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ABSTRACT

This paper addresses the real-time and reliability analysis of
models for concurrent systems. Such models define independent
entities that cooperate by explicit communication.
Communications represent visible actions which, if they do
not occur or are delayed beyond their deadline, will cause a
failure to occur. This approach converts a formal functional
system description into the information needed to predict its
behavior as a function of observable parameters (i.e., topology,
fault-tolerance, deadlines, communications and failure
categories).

The CSP-based models are translated into Stochastic Petri
nets (SPNs) using our tool CSPN (    C    SP-to-    S    tochastic     P    etri
N    ets).1  CSPN uses algorithms which codify the canonical
translations between essential CSP constructs and SPNs. The
term "CSP-based" is used
to distinguish between the
exact notation of Hoare's
original CSP and our
textual representations
which are similar to
occam2.  The CSP-based
grammar is sufficient to
preserve the structural
properties of the original
model.  Consideration of
other CSP properties (e.g.,
traces, refusal sets,
livelock, etc.) are not
precluded, however they are
not considered here. A basic
example is provided to illustrate the link between failure
behavior and model characteristics (i.e., derivation of timing
failure probability and reliability predictions as they would
affect the cost for implementing a candidate model
specification).

1. INTRODUCTION

The source of errors in complex systems include a wide range
of possible failure causalities (e.g., untested manufactured
flaws, software design and implementation defects including
timing errors, etc.).  The most prevalent types are highly

                                                
1 CSP stands for Communicating Sequential Processes [Hoare 85]
and the language is called PCSP for Parsable-CSP.

dependent on the system, its operating environment, workload
and system design including the integration and testing process.
Furthermore, in critical systems, timing and performance
issues must be considered.  For example, embedded real-time
systems (e.g., characterized by intense interaction with sensors
and actuators) can control continuous reversible processes that
typically possess the ability to tolerate brief periods of
incorrect interaction either in values exchanged or the timing of
exchanges (Shin and Kim 94). To consider such factors during
the specification, analysis and design such systems is a difficult
undertaking. Moreover, the systems designed and built today
have greater functionality and higher performance (e.g.,
confidence gained from many operational hours, legacy systems
that are evolved and have been refined).  Whether these systems
are more robust and more reliable is a less obvious question. In
assuming they are more reliable, the question then becomes
"...at what price?"  The challenge is to develop effective
methods and realistic models for reasoning about and evaluating
such systems prior to building costly prototypes.

As may be visualized in Figure 1, formal mathematically
precise methods should be used to
design such systems [Ostroff 92].
Given a formal model of a system
and its external constraints (e.g.,
topology, communication,
deadlines), what mechanisms are
available for avoiding errors and how
do they impact the behavioral
aspects (i.e., performance and
reliability) of the system [Kavi et al.
95]?  As models are refined, the
reliability and performance
requirements can also be refined to
reveal the trade-offs in design
alternatives such as deciding what are
the critical system elements, what

features of the system should be changed to improve the
system's reliability, or validating performance and reliability
goals using stochastic models.

A system is modeled using our CSP-based language. This
grammar does not restrict the consideration of correctness
properties, however only that the structural and functional
properties be preserved.  Once the model has been translated, it
may be solved using Markov reward analysis [Ciardo et al. 91,
89, Chiola 89, Marsan et al. 84, 89, Tomek et al. 94, Bolch et
al. 98].

This paper introduces the formalisms and gives a simple
example to illustrate the approach: (1) conversion of the CSP
model into SPNs, (2) identifying system failure modes by
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inspecting the PN structure, (3) identifying how failure modes
can be handled, (4) specifying the appropriate fault handling
mechanism back at the CSP level and (5) cost prediction.

2. CSPN FORMALISMS

The CSPN tool codifies the CSP to PN translations which
permit the evaluation of stochastic properties of a CSP system
model. The translations are based on the operational PN
semantics for CSP defined in by E-R Olderog [87] and therefore
permit us to explore how to verify that both functional and
non-functional requirements have been satisfied using proven
translations between CSP and PNs.2 CSPN satisfies Olderog's
theory to the extent that it can be put into a practical
experimental setting and provides the versatility of others
similar to occam [Jones and Goldsmith 88].

