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ABSTRACT 

 
Formal methods such as CSP (Communicating 

Sequential Processes), CCS (Calculus of Communicating 
Systems) and Dataflow based process models are widely 
used for formal reasoning in the areas of concurrency, 
communication, and distributed systems.  The research in 
formal specification and verification of complex systems 
has often ignored the specification of stochastic properties 
of the system.  We are exploring new methodologies and 
tools to permit stochastic analysis of CSP-based systems 
specifications.  In doing so, we have investigated the 
relationship between specification models and stochastic 
models by translating the specification into another form 
that is amenable to such analyses (e.g., from CSP to 
stochastic Petri Nets).  This process can give insight for 
further refinements of the original specification (i.e., 
identify potential failure processes and recovery actions).  It 
does this by relating the parameters needed for reliability 
analysis to user level specifications which is essential for 
realizing systems that meet the users needs in terms of cost, 
functionality, performance and reliability.  
 
KEYWORDS. Formal specification, CSP, Petri Nets, 
Reliability analysis, Markov models. 

 
1. INTRODUCTION 

 
Formal specification and verification of complex 

systems usually ignores specifying the system's stochastic 
properties.  The normal practice is to derive designs and 
implementations of systems from formal specifications.  
And typically, designers concurrently develop stochastic 
models of the target systems for the purpose of reliability 
and performance analyses.  While detailed analyses require 
a clear understanding of the implementation 
(hardware/software failure modes, failure distributions, 
service distributions, workload, etc.), the cost of providing 
a desired level of reliability and performance can be related 
to user level specifications, even if only in terms of upper 
and lower bounds.  As specifications are refined into 
detailed designs and actual implementations, the reliability 
and performance requirements can also be refined to reveal 
the trade-offs in design alternatives.  

Stochastic Petri nets and discrete event simulation are 
typically used to analyze complex distributed processing 
systems in terms of performance and reliability.  Numerous 
tools have been developed for stochastic analysis of Petri 

nets (e.g., GSPN [Marsan 89], GreatSPN [Chiola 85], 
SPNP [Ciardo 89]).  Petri nets however, are not very 
suitable for reasoning about the functional correctness of a  
 
system.  Although there have been extensions to Petri nets 
to permit such specification and verification, they have not 
gained popularity.  In our previous research, we have 
developed a model and a proof system for the specification 
of concurrent processes, based on the dataflow model of 
computation.  We have also shown how the dataflow model 
of a system can be converted into Petri nets for stochastic 
analyses [Kavi 87].  Although the dataflow model can be 
used for formal specifications, the lack of tools makes it 
untenable to many researchers.  For this reason, we have 
chosen CSP as the specification model. 

An initial set of rules have been developed an for 
translating CSP specifications into Petri nets [Kavi 93].  In 
this paper we demonstrate, by using a simple example, (1) 
how CSP specifications can be converted into Petri nets, (2) 
how Petri nets can be supplemented with failure modes, (3) 
how these failure modes can be converted into CSP 
processes so that the feasibility of certain failure modes can 
be examined by the user, and (4) how Petri nets can be 
analyzed for reliability (using user level information on 
failure rates).  Since CSP and other specification models are 
compositional, the usefulness of this analysis is improved 
as large systems are modeled using smaller subsystems 
whose reliability can then be approximated judiciously, 
giving greater comprehensibility and reducing the analysis 
complexity.  It is hoped that the insights gained will lead to 
a set of tools for the specification of functional and 
stochastic properties, as well as mechanical proofs and 
analyses for correctness, reliability and performance 
measures. 

 
2. FORMALISMS FOR SPECIFICATION AND 

ANALYSIS: CSP AND PETRI NETS 
 

We consider only models for the specification and 
analysis of asynchronous concurrent processing systems.  
Even among the models, we examine only process-based 
models that describe a large system which is a composition 
of smaller systems and where the system behavioral 
descriptions are operational in nature.  Examples of such 
approaches include CSP ([Hoare 85], [Olderog 86]), CCS 
[Milner 80], and Dataflow based models ([Kavi 91], 
[Staples 85]).  

 



2.1 COMMUNICATING SEQUENTIAL PROCESSES  
The CSP model was developed by Hoare and later 

extended by Olderog.  A program in CSP consists of n > 1 
communicating processes; this is normally represented 
using the parallel composition operator (||), which is asso-
ciative:  P = {P1 || P2 || .....|| Pn}. 

