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Figure 1. Ontologies organize heterogeneous data.
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ABSTRACT
Developing a knowledge-sharing capability across
distributed heterogeneous data sources remains a
significant challenge. Ontology-based approaches show
promise by resolving heterogeneity, if the participating
data owners agree to use a common ontology (i.e., a set of
common attributes).  Such common ontologies offer the
capability to work with distributed data as if it were
located in a central repository. This knowledge sharing
may be achieved by determining the intersection of similar
concepts from across various heterogeneous systems.
However, if information is sought from a subset of the data
sources, there may be concepts common to the subset that
are not included in the full common ontology, and
therefore are unavailable for knowledge sharing.

We offer a novel ontology-based software agent
approach that provides flexible and dynamic fusion of data
across any combination of the participating data sources to
maximize knowledge sharing.  The software agents
generate the largest intersection of shared data across any
selected subset. This approach maximizes knowledge
sharing by dynamically generating common ontologies
over the data sources of interest. Data provided by five
national laboratories was used to validate this approach by
defining a local ontology for each. In this experiment, the
ontologies are used to specify how to format the data using
XML to make it suitable for query. Consequently, software
agents provide the ability to dynamically form local
ontologies from the data sources. In this way, the cost of
developing these ontologies is reduced while providing the
broadest possible access to available data sources.
Keywords:  Heterogeneous data merging, minimal
ontological commitment, data coherence using ontologies.

1 INTRODUCTION
The Department of Energy (DOE) manages the US
national laboratory system, each of which has evolved a
variety of business models for managing research
proposals over the past six decades.  Because of the
historical nature of these evolutions, both the business
models, and their associated (heterogeneous) data
collections, are deeply rooted.  A system was needed that
could merge data from the heterogeneous systems as if the
data were gathered and stored in a centralized repository.

For example (as shown in Figure 1 upper left hand
corner), each lab within DOE has a slightly different way
to collect research proposal data.  Each collection and its
corresponding ontology is based on a unique business

model.  Moving to a single common ontology to resolve
data heterogeneity across all laboratories will result in an
intersection of all data concepts. Unfortunately, only
common concepts are retained. Moreover, if two or more
labs have a concept that is not common, then (potentially)
valuable information is not being represented. In this case,
a common ontology that results in loss of such data has an
unacceptable impact on the associated business models.

Figure 2 gives a simple example of how concepts can
be lost in a common ontology. Consider three data sets
labeled A, B, and C each of which contain three concepts,
Lab Name, PI Name, and one other that is not common.
Lets examine the merged data from data sets A and B. The
first two concepts match across all three but the third
concept is lost. This is unfortunate because we are
concerned only about data from sets A and B (see Figure 2
right lower corner).  A better method is needed that would
alleviate this unfortunate problem.

In this case, the new approach needs to add Duration
to the ontology when only data sets A and B are being
considered. If this is possible, then full visibility of all data
across all combinations all participating data sets could be
accomplished with a series of merged ontologies. The
ontologies are merged in a way that provides for each
possible combination of source data concepts, as compