
RELIABILITY ANALYSIS OF CSP SPECIFICATIONS
USING PETRI NET AND MARKOV MODELS

Krishna M. Kavi and Frederick T. Sheldon
University of Texas at Arlington

ABSTRACT

Formal methods such as CSP (Communicating

Sequential Processes), CCS (Calculus of Communicating
Systems) and Dataflow based process models are widely
used for formal reasoning in the areas of concurrency,
communication, and distributed systems. The research in
formal specification and verification of complex systems
has often ignored the specification of stochastic properties
of the system. We are exploring new methodologies and
tools to permit stochastic analysis of CSP-based systems
specifications. In doing so, we have investigated the
relationship between specification models and stochastic
models by translating the specification into another form
that is amenable to such analyses (e.g., from CSP to
stochastic Petri Nets). This process can give insight for
further refinements of the original specification (i.e.,
identify potential failure processes and recovery actions). It
does this by relating the parameters needed for reliability
analysis to user level specifications which is essential for
realizing systems that meet the users needs in terms of cost,
functionality, performance and reliability.

KEYWORDS. Formal specification, CSP, Petri Nets,
Reliability analysis, Markov models.

1. INTRODUCTION

Formal specification and verification of complex

systems usually ignores specifying the system's stochastic
properties. The normal practice is to derive designs and
implementations of systems from formal specifications.
And typically, designers concurrently develop stochastic
models of the target systems for the purpose of reliability
and performance analyses. While detailed analyses require
a clear understanding of the implementation
(hardware/software failure modes, failure distributions,
service distributions, workload, etc.), the cost of providing
a desired level of reliability and performance can be related
to user level specifications, even if only in terms of upper
and lower bounds. As specifications are refined into
detailed designs and actual implementations, the reliability
and performance requirements can also be refined to reveal
the trade-offs in design alternatives.

Stochastic Petri nets and discrete event simulation are
typically used to analyze complex distributed processing
systems in terms of performance and reliability. Numerous
tools have been developed for stochastic analysis of Petri

nets (e.g., GSPN [Marsan 89], GreatSPN [Chiola 85],
SPNP [Ciardo 89]). Petri nets however, are not very
suitable for reasoning about the functional correctness of a

system. Although there have been extensions to Petri nets
to permit such specification and verification, they have not
gained popularity. In our previous research, we have
developed a model and a proof system for the specification
of concurrent processes, based on the dataflow model of
computation. We have also shown how the dataflow model
of a system can be converted into Petri nets for stochastic
analyses [Kavi 87]. Although the dataflow model can be
used for formal specifications, the lack of tools makes it
untenable to many researchers. For this reason, we have
chosen CSP as the specification model.

An initial set of rules have been developed an for
translating CSP specifications into Petri nets [Kavi 93]. In
this paper we demonstrate, by using a simple example, (1)
how CSP specifications can be converted into Petri nets, (2)
how Petri nets can be supplemented with failure modes, (3)
how these failure modes can be converted into CSP
processes so that the feasibility of certain failure modes can
be examined by the user, and (4) how Petri nets can be
analyzed for reliability (using user level information on
failure rates). Since CSP and other specification models are
compositional, the usefulness of this analysis is improved
as large systems are modeled using smaller subsystems
whose reliability can then be approximated judiciously,
giving greater comprehensibility and reducing the analysis
complexity. It is hoped that the insights gained will lead to
a set of tools for the specification of functional and
stochastic properties, as well as mechanical proofs and
analyses for correctness, reliability and performance
measures.

2. FORMALISMS FOR SPECIFICATION AND

ANALYSIS: CSP AND PETRI NETS

We consider only models for the specification and
analysis of asynchronous concurrent processing systems.
Even among the models, we examine only process-based
models that describe a large system which is a composition
of smaller systems and where the system behavioral
descriptions are operational in nature. Examples of such
approaches include CSP ([Hoare 85], [Olderog 86]), CCS
[Milner 80], and Dataflow based models ([Kavi 91],
[Staples 85]).

2.1 COMMUNICATING SEQUENTIAL PROCESSES
The CSP model was developed by Hoare and later

extended by Olderog. A program in CSP consists of n > 1
communicating processes; this is normally represented
using the parallel composition operator (||), which is asso-
ciative: P = {P1 || P2 |||| Pn}.

