
Specification, Safety and Reliability Analysis Using Stochastic Petri Net Models

Frederick T. Sheldon
School of EECS, WSU

Pullman, Washington 99164-2752, USA
Sheldon@acm.org

Stefan Greiner and Matthias Benzinger
Perf. Modeling & Process Ctl. Rsrch Grp.

Dept. of CS IMMD IV, U. of Erlangen
Stefan.Greiner@informatik.uni-erlangen.de

Abstract
In this study we focus on the specification and

assessment of Stochastic Petri net (SPN) models to
evaluate the design of an embedded system for reliability
and availability. The system provides dynamic driving
regulation (DDR) to improve vehicle derivability (anti-
skid, -slip and steering assist). A functional SPN
abstraction was developed for each of three subsystems
that incorporate mechanics, failure modes/effects and
model parameters. The models are solved in terms of the
subsystem and overall system reliability and availability.

Four sets of models were developed. The first three
sets include subsystem representations for the TC
(Traction Control), AB (Antilock Braking) and ESA
(Electronic Steering Assistance) systems. The last set
combines these systems into one large model. We
summarize the general approach and provide sample
Petri net graphs and reliability charts that were used to
evaluate the design of the DDR in parts and as a whole.

1. Introduction
The sources of errors in complex systems include a

wide range of possible failure causalities (e.g., untested
manufactured flaws, software design and implementation
defects including timing errors, etc.). The most prevalent
types are highly dependent on the system, it�s operating
environment, workload and system design including the
integration and testing process. Furthermore, in high-
assurance systems, timing and performance issues must
be considered. For example, embedded real-time systems
(e.g., characterized by intense interaction with sensors and
actuators) can control continuous reversible processes that
typically possess the ability to tolerate brief periods of
incorrect interaction either in values exchanged or the
timing of exchanges. To consider such factors during the
specification and design of such systems is a difficult
undertaking. This work centers on understanding the
likelihood of a critical failure (symptoms, causes and
affects) in a vehicle system (e.g., automobile). Stochastic
models were selected to comprehend the uncertainty (i.e.,

failure rate data was available). Additionally, there are
numerous Stochastic Petri net (SPN) solvers available [8].
See Section 8 for more details regarding other advantages.

1.1 An initial state-based description
To begin, many aspects of safety can be evaluated

using non-stochastic models to ensure that the models pass
certain sanity checks. Various state machines, entity life
history and MASCOT diagrams were constructed
including a high-level system schematic (showing sensors,
acuators, processing, communication, control pathways
and redundancy). A low-level schematic of the Electronic
Brake Control Module was also consulted. The final check
involved determining which components contribute to
specific failure symptoms (e.g., braking pressure loss on
the front axle).

All system components were enumerated in a
spreadsheet (as row labels) with their failure rates inserted
at the row and column location corresponding to the
component and the symptom (specified as column labels).
There was considerable overlap among the components
because of the duality of purpose that prevailed (e.g., a
speed sensor is used to detect skidding and slipping). Yet,
this technique was an effective way to delineate failure
symptom dependencies. Each symptom was assigned a set
of failure rates that were determined based on the various
non-stochastic models described above. Our first cut at the
analysis, as reported here, simply took the sum of all the
rates in a set without accounting for functional overlaps
(i.e., coincident failure dependencies).

1.2 A functional stochastic description
A bottom-up approach provided a means to determine,

at the subsystem level, how a failed component could
cause a critical failure that would be visible at the system
level. Critical failures include such outcomes as loss-of-
vehicle or severely degraded performance levels that cause
unsafe operation. Empirical failure data was available for
each component of the system. Components were grouped
into sets of sensors, acuators and processing according to

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

their association with the various DDR (Dynamic Driving
Regulation) sub-functions. Sets were selected on the
basis that any component from the group would manifest
the same failure effect (i.e., preventing the system from
exhibiting the desired behavior). Essentially, the failure of
a sensor pack may, for example, prevent the vehicle from
detecting an oversteer condition that would normally
cause the system to react by providing the appropriate
compensation action (e.g., steering assistance). The set of
sensors in the sensor pack were summed together and
assigned to a single failure transition. Each failure
transition was paired (competitively) with an operational
transition (a simple conflict in the PN). The operational
transition represents the desired system performance. In
this way, the performance of the vehicle using an SRN
can be assessed from the range of being fully functional to
some degraded level. This explains how the models were
functionally partitioned within their operational context.