Processes are assumed to have a disjoint set of vari-
ables (or local symbols).  Processes communicate 
synchronously by sending and receiving messages: the 
sending and receiving activities (or events) are indicated 
using the input (?) and output (!) actions.  Pi?x is the action 
of receiving a value sent by process Pi into variable x; Pj! 
<expression> describes the action of sending the value of 
the expression to Pj.  Synchronization is accomplished by 
using complementary input and output commands in the 
two communicating processes.  Communication can be 
made selective by providing guards, where one of the alter-
native communication actions with a satisfied guard is 
selected.  A guarded command has the general syntax of the 
form <guard> → <command list>.  A command list is a set 
of commands defining a sequence of actions, alternative 
actions based on either deterministic or nondeterministic 
choice, recursive actions, or a STOP action.  Stop 
terminates (or deadlocks) a process.  The following summa-
rizes CSP syntax: 

P ::= STOP | (a → P) | (P\b) | (P  Q) | (P  Q)  

 | ( P b Q) | (P; Q) | (µx • P) 

In CSP, capitalized names are used for process names, 
and lower case characters are used to denote visible actions.  
Here, (a → P) means, action 'a' followed by P, (P\b) is the 
same as P except action b is hidden, (P Q) represents a 

nondeterministic choice between P and Q, (P Q) 
represents a deterministic choice between P and Q, ( 

P bQ) shows concurrent processes P and Q that 

synchronize on action b, (P; Q) a sequence between P and 
Q, (µx • P) is used for recursion.  

A process's actions are visible by means of its com-
munications with other processes or the environment.  The 
set of symbols representing the visible actions comprise the 
alphabet (S) for the process.  Process semantics are 
modeled by (R, D) where R describes possible traces the 
process reacts to, and traces it may refuse (refusal set), 
while D is the divergence set of traces for the process.  A 
refusal set is a set of symbols (or events such as input 
and/or output) for which a process refuses to engage in any 
action even though the environment is ready for it.  Thus, R 
can be viewed as a set of ordered pairs (s, t) representing 
the fact that the process, after responding to a trace of s, can 
refuse to communicate when a trace t is encountered.  A 
divergence set is a trace which engages a process in an 
infinite set of invisible internal actions (i.e., viewed as 

deadlock).  The conventional approach is to specify a 
process in terms of the traces which are acceptable.  
However, for the purpose of reliability or performance 
analyses, we need not be concerned with the semantic 
model.  Thus, we focus only on the structural aspects of 
CSP and give a simple example to illustrate this. 

 

2.1.1 THE CSP FOR A VENDING MACHINE.  In [Hoare 85, 
page 30], a CSP specification of a vending machine (VMC) 
that offers a choice of coins and a choice of goods (small or 
large candy) is provided.  A slightly modified CSP 
specification is reproduced below. 

 
VMC = (EX ? 2p →  (EX ! large →  VMC)  

   (EX ! small →  EX ! 1p → VMC))  

  ( EX ? 1p →  (EX ! small →  VMC)  

   (EX ? 1p →  (EX ! large →  VMC)) 

     (EX ? 1p  → STOP)) 
 

EX is the environment.  The specification can be 
interpreted as follows.  The VMC  behaves as follows. 

 

1. Accepts a 2p coin, outputs a large candy and behaves 
like a VMC, or 

2. Accepts a 2p coin, outputs a small candy followed by 
1p coin, and behaves like a VMC, or 

3. Accepts a 1p coin, outputs a small candy and behaves 
like a VMC, or 

4. Accepts two 1p coins, outputs a large candy and 
behaves like a VMC, or possibly, 

5. Accepts three 1p coins in a row and STOPs. 
 

Statement 5 should be viewed as a warning: If three 1p 
coins are inserted, the machine deadlocks. 

