
Perspectives onPerspectives on
Redundancy: ApplicationsRedundancy: Applications
to Software Certificationto Software Certification

A. Mili, F.T. Sheldon, F. Mili, M.
Shereshevsky, J. Desharnais

HICSS-38, January 3-6, 2005

OutlineOutline
• Introduction: Redundancy, An Un-

Modeled Property

• Guises of Redundancy

• A Quantitative Model

– Redundancy as a feature of state representation

– Redundancy as a feature of system function

• Conclusion: Applications/ Prospects

Redundancy: An Un-modeledRedundancy: An Un-modeled
PropertyProperty

Paradoxes of Redundancy
• Widely used, widely referenced, yet un-

modeled.
• Complex systems have ample natural (non-

artificial) redundancy, yet hardly ever
acknowledged or used.

• Easy to understand at an intuitive level, yet
hard to model/ capture in generic terms.

Guises of RedundancyGuises of Redundancy
We discuss in turn
• Forms/ classifications of redundancy.
• Questions on redundancy…

Whereas redundancy is sometimes
understood in terms of duplication (of
functions, of variables, etc) we want to think
of it as a feature that ranges over a
continuum.

Forms/ Classifications ofForms/ Classifications of
RedundancyRedundancy

• State Redundancy: More information than is
needed to represent relevant states.

• Functional Redundancy: Components
perform identical or related functions.

• Temporal Redundancy: The evolution of state
variables maintain some relations.

• Control Redundancy: The same effect can be
achieved by distinct control combinations.

Questions on RedundancyQuestions on Redundancy
• Is the classification above complete?
• Is the classification above orthogonal?

– Are these different forms of a single model or distinct
models?

• How can we model/ unify forms of redundancy?
• Can redundancy be modeled as an intrinsic

property, separate from fault tolerance?
• How can we quantify redundancy?
• Can we link levels of redundancy with fault

tolerance capabilities?…necessary conditions etc.

Ali, I skipped this slide…
• Whereas 'forms of redundancy' catalog

different forms of redundancy as
experience.

• Viewed from the outside, models of
redundancy attempt to catalog
mathematical models that capture the
observed redundancy

A Quantitative Model:
Measuring Excess Information

!

"(S) = P(s) #
(W (s) + log(P(s))

W (s)
s$S

%

State s ranging over space S, W(s) the width of
the representation of s, P(s) the probability of
occurrence of s. Redundancy of the
representation of S:

-log(P(s)) is the amount of information carried by s, and W(s) is the
size of the actual representation of s; the difference between these two
quantities is the redundancy of the representation of s, which we
normalize by dividing it by W(s). By taking the prorated sum of all the
state redundancies, we obtain the redundancy of the whole state space.

Quantitative Model: ExamplesQuantitative Model: Examples
• If S contains 8 states that are equally likely to

occur and are coded on 3 bits, then δ(S)=0.
• If S contains 8 states that are equally likely to

occur and are coded on 6 bits where the code of
each state is duplicated, then δ(S)=1.
– 100% of the information needed to represent these

states is added to the representation, which reflects
the situation at hand.

• Error Correcting Code. Consider a space of 8
values (of equal probability) represented by
four bits, say three bits of data and a parity bit,
 δ(S) = 0.333.

• If S contains 8 states (not equally likely to occur)
coded on 3 bits, then δ(S)≥0. E.g., if the probability
distribution is: (.03, .05, .1, .12, .13, .15, .2, .22) then
the redundancy function yields the value: 0.118.

• As probability variance ↓ redundancy ↓: For (.09, .1,
.1, .1, .125, .125, .14 .22), we find the value is: 0.0489.

• Using Huffman coding rather than fixed size coding
for uneven probability distributions reduces the
redundancy of the state. Hence for the latter
distribution above, we find the following vector of
lengths under Huffman coding, (4, 4, 3, 3, 3, 3, 3, 2),
gives redundancy as: 0.0041,
– expectedly, less than under fixed size coding: 0.0489.