The analysis is summarized here. The SPN model
transitions that represent
normal and abnormal
operation. Each SPN was
composed and solved to
predict, over time, the
ability of the system to
complete the desired
functions. Four sets of
models were developed.
The first three sets include
subsystem representations
of the TC (Traction
Control), AB (Antilock
Braking) and DSA
(Electronic Steer ing
Assistance) systems. The
last set combines these
systems into one large
model. Four types of
models were developed
for each set including
cyclic reliability and
availability, as well as
acyclic reliability and
availability. Cyclic models continuously circulate a token
to result in a larger reachability graph and constitute an
altered Markov analysis. These model types are explained
in Sect. 7 (Fig. 5). The stochastic analysis comprised a set
of graphs showing the expected values of these measures
(including MTTF) over time. In all, fifteen models were
developed (using the C-based Stochastic Petri Net
Language).

Section 2 provides a brief philosophy of modeling in
which case the principle steps represent important points
that impact the safety properties of interest [1,19,20,26].

Sections 3 and 4 explain how SRNs model reliability and
availability (i.e., mathematical methods for stochastic
modeling) and Section 5 gives the different operational
scenarios. Section 6 explains the specification approach.

2. Modeling philosophy and approach
The basic modeling philosophy is shown in Figure 1. It

begins by identifying the essential system components, the
different ways they interact and introduces various
assumptions. In making these assumptions, we consider
three basic modeling tenants: (1) simplicity, (2) ease of
evaluation, and (3) adequacy of measurements. The key to
a successful modeling analysis is the skill needed to
introduce assumptions [24,13].

Complexity prevents us from making a direct analysis
[2]. A series of abstraction steps are necessary to combine
system measures (from the real system) with the system
model. Initially, the system model is created at a
conceptual level (i.e., abstract model) that specifies the

system in a way that offers
adequate consideration for
the factors that may be
important (see Figs. 3 and
4). Data collected from
system measurements are
used to parameterize the
model(s). However, the
complete system model will
usually contain details that
prevent an efficient system
analysis. In a second
abstract ion step the
computational model is
created to provide an
essential structure that can
be efficiently analyzed.
The computational model is
considered the highest level
of model abstraction that
can feasibly be solved. The
process of refining the
computational model is a
mat te r o f bu i ld ing

confidence in the model. Thus, the process of operational
validation (Fig. 1) is performed that results in a modified
model with altered structure and input parameters/data.
This step can be repeated until the computed performance
measures are realistic (empirically valid) or fulfill the
analysis requirements (are comparable to other model
variants).

The stopping rule for operational validation is now
based on relative comparisons between one refinement to
any other. Different parameterizations are used to compare
the different design possibilities. These comparisons are

System
Measures

System Model
(abstract level)

Computational Models

Model Solutions

Operational
Validation

Modified Model
and Data

Performance Measures

Real SystemProposed System

Computational Modeling

Descriptive Modeling

Validation and Model Refinement

Model Solution

Figure 1. Modeling-cycle emphasizing the principle steps.

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

formed with the goal of making architectural design
decisions (i.e., sensitivity analysis [3-5]) to optimize the
model's structure toward achieving critical functional and
non-functional requirement harmonization.

3. Estimating reliability and availability
Stochastic Reward Nets (SRNs) are used to generate

(large) Markov chains automatically starting from a
concise description of the system [21-23,27]. SRNs can
represent various properties including concurrency,
synchronization, sequencing, as well as a multiplicity of
activities and/or resources [15-18]. Some of these
properties are relevant to the operational scenarios
provided here. For example, the vehicle system exhibits
concurrent (e.g., turning and braking) and synchronized
behaviors (e.g., steering assist) that rely on the
correctness, wear down (i.e., corrode, abrade,
contaminate) and timeliness of such activities. For our
purposes, the actual failure mechanism was abstracted
away. By ignoring the physics of the failure we could
focus on two important characteristics: (1) system
reliability, and (2) system availability (i.e., reliability with
repair of failed components.

The basic approach outlined above (Fig. 1) was used
to derive the models. The models were developed from
examining the sensors, actuators and processing
configuration (i.e., schematics). In this way we could
determine how a failed component (or group) would
affect overall system operation. A number of failure
scenarios result in the loss of vehicle or cause severely
degraded performance. Ideally, we would like to identify
every sequence of events that cause the unsafe system
operation along with their likelihood (or rate) of
occurrence. Note that failure rate is typically defined as
the ratio of the number of failures in a given unit of
measure (e.g., failures per unit of time, failures per
number of transactions, failures per number of computer
runs). In reliability modeling, the ratio of the number of
failures of a given category or severity to a given period
of time is, for example, failures per second of execution.

4. Mathematical methods
Combinatorial models such as reliability block

diagrams, fault trees and reliability graphs are commonly
used for system reliability and availability analysis.
These models provide a concise description of the system
and can be evaluated efficiently. However, they cannot
represent dependencies that realistically occur in genuine
life scenarios. Some examples of the dependencies that
are not easily captured in such models include imperfect
coverage, correlated failures, repair dependencies,
performance-reliability dependence, among others [6,9].
These factors constitute the operational context sought in
defining the approach used in this work.

