
International Journal of Computers and Applications, Vol. 28, No. 3, 2006

A SHORT SURVEY ON QUANTUM
COMPUTERS

Y. Kanamori,∗ S.-M. Yoo,∗ W.D. Pan,∗ and F.T. Sheldon∗∗

Abstract

Quantum computing is an emerging technology. The clock frequency

of current computer processor systems may reach about 40GHz

within the next 10 years. By then, one atom may represent one bit.

Electrons under such conditions are no longer described by classical

physics, and a new model of the computer may be necessary by

that time. The quantum computer is one proposal that may have

merit in dealing with the problems presented. Currently, there exist

some algorithms utilizing the advantage of quantum computers. For

example, Shor’s algorithm performs factoring of a large integer in

polynomial time, whereas classical factoring algorithms can do it in

exponential time. In this paper we briefly survey the current status

of quantum computers, quantum computer systems, and quantum

simulators.

Key Words

Classical computers, quantum computers, quantum computer sys-

tems, quantum simulators, Shor’s algorithm

1. Introduction

How much can the performance of a computer be im-
proved? According to Moore’s law, if the performance
keeps improving by means of technological innovations,
which has occurred over the last few decades, the number of
transistors per chip may be doubled every 18 months. Fur-
thermore, processor clock frequency could reach as much as
40GHz within 10 years [1]. By then, one atom may repre-
sent one bit [1]. One of the possible problems may be that,
because electrons are not described by classical physics but
by quantum mechanics, quantum mechanical phenomenon
may cause “tunneling” to occur on a chip. In such cases,
electrons could leak from circuits. Taking into account the
quantum mechanical characteristics of the one-atom-per-
bit level, quantum computers have been proposed as one
way to effectively deal with this predicament. In this way,
quantum computers can be used to solve certain compu-
tationally intense problems where classical computers re-

∗ Electrical and Computer Engineering Department, University
of Alabama in Huntsville, Huntsville, AL 35806, USA; e-mail:
{yoshitok, yoos, dwpan}@eng.uah.edu

∗∗ Computational Sciences and Engineering Division, Oak Ridge
National Laboratory, Oak Ridge, TN 37831, USA; e-mail:
SheldonFT@ornl.gov

(paper no. 202-1700)

quire large amounts of processing time. Notwithstanding,
further improvements will be necessary to ensure quan-
tum computers’ proper performance in future, but such
improvements seem obtainable.

Currently, there exist some algorithms utilizing the
advantage of quantum computers. For instance, the
polynomial-time algorithm for factoring a large integer
with O(n3) time was proposed by Peter Shor [2]. This algo-
rithm performs factoring exponentially faster than classical
computers. This algorithm could factor a 512-bit product
in about 3.5 hours with 1GHz clock rate [3], whereas the
number field sieve could factor the same product in 8400
MIPS years [4]. (One MIPS year is the number of instruc-
tions that a processor can execute in a year, at the rate of
millions of instructions per second.) Another famous quan-
tum algorithm is a database search algorithm proposed by
Lov Grover that will find a single item from an unsorted
list of N elements with O(

√
N) time [5].

In this paper we briefly survey quantum computers.
First, the main characteristics of quantum computers, su-
perposition states, and interference are introduced. Then,
current approaches to quantum computers are reviewed.
Next, research on quantum computer simulators is intro-
duced. We conclude with a few remarks.

2. Quantum Computer Systems

2.1 Superposition State

In classical computers, electrical signals such as voltages
represent the 0 and 1 states as one-bit information. Two
bits indicate four states 00, 01, 10, and 11, and n bits can
represent 2n states. In the quantum computer, a quantum
bit called “qubit,” which is a two-state system, represents
the one-bit information. For instance, instead of an elec-
trical signal in classical computers, an electron can be used
as a qubit. The spin-up and spin-down of an electron
represent two states: 0 and 1, respectively. A photon can
also be used as a qubit, and the horizontal and vertical po-
larization of a photon can be used to represent both states.
Using qubits, quantum computers can perform arithmetic
and logical operations as does a classical computer. The
important difference, however, is that one qubit can also
represent the superposition of 0 and 1 states. When we
represent 0 and 1 states as state vectors |0〉 and |1〉 respec-
tively, such a superposition state is expressed as a linear