 
2.2 STOCHASTIC PETRI NETS 

The Petri net was originally due to Carl Petri.  In its 
simplest form, a Petri net is a directed bipartite graph, 
where the two types of nodes are known as places (shown 
as circles) and transitions (shown as bars).  Places normally 
represent events while transitions represent actions.  A 
transition is enabled if all its inputs contain at least one 
token (shown as dark circles inside places).  Completion of 
the action defined by a transition causes a token to be 
assigned to each of its output places.  When a place is the 
input to more than one transition, only one of the transitions 
is enabled based on a nondeterministic choice.  The state of 
a Petri net is indicated by the number and location of tokens 
in places (known as a marking), and as transitions are 
enabled, the state of the Petri net moves from marking to 
marking.  The complete set of markings of a Petri net can 
be obtained using reachability algorithms.  When a Petri net 
is restricted to contain at most one token in a place (or a 



finite number of tokens, say k), such a Petri net is known as 
a safe net (or k-safe). 

These initial concepts have been extended to permit 
probabilistic choices on the outputs of a place, inhibitor 
arcs to transitions (i.e., a transition is enabled in the absence 
of a token at its input place and such arcs can model zero 
testing), as well as the association of time and distributions 
with either places or transitions [Murata 89].  We will rely 
on the stochastic Petri nets that permit the association of 
various probability distributions with transitions to model 
performance and reliability of the system.  A stochastic 
Petri net (SPN) is a Petri net where each transition is 
associated with a random variable that expresses the delay 
from the enabling to the firing of the transition.  When 
multiple transitions are enabled, the transition with a 
minimum delay fires first.  When the random variable is 
exponential, the markings of the stochastic Petri net are 
isomorphic to the states of a finite Markov chain.  The 
transition rate from state Mi to Mj = qij is given by qij = 
λi1 + λi2 + . . .+λim where λik is the delay in firing a 
transition tk which takes the Petri net from marking Mi to 
Mj (when more than one transition can cause the transition 
from Mi to Mj).  The performance and reliability analyses 
of the system represented by the Petri net can be achieved 
by using the equivalent Markov process. 
 
2.3 MAPPING OF CSP-LEVEL SPECIFICATIONS INTO 
PETRI NETS 

We have developed an initial set of rules for translating 
CSP specifications into Petri nets [Kavi 93].  The trans-
lation relies on the fact that CSP specifications are based on 
processes moving from action to action.  The activities 
triggering actions of processes can be viewed as the events 
represented by places in Petri nets, while the actions can be 
viewed as transitions in Petri nets.  Although we have not 
formally verified the isomorphism between the CSP and 
Petri net models resulting from the above translations, we 
have developed rules for transforming a majority of the 
CSP process structures and compositions.  The Petri net 
equivalent of a CSP specification need not be unique 

because it is possible to reduce different Petri net 
equivalents into a canonical form.  We plan to develop the 
necessary rules for producing canonical Petri net rep-
resentations of CSP specifications.  

Our goal is to demonstrate the feasibility of translating 
between CSP and Petri nets so that stochastic properties can 
be specified at the CSP level, based on the analyses carried 
out at the Petri net level.  Some example translations 
between CSP specifications and Petri nets are shown in 
[Kavi 93].  Using these rules we have converted the CSP 
specification of the VMC (section 2.1.1) as shown in Figure 
1.  

In a more complex system, more events become 
important and accordingly, CSP processes can be 
decomposed into subprocesses of lessor complexity.  The 
important point here is that by seeing how the VMC is 
structured, we may discover possible hazards that exist. 

 
3. SPECIFICATION OF STOCHASTIC PROPERTIES 

 

One major objective of our research is to establish how 
the user can specify not only functionality but also 
reliability and performance.  Accordingly, we show how 
this is facilitated by translating CSP specifications into 
Stochastic Petri nets. 

 
3.1 FAILURE MODES FOR THE VMC 

In the Petri net representation of the VMC we assume 
that all transitions (representing actions) can fail.  When in-
terpreting the failures of these actions, the user can identify 
potential failure modes.  Users can easily eliminate improb-
able failures identified in the Petri net (i.e., some transitions 
will not fail or can be reasonably tolerated).  Such 
evaluations of the VMC example could lead to an 
augmented stochastic Petri net (and CSP) as shown in 
Figure 2.  This figure distinguishes two types of failures: 
detected and undetected.  Detected failures (and their con-
comitant fault-handling mechanisms) are covered by the 
CSP specification, while  undetected  failures  are those that 

 



Symbolic Names of System Events and Actions:
1p ! = one penny coin.!! ! 2p! = two penny coin.!! ! small! = a small candy.
large! = a larger candy.! ! ! EX! = Environment (i.e., customer).