The system model is the basis for a successful
evaluation of the measures or properties of the system that
are to be assessed. Depending on what properties are of
interest, we must develop a representation of the real world
characteristics that may affect those properties. We must
ignore the characteristics that do not have any pertinent
consequences or are not relevant based on the magnitude
of their contribution to the results. Such factors may not
have any appreciable or significant affect in comparison to
the main factors that are to be considered.

Traditionally, performance analysis assumes a fault free
system. Reliability and availability analysis is carried out
separately to study the behavior of the system in the
presence of component faults, disregarding the different
performance levels in different configurations. Using
SRNs, a reward rate is attached to each state of the Markov
chain (known as a marking in the Petri net). Time
dependent behavior can be studied in this way. We may
consider instantaneous and interval availability, reliability
(for a fault tolerant system) and computational availability
(for a degraded system). Given the reward rate
specification for a Markov reward model [14], the
expected reward rate is computed in steady-sate, while the
expected reward rate at some time t, is an instantaneous
measure. The expected accumulated reward rate in the
interval [0,t) and the expected accumulated reward until
absorption gives the cumulative measures of interest [15].
The mean time to absorption (e.g., MTTF) is a special case
of the expected accumulated reward until absorption. In
this work, we have computed the reliability at some time t
(i.e., R(t)), the instantaneous availability (i.e., A(t)) and the
interval availability (A�(t)) as well as the MTTF for each
model.

5. Operational scenarios
Three operational scenarios are considered in this

analysis: skidding, slipping and steering. The following
three sub-sections describe each assuming that they are
independent of the other two. However, these systems are
not independent. For example if the Antilock Brakes is
malfunctioning, the other systems who share various
components are normally switched off (i.e., TC and ESA
would be disengaged). Therefore, in the final analysis, all
three of the scenarios are combined.

5.1 Antilock braking (AB)
The skidding model simulates the Antilock Brakes (AB,

an integrated part of the total braking system). It avoids
locking of the tires while the brakes are applied,
maintaining the vehicle�s ability to steer. When applying
the brakes on an AB-equipped vehicle, wheel sensors
monitor the rotational speed of each wheel. The electronic
brake control module (EBCM) computer automatically
compares the speed of each wheel. If one wheel is slowing

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

at a faster rate than the others are, the computer sees that
the wheel is beginning to lock up. The computer then
responds by �pulsing� the brake line pressure to that
wheel so it continues to rotate. A vehicle equipped with
AB may take somewhat longer to stop during a panic stop
situation because AB allows the
wheels to keep rotating while
slowing the vehicle. On the other
hand, a vehicle with locked brakes
can stop in a shorter distance (a
locked-up wheel generates more
friction), but the driver has little or
no control. The pulsing of locked
wheel(s) gives the driver the ability
to steer the vehicle during the
deceleration period. This ability to
sense wheel speeds and to modulate
braking pressure to prevent wheels
from locking enhances vehicle
stability and active safety accident
avoidance. This model considers the
EBCM, speed sensors and all
braking system components.

5.2 Traction control (TC)
The slipping model accounts for the factors involved

during vehicle acceleration known as the traction between
each tire and the road. Each tire has an upper limit on the
amount of traction it can deliver. If the tire is driven
beyond this amount, there is a decrease in adhesion to the
road. In this case, the TC reduces power to the tire so that
traction is restored to nominal values. The TC maximizes
tires adhesion to the road and thus increases driving
stability by controlling the vehicle�s traction (e.g., in deep
snow, sand or gravel). There are three ways to control
traction. The first is called the limited-slip differential
where engine torque transferred to the wheel with the best
traction in any given situation. It is not an electronic
system, and generally doesn't perform as well as newer
types of traction control but due to its mechanical
characteristics and limits, is considered completely fail
safe1. The second type is known as brake system traction
control. It works just like AB in reverse and uses the same
sensors and actuators as AB to apply the brakes and keep
a wheel from spinning until the wheel regains sufficient
traction2. Each wheel is individually controlled, making
this setup a perfect match for a variety of slippery
surfaces. Generally inexpensive and highly effective, this

1 Modern limited-slip differentials transfer power to the good wheel
before slippage occurs, however, if both wheels are on a slippery (e.g.,
icy) surface, this advantage is not effective.
2 The traction control engages at vehicle speeds up to approximately 24
mph (40kph) and switches off at 50 mph (80kph). Such systems can
usually be completely disabled by a switch available to the driver.

system is designed for low speed slippage (i.e., braking
components are used so that higher speed slip control
generates excessive friction and heat). The third type is
called drive-train traction control (DTC), which retards
power delivery to the slipping wheel or wheels at any

speed. Using the same sensors as the
AB system, DTC employs a
processor that will do one of four
things: (a) close the throttle, (b) cut
the fuel supply; (c) retard spark
timing; or (d) shut down cylinders
(more advanced DTC systems do all
this plus provide feedback by pushing
the accelerator against the driver�s
foot). This system cuts power in all
slippery situations (a disabling switch
is usually provided).