Processes are assumed to have a disjoint set of vari-
ables (or local symbols). Processes communicate
synchronously by sending and receiving messages: the
sending and receiving activities (or events) are indicated
using the input (?) and output (!) actions. Pi?x is the action
of receiving a value sent by process Pi into variable x; Pj!
<expression> describes the action of sending the value of
the expression to Pj. Synchronization is accomplished by
using complementary input and output commands in the
two communicating processes. Communication can be
made selective by providing guards, where one of the alter-
native communication actions with a satisfied guard is
selected. A guarded command has the general syntax of the
form <guard> → <command list>. A command list is a set
of commands defining a sequence of actions, alternative
actions based on either deterministic or nondeterministic
choice, recursive actions, or a STOP action. Stop
terminates (or deadlocks) a process. The following summa-
rizes CSP syntax:

P ::= STOP | (a → P) | (P\b) | (P Q) | (P Q)

 | (P b Q) | (P; Q) | (µx • P)

In CSP, capitalized names are used for process names,
and lower case characters are used to denote visible actions.
Here, (a → P) means, action 'a' followed by P, (P\b) is the
same as P except action b is hidden, (P Q) represents a

nondeterministic choice between P and Q, (P Q)
represents a deterministic choice between P and Q, (

P bQ) shows concurrent processes P and Q that

synchronize on action b, (P; Q) a sequence between P and
Q, (µx • P) is used for recursion.

A process's actions are visible by means of its com-
munications with other processes or the environment. The
set of symbols representing the visible actions comprise the
alphabet (S) for the process. Process semantics are
modeled by (R, D) where R describes possible traces the
process reacts to, and traces it may refuse (refusal set),
while D is the divergence set of traces for the process. A
refusal set is a set of symbols (or events such as input
and/or output) for which a process refuses to engage in any
action even though the environment is ready for it. Thus, R
can be viewed as a set of ordered pairs (s, t) representing
the fact that the process, after responding to a trace of s, can
refuse to communicate when a trace t is encountered. A
divergence set is a trace which engages a process in an
infinite set of invisible internal actions (i.e., viewed as

deadlock). The conventional approach is to specify a
process in terms of the traces which are acceptable.
However, for the purpose of reliability or performance
analyses, we need not be concerned with the semantic
model. Thus, we focus only on the structural aspects of
CSP and give a simple example to illustrate this.

2.1.1 THE CSP FOR A VENDING MACHINE. In [Hoare 85,
page 30], a CSP specification of a vending machine (VMC)
that offers a choice of coins and a choice of goods (small or
large candy) is provided. A slightly modified CSP
specification is reproduced below.

VMC = (EX ? 2p → (EX ! large → VMC)

 (EX ! small → EX ! 1p → VMC))

 (EX ? 1p → (EX ! small → VMC)

 (EX ? 1p → (EX ! large → VMC))

 (EX ? 1p → STOP))

EX is the environment. The specification can be
interpreted as follows. The VMC behaves as follows.

1. Accepts a 2p coin, outputs a large candy and behaves
like a VMC, or

2. Accepts a 2p coin, outputs a small candy followed by
1p coin, and behaves like a VMC, or

3. Accepts a 1p coin, outputs a small candy and behaves
like a VMC, or

4. Accepts two 1p coins, outputs a large candy and
behaves like a VMC, or possibly,

5. Accepts three 1p coins in a row and STOPs.

Statement 5 should be viewed as a warning: If three 1p
coins are inserted, the machine deadlocks.

2.2 STOCHASTIC PETRI NETS

The Petri net was originally due to Carl Petri. In its
simplest form, a Petri net is a directed bipartite graph,
where the two types of nodes are known as places (shown
as circles) and transitions (shown as bars). Places normally
represent events while transitions represent actions. A
transition is enabled if all its inputs contain at least one
token (shown as dark circles inside places). Completion of
the action defined by a transition causes a token to be
assigned to each of its output places. When a place is the
input to more than one transition, only one of the transitions
is enabled based on a nondeterministic choice. The state of
a Petri net is indicated by the number and location of tokens
in places (known as a marking), and as transitions are
enabled, the state of the Petri net moves from marking to
marking. The complete set of markings of a Petri net can
be obtained using reachability algorithms. When a Petri net
is restricted to contain at most one token in a place (or a

finite number of tokens, say k), such a Petri net is known as
a safe net (or k-safe).