227

combination of |0〉 and |1〉, |ψ〉= a|0〉+ b|1〉. “|〉” is called
“ket-vector” in Dirac notation, and the coefficients a and b
are called probability amplitudes. |a|2 indicates a proba-
bility that we get |ψ〉= |0〉 as a result of the measurement on
the qubit |ψ〉= a|0〉+ b|1〉. They also satisfy |a|2 + |b|2 =1.
For example, when the probability amplitudes a and b are
equal to 1/

√
2, we can express a superposition state of

two states as follows: |ψ〉=(1/
√
2)|0〉+(1/

√
2)|1〉, where

vectors |0〉=(1, 0)T and |1〉=(0, 1)T . In short, when we
measure a state of |ψ〉, the state will be observed as |0〉
with probability (1/

√
2)2 =1/2 and as |1〉 with probability

(1/
√
2)2 =1/2.
This bizarre characteristic in quantum computers

makes parallel computation possible in the real sense of the
term. Because each qubit represents two states at the same
time, two qubits can represent four states simultaneously.
For instance, when we use two qubits that are the super-
position of 0 and 1 states as an input for an operation,
we can get the result of four operations for four inputs
with just one computational step, as compared to the four
operations needed by the classical computer. Likewise,
when using n qubits, we can make a superposition of 2n

states as an input and process the input in just one step
to solve a problem for which a classical computer requires
2n steps. In this light, a quantum computer can process n
inputs with only one computational step after taking the
superposition state of n inputs.

However, there is a crucial problem to solve before we
can use this extremely valuable characteristic of quantum
computers. From the input of one superposition state
representing four states and processing in one step we
get the superposition of four results. When we measure
the output qubits, the quantum mechanical superposition
collapses and each qubit will be observed as either 0 or 1
because a qubit is a two-state system. Consequently, we
only get one of the four possible results: 00, 01, 10, or
11 (for n=2) with the same probability. Accordingly, the
superposition of qubits is governed by probability, and the
measurement is necessary to determine which one of the
possible states is represented. This difficulty arises from
using the quantum mechanical superposition. If, however,
we can increase the probability of getting the expected
result by devising an algorithm, we may take advantage
of the quantum mechanical superposition feature. In this
way, as discussed above, we can harness the power of
quantum computers to solve a problem that takes an
excessive amount of computational time and energy for
certain problem classes on classical computers.

2.2 Interference

In this subsection, we give a simple example that illustrates
the difference between classical and quantum computation,
and the importance of interference-of-states in quantum
computation.

Clearly, any classical computer can be simulated by
a Turing machine, a mathematical model of a general
computer. Before we discuss the quantum Turing machine
(QTM), we introduce a computation tree using a classical
probabilistic Turing machine (PTM) [6]. Fig. 1 shows an

example of a state transition diagram for the PTM, and
Fig. 2 derives the PTM as a computation tree. In the tree,
each vertex shows a machine state and each edge shows
the probability of transition occurrence.

Figure 1. A state transition diagram of PTM.

Figure 2. A computation tree of PTM.

Also, each level of the tree represents a computation
step and the tree’s root represents the starting state. We
can compute a probability of transition 0→ 1 after two
computational steps, by summing the probabilities of the
two possible paths from the root to state 1 as follows:

P (0 → 1) =

(
2

3
× 1

3

)
+

(
1

3
× 1

4

)
=

2

9
+

1

12
=

11

36

Similarly:

P (0 → 0) =

(
2

3
× 2

3

)
+

(
1

3
× 3

4

)
=

4

9
+

3

12
=

25

36

We can interpret this result in the following way. In two
steps, starting from state 0 the PTM will occupy state 1
with probability 11/36 and state 0 with probability 25/36.