5.3 Electronic steering assist
(ESA)

The steering model captures
certain characteristics of the ESA
system. This system can enhance
overall vehicle control (within
physical limits) in all three areas of

vehicle performance: accelerating, cornering and braking.
ESA effectively senses when a driver might lose control of
the vehicle and activates individual wheel brakes and
reduces engine torque to assist the driver to maintain
stability. ESA combines wheel-speed, steering-wheel
angle, yaw-rate and lateral acceleration data from sensors
with the braking system and a computer processor
provided by the EBCM. The processor compares the
intention of the driver with directional reality and actively
help the driver respond in critical situations (braking or
not). The yaw-rate sensor monitors whether the vehicle is
turning and together with data from the other sensors,
recognizes both the driver's intention and actual vehicle
motion. Corrective measures may be activated to help
counteract oversteer and understeer. Braking can be
applied separately to any of the four wheels (see Fig. 2):

For example, if the driver oversteers and the rear
wheels begin to slide outward, ESA's computer counteracts
by braking the outer front wheel, creating an opposing and
stabilizing yaw force and by reducing engine power, if
necessary. If the driver already has applied the brakes
while cornering, the ESA will boost brake pressure at the
front wheel that is on the outside of the turn and reduce
brake pressure on the inner front wheel. If the driver

Overstear

Understear
to the left

Understear
to the right

Overstear

Figure 2. Over/under steer behaviors.

 If Under-Steer-Left then Brake(LeftRear)
 If Under-Steer-Right then Brake(RightRear)
 If Over-Steer-Left then Brake(RightFront)
 If Over-Steer-Right then Brake(LeftFront)

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

encounters understeer, ESA
brakes the rear wheel on the
inside and helps bring the car
back to the intended course3.

6. Specification approach
Here we provide an overview

and functional description of the
system. We reverse engineered its
design. Several diagrams are
provided including a high-level
state transition diagram, a
Structured Diagram (based on
Jackson�s Method similar to an
entity life history diagram used in
the Structured Analysis and
Design Technique), and a
MASCOT diagram (Modular
A p p r o a c h t o S o f t w a r e
Construction, Operation and Test)
are provided [28]. These diagrams
provide basic comprehension of
the nominal system behavior. The
PNs, on the other side, provide an
e x p r e s s i v e c o m p a c t
representation including absorbing (or failure) states

6.1 Basic overview
Consider the simplified

finite state machine (FSM, Fig.
3). The system may enter any
one of the states shown. This
assumption allows us to
analyze each of the subsystems
independently. If each is
completely independent of the
other, then the unreliability of
the system as a whole is
determined by its weakest link.
However, to study system
behavior without such an
assumption provides the basis
for observing and assessing
degraded system operation.

During operation, the state
of the system changes based on
certain stimuli (e.g., pressing
on the throttle). When slippage
is detected during acceleration, a control activity is
activated causing eventual return to the normal operating
state. The basic definition of an FSM obligates that the

3 In some vehicle systems the transmission is provided with a winter and
summer mode switch that in the winter mode starts the vehicle out in
second gear, and with hard acceleration upshifts occur at lower speeds.

system occupy only one state at
any one time. However, in our
interpretation, this FSM may
occupy simultaneously any of the
three different sets of states
(turning, accelerate, braking). This
is realistic because in most such
vehicle systems braking while
engaging the accelera tor
simultaneously is not prevented
(this activity actually accelerates
wear out).

Accordingly, lets consider the
case where 3 tokens are deposited
into the state �operating the car.�
We�ll permit all three tokens to
circulate with the condition that
only one token per branch is
allowed. For example, the vehicle
could accelerate and turn together.
Braking does not prevent
acceleration when the torque
delivered by the engine out weighs
the resistance provided by the

brakes. This interpretation provided the basis from which
the three subsystem models were derived. In the end we
can combine all three subsystems in a manner consistent
with the simple Figure 3 synopsis.

6.2 Functional description
A high level representation

of the physical system is
presented in Figure 4 that
describes the monitoring,
communication and control
entities. The bubbles are
known as activities that
represent a schedulable
process. The boxes represent
hardware devices, a tray
represents a pool of shared
data (e.g., sensor data, system
status, etc.) maintained during
all modes of operation, and the
channel (�I� shaped) represents
a pipeline of data flow. The
various components are shared

by each of the different sub-systems (TC, AB and ESA).