2.1 Communicating Sequential Processes (CSP)

CSP is simple, concise and the process composition rules are

very generic (e.g., ||, →, , , ||b, P; Q, etc.).  CSP as a

formal specification method provides rigor and an excellent
theoretical foundation for discussing mathematical abstraction
of process interactions (i.e., communication, concurrency,
recursion, etc.); rules to help in the implementation of
processes (i.e., laws used to prove a specification is satisfied);
how processes can be composed together into systems where
components interact internally and with their environment;
definition of a mathematical theory for deterministic and
nondeterministic processes; algebraic laws which describe the
essential properties of operations that are useful in expressing
new problems, solutions and proofs.3

The CSP model was developed by Hoare and later extended
by Olderog [Hoare 85, Olderog 86, 87]. The basic idea is that
systems can readily be decomposed into subsystems which
operate concurrently and interact (among and
with their common environment). Parallel
composition of such systems is as simple as
sequential composition using traditional
languages (e.g., Pascal).  Major benefits
from using CSP include avoiding many of
the problems associated with parallel
programming (e.g., shared resources and
multi-threading), a secure mathematical
foundation for the avoidance of errors, and
for achievement of provable correctness.  In
addition, CSP provides a complete
mathematical definition of the concept of
nondeterministic processes which enables
modeling of stochastic processes as Petri
nets.  

                                                
2 One could specify using CSP that certain system components
would fail (stochastically) and what actions should be taken.  Such
specifications are more natural with PNs.  Likewise, one could
possibly use PNs to specify logic and correctness properties.
3Process calculi like CSP, ACP, CCS etc. are inherently
asynchronous in the purest sense because they have no notion of
time.  However, timing analysis has been considered by others
[Lee et al. 94].

Using this approach, systems are built from processes.
The simplest process is an action (an assignment, input or
output). Larger processes are built by combining smaller
processes in a construction.  PAR (or ||), SEQ (or ;), NDC (or

), DC (or ), and Mu.X{} (or µX•  P) are constructor

primitives.  The CSP grammar used by the canonical
translation rules is provided in (see Figures 2a and 2b and
Sheldon 96). An example construction is: PROCESS
my_example = SEQ{P,Q,R}; where each process is performed
in succession.  A process need not be declared.  Declared
processes are used like a function call except their internal (pre-
defined) structure is hidden.  Larger processes are formed from
pre-defined processes.  A statement list is a sequential list of n
 1 statement(s).  A statement can be an event (or trigger)

which causes a process to engage in an action (e.g., a → P an
implication). Input and output require a channel which provides
unbuffered, unidirectional point-to-point communication
among concurrent processes.  A guarded process combines one
or more processes, each of which is conditional on an input, a
Boolean expression or both.  An expression can be an integer,
Boolean or relational (Boolean expressions must consist of
Boolean variables prefixed with "@").  Operands can be
integers, variables, integer expressions or relational expressions
(distinct from Boolean).

2.2 Stochastic Petri Nets (SPNs)

The PN in its simplest form is a directed bipartite graph, where
the two types of nodes are known as places (circles) and
transitions (bars).  Places normally represent events while
transitions represent actions.  In modeling (see Murata 89, page
542), using the concept of conditions and events, places
represent conditions, and transitions represent events.  A
transition has a certain number of input places and output
places representing the preconditions and post-conditions of an

event.  Applying the notion in CSP of event-action pairings,
we employ a slightly different abstraction where the conditions
are the events that cause actions (transitions) to take place.  For
example, a coin inserted in a vending machine causes a candy
to be dispensed, the event is the coin insertion (token on an
input-place) while dispensing (an action) is a one-input-place
transition firing as a result of the coin insertion[token on an
output-place]).
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2.3 Mapping CSP to Petri Nets

The canonical rules for translating CSP models into Petri
nets (PNs) are based on the way that CSP model processes
move from one action to another.  The activities that enable
the actions of processes are viewed as events (represented by
places), while the actions are viewed as transitions (completing
an action is considered an event). Such rules give an associated
PN structure for all of the major CSP process primitives and
compositions (the bottom half of the rule in Figure 2a gives
the textual version of CSP used by the CSPN tool).

The CSP to Petri net translations were designed to
facilitate the automatic decomposition of the CSP constructs
into Petri net sub-components and subsequent re-composition
of the subnet components into a complete system Petri net.
Once the complete system net is obtained, the structure itself is
reduced (using equivalent Petri net transformations) to
something that is trace equivalent to the CSP model. This is
the essential mechanism at the Petri net level for minimizing
state space which can be further reduced from an extended
reachability graph (including vanishing markings) to one that
has the vanishing states eliminated [Allmaier et al. 97,
Sorensen et al. 93, Bolch et al. 98].