These initial concepts have been extended to permit
probabilistic choices on the outputs of a place, inhibitor
arcs to transitions (i.e., a transition is enabled in the absence
of a token at its input place and such arcs can model zero
testing), as well as the association of time and distributions
with either places or transitions [Murata 89]. We will rely
on the stochastic Petri nets that permit the association of
various probability distributions with transitions to model
performance and reliability of the system. A stochastic
Petri net (SPN) is a Petri net where each transition is
associated with a random variable that expresses the delay
from the enabling to the firing of the transition. When
multiple transitions are enabled, the transition with a
minimum delay fires first. When the random variable is
exponential, the markings of the stochastic Petri net are
isomorphic to the states of a finite Markov chain. The
transition rate from state Mi to Mj = qij is given by qij =
λi1 + λi2 + . . .+λim where λik is the delay in firing a
transition tk which takes the Petri net from marking Mi to
Mj (when more than one transition can cause the transition
from Mi to Mj). The performance and reliability analyses
of the system represented by the Petri net can be achieved
by using the equivalent Markov process.

2.3 MAPPING OF CSP-LEVEL SPECIFICATIONS INTO
PETRI NETS

We have developed an initial set of rules for translating
CSP specifications into Petri nets [Kavi 93]. The trans-
lation relies on the fact that CSP specifications are based on
processes moving from action to action. The activities
triggering actions of processes can be viewed as the events
represented by places in Petri nets, while the actions can be
viewed as transitions in Petri nets. Although we have not
formally verified the isomorphism between the CSP and
Petri net models resulting from the above translations, we
have developed rules for transforming a majority of the
CSP process structures and compositions. The Petri net
equivalent of a CSP specification need not be unique

because it is possible to reduce different Petri net
equivalents into a canonical form. We plan to develop the
necessary rules for producing canonical Petri net rep-
resentations of CSP specifications.

Our goal is to demonstrate the feasibility of translating
between CSP and Petri nets so that stochastic properties can
be specified at the CSP level, based on the analyses carried
out at the Petri net level. Some example translations
between CSP specifications and Petri nets are shown in
[Kavi 93]. Using these rules we have converted the CSP
specification of the VMC (section 2.1.1) as shown in Figure
1.

In a more complex system, more events become
important and accordingly, CSP processes can be
decomposed into subprocesses of lessor complexity. The
important point here is that by seeing how the VMC is
structured, we may discover possible hazards that exist.

3. SPECIFICATION OF STOCHASTIC PROPERTIES

One major objective of our research is to establish how
the user can specify not only functionality but also
reliability and performance. Accordingly, we show how
this is facilitated by translating CSP specifications into
Stochastic Petri nets.

3.1 FAILURE MODES FOR THE VMC

In the Petri net representation of the VMC we assume
that all transitions (representing actions) can fail. When in-
terpreting the failures of these actions, the user can identify
potential failure modes. Users can easily eliminate improb-
able failures identified in the Petri net (i.e., some transitions
will not fail or can be reasonably tolerated). Such
evaluations of the VMC example could lead to an
augmented stochastic Petri net (and CSP) as shown in
Figure 2. This figure distinguishes two types of failures:
detected and undetected. Detected failures (and their con-
comitant fault-handling mechanisms) are covered by the
CSP specification, while undetected failures are those that

Symbolic Names of System Events and Actions:
1p ! = one penny coin.!! ! 2p! = two penny coin.!! ! small! = a small candy.
large! = a larger candy.! ! ! EX! = Environment (i.e., customer).

CSP Specification:

VMC = (EX ? 2p ! (EX ! large ! VMC)

! (EX ! small ! (EX ! 1p ! VMC))

 (EX ? 1p ! (EX ! small ! VMC)

! ! (EX ? 1p ! (EX ! large ! VMC))

! ! ! (EX ? 1p ! STOP))

STOP

1P

2P

largeVMC small

1P

VMC

VMC

1P

1P
small

large

VMC

VMC

Figure 1 VMC CSP and Equivalent PN Specification (without Failure Transitions).

! ! ! ! CSP Specification:

! ! ! ! VMC = ((EX ? 2p ! (EX ! large ! VMC)

! ! ! ! ! ! (EX ! flag ! VMC)

! ! ! ! ! ! (EX ! small ! (EX ! 1p ! VMC)

! ! ! ! ! ! (EX ! flag ! VMC)))

! ! ! (EX ? 1p ! (EX ! small ! VMC)

! ! ! ! ! ! (EX ! flag ! VMC)

! ! ! ! ! ! (EX ? 1p ! (EX ! large ! VMC)

! ! ! ! ! ! ! (EX ! flag ! VMC)

! ! ! ! ! ! ! (EX ? 1p ! STOP))))

Failure Transitions (ft):
DF ft1, ft3, ft5, ft7, and ft9 or UF ft2, ft4, ft6, ft8, and ft10