6.2.1 Averting slippage with the TC system
The power transmission that occurs during vehicle

starting (moving from zero to some nonzero speed) or
acceleration, depends on the slip between the tire(s) and
the road. Accompanied by increasing slip, adhesion raises

Pressure to
the brakes

Rear end
slides out

Normal
turn Apply brakes to tires on

side going into the slide

Operating
the car

Over-steer
Front tires
slide

Turning

Under-
steer

Slipping of any
one wheel

Braking

Engage
ABS

Accelerate

Apply brakes to RR tire

Activate
accerator

pedal

Normal
acceleration

Right Rear
Slipage

Left Rear
Slipage

Apply brakes to LR tire

Slip
between
RR tire
and road

Slip
between

LR tire and
road

Apply brakes to tires on
opposite side going into the
slide

Automatic pumping
of the brakes

Normal
braking

Turning the
steering wheel

Figure 3. FSM depicting nominal operation.

Sensor
Data

Health
Status

Turning/
Speed

Sensors

Master
Brake

Cylinder

Disk
Brakes

EBCM

AB/TC/ESA
Control Laws

Angle/
Speed

Monitor

Slip/Skid
Monitor

Pressure
Monitor

HMV
Monitor

Hydraulic
Modulator

Valve
Assembly

Trans-
mission

Differential

Figure 4. MASCOT Structure diagram.

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

up to its limit (see S.574, [29]). A further increase of the
slip results in a decrease of the adhesion, at that time the
wheel speed increases at one or both drive wheels. In such
cases, the TC reduces the traction slip to valid values. The
TC first performs an increase of the adhesion and
secondly maintains the driving stability.

6.2.2 Averting a skid with the AB system
The Antilock Breaking (AB) is a control system

integrated into the brake system (see S.627, [29]). It
avoids skidding (i.e., locking the tires) during braking
activity. AB maintains steerability and driving stability.

6.2.3 Steering assistance with the ESA system
There are constraints between the yaw-rate, steering-

angle and the velocity that define normal driving behavior
(see S.670, [29]). If these constraints are exceeded,
especially driving in a curve (the vehicle will over/under
steer), lateral acceleration is necessary to maintain the
constraints within their proper limits. The AB may brake
all 4 wheels to stabilize the car, as long as the constraints
are out of their valid limits. In certain cases, to maintain
the proper limits, the AB will brake certain wheels
independently (e.g., oversteer to the right will cause
braking of the left front and left rear wheels).

7. Four generic models
This section presents the characteristic Petri net for

each of the four model types (Fig. 5). These types include
(1) Connected Cyclic Reliability (CCR), (2) Connected
Cyclic Availability (CCA) (3) Disconnected Reliability

(DR) and (4) Disconnected Availability (DA) models. In
each model the components cooperate to perform the
designated subsystem function (i.e., TC, AB, and ESA). In
general each subsystem function includes sensing and
detecting an off-nominal behavior based on a combination
of sensor inputs. Consequently, a control function is
summoned. In general, failures occur anyplace in this
scheme and component groups have combined failure rates
(sum of the rates of each component).

The reliability models predict the Mean Time to
Absorption (MTTA) of a system, where the MTTA is the
average time prior to the system failure. The availability
models predict the percentage of time the system will be
operational. The recycle transitions are assigned a high
rate of firing to simulate an immediate transition. Actually,
they may be replaced with an immediate transition, but for
simplicity we used a timed transition. This step avoids the
problem of creating vanishing markings, since these can
lead to vanishing loops. Vanishing loops are problematic
in SPNP (Stochastic Petri Net Package), the tool used to
solve the models [10-12].

7.1 Connected cyclic reliability (CCR) models
In the CCR model (Fig. 5a) the initial marking consists

of one token in the up place. The operational transitions
fire alternately indicating that a particular sub-component
has functioned. This allows for the model to include
different operational dependencies that are present in the
actual system. The initial marking creates a simple conflict
among the operational transitions and the failure
transitions. The firing rates assigned to the various

operational and failure transitions represent
a competition among the operational
components and the possibility of a failure
occurring. Competing operational
transitions were assigned the firing rate of
1/n (where n is the number of operational
transitions in conflict). The system remains
operational if the initial token recycles
among the operational places. If a failure
transition fires, it will consume the token
and the system will have failed. Eventually
the system will enter a failed state
depending on the rates assigned to the
failure transitions. The time it takes for this
to occur is the mean time to failure.

Instances of the CCR actually derived
the operational transitions into sensing (or
detecting) and actuating (controlling) the
sensed behavior.

7.2 Connected cyclic availability
(CCA) models

The CCA models (Fig. 5b) are similar to

operational

pfailure

unrepairable

operational operational

repair repair repairfailure failure failure

up upup

pfailure pfailure

down down down

down

up

failure

up

down

failure failure

up

down

recycle
� opera tional �

failure

up

up

repair

recycle
� opera tional �

failure

up

down

up
A. CCR model B. CCA model

C. DR model D. DA model

Figure 5. Generic models showing the various approaches used.