Figure 2b shows two different types of (codified)
synchronizations.  In the top half, both the Train and the Gate
process are blocked until the "dt:arrive" transition fires while in
the bottom half only the gate process may be blocked. The
asynchronous translation is used in the following example
because it more easily illustrates the race hazard between the
deadlines imposed on the train and the gate processes. Either
translation may be adopted for consideration during analysis.

3. STOCHASTIC ANALYSIS

How can we model both functionality    and   
reliability (including performance of
execution deadlines)?  A simple translation
is provided to address this question.  The
Petri net structure facilitates the discovery of
a design flaws and problems that may lead to
critical and non-critical failures including
unwarranted timing dependencies. A timing
dependency makes necessary additional
synchronization to avoid a safety-critical
failure.

3.1 The CSP for a Train Crossing

The gate closes for arriving trains until the
train has completely passed by.  The
problem statement can be extended to handle
multiple trains (only one train is specified
here):

TRAIN =
(IN_TRANSIT);
(GATE ! a → AT_INTERSECTION);
(GATE ! d → TRAIN)

GATE =
(TRAIN ? a → CLOSE);
(TRAIN ? d → OPEN→ GATE)

RAIL_ROAD_CROSSING = TRAIN {a,d} GATE

Two concurrent processes communicate by sending and
receiving messages.  The TRAIN sends "a" to inform the
GATE of its arrival. After it has passed through the
intersection it sends a "d" (departed) to the GATE. The GATE
receives the "a" and closes the gate.  Once closed, the GATE
waits for the "d" before closing the gate. A hazard exists
because the TRAIN process could transition to
AT_INTERSECTION before the gate closes.  Likewise, the
train may depart while the gate remains closed.  The PN
translation in Figure 3 reveals these flaws more readily.

3.2 The Petri Net for the Train Crossing

The train and gate operate independently and communicate to
accomplish their mission (i.e., permitting the train to pass
safely through the intersection).  In Figure 3, the messages
exchanged are represented by places P5 and P6. The gate will
not close until it receives the “a” message.  This process
involves markings M3 (send approaching msg), M4 (msg
received but gate open), M5 (gate begins to close), and M6
(gate closed).  In all four markings (M3-6) the train is
"approaching" which constitutes safe operation (see Table 1).
Markings Mcf and Mtf show that the train is at the intersection

but the gate is not closed.  In Mcf either a mechanical or a

communication "hard" failure has occurred.  In both cases the
result is unsafe (i.e., critical [cf]).  While in Mtf a timing

failure has occurred.
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Constructing the PN and deriving the feasible markings
reveals that the train process could enter the intersection before
the gate closes. Some mechanism is needed to ensure the train
will not proceed unless the gate is closed.  The system could be
re-designed to force the train to wait until the gate completely
closes and thus provide a safer environment.  Neither timing
nor hard failures could cause an unsafe condition if additional
synchronization is provided to notify the train that the gate is
closed (i.e., the train would not proceed unless the notification
was received).  This assumes only one train can approach until
the current train has departed.  If this assumption is not made,
another train could overcome a train waiting to receive a
notification, which itself could be lost!  Failure of any
communication related actions may lead to a deadlock (train

halts), but additional synchronization between the train and gate
eliminate the possibility of trains passing through the
intersection while the gate is open.4 It is possible to use

                                                
4 If we assume that the gate always opens and closes sooner than
the time it takes the train to reach the crossing, the PN can be
viewed as hazard free (except for the possibility of an unsafe

stochastic reward nets (and performability analyses) to associate
a cost with delays in opening the gate.

3.3 Failure Modes of the Train

In Figure 3, any transition can fail (at most one token is
allowed per place).  The PN for the gate is expanded (compared
to the train) to emphasize the various phases that occur (places
P8 and P9 as well as P11 and P12 could be combined to

eliminate transitions t6 and t9).  These markings show two

types of failure (1) critical [Mcf] and, (2) non-critical [Mnc].