Similar to PTM, we describe a computation of QTM
using the computation tree shown in Fig. 3. Each edge
of the tree in QTM represents a probability amplitude,
whereas in the PTM each edge represents a transition
probability. Only one state in the same level of the PTM
tree occurs at a time, but all states in the same level of
the QTM tree occur simultaneously! For this example, the
probability of 0→ 1 from the root after one computational
step is:

(
− 1√

2

)2

=
1

2
228

Figure 3. A computation tree of a QTM [7].

and the probability of 0→ 0 from the root after one com-
putational step is:

(
1√
2

)2

=
1

2

Let us compute the probability of transition 0→ 1 after
two steps. First, we need to find the probability amplitudes
of the two possible paths: Ψ(0→ 0→ 1) and Ψ(0→ 1→ 1):

Ψ(0 → 0 → 1) =
1√
2
×

(
− 1√

2

)
= −1

2

Ψ(0 → 1 → 1) =

(
− 1√

2

)
×

(
1√
2

)
= −1

2

We add both amplitudes:

Ψ(0→ 1 after two steps) = Ψ(0→ 0→ 1)+Ψ(0→ 1→1)

=

(
−1

2

)
+

(
−1

2

)
=−1

Thus, the probability of transition 0→ 1 after two
steps is:

P (0→ 1 after two steps) = |Ψ(0→ 1 after two steps)|2

= |(−1)|2 =1

Similarly, we compute the probability of transition
0→ 0 after two steps:

Ψ(0 → 0 → 0) =
1√
2
× 1√

2
=

1

2
,

Ψ(0 → 1 → 0) =

(
− 1√

2

)
×
(

1√
2

)
= −1

2

Ψ(0 → 0 after two steps)

= Ψ(0 → 0 → 0) + Ψ(0 → 1 → 0)

=
1

2
+

(
−1

2

)
= 0

P (0 → 0 after two steps) = |Ψ(0 → 0 after two steps)|2

= |0|2 = 0

This is a remarkable result. After one computational
step, the probabilities 0→ 1 and 0→ 0 were both 1/2.
But after two computational steps from the same root
the probability 0→ 1 is 1 and probability 0→ 0 is 0.
This result occurs because the probability amplitudes can
have negative values. We interpret this result as due
to the states of the QTM interfering with each other.
In short, the case “0→ 1 after two steps” had a con-
structive interference [(−(1/2))+ (−(1/2))=−1] and the
case “0→ 0 after two steps” had a destructive interference
[(1/2)+ (−(1/2))= 0].

In the previous subsection, we mentioned that the re-
sult of a computation involving the superposition of n input
states is a superposition of n-output states. For example, if
we need to perform factorizing of an n-digit binary number
into two prime factors, we must test 2n−1 numbers with
Eratosthenes’ sieve as the worst-case scenario. Therefore,
we must make a superposition of 2n−1 integers as input
giving the result from factoring as the superposition of
2n−1 outputs.

If we can design an operation such that a constructive
interference occurs at desired outputs (e.g., prime factors)
of the superposition of 2n−1 outputs and a destructive
interference occurs at unnecessary outputs, we can find
prime factors with only one computational step as com-
pared to the classical computer, which takes 2n−1 steps.
This is an immense improvement in computation time.

Shor’s algorithm performs factoring of large integers,
though it is not just a single-step operation as described.
The algorithm consists of both quantum and classical
processing. The quantum processing part utilizes quantum
interference and the superposition state to find the period
r of the function fx,n(a)=xa mod n where n is an integer
to be factored and x is an integer chosen at random that is
coprime to n (i.e., gcd(x, n) = 1). The classical part makes
use of a result from classical number theory to find a factor
of n by using x and r from the quantum part.

3. Current Approaches to Quantum Computers

In this section we consider how such a quantum computer
can be built. There are five experimental requirements for
building a quantum computer [8, 9]. The first requirement
is the ability to represent quantum information robustly.