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

the CCR models except they introduce a transition to
represent the process of repairing the failed system. In
both scenarios a failure at either the sensor or the
actuator/control processing side may occur and be
repaired (i.e., after the failure transition fires the token
enables the repair transition). The system is completely
unavailable for some period of time until the repair is
complete (i.e., represented by the firing of the repair
transition). In both the CCR and CCA models a recycle
transition is used to restart the competition among the
operational and failure transitions.

7.3 Disconnected reliability (DR) models
The generic DR model is shown in Figure 5c. The

initial marking includes a token in each up place, denoting
that each component operates independently of the others.
Accordingly, each component is assumed to fail
independently from any of the others. The firing rate of
each of the operational transitions represents the
possibility of a component failing.

In contrast to the generic CCR and CCA models there
is a conflict between each of the operational transitions
and its individual failure transition. Instead of grouping
the failure rates for a collection of components into one
failure transition they have been separated out to represent
the case of degraded operation. The system can therefore
continue to operate while one or more, but not all, of the
components have failed. The system fails when every
token has been absorbed by a down place (i.e., every
token has been absorbed).

7.4 Disconnected availability
(DA) model

The generic DA model (Fig. 5d)
was constructed for the purpose of
determining system availability. The
initial marking includes a token in
each of the up places (similar to the
DR model). However, there is in the
DA model a competition in the DA
model between the repair transition
and an absorbing place that represents
an unrepairable or obsolete state.
System performance degrades during
the periods while components are
failed. During that time there is higher
stress on the other operable
components (this 2nd point is not
actually accounted for in the DA
models). All of the tokens are
eventually absorbed into the
unrepairable place at which time the
function will have completely stopped.

7.5 Generic models summarized
The functionality of the CCR (Fig. 6) and CCA models

may be summarized as follows. The initial marking
consists of exactly one token in the up place. This token
enables any one of the operational transitions that compete
for the token that also enables one or more failure
transitions. Thus, there is a competition between the
operational transitions and the possibility of a system
failure. Whenever the token is in the fail place, the system
is down. In contrast, for the DR and DA models (Fig. 7),
there is a token in each of the up places initially. The
system continues to operate until all of its components
have failed. The system (as a whole) fails only when
every token has been absorbed.

8. Summary and plans
This paper describes the specification and reliability

analysis using Stochastic Petri nets. The SPNs were
composed to model the individual components that
cooperate and interoperate to perform the designated
functions of the vehicular DDR. We were interested in
understanding the likelihood of critical failures. Thus, we
determined at the subsystem level how a failed component
could cause a critical failure that would be visible at the
system level. Critical failures included such outcomes as
loss of vehicle or severely degraded performance that may
cause unsafe operation. Given the operational data that was
available for each component, we determined how likely
such components, within their operational context, are to
cause something unsafe to occur. Some example results
from the stochastic analysis are provided in the appendix.

Figure 6. ESA sub-model PN (cyclic version used for reliability analysis).

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

Safety is one of the main issues that need to be
addressed by modern systems specification and analysis.
There are often missing or inaccurate data and
unidentified hazards. Incorporating safety into a model
makes it more valuable, provides additional insights into
its properties and may suggest new types of solutions that
do not appear in models that do not account for safety.
The goal of future work is three-fold. First, develop

practical modeling techniques that will
facilitate extension of existing
stochastic models into models explicitly
incorporating safety. Second, develop
efficient techniques for such models
that would not only allow for solving
the stochastic aspect but also provide an
additional insight into the safety
aspects. This second point may be more
naturally accomplished using logical
analysis by formulating reasonable
safety requirements. Finally, the main
theoretical idea from which these
developments will be built is the
decomposition of the stochastic
problem into a finite number of
manageable scenario subproblems and

the coordination of their solutions by specially designed
algorithms [10,25].

Such algorithms, currently available in many tools,
have come quite a long ways in the last years. Still, there
is a great deal of disconnectedness among the steps needed
to (1) understand the problem, (2) break it into manageable
subproblems, (3) develop models that are realistic in terms
of the sub-problems they represent and combining them

into the larger
more complex
context.

Acknowledge-
ments: T h e
authors recognize
the contribution
of Mr. David
D u g a n w h o
dutifully wrote
the numerous
programs for the

experiments
conducted using
the CSPL (i.e.,
SPNP) and Mr.
Zhihe Zhou for
h i s c r i t i c a l
comments (both
WSU students).
We would also
like to thank the
IWSSD 2000
reviewers for
their comments
and questions.

Figure 8. Combined model Petri net (cyclic version used for reliability analysis).

DA version model of the ESA DR version model

Figure 7. ESA sub-models used for reliability/availability analysis respectively.