Within the Mcf grouping, we've included both communication-

related and mechanically-related failures.  One additional
category is identified Mtf (tf for timing-related failure) which

can be both critical and non-critical.
Actually the  Mnc [non-critical]

category may include failure
mechanisms of all three types.  Why
should different failure mechanisms
have separate markings (or states in
the corresponding Markov state
diagram)?  In doing so, it is easier to
(1) explain failure causality for the
purpose of prevention/avoidance, (2)
ascertain their contribution to the
overall reliability of the system, and
(3) to distinguish if their
manifestation could be catastrophic.

To consider timing criticality,
note the slow firing of transitions (?a

[t5]), (Closing [t6]), and (Closed [t7]) allows the train to enter

the intersection prior to complete gate closure.  Similarly,
transitions (?d [t8]), (Opening [t9]), and (Opened [t10]) may

incorrectly allow the train to have departed and while the gate is

                                                                               
mechanical failure).  Also, failure to open the gate is not safety
critical, yet should be avoided to avoid traffic congestion.
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Figure 3.  Train crossing with a timing hazard (left) and with hazard removed (right).

Table 1. Feasible markings of the trains crossing with timing hazard (Figure 3).
Mkng 1 2 3 4 5 6 7 8 9 0 1 2 Description of marking (sate of the system)
M1 1 0 0 0 0 0 1 0 0 0 0 0 Train gone (idle state), gate open.
M2 0 1 0 0 0 0 1 0 0 0 0 0 Train in transit (i.e., in transit), gate open.
M3 0 0 1 0 1 0 1 0 0 0 0 0 Train sends approaching msg, gate open.
M4 0 0 1 0 0 0 0 1 0 0 0 0 Train approaching, msg rcvd and gate open.
M5 0 0 1 0 0 0 0 0 1 0 0 0 Train approaching, msg rcvd and gate closing
Mcf* 0 0 0 1 1 0 1 0 0 0 0 0 Train at intersect, approaching msg not rcvd!
Mtf* 0 0 0 1 0 0 0 0 1 0 0 0 Train at intersect, msg rcvd and gate closing!
M6 0 0 1 0 0 0 0 0 0 1 0 0 Train approaching, gate closed.
M7 0 0 0 1 0 0 0 0 0 1 0 0 Train passing intersection, gate closed.
M8 1 0 0 0 0 1 0 0 0 1 0 0 Train gone, depart msg sent and gate closed.
M9 1 0 0 0 0 0 0 0 0 0 1 0 Train gone, depart msg rcvd and gate closed.
M10 1 0 0 0 0 0 0 0 0 0 0 1 Train gone, depart msg rcvd, gate opening.
Mncf** 0 1 0 0 0 0 0 0 0 1 0 0 Train gone, but gate fails to open properly!
*Critical condition: Train at intersection but gate is still open  **Non-critical condition: Train departed intersection but the gate is
still closed



closed.  Missing from the PN are the corresponding places Pcf,

Ptf, and Pnc that consume the failed transition's token.  When a

transition fails (i.e., its associated action does not complete),
the token is consumed but does not fall into an operational
place.  Instead, the token causes a failure transition to fire and
the token falls into an absorbing output place.  For simplicity,
these transitions and places are omitted.

The CSP model (and the corresponding PN) can be
augmented to show how such failures should be handled.  For
example, the communication failures can be handled using
time-out and re-transmit. Figure 3-right shows synchronization
between the TRAIN and GATE will eliminate the possibility
of trains passing through the intersection while the gate is
open.  Failure to OPEN is not safety critical and is not
considered.  In Figure 3 (left-to-right), transitions t6,7 and t9,10

are combined into t7 and t10 (note the augmented CSP model:

"SAFER_RAIL_ROAD_CROSSING" shown).

3.4 Sensitivity Analysis

Using standard techniques provided by stochastic PN tools

(e.g., SPNP3,4), discrete and continuous analyses is
performed.5  The reliability of the train crossing is computed
with various failure rates and service rates (e.g., speed of the
train, gate close/open rate).  The values used in (and hence the
results of the analysis) are for illustrating the approach (i.e., no
real empirical significance can be attached to the failure rates,
MTTFs etc.). These analyses are useful in exploring different
fault-handling mechanisms and the cost-benefit of providing
fault tolerance.  The analysis techniques presented here are
generally applicable.