Quantitative Model: ExamplesQuantitative Model: Examples

A Qualitative Model:A Qualitative Model:
Redundancy as a Feature ofRedundancy as a Feature of

State RepresentationState Representation
Ideal representation function:
• Total (all states are representable).
• Deterministic (no more than one representation

for each state).
• Injective (different states have different

representations).
• Surjective (all representations represent valid

states).

Ideal Properties RoutinelyIdeal Properties Routinely
ViolatedViolated

• Non-Total: Partial representation (not all
integers can be represented in a computer).

• Non-Deterministic: Ambiguity (+0 and –0
represent the same integer in sign-magnitude
representation of integers).

• Non-Injective: Loss of Precision (example:
floating point representation of reals).

• Non-Surjective: Redundancy (parity bit
representation of characters).

Redundancy as a Feature ofRedundancy as a Feature of
System FunctionSystem Function

Three functional properties prove to
be related to redundancy:

• Redundancy and Surjectivity
• Redundancy and Injectivity
• Redundancy and Determinacy

Redundancy and SurjectivityRedundancy and Surjectivity
Five levels of correctness /

(conversely, levels of error):
• Strict correctness
• Maskability
• Recoverability
• Partial Recoverability
• Unrecoverability

Π(S0)
Recovery unnecessary

Maskable states

Partially recoverable states
→ Probabilistic recovery

Totally recoverable states
→ Total recovery necessary & sufficient

Unrecoverable states
→ Recovery insufficient

r

pr

Hierarchy of Correctness/Error Levels

Level of Correctness andLevel of Correctness and
SurjectivitySurjectivity

• Each Level of correctness is modeled by an
equation of the form s ∈ s0•R

for some relation R.
• We let C, M, V, T be the relations that represent

correctness, maskability, recoverability and
partial recoverability.

• Relations C, M, V, T have increasingly larger
ranges.

Redundancy as SurjectivityRedundancy as Surjectivity
of Relations with Increasingof Relations with Increasing
RangesRanges

C
 M
 V
 T

shows relations c, m, v, t
having increasingly larger
ranges

Levels of Correctness andLevels of Correctness and
SurjectivitySurjectivity

• The ability to detect errors, assess damage,
perform complete recovery, perform
partial recovery (when the state is
unrecoverable), represent increasing levels
of fault tolerant capability.

• All these capabilities depend on the
consecutive relations C, M, V, T being
non-surjective.

Levels of Correctness andLevels of Correctness and
SurjectivitySurjectivity

• Because C, M, V and T have increasingly larger
ranges, it takes an increasingly larger space to
make them non-surjective.

• Usually, one increases the space by adding more
state variables, hence making the space
increasingly redundant.
This is how redundancy is related to non-
surjectivity.

Redundancy and InjectivityRedundancy and Injectivity
Illustrative example showing the link

between injectivity and redundancy.
Space S = integer, function of the form

P; L: F
Where [P] computes x mod 6
 [F] computes x mod 9 + 12.
Go through the PRISE example

Recoverability Preservation:Recoverability Preservation:
IllustrationIllustration

A Program/ System structured as the product
of two components/ functions

P; L:F.
(P: Past; F: Future; L: Label). Expected

functions:
• P(x) = x mod 6.
• F(x) = x mod 9 + 12.

Illustration, IIIllustration, II
• If Past Function is incorrect, and computes

P1 = (x mod 6 + 18)
then states produced by P1 are not correct
but they are maskable (the excess 18 will
be canceled by taking mod 9 in function F)1

• No intervention is required.

1Two integers a, b are congruent modulo n if their
difference is divisible by n, or equivalently: if they leave
the same remainder when divided by n.

Illustration, IIIIllustration, III

• If Past Function is incorrect, and computes
P2 = (x mod 12)

 then states produced by P2 are not
maskable, but they are recoverable,

• Recovery routine: apply (mod 6) to the
current state.

Illustration, IVIllustration, IV

• If the Past Function is incorrect, and computes
P3 = (x mod 3)

then states produced by P3 are not recoverable,
but they are partially recoverable.

• Probabilistic Recovery Routine: return x (or
x+3), with 0.5 probability of success.

Illustration, VIllustration, V

• If Past Function is incorrect, and computes
P4 = (x mod 7)

then states produced by P4 are not
recoverable.

