec-
trical Engineering, West Virginia University, Morgantown, WV

11. Del Gobbo D, Mili A (2001) Re-engineering fault tolerant require-
ments: a case study in specifying fault tolerant flight control sys-
tems. In: Proceedings of the 5th IEEE international symposium on
requirements engineering, Toronto, pp 236–247

12. Hoare CAR, Hayes IJ, He JF, Morgan C, Roscoe AW, Sanders JW,
Sorenson IH, Spived JM, Sufrín B (1987) Laws of programming.
Commun ACM 30(8):672–686

13. Hoare CAR, He JF (1986) The weakest prespecification. Funda-
mentae Informaticae IX: Part I: pp 51–58. Part II: pp 217–252

14. Jónsson B (1982) Varieties of relational algebras. Algebra Univer-
salis 15:273–298

15. Josephs MB (1987) An introduction to the theory of specification
and refinement. Technical Report RC 12993, IBM Corporation,
Yorktown Heights, NY, USA

16. Laprie JC (1995) Dependability – its attributes, impairments and
means. In: Predictably dependable computing systems. Springer,
Berlin Heidelberg New York, pp 1–19

17. Lowry M, Boyd M, Kulkarni D (1998) Towards a theory for inte-
gration of mathematical verification and empirical testing. In: Pro-
ceedings of the 13th IEEE international conference on automated
software engineering, Honolulu IEEE Computer Society, pp 322–
331

18. Mili A, Cukic B, Xia T, Ben Ayed R (1999) Combining fault avoid-
ance, fault removal and fault tolerance: an integrated model. In:
Proceedings of the 14th IEEE international conference on auto-
mated software engineering, Cocoa Beach IEEE Computer Soci-
ety, pp 137–146

19. Mills HD, Dyer M, Linger R (1987) Cleanroom software engineer-
ing. IEEE Softw 4(5):19–25

20. Mills HD, Linger RC, Hevner AR (1985) Principles of information
systems analysis and design. Academic, New York

21. Parnas D (2004) Private correspondence. Technical report, Univer-
sity of Limerick, Ireland

22. Schmidt G, Stroehlein T (1990) Relationen und Graphen. Springer,
Berlin Heidelberg New York

23. Schmidt G, Stroehlein T (1993) Relations and graphs, discrete
mathematics for computer scientists. EATCS Monographs on the-
oretical computer science. Springer, Berlin Heidelberg New York

24. Selding PB (1996) Faulty software caused ariane 5 failure. Space
News 7(25)