The sensitivity of parameters associated with the train
crossing is presented: (1) derivation of timing failure
probability, (2) cost function minimization, (3) discrete and (4)
continuous Markov reliability analysis.  The results of item 1
provide  for graphing a cost function and, via item 2, choosing
an appropriate timing that will ensure the right level of
reliability with respect to the costs.  Choosing an some
optimal timing criteria, we can integrate the timing failure
probabilities (or rates) into the overall system model (items 3
and 4).  The system model assumes any of the transitions can
fail by any of several other failure modes (i.e., mechanical and
communication, etc.)

                                                
5The classic steady-state solution method for stochastic models
that maps GSPN models to CTMCs is compared with a method
based on DTMCs in [Ciardo et al.

3.4.1 Timing Fault Probability
Analysis of failure rates (and cost
functions) requires knowledge of the
probability density functions (pdfs)
associated with the train travel time
and the gate closing time.6 Lets
assume that the pdf for the train
travel time (θ) is given by Pθ(θ),

and the pdf for the gate closing time
(η) is Pη(η).  The joint pdf of θ and

η  is Pθ,η(θ,η).  If θ and η  are

statistically independent then Pθ,η(θ,η)= Pθ(θ)Pη(η). In this

case, since both the train and gate operate independent of each
other, it can safely be assumed that their probabilities are
independent.  The failure condition occurs iff, θ < η (i.e., when
the train arrival time is less than the gate closing time).  Thus,
the probability of failure is,

   
p

failure
= p

θ, η
θ, η dθdη

θ = 0

η

η = 0

∞

.
Since θ and η are statistically independent then,

   
p

failure
= p

η
η p

θ
θ dθ

θ = 0

η

dη
η = 0

∞

,

   
p

failure
= p

η
η

η = 0

∞

⋅ F
θ

η dη (1).

Where, Fθ(η) is the probability distribution function of the

train arrival time and presents the probability that θ < η  (the
gate closing time). The same result can be obtained using
conditional probabilities. Lets assume that the gate closing
time is fixed and given as Η, then the probability of failure can
be given as

   p
failure

(Η ) = p(θ < Η | η = Η ) .

Again, if θ and η are statistically independent, then,

   p(θ < Η | η = Η ) = p(θ < Η ) = Fθ(Η )

The total probability of failure would be,
   

p(θ < η) = p
failure

= p
θ

Η F
θ

Η dΗ
Η=0

∞

, same as (1).

In a real circumstance, the pdf of θ and η  would be known
based on empirical knowledge, but this was not the case for our
train example.  Yet, lets consider some plausible analytical pdf
from the stand point of an engineer who is responsible to
procure such a system.  

Typically railroad tracks have a set speed limit that would
determine the distance from the gate at which the "close gate"
message would need to be transmitted.  This distance must be
set so as to reasonably assure that enough time will elapse for
the gate to close.  If the speed of the train was constant, then
the train arrival time will be a constant. However, there will be
some variability from one run to the next which, over a period
of say 25 years (with say five trains/day), represents a fair
amount of uncertainty.  The sources of variability (e.g.,
                                                
6Train travel time begins from when the open message i s
transmitted and ends when the train arrives at the intersection.
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Figure 4. Train pdf and failure distribution function.



prevailing winds and other weather effects, time of the day,
weight, type of load, and various human factors) can be
grouped together as "undetermined" random events.  Lets
assume that if no random events occur, then the arrival time
would be some nominal value, call it MPT (for most probable
arrival time).7  Lets also assume that the deviation around
MPT (lower case mpt to shorten equations) is not symmetrical
and the pdf of the deviation is exponential given by,

   

p(θ) =
p

e
1
β e

(θ – mpt) β(θ – mpt) β if θ < mpt

p
e

1
β e

pe mpt – θ
β 1 – pe

pe mpt – θ
β 1 – pe if θ ≥ mpt

Where pe is the probability of the train arriving earlier

than the mpt, β2 is the variance of being early.  In addition,
lets assume the pdf for the gate P(η), is similar except that
different parameter values (i.e., different pe, β, and mpt) are

used.  Figure 4 shows the pdf for the train travel time for
mpt=40, β=4, and pe=0.1 (area under the curve for mpt<θ<∞
is 0.9 while the total area under the curve is 1.0) and the
probability distribution of θ (Fθ(Θ) )is shown.  Where Fθ(Θ) is

the probability of train travel time being less than Θ. Figure 5
shows the joint pdf of θ and η.   Note that the probability of
failure is the volume under that part of the surface where θ < η.
This is shown by cutting the surface in Figure 5 with plane P.
The p(θ<η) is the volume under the surface in the foreground
this side of P.