• No recovery is possible, for knowing (x
mod 7) does not inform us on (x mod 6).

Redundancy and InjectivityRedundancy and Injectivity

From this example,…

An intuitive look at this example
suggests that it is possible for function
P’ to preserve recoverability for a
function P if the levels sets of P’
refine the levels sets of P.

Total, Partial and Non
Recoverability

Case 2: Partial

Definition Case 1: Total

Case 3: None

Illustration I&II Illustration III

Illustration IV Illustration V

Partitions of µ(P)

Totally Recoverable µ(Q)
Question: If we know what partition s is in by µ(Q), do
we know what partition s is in by µ(P).

Here: Yes

Partially Recoverable µ(Q’)
Question: If we know what partition s is in by µ(Q), do
we know what partition s is in by µ(P).

Here: Maybe

Non Recoverable µ(Q’’)
Question: If we know what partition s is in by µ(Q), do
we know what partition s is in by µ(P).

Here: No

Left quotient of R by F

K(R,F) F

R

s’

s.R

s’.Fs

Sufficient conditions for characterizing recoverability preservation
and for preserving maskability are described in a PRISE04 paper
by Mili, A., Sheldon, F.T., et. al.

Application: Lean faultApplication: Lean fault
ToleranceTolerance

If not maskable(s) then recovery-measures(s);

recovery-measures(s):
If recoverable(s) then deterministic-

recovery(s)
else

If partially-recoverable(s)
then probabilistic-recovery(s)
else failure(s);

Redundancy and DeterminacyRedundancy and Determinacy
If we continue to equate redundancy
with fault tolerance capability, we
recognize that the non-determinacy of
a specification is a major source of
(often unexploited) redundancy, as it
loosens the condition of correctness.

We explore this idea further…

• There is a difference
between requiring
that the output be
exactly F(s0),…

• …as opposed to
requiring that the
output be any
element of R(s0).

Non-determinacy of Specifications: AnNon-determinacy of Specifications: An
Additional Dimension of RedundancyAdditional Dimension of Redundancy

S0

Impact of Non-DeterminacyImpact of Non-Determinacy
• We could revisit the hierarchy of correctness

levels, and build a new dimension of levels,
that refers to R rather than F.

• Whence we would get S-maskability
(referring to the specification R rather than
the function F), S-recoverability, S-partial
recoverability, etc.

Redundancy and Determinacy:Redundancy and Determinacy:
MotivationMotivation

• A major reason for our interest in non-
determinacy as a source of redundancy:
– It appears to be an adequate model for

control redundancy.

• Control redundancy:
– Ability to achieve the same effect with a

variety of control settings  the system
specification is non-deterministic.

• In what sense is control redundancy synonymous with non-
determinacy of the specification for flight control software?

Airframe Sensors
Flight
Control
Software

Actuators

Pilot Commands &
Navigation Signals

Airframe state Sensor O/Ps

π

R

Φ

Flight Control Loop

Redundancy and Determinacy:Redundancy and Determinacy:
IllustrationIllustration

Conclusion:Conclusion:
Applications/ ProspectsApplications/ Prospects

• Redundancy is pervasive in complex systems,
yet un-modeled and poorly understood.

• In this paper/ talk, we have offered no solutions,
but shared our interest and our ideas on
redundancy.

• Preliminary investigation show relations and
properties that elicit further investigation.

• Redundancy has an important impact on the
design and analysis of complex systems.

• If better understood, redundancy can be used to
improve the reliability/ dependability of
complex systems.

• If properly modeled, redundancy can be
evaluated/ used at many distinct levels of
abstraction (e.g. system level, subsystem level,
component level, etc).

Conclusion:Conclusion:
Applications/ ProspectsApplications/ Prospects

• We could claim that we want to give designers
guidance on how to design complex systems…

• But designers already get plenty of advice; and
there is little evidence they are using any of it.

• We are exploring more effective means:
– systematic methods that analyze system

redundancy,
– and devise techniques to use them to enhance

dependability.

Conclusion:Conclusion:
Applications/ ProspectsApplications/ Prospects

Presentation Downloadable @:

http://www.csm.ornl.gov/~sheldon/pubs.html