CSP Specification:

VMC = (EX ? 2p ! (EX ! large ! VMC) 

!                  (EX ! small ! (EX ! 1p ! VMC))

            (EX ? 1p ! (EX ! small ! VMC)

! !    (EX ? 1p ! (EX ! large ! VMC)) 

! ! !         (EX ? 1p ! STOP))

STOP

1P

2P

largeVMC small

1P

VMC

VMC

1P

1P
small

large

VMC

VMC

 
Figure 1 VMC CSP and Equivalent PN Specification (without Failure Transitions). 



! ! ! !   CSP Specification:

! ! ! !   VMC = ((EX ? 2p ! (EX ! large ! VMC)

! ! ! ! ! !       (EX ! flag ! VMC)

! ! ! ! ! !       (EX ! small ! (EX ! 1p ! VMC)

! ! ! ! !   !                              (EX ! flag ! VMC)))

! ! !                                (EX ? 1p ! (EX ! small ! VMC)

! ! ! ! ! !        (EX ! flag ! VMC)

! ! ! ! ! !        (EX ? 1p ! (EX ! large ! VMC)

! ! ! ! ! ! !             (EX ! flag ! VMC )

! ! ! ! ! ! !             (EX ? 1p ! STOP))))

Failure Transitions (ft):
DF ft1,  ft3, ft5, ft7, and ft9  or  UF ft2, ft4, ft6, ft8, and ft10

Markings P1  P2  P3  P4  P5  P6  P7  P8   P9  P10  P11  P12

VMC:! (1    0   0    0    0    0   0   0    0     0     0     0)
M1:! (0    0   1    0    0    0   0   0    0     0     0     0)
M2:! (0    0   0    0    0    0   1   0    0     0     0     0)
M3:! (0    0   0    0    0    0   0   0    1     0     0     0)
STOP:! (0    0   0    0    0    0   0   0    0     1     0     0)
M4:! (0    1   0    0    0    0   0   0    0     0     0     0)
DF:! (0    0   0    0    0    0   0   0    0     0     1     0)
UD:! (0    0   0    0    0    0   0   0    0     0     0     1)

2P

P2

VMC
P1

1P

P3

large

P4

small 
& 1p

P5

small

P6

1P

P7

1P
P9

DFVMC

UFVMC

ft1

ft2

ft4

ft3

ft6

ft5

ft8

ft7

ft10

ft9

DFVMC

  /UFVMC

DFVMC

  /UFVMC

DFVMC

  /UFVMC

DFVMC

  /UFVMC

Transition

Transition

t8

t9

Transition t6Transition t5Transition t4Transition t3

Transition t1 Transition t2

P11

P12

P11,12
P11,12

P11,12

P11,12

large

P8

t7

STOP
P10

Transition

Symbolic Names of System Events and Actions:
1p ! = one penny coin.!! 2p! = two penny coin.!! small! = a small candy.
large! = a larger candy.! ! flag! = failure indication.! EX! = Environment (i.e., customer).  

Figure 2 VMC CSP and Equivalent PN Specification (with Failure Transitions). 
 

 are not specified (nor handled).  For example, when the 
VMC accepts a 2p coin, dispenses a small candy, but not 1p 
coin change, this can be treated as a detected failure, if the 
VMC specification flags this as an error (e.g., displaying an 
error message: "Call 999-9999 for Service").  Otherwise the 
failure will be treated as an undetected error (i.e., 
unspecified error occurrence).  This is the kind of reasoning 
that should occur in order to properly refine the original 
problem statement. 

 
Once the user is satisfied with the identification of 

failures, traditional analysis techniques are used to solve the 
stochastic Petri nets and determine reliability and per-
formance measures (using such tools as SPN, GSPN, 
SPNP).  For the purpose of this paper, we have grouped all 
detected failures together and undetected failures together 
(Figure 3).  The discrete analysis (assuming a time 
homogeneous Markov process) is used to illustrate the 

computation of MTTF and the probabilities associated with 
detected and undetected failures. 