3.4.2 Cost Function
A cost function is useful for finding optimal values of design
parameters.  The function itself relates a cost to some tangible
property of the system (e.g., time, reliability, failures, etc.). In

                                                
7The time taken by the train to pass by the intersection (once it
has arrived) is ignored since that is dependent on the length of the
train and is independent from the design parameters for the Train
Crossing.

general, calculating the probability of failure is useful in
understanding the balance between reliability and the cost of
failure.  The cost function should be defined with parameters
that can be measured and/or altered to minimize the potential
losses (or costs).  For example, more elaborate fault-handling
and fault-recovery mechanisms could be used to tolerate or
prevent safety critical failures, while less attention may be paid
to non-safety critical failures.  Failure to open the gate may
cause long delays for waiting traffic but such failures can be
handled by providing less expensive mechanisms that may, for
instance, allow the gate to be opened manually.  Conversely,
failure to close the gate is more severe, so the benefit of using
more elaborate mechanisms (e.g., increased redundancy, testing,
and verification) is worth the expense to ensure the system uses
an inherently more reliable design.

Lets assume a simplified cost function with only 3
components, the cost of delaying traffic, the cost of improving
the gate reliability or speed, and the cost of a failure.  The cost
function is,

   
Q = ωp failure + φ θpθ θ dθ + ν

0

∞

                 (2)

where ω = cost of failure, φ = cost of delay/time units, ν =
cost of the gate / train passing and, the

   
average train travel time = θp

θ
θ dθ

0

∞

.     (3)

The delay is defined from the time the gate receives the arriving
message until the train arrives at the intersection.  We did not
consider the gate opening time and the train length (i.e.,
assume a train length of zero).  Notice that this amount of time
only depends on the train parameters.  Equation 4 shows the
gate cost per run as a function of the gmpt (gate most probable
closing time):

   
ν(gmpt) =

40 –gmpt 4 + 20,000

100
.     (4)

There is an initial cost associated with installing the gate
(20,000 cost units) and gate cost rises as gate speed increases.
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The denominator's value of 100 is the number of times that the
gate operates before failing (a hypothetical equation for
demonstration purpose and is not based on empirical
knowledge). The total system cost function is
multidimensional.  It incorporates all of the parameters of the
system (mpt, gmpt, β, βg, pe, peg [g subscript stands for gate

parameters]).  In practice, a subset of the parameters should be
selected by the designer in such a way, so as to minimize the
overall  operating cost.  Figure 6 is a 3-D plot of the cost as a
function of mpt and gmpt. All other parameters are assumed to
be fixed known values. Using this function a designer can
minimize the cost by selecting the right values of mpt and/or
gmpt.  For example, if the gate's closing time was fixed at 30
time units, then the optimal train arrival time is around 52
time units.  Knowing the optimal train arrival time and speed,
easily gives the distance when to send the open gate request.

For smaller values of mpt and larger values of gmpt the
cost is mostly influenced by the cost of failure (mpt = 30 and
gmpt = 30).  For small values of gmpt (such as gmpt = 10) the
cost is mostly influenced by both the cost associated with
delaying traffic (i.e., delay cost increases as the train travel time
increases) and the cost to build a gate that can close faster.
Choosing both mpt and gmpt would give the an optimal mpt
≅ 45 and gmpt ≅ 25 (values are exaggerated to make the
variations of the cost function more visible).

3.4.3 Discrete Analysis
Table 2 presents the probability assignments for the train
crossing ignoring deadline related failures (i.e., Ptf=0).  Four

trials were run with differing failure probabilities (where Pc=

communication failure, Pm= mechanical failure).  In all runs

Pm > Pc, and in order to reduce the probability of critical

failure in runs 2-4, we set Pm(close) > Pm(open) by the factors

of 100, 3 and 5 respectively.

Hypothetically, such reliability improvements are possible
using fault-tolerant methods.  Consequently, the probability of
critical failures (Pcf) are reduced by the factors of 17.573, 1.975

and 2.974 respectively.  Such analyses showing the magnitude
of improvement associated with a given design (or model)
option may be useful for deciding what level of fault tolerance
is appropriate. Note, Pncf is the non-critical failure probability

and the MTTF is given in the number of discrete steps (or time
units).