229

Because a qubit is a simple two-level system, a physical
qubit system will have a finite set of accessible states.
Some examples are the spin states of a spin 1/2 particle,
the ground states and first excited states of an atom, and
the vertical and horizontal polarization of a single photon.
Second, a quantum computer requires the ability to set
a fiducial initial state. This is a significant problem for
most physical quantum systems because of the imperfect
isolation from their environment and the difficulty of pro-
ducing desired input states with high fidelity. Third, a
quantum computer requires long decoherence times, much
longer than the gate operation time. Decoherence is the
coupling between the qubit and its environment, which
results in a loss of the quantum phase coherence. After
decoherence, the quantum mechanical property associated
with coherence (e.g., superposition, entanglement) can no
longer be observed. The fourth requirement is the ca-
pability of measuring output results from specific qubits.
The outcome from a quantum algorithm is, in general, a
quantum superposition. Therefore, it is necessary to read
out a result from the quantum state using the classical
system with high fidelity. The fifth requirement concerns
the ability to construct a universal set of quantum gates.
Similar to a classical computer, a quantum computer has
universal gates, which implement any legitimate quantum
computation. DiVincenzo proved that just two-qubit gates
at a time are adequate to build a general quantum circuit
[10]. Using two-qubit controlled-NOT gate and single-
qubit gates, we can compose any multiple qubit logic gates.
Moreover, once we can construct a two-qubit controlled-
NOT gate, we can also build a quantum computer with
combinations of these gates.

Several implementations for a quantum computer have
been proposed. One of the well-researched implementa-
tions is a nuclear magnetic resonance (NMR) based quan-
tum computer. This computer uses a vial of a liquid filled
with sample molecules as qubits. In this way, this experi-
mental quantum computer solves a problem by controlling
nuclear spins using NMR techniques and retrieves the re-
sults observing the ensembled average of some property of
the nuclear spins in the vial. A seven-qubit NMR-based
quantum computer has been built, and the computer can
perform Shor’s algorithm finding factors of the number
15 [11]. This is currently the most advanced quantum
computer.

An ion-trap-based quantum computer uses a string of
ions confined in a linear trap [12]. Each ion represents a
qubit and is manipulated by laser beams. Photons from
ions are observed as a result of an operation by photo
detectors. A two-qubit controlled-NOT gate has already
been demonstrated [13], and a quantum computer with a
large number of trapped ions has been proposed [14].

A cavity quantum electrodynamics (QED) based quan-
tum computer has been proposed [15]. This scheme uses
photons as qubits and implements a controlled-NOT gate
using the interaction of a linearly polarized photon as a
target bit and a circularly polarized photon as a control bit
through cesium atoms inside an electromagnetic cavity [1].
They measure a phase shift of the photon from the cavity
as an output qubit.

In [16, 17], a linear optics quantum computer is pro-
posed using photons. An optical mode (e.g., horizontal
or vertical polarization) of a photon represents a state of
qubits. Quantum gates can be realized only with linear
optical elements. Placing beam splitters and phase shifters
between the paths of photons can control the states of
qubits for computations. As a two-qubit gate operation, a
nondeterministic controlled-NOT gate has been proposed.
This gate operation requires additional ancillary photons,
which are not part of the computation, and single-photon
detections.

A quantum-dot-based quantum computer uses spins
[18] or energy levels [19] of electrons confined in quantum
dots (QDs) as qubits that are fabricated in semiconductor
materials. Because we can control states of qubits elec-
trically, as we do in classical circuits, this scheme has an
advantage because current semiconductor technology may
be applied to the fabrication of a quantum computer.

A superconducting quantum computer uses the
Josephson-junctions in superconducting circuits as qubits
[20]. Charge or energy levels in a junction represent infor-
mation of qubits. A controlled-NOT gate operation on the
charged qubits was demonstrated, but the phase evolution
during the gate operation has not yet been examined [21].
An implementation of the real quantum controlled-NOT
gates is the next challenge in the realization of universal
logic gates.

Although each proposed quantum computer has diffi-
culties in its realization, a common critical problem is that
real quantum memory registers incur errors caused by en-
vironmental coupling (e.g., cosmic radiation, spontaneous
emission, and decoherence). As it is extremely difficult to
isolate quantum registers perfectly from their environment,
a real quantum computer must be designed considering the
effect of errors on the state of the quantum registers.

To protect quantum states against the effects of noise,
several quantum error-correcting (QEC) schemes have been
proposed [22–25]. QEC codes could be developed based
upon principles similar to a classical error-correcting code.
However, we need to circumvent the following three diffi-
culties to design a QEC code [8]. First, we cannot pro-
duce a repetition code (e.g., logical 0 and 1 is encoded as
“000” and “111” respectively) by duplicating the quantum
state several times because the no-cloning theorem [26]
states that replication of an arbitrary quantum state is
not possible. Second, unlike a classical bit, inspecting the
state to assess its correctness can destroy a qubit. Third,
because the state of qubit depends on certain continuous
parameters (e.g., a rotation angle θ), quantum errors are
continuous. Consequently, infinite precision is required to
determine which error occurred to correct them.