Markings P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

VMC:! (1 0 0 0 0 0 0 0 0 0 0 0)
M1:! (0 0 1 0 0 0 0 0 0 0 0 0)
M2:! (0 0 0 0 0 0 1 0 0 0 0 0)
M3:! (0 0 0 0 0 0 0 0 1 0 0 0)
STOP:! (0 0 0 0 0 0 0 0 0 1 0 0)
M4:! (0 1 0 0 0 0 0 0 0 0 0 0)
DF:! (0 0 0 0 0 0 0 0 0 0 1 0)
UD:! (0 0 0 0 0 0 0 0 0 0 0 1)

2P

P2

VMC
P1

1P

P3

large

P4

small
& 1p

P5

small

P6

1P

P7

1P
P9

DFVMC

UFVMC

ft1

ft2

ft4

ft3

ft6

ft5

ft8

ft7

ft10

ft9

DFVMC

 /UFVMC

DFVMC

 /UFVMC

DFVMC

 /UFVMC

DFVMC

 /UFVMC

Transition

Transition

t8

t9

Transition t6Transition t5Transition t4Transition t3

Transition t1 Transition t2

P11

P12

P11,12
P11,12

P11,12

P11,12

large

P8

t7

STOP
P10

Transition

Symbolic Names of System Events and Actions:
1p ! = one penny coin.!! 2p! = two penny coin.!! small! = a small candy.
large! = a larger candy.! ! flag! = failure indication.! EX! = Environment (i.e., customer).

Figure 2 VMC CSP and Equivalent PN Specification (with Failure Transitions).

 are not specified (nor handled). For example, when the
VMC accepts a 2p coin, dispenses a small candy, but not 1p
coin change, this can be treated as a detected failure, if the
VMC specification flags this as an error (e.g., displaying an
error message: "Call 999-9999 for Service"). Otherwise the
failure will be treated as an undetected error (i.e.,
unspecified error occurrence). This is the kind of reasoning
that should occur in order to properly refine the original
problem statement.

Once the user is satisfied with the identification of

failures, traditional analysis techniques are used to solve the
stochastic Petri nets and determine reliability and per-
formance measures (using such tools as SPN, GSPN,
SPNP). For the purpose of this paper, we have grouped all
detected failures together and undetected failures together
(Figure 3). The discrete analysis (assuming a time
homogeneous Markov process) is used to illustrate the

computation of MTTF and the probabilities associated with
detected and undetected failures.

3.2. RELIABILITY ANALYSIS RESULTS
Tables 1 and 2 show the results of the VMC analysis.

We have varied the probabilities associated with detected
and undetected failures. Run 1 has a failure rate of 0.1%,
Run 2 has a failure rate of 0.01%, Run 3 has a failure rate
of 0.1%, and Run 4 has a failure rate of 0.01%. Runs 3 and
4 differ from 1 and 2 in that, in Runs 3 and 4 we assumed
that insertion of 3 pennies in a row will not deadlock, but
simply returns to VMC state. No significance should be
attached with the numbers used for failure probabilities (or
the MTTF's obtained). The tables are included for
illustration purposes only. The objective of such analyses
is to expose the trade-offs in designing fault-handling
mechanism (ala detected failures) to improve customer

satisfaction and the cost of providing such tolerance to failures. Table 1 shows the MTTF assuming no repairs.

!0 = "0 + #0

!1 = "1 + #1

!2 = "2 + #2

!3 = "3 + #3

!4 = "4 + #4

M2M1 M3 STOP

DF

µ1 µ2 µ3

1

"3

1

UF

M4

#3

VMC

"2

#2

"1

#1

"0

#0

µ0

1

µ4

"4

#4

µ5

µ6 $(!1+µ1) $(!2+µ2) $(!3+µ3)

$(!4+µ4)

$(!0+µ0+µ5)

M1

M2

M3

M4

STOP

M1 M2 M3 M4STOP Description of Marking:

DF

UD

VMC

VMC DF UD

$(!0+µ0+µ5) VMC idle awaiting cust.

1p coin inserted

2nd 1p coin inserted

3rd 1p coin inserted

VMC halted

2p coin inserted

Detected failure

Undetected failure

Marking:

$(!1+µ1)

$(!2+µ2)

$(!3+µ3)

$(!4+µ4)

1

1

"4 #4

"3 #3

"1 #1

"2 #2

"0 #0

1

µ0

µ1

µ2

µ3

µ4

µ5

Figure 3 VMC Markov Chain and Associated State Transition Matrix

Table 1. MTTF for the VMC.