3.4.4 Continuous Analysis
The CTMC results are based on the markings of Table 1.
States represented by the markings M1, M2, M6, and M7 are

safe because these states are transient and do not (directly) give
rise to failures (do not transition to absorbing states).  The
mechanical (λm), communication (λc) and timing (τ) failure

rates are shown associated with their transition arcs.  The trade-
off between the rate of train arrivals (µ1), speed of the train

(µ3), rate of the gate mechanism (µ6, µ9) and the failure rates

were investigated.  

The unreliability of communications do not significantly
impact the MTTFs because the failure rates are much less than
the mechanical failure rates (i.e., λm = 0.0001 > λc =

0.0000001).  Mechanical failures and the possibility of the gate
not closing (opening) in time are assumed to be greater
contributors to the unreliability of the system.  In looking at
the data (input parameters and the results Figure 7) an
interesting relation is evident.  Observe that, if the train's speed
tends to bring it to the intersection sooner than the gate has had
time to close, then an improvement in the gate's mechanical
reliability does not help.  To improve the overall system's
reliability it is more important to provide the additional
synchronization between the train and gate processes as
described in paragraph 3.1, so as to avoid the possibility of
having the gate miss its deadline (τ5).

It is important to see how the least reliable entity impacts
the overall reliability.  In Figure 7, there are incremental
improvements seen in Rel[10,000] (the reliability of the

system at 10,000 time units) from 10-40 to 10-5 (see how τ5

has been manipulated in runs 1 - 3), but by run 4, a point of
diminishing return is reached.  The next most significant gain
in system reliability comes when the gate's failure rate is
improved by a factor of ten (compare run 6 and 7 in the graph).
The MTTF has improved by 6 times while the corresponding

system reliability changes from ~2.6x10-5 to ~3.3x10-1!

4. SUMMARY AND FUTURE WORK

This paper describes an approach to developing CSP models
that are translated into SPNs for the purpose of reliability and
performance analyses.  Such translations give insight into
failure modes and fault/failure handling mechanisms that can be
carried back and prescribed as a part of the CSP model.  This
approach provides feedback to guide the specifier in further
refinements. Such guidance can help to avoid certain errors  and
evaluate the costs of providing certain features and/or structures
for fault-avoidance and/or fault-tolerance.  This approach is
illustrated using an example that considered three different
failure mechanisms (communication, mechanical, and timing
failures). These failure types were further classified as safety
critical or not.  The failure rates used in this example (hence
the results of the analysis) are for illustrating the approach, no
other significance should be attached.

The CSP-based models are automatically translated into
Petri nets (PNs) using the CSPN tool developed by the author
and his students.  CSPN uses a set of algorithms which codify
the canonical CSP-to-PN translations rules based on the CSP
grammar discussed in paragraph 2.3 (also see [Kavi et al. 96,
95, 94]).  A CSP-based model transformed into a Petri net can

Table 2. Discrete analysis (Ptf=0).

Description Run 1 Run 2 Run 3 Run 4

Pc .0001 .00001 .0001 .00001

Pm(close) .01 .00001 .01 .001

Pm(open) .01 .001 .03 .005

Results from DTMC-based analysis:
Pcf 0.5026 0.0286 0.2544 0.1690

Pncf 0.4974 0.9714 0.7456 0.8310

MTTF 490.26 9524.07 248.19 1656.21



be more conveniently characterized in terms of time critical
behavior using off-the-shelf SPN tools for Markov reward
analysis.  The results can be related back to the original model
and used as a basis for refining the model in light of prior runs.
CSPN is being extended into a Prototype Open Toolkit for
composing and analyzing models of software and systems so-
called DUO. This environment will more easily facilitate the
modeling process and support the analyst with regard to the
model’s sensitivity to different parameter values and structures.
Some additional features also include a (portable) graphical user
interface, translation of Promela-based models into SPNs
(using the C-based Stochastic Petri net Language [CSPL] as a
Meta language).  This idea is conveyed by Figure 8 [Allmaier
97].
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*Time  unit s: each ti ck on th e x-axis is 1 000 tus.  Assume a t u is a second t hen
  the re are  ~1 6 mins/ ti ck, and 10,000  ti cks ( ful l range of  data)  are ~2 778 hrs.

**Constants: µ1= 0.0001,  µ2-4, 7, 8= 1.0,  µ9, 10= 1.0,  while
    µ5 and µ6 = were held set at 0.1 and 0.01 respectively.
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Figure 7. System reliability as a function of operational time.
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