By implementing the QEC codes on a quantum circuit,
we can reduce the effect of noise on quantum registers and
transmissions. However, it is not sufficient for quantum
computation because in practice gate operations (e.g., en-
coding, decoding, and error correction) on the quantum
circuit are themselves prone to errors. Moreover, these
errors are propagated and accumulated continuously until
the computation is completed.

To prevent the propagation and accumulation of errors

230

on the quantum states, each procedure block in the quan-
tum circuit (e.g., encoder, decoder, and error-correcting
circuit) should be designed carefully so that any failure
during the procedure can only propagate to a smaller num-
ber of qubits than can be corrected by the QEC codes.
Such procedures are called fault-tolerant procedures [8].
The detailed techniques are presented in the theory of
fault-tolerant quantum computation [27–33]. According
to the threshold theorem [8], an arbitrarily large quan-
tum computation can be efficiently performed if the error
probability per gate (EPG) is less than a certain constant
threshold. Recent research [34] indicates that the estimates
of the EPGs are as high as 3% if sufficient resources are
available.

4. Quantum Computer Simulators

As indicated above, the number of groups attempting
to realize physical qubits has increased of late; however,
it will take many more years before quantum gates are
available for the computer scientist/engineer to use. In
the meantime, we need a quantum computer simulator to
find new algorithms. Quantum computer systems can be
mathematically represented by using vectors and matrices.
When we define |0〉=(1, 0)T and |1〉=(0, 1)T , a NOT
operation for one qubit can be expressed with 2× 2 unitary
matrices as:



 0 1

1 0



 |0〉 =



 0 1

1 0







 1

0



 =



 0

1



 = |1〉

We can represent an operation that an initial condi-
tion |1〉 is converted to a superposition state (1/

√
2)|0〉+

(1/
√
2)|1〉 by using a matrix: H =(1/

√
2)



 1 1

−1 1





H · |1〉 = 1√
2



 1 1

−1 1







 0

1



 =
1√
2



 1

1





=
1√
2



 1

0



+
1√
2



 0

1



 =
1√
2
|0〉+ 1√

2
|1〉

This operation is known as Hadamard transformation
[8].

Multiple qubits are represented as a tensor product of
two vectors |0〉 and |1〉. For example, two qubit resisters
are represented as follows:

|00〉= |0〉 ⊗ |0〉=(1 0 0 0)T , |01〉= |0〉 ⊗ |1〉 = (0 1 0 0)T

|10〉= |1〉 ⊗ |0〉 = (0 0 1 0)T , |11〉= |1〉 ⊗ |1〉=(0 0 0 1)T

The controlled-NOT operation is:

|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉

The first bit is called the controlled bit and the second
bit is the target bit. A unitary matrix of controlled-NOT
operations for two qubits is represented as:





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





For an n-qubits resister, a 2n × 2n matrix is needed.
We can also define the effect of errors on a qubit (i.e., a bit
flip, a sign shift, both bit flip and sign shift) as the sum of
the Pauli matrices:

σx =



0 1

1 0



 , σy =



0 −i

i 0



 , σz =



1 0

0 −1





Thus, by using the vectors and unitary matrices, we can
simulate a theoretical quantum computer mathematically.

Many quantum computer simulators have been pro-
posed and implemented [35, 36]. Some researchers have
simulated a quantum computer with commercial mathe-
matics software packages. For example, Williams provided
a simulator as a Mathematica notebook [1]. This simulator
shows some basic operations on quantum computers and
Shor’s algorithm. Next, a commercial software “quantum
computer simulator” was released [37]. This software al-
lows users to simulate many sample algorithms (e.g., Shor’s
algorithm, Grover’s algorithm) and user-designed circuits
with a cleaver graphical user interface.