3.2. RELIABILITY ANALYSIS RESULTS 
Tables 1 and 2 show the results of the VMC analysis.  

We have varied the probabilities associated with detected 
and undetected failures.  Run 1 has a failure rate of 0.1%, 
Run 2 has a failure rate of 0.01%, Run 3 has a failure rate 
of 0.1%, and Run 4 has a failure rate of 0.01%.  Runs 3 and 
4 differ from 1 and 2 in that, in Runs 3 and 4 we assumed 
that insertion of 3 pennies in a row will not deadlock, but 
simply returns to VMC state.  No significance should be 
attached with the numbers used for failure probabilities (or 
the MTTF's obtained).  The tables are included for 
illustration purposes only.  The objective of such analyses 
is to expose the trade-offs in designing fault-handling 
mechanism (ala detected failures) to improve customer 



satisfaction and the cost of providing such tolerance to failures.  Table 1 shows the MTTF assuming no repairs.  
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!3 = "3 + #3

!4 = "4 + #4

M2M1 M3 STOP

DF

µ1 µ2 µ3

1

"3

1

UF

M4

#3

VMC

"2

#2

"1

#1

"0

#0

µ0

1

µ4

"4

#4

µ5

µ6 $(!1+µ1) $(!2+µ2) $(!3+µ3)

$(!4+µ4)

$(!0+µ0+µ5)

M1

M2

M3

M4

STOP

M1 M2 M3 M4STOP Description of Marking:

DF

UD

VMC

VMC DF UD

$(!0+µ0+µ5) VMC idle awaiting cust.

1p coin inserted

2nd 1p coin inserted

3rd 1p coin inserted

VMC halted

2p coin inserted

Detected failure

Undetected failure

Marking:

$(!1+µ1)

$(!2+µ2)

$(!3+µ3)

$(!4+µ4)

1

1

"4 #4

"3 #3

"1 #1

"2 #2

"0 #0

1

µ0

µ1

µ2

µ3

µ4

µ5

 
 

Figure 3 VMC Markov Chain and Associated State Transition Matrix 
 

Table 1. MTTF for the VMC. 
 

MTTFRun

Run 1

Run 4

Run 2

Run 3

86.71429

90.55224

1821.00000 

18201.00000

Description

Fail probability 0.1%

Fail probability 0.01% (w/o deadlock)

Fail probability 0.01%

Fail probability 0.1% (w/o deadlock)

 
 

It is also possible to perform Mean-Time-Between-
Failures analysis if we assume that detected failures will be 
repaired.  Table 2 shows such an analysis.  We assume two 
fatal states: one resulting from the inability to repair the 
VMC when faults are detected and reported; and the other 
from undetected and unreported failures.  Here we have 
also assumed that customers report even undetected failures 
(that is, when VMC behaves in correctly, but does not flag 
the error, the unhappy customer will report the error).  

 
4. SUMMARY AND FUTURE WORK 

 

Our objective in this paper is to show how CSP spec-
ifications can be translated into Stochastic Petri nets for the 
purpose of reliability and performance analyses.  Such 
translations will give insight into the failure modes, and 
how fault handling mechanisms can be described as a part 
of the CSP specifications.  This approach provides 

feedback to a designer so that judicious cost-benefit 
analysis in providing fault-tolerance can be made.  In this 
paper we have illustrated this approach by using a simple 
example.   

Table 2. MTBF Analysis of VMC 
 

Run Description MTBF F1 F2

Run 1

a= 0.001; b= 0.001; c= 0.01

Run 2

 a= 0.01; b= 0.01; c= 0.01

Run 3

 a= 0.001; b= 0.01; c= 0.1

Run 4

 a= 0.001; b= 0.001; c= 0.1

498760    0.5222    0.4973

  9198    0.9098    0.0902

90352    0.9098    0.0902

90359    0.0983    0.9017

Notation: 

F1 = Failures resulting from inability to repair detected fails

F2 = Failures resulting from inability to repair undetected fails

a   = Failure probability of event failures

b   = Probability detected (reported) failures cannot be fixed

c   = Probability undetected failures will be reported  
 

The failure probabilities used in the examples (hence 
the results of the analysis) are for illustrating our approach; 
our only intention is to show the complete process of 



specification and analysis.  It is not our intention to attach 
significance to the failure rates, or the probability of 
detected and undetected failures.  We hope to develop a 
tool for automatically translating CSP specifications into 
Petri nets in order to use stochastic Petri net tools (such as 
SPNP) for the purpose of analysis. 
Acknowledgments: A special thanks is extended to 
Sherman Reed and Bob Weems from the University of 
Texas at Arlington's Electrical Engineering and Computer 
Science Engineering departments respectively. 
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