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

9. References
1. I. L. Yen, Paul, Raymond, and Mori, Kinji, �Toward

Integrated Methods for High-Assurance Systems,�
IEEE Computer, vol. 31, pp. 32-34 (incl. 35-46 by
others), 1998.

2 . R. Marie, Jean-Marie, Alain, �Quantitative
Evaluation of Discrete-Event Systems: Models,
Performance and Techniques,� presented at Fifth Int'l
Wkshp on PNPM, Toulouse, France, 1993.

3 . H. Choi, Mainkar, Varsha and Trivedi, Kishor S.,
�Sensitivity Analysis of Deterministic and Stochastic
Petri Nets,� presented at MASCOTS, 1993.

4 . V. Mainkar, Choi, Hoon and Trivedi, Kishor,
�Sensitivity Analysis of Markov Regenerative
Stochastic Petri Nets,� presented at 5th Int'l Wkshp
on PNPM, Toulouse, France, 1993.

5. J. T. Blake, Reibman, Andrew L. and Trivedi, Kishor
S., �Sensitivity Analysis of Reliability and
Performability Measures for Multiprocessor
Systems,� SIGMETRICS, Santa Fe, NM, 1988.

6. M. Malhotra, and Trivedi, K.S., �A Methodology for
Formal Expression of Hierarchy in Model Solution,�
Fifth Int'l Wkshp on PNPM, Toulouse, 1993.

7. W. Sanders, Obal, W., Qureshi, A. and Widjanarko,
F., �The UltraSAN Modeling Environment,�
Performance Evaluation, vol. 24, pp. 89-115, 1995.

8 . R. T. Sahner, Trivedi, K. S., and Puliafito, A.,
Performance and Reliability Analysis of Computer
Systems - An Example-Based Approach Using the
SHARPE Software Package. Boston, Kluwer, 1996.

9 . K. S. Trivedi, Malhotra, M., �Reliability and
Performability Techniques and Tools: A Survey,�
presented at Messung, Modellierung und Bewertung
von Rechen-und Kommunikationssystemen, Aachen,
Springer-Verlag, Berlin pp. 27-48, 1993.

10. G. Ciardo, Muppala J. and Trivedi, K.S., �SPNP:
Stochastic Petri Net Package,� presented at 3rd Int'l
Wkshp on PNPM, Kyoto, Japan, 1989.

11. M. K. Molloy, �Performance Analysis Using
Stochastic Petri Nets,� IEEE Trans. on Computers,
pp. 913-917, 1982.

12. A. Reibman, Veeraraghavan, M., �Reliability
Modeling: A Modeling Overview for System
designers,� Computer, vol. 24, pp. 49-57, 1991.

13. S. Greiner, �Stochastic Analysis of Computer
Science Applications: Theory, Models and Solution
Methods,� PhD Dissertation in Computer Science,
IMMD IV. Germany: U. of Erlangen, 2000, pp. 250.

14. J. K. Muppala, Wang, Wei and Trivedi, Kishor, S.,
�Dependability Evaluation Through Measurements
and Models,� Duke Univ., EE Dept., Durham, NC
Fnl. Rpt. NSF Grant CCR-9108114, 1994.

15. G. Ciardo, Marie, R., Bruell, S., and Trivedi, K.,
�Performability Analysis Using Semi-Markov
Reward Processes,� IEEE Trans on Computers, vol.
39, pp. 121-1264, 1992.

16. K. M. Kavi, and Sheldon, F.T., �Specification of
Stochastic Properties with CSP,� IEEE Int'l Conf. on
Parallel and Distributed Systems, Taiwan, 1994.

17. G. Balbo, �On the Success of Stochastic Petri Nets,�
presented at PNPM, Durham, NC, 1995.

18. J. C. Laprie, Kaaniche, M. and Kanoun, K.,
�Modeling Computer Systems Evolutions: Non-
Stationary Processes and Stochastic Petri Nets -
Application to Dependability Growth,� PNPM,
Durham, NC, 1995.

19. N. Levenson, et. al., �Safety Analysis Using Petri

Nets,� IEEE Trans. S/E, vol.13, pp. 386-397, 1987.
20. A. D. Lewis, �Petri Net Modeling and Software Safety

Analysis: Methodology for an Embedded Military
Application,� in Computer Science. Monterey, CA:
Naval PG Sch., 1988, pp. 98.

21. S. Donatelli, Ribaudo, M. and Hillston, J., �A
Comparison of Performance Evaluation Process
Algebra and Generalized Stochastic Petri Nets,�
presented at 5th Int'l Wkshp PNPM, Durham, 1995.

22. G. Balbo, Donatelli, Susanna and Franceschinis,
Giuliana, �Understanding Parallel Program Behavior
through Petri Net Models,� Journal of Parallel and
Distributed Computing, vol. 15, pp. 171-187, 1992.