The theoretical quantum computer simulators, in gen-
eral, perform highly idealized unitary operations. In prac-
tice, unitary operations on a physical system are more com-
plicated. Therefore, another type of quantum computer
simulator has been developed as an emulator of quantum
computer hardware [38]. This type of emulator simulates
more realistic models strictly following the law of quantum
mechanics. Michielsen simulates an NMR-like quantum
computer [39]. The hardware in the simulator is modelled
in terms of quantum spins that evolve in time according
to the time-dependent Schrödinger equation [40]. The
detailed explanation is given in [36].

A general and significant problem of quantum com-
puter simulators is their inability to simulate quantum
computers with a large number of qubits (e.g., 500, 1000,
or more bits required for RSA encryption algorithm). To
represent a large number of qubits, an exponentially large
memory is required (described earlier). Therefore, when
we simulate a quantum computer with a large number of
qubits, we need to use a parallel computer [41]. For exam-
ple, in [42] a quantum computer with up to 30 qubits was
simulated using an eight-processor parallel computer.

5. Conclusion

In this paper we have reviewed the principles, algorithms,
and hardware considerations for quantum computing. Sev-
eral research groups are investigating qubits and quantum

231

logic circuitry using different resources (i.e., atom, ion,
electron, and photon, among others). The realization of
a practical quantum computer is expected before we en-
counter the limit of Moore’s law with respect to improve-
ments that may be possible using the classical computer
model. A current realizable quantum computer is based
on seven-bit NMR, which can factor 15. Further research
is needed, for example, via simulation, on quantum com-
puters using classical computers. Such a simulator must
be able to handle quantum computers that operate on a
practically large number of qubits. To this end, we need to
employ large-scale parallel processing methods to acquire
more meaningful results within a practical time frame.
By applying the methods/concepts of classical comput-
ers such as hardware abstraction to quantum computers,
the research progress may be accelerated. For example,
some groups proposed quantum programming languages
that allow us to think of quantum computer operations
in an abstract manner as we do with a classical computer
[43–45].

Efforts at realization for quantum computers have just
begun. Undoubtedly, we need more intensive research in a
physical realization of components of quantum computers
[46]. Computer scientists/engineers will need to consider
the various architectural solutions for quantum computers
as well as the various new (practical) quantum algorithms
to advance the state of the art for quantum computers.

Acknowledgement

The authors thank the anonymous reviewers, whose con-
tributions were helpful in improving this paper. This
manuscript was authored by UT-Battelle, a contractor of
the U.S. Government (USG) under Department of Energy
(DOE) Contract DE-AC05-00OR22725. The USG retains
a non-exclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to
do so, for U.S. Government purposes.

References

[1] C.P. Williams & S.H. Clearwater, Exploration in quantum
computing (New York: Springer-Verlag, 1997).

[2] P.W. Shor, Algorithm for quantum computation: Discrete
logarithm and factoring, Proc. 35th IEEE Annual Symp. on
Foundations of Computer Science, Santa Fe, NM, November
1994, 24–134.

[3] M. Oskin, F.T. Chong, & I. Chuang, A practical architecture
for reliable quantum computers, IEEE Computer, January
2002, 79–87.

[4] B. Preneel (Ed.), Factorization of a 512-bit RSA modules, Lec-
ture Notes in Computer Science, Vol. 1807 (Berlin: Springer-
Verlag, 2000).

[5] L.K. Grover, A fast quantummechanical algorithm for database
search, Proc. STOC, Philadelphia, 1996, 212–219.

[6] D.R. Simon, On the power of quantum computation, Proc. 35th
Annual Symp. on Foundations of Computer Science, Sante Fe,
NM, 1994, 116–123.

[7] T. Nishino, Introduction to quantum computer (Tokyo: Tokyo
Denki University Press, 1997) (in Japanese).

[8] M.A. Nielsen & I.L. Chuang, Quantum computation and quan-
tum information (Cambridge: Cambridge University Press,
2000).

[9] D.P. DiVincenzo, The physical implementation of quantum
computation, Fortschritte der Physik, 48(9–11), 2000, 771–783.

[10] D.P. DiVincenzo, Two-bit gates are universal for quantum
computation, Physical Review A, 51, 1995, 1015–1022.

[11] IBM Research News, IBM’s test-tube quantum computer
makes history: First demonstration of Shor’s historic factor-
ing algorithm, http://www.research.ibm.com/resources/news/
20011219_quantum.shtml.