MTTFRun

Run 1

Run 4

Run 2

Run 3

86.71429

90.55224

1821.00000

18201.00000

Description

Fail probability 0.1%

Fail probability 0.01% (w/o deadlock)

Fail probability 0.01%

Fail probability 0.1% (w/o deadlock)

It is also possible to perform Mean-Time-Between-
Failures analysis if we assume that detected failures will be
repaired. Table 2 shows such an analysis. We assume two
fatal states: one resulting from the inability to repair the
VMC when faults are detected and reported; and the other
from undetected and unreported failures. Here we have
also assumed that customers report even undetected failures
(that is, when VMC behaves in correctly, but does not flag
the error, the unhappy customer will report the error).

4. SUMMARY AND FUTURE WORK

Our objective in this paper is to show how CSP spec-
ifications can be translated into Stochastic Petri nets for the
purpose of reliability and performance analyses. Such
translations will give insight into the failure modes, and
how fault handling mechanisms can be described as a part
of the CSP specifications. This approach provides

feedback to a designer so that judicious cost-benefit
analysis in providing fault-tolerance can be made. In this
paper we have illustrated this approach by using a simple
example.

Table 2. MTBF Analysis of VMC

Run Description MTBF F1 F2

Run 1

a= 0.001; b= 0.001; c= 0.01

Run 2

 a= 0.01; b= 0.01; c= 0.01

Run 3

 a= 0.001; b= 0.01; c= 0.1

Run 4

 a= 0.001; b= 0.001; c= 0.1

498760 0.5222 0.4973

 9198 0.9098 0.0902

90352 0.9098 0.0902

90359 0.0983 0.9017

Notation:

F1 = Failures resulting from inability to repair detected fails

F2 = Failures resulting from inability to repair undetected fails

a = Failure probability of event failures

b = Probability detected (reported) failures cannot be fixed

c = Probability undetected failures will be reported

The failure probabilities used in the examples (hence
the results of the analysis) are for illustrating our approach;
our only intention is to show the complete process of

specification and analysis. It is not our intention to attach
significance to the failure rates, or the probability of
detected and undetected failures. We hope to develop a
tool for automatically translating CSP specifications into
Petri nets in order to use stochastic Petri net tools (such as
SPNP) for the purpose of analysis.
Acknowledgments: A special thanks is extended to
Sherman Reed and Bob Weems from the University of
Texas at Arlington's Electrical Engineering and Computer
Science Engineering departments respectively.

5. REFERENCES

[Chiola 85] Chiola, G. "A software package for the analysis

of generalized stochastic Petri net Models,
"Proceedings: Third Int'l Wkshp on Petri Nets and
Performance Models, Kyoto Japan, pp. 136-143, Dec.
1989.

[Ciardo 89] Ciardo, G., Muppala, J. and Trivedi, K. "SPNP:

Stochastic Petri Net Package, "Proceedings: Third Int'l
Wkshp on Petri Nets and Performance Models, Kyoto
Japan, pp. 142-151, Dec. 1989.

[Hoare 85] C.A.R. Hoare. Communicating sequential pro-

cesses, Prentice-Hall Int'l, Englewood Cliffs, NJ, 1985.

[Kavi 87] Kavi, K., Buckles, B. and Bhat, U.

"Isomorphisms between Petri nets and Dataflow
graphs," IEEE Tr. on Software Engineering, (SE-13)10,
pp. 1127-1134, Oct. 1987.

[Kavi 91] Kavi, K. and Deshpande, A. "Specification of

concurrent processes using a dataflow model of com-
putation and partially ordered events," Journal of
Systems and Software , (16)2, pp. 107-120, Oct. 1991.

[Kavi 93] Kavi, K. and Buckles, B. "Formal methods for

the specification and analysis of concurrent systems"
Tutorial Notes, 1993 International Conference on
Parallel Processing, Lake Charles, IL., Aug. 20, 1993.

[Marsan 89] Ajmone, M. Donatelli, S. and Neri, F., "GSPN

models of multiserver multiqueue systems"
Proceedings: Third Int'l Wkshp on Petri Nets and
Performance Models, Kyoto Japan, pp. 19-28, Dec.
1989.

[Milner 80] Milner, R. A calculus of communicating sys-

tems, LNCS-92, Springer Verlag, 1980.

[Murata 89] Murata, T. "Petri nets: Properties, Analysis and

Applications," Proceedings of the IEEE, pp. 541-580,
April 1989.

[Olderog 86] Olderog, E. TCSP - Theory of communicating
sequential processes, LNCS-255, Springer Verlag,
1986.

[Staples 85] Staples, J. and Nguyen, V. "A fixed point

semantics for nondeterministic dataflow," J of ACM,
(32), pp. 411-444.

[Trivedi 82] Trivedi, K. Probability and Statistics with

reliability, queuing and computer science applications,
Prentice-Hall, Englewood, NJ, 1982.