23. G. Balbo, Donatelli, S., Granceschinis, G., Mazzeo,
A., Mazzocca, N. and Ribaudo, M., �On the
Computation of Performance Characteristics of
Concurrent Programs Using GSPNs,� Performance
Evaluation, 19, pp. 195-222, 1994.

24. F. T. Sheldon, and Greiner, S., "Composing,
Analyzing and Validating Software Models to Assess
the Performability of Competing Design Candidates,"
Annals of Software Engineering 8, pp. 239-287, 1999.

25. F.T. Sheldon, �Analysis of Real-Time Concurrent
System Models Based on CSP Using Stochastic Petri
Nets,� presented at 12th ESM, Manchester, UK, 1998.

26. F. T. Sheldon, and Kavi, K.M., �Position Stmt:
Linking Software Failure Behavior to Specification
Characteristics II,� Int'l Wkshp on Eval. Techniques
for Dependable Systems, San Antonio, 1995.

27. G. Ciardo, Trivedi K.S., �A decomposition approach
for stochastic reward net models,� Performance
Evaluation, vol. 18, pp. 37-59, 1993.

28. David Budgen, Software Design, Addison-Wes, 1994.
29. R. Bosch, Automotive Handbook, Bentley Pubs 1997.

10. Appendix A: Example models and results
The DDR combines the TC, AB and ESA subsystems

into one large system to improve vehicle driveability. The
DDR was reverse engineered (RE) to the extent of
producing the diagrams shown in Figures 3 and 4. These
two figures are provided as representative of the numerous
artifacts that were produced as part of the RE process.
(Lack of space has forced us to be selective.) A high-level
system schematic showing sensors, acuators, processing,
communication, control pathways and redundancy was
produced. In addition, all system components were listed
in a spreadsheet (as row labels) with their failure rates
inserted at the row and column location corresponding to a
particular fault/symptom (listed as column labels). If a
faulty component could lead to a given symptom then its
contribution to that type of failure was identified and
recorded. This technique delineated failure/symptom
dependencies. The relationship of a particular component
to a given symptom was more easily identified from
constructing the FSM/MASCOT diagrams (Figs. 3 and 4).

We investigated four different generic model types for
each sub-function (TC, AB and ESA) and several
combined models. Figures 6 and 7 gives an example of the
ESA sub-system SPN while Figure 8 provides the
composite system. These two diagrams exemplify the
general relation between the sub-models and their larger

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

�composite� context. The ESA structure (Fig. 6) can be
seen in the upper right corner of the composite model
(Fig. 8, connected by the �checkSteering� place). These
diagrams were automatically generated from the SPN
models written in CSPL (C-based Stochastic Petri Net
Language). The graphical Petri net representation (e.g.,
Figs. 6�8) significantly aid in checking, through
inspection, the correctness of each model. The graphical
form makes possible both structural and hazard analysis at
the sub-system level.

The composite model state space was too large to

solve given the limitation of our computer. The stochastic
sub-models were solved (Figs. 9�10). Reliability decreases
precipidously. R(80,000hrs) is zero for the acyclic model.
The cyclic CCR model is composed of contextual
transtions representing various operational activities.
These activities compete with the failure processes. Thus,
the CCR degrades at a much slower rate (i.e., R(160,000
hrs) is 0.07). The repair process (Fig. 10) has a significant
effect. Availability reaches a steady state in the range of
0.5-0.7. The increase in availability after 3 million hours is
likely due to numerical instability (error accumulation).

Reliabilty / Availability vs Time Steering Scenerio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 000 40 000 60 000 80 00 0 10 000 0 12 000 0 14 000 0 16 000 0

Time (hrs)

A
va

ila
bi

lit
y

A
(t

)/
A

'(t
) |

 R
el

ia
bi

li
ty

 R
(t

)

I nsta nta neous-A (t) Int erval - A'(t) R(t)- Cycl i c-SRN R(t)- Acycli c- SRN

Figure 9. ESA results for reliability (R �CCR and DR versions) and availability (A �DA version) vs time.

Instantaneous & Interval Availability Slip, Skid, Steer Scenerios

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 000 0 2000 00 0 30 00 00 0 40 00 00 0 50 00 00 0 60 00 00 0 70 00 000 80 000 00 900 00 00 1E+07

Time (hrs)

As l(t) A'sl(t) Ask (t) A's k(t) Ast(t) A'st (t)

A
va

ila
bi

lit
y

A
(t

)/
A

'(t
)

Figure 10. Availability based on extra long runs (0 � 10 million hours) for all three sub-models (DA version).

Proceedings of the Tenth International Workshop on Software Specification and Design (IWSSD'00)
0-7695-0884-7/00 $10.00 © 2000 IEEE