[12] J.I. Cirac &P. Zoller, Quantum computations with cold trapped
Ions, Physical Review Letters, 74, 1995, 4091.

[13] C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, &
D.J. Wineland, Demonstration of a fundamental quantum logic
gate, Physical Review Letters, 75, 1995, 4714.

[14] D. Kielpinski, C. Monroe, & D.J. Wineland, Architecture for
a large-scale ion-trap quantum computer, Nature, 417, 2002,
709–711.

[15] Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, &
H.J. Kimble, Measurement of conditional phase shifts for
quantum logic, Physical Review Letters, 75, 1995, 4710–4713.

[16] E. Knill, R. Laflamme, & G. J. Milburn, A scheme for efficient
quantum computation with linear optics, Nature, 409, 2001,
46–52.

[17] T.C. Ralph, A.G. White, & G.J. Milburn, Simple scheme for
efficient linear optics quantum gates, Physical Review A, 65,
2002, 012314-1–012314-6.

[18] D. Loss & D.P. DiVincenzo, Quantum computation with
quantum dots, Physical Review A, 57, 1998, 120–126.

[19] M.S. Sherwin, A. Imamoglu, & T. Montroy, Quantum com-
putation with quantum dots and terahertz cavity quantum
electrodynamics, Physical Review A, 60, 1999, 3508–3514.

[20] Y. Makhlin, G. Schön, & A. Shnirman, Quantum-state engi-
neering with Josephson-junction devices, Reviews of Modern
Physics, 73, 2001, 357–400.

[21] T. Yamamoto, Y.A. Pashkin, O. Astafiev, Y. Nakamura, &
J.S. Tsai, Demonstration of conditional gate operation using
superconducting charge qubits, Nature, 425, 2003, 941–944.

[22] P.W. Shor, Scheme for reducing decoherence in quantum
computer memory, Physical Review A, 52, 1995, R2493–R2496.

[23] A.R. Calderbank & P.W. Shor, Good quantum error-correcting
codes exist, Physical Review A, 54, 1996, 1098–1105.

[24] A. Ekert, & C. Macchiavello, Quantum error correction for
communication, Physical Review Letters, 77, 1996, 2585–2588.

[25] A.M. Steane, Error correcting codes in quantum theory, Phys-
ical Review Letters, 77, 1996, 793–797.

[26] W.K. Wootters & W.H. Zurek, A single quantum cannot be
cloned, Nature, 299, 1982, 802–803.

[27] P.W. Shor, Fault-tolerant quantum computation, Proc. 37th
IEEE Annual Symp. on Foundations of Computer Science,
Burlington, VT, 1996, 56–65.

[28] J. Preskill, Reliable quantum computers, Proc. of the Royal
Society of London, A454, 1998, 385–410.

[29] A.M. Steane, Efficient fault-tolerant quantum computing, Na-
ture, 399, 1999, 124–126.

[30] D. Gottesman, Fault-tolerant quantum computation with local
gates, Journal of Modern Optics, 47, 2000, 333–345.

[31] E. Knill & R. Laflamme, Concatenated quantum codes,
quantph/9608012, 1996.

[32] P.O. Boykin, C.P. Roychowdhury, T. Mor, & F. Vatan, Fault
tolerant computation on ensemble quantum computers, Int.
Conf. on Dependable Systems and Networks, Florence, Italy,
2004, 157–166.

[33] E. Knill, R. Laflamme, & W. Zurek, Accuracy threshold for
quantum computation, quant-ph/9610011, 1996.

[34] E. Knill, Quantum computing with realistically noisy devices,
Nature, 434, 2005, 39–44.

[35] J. Wallace, Quantum computer simulators, International Jour-
nal of Computing Anticipatory System, 10, 2001, 230–245.

[36] H. De Raedt & K. Michielsen, Computational methods for
simulating quantum computers, quant-ph/0406210, 2004.

[37] World’s first universal quantum computation simulator,
Quantum computer simulator, SENKO Corporation, http://
www.senko-corp.co.jp/qcs/index.html.

[38] H. De Raedt, A.H. Hams, K. Michielsen, & K. De Raedt, Quan-
tum computer emulator, Computer Physics Communications,
132(1–2), 2000, 1–20.

[39] K. Michielsen, H. De Raedt, & K. De Raedt, A simulator
for quantum computer hardware, Nanotechnology, 13, 2002,
23–28.

232

[40] D.J. Griffiths, Introduction to quantum mechanics (Englewood
Cliffs, NJ: Prentice-Hall, 1995), 1–2.

[41] K.M. Obenland & A.M. Despain, A parallel quantum
computer simulator, High Performance Computing, 1998,
quantph/9804039.

[42] J. Niwa, K. Matsumoto, & H. Imai, General-purpose parallel
simulator for quantum computing, Physical Review A, 66,
2002, 062317-1–062317-11.

[43] J.W. Sanders & P. Zuliani, Quantum programming, Mathe-
matics of program construction, Lecture Notes in Computer
Science, 1837 (Heidelberg: Springer Verlag, 2000), 80–99.

[44] B. Ömer, Classical concepts in quantum programming, Quan-
tum Structures, 2002, http://arxiv.org/abs/quant-ph/0211100.

[45] P. Selinger, Towards a quantum programming language, Math-
ematical Structures in Computer Science, 14, 2003, 527.

[46] Quantum computation roadmap, http://qist.lanl.gov/qcomp_
map.shtml.

Biographies

Yoshito Kanamori received his
M.Sc. degree in computer engi-
neering from the University of Al-
abama in Huntsville in December
2002. He is a Ph.D. candidate in
the Electrical and Computer En-
gineering Department of that uni-
versity. His research interests in-
clude quantum information pro-
cessing, computer network secu-
rity, and optics.

Seong-Moo Yoo received his
B.Sc. degree in economics from
Seoul National University, Seoul,
Korea, and his M.Sc. and Ph.D.
degrees in computer science from
the University of Texas at Arling-
ton in 1989 and 1995 respectively.
Since September 2001 he has been
an associate professor in the Elec-
trical and Computer Engineering
Department of the University of
Alabama in Huntsville, U.S.A.

From September 1996 to August 2001 he was an assistant
professor in the Computer Science Department of Colum-
bus State University, U.S.A. Dr. Yoo was the conference
chair of ACM Southeast Conference 2004, April 2004, held
at Huntsville, and the co-program chair of the ISCA 16th
International Conference on Parallel and Distributed
Computing Systems (PDCS-2003), held August 2003
in-Reno, NV, U.S.A. Dr. Yoo, whose research interests

include cryptography, computer network security, and mo-
bile ad hoc networks, is a senior member of IEEE and a
member of ACM.

W. David Pan is an assistant
professor in the Department of
Electrical and Computer Engi-
neering, the University of Al-
abama in Huntsville. He received
his Ph.D. in electrical engineering
from the University of Southern
California, Los Angeles, in 2002,
and his M.Sc. degree in computer
engineering from the University
of Louisiana at Lafayette in 1998.
He has held summer research po-

sitions at the Advanced System Lab, SGS-Thomson (ST)
Microelectronics, San Diego, CA, and at AT&T Labs—
Research, Middletown, New Jersey. His research inter-
ests include image and video compression, distributed
source/channel coding for sensor networks, multimedia
information assurance, and quantum computing.

Frederick T. Sheldon has over
22 years of experience in the field
of computer science. He currently
is a senior research staff member
at ORNL. Formerly, he was assis-
tant professor at WSU, CU and
research staff at DaimlerChrysler,
Lockheed Martin, Raytheon, and
NASA Langley/Ames. He re-
ceived his Ph.D. and M.Sc. de-
grees at the University of Texas
at Arlington in 1996 and 1989

respectively (he also holds two degrees from the Univer-
sity of Minnesota, in computer science and microbiol-
ogy). He founded the Software Engineering for Secure
and Dependable Systems Lab in 1999. He is a senior
member of the IEEE and a member of ACM, IASTED,
and AIAA, including the Tau Beta Pi and Upsilon Pi
Epsilon honour societies, and received his Sigma Xi award
for an outstanding dissertation. He has published over 70
papers in various journals and international conferences
(http://www.csm.ornl.gov/∼sheldon/pubs.html).

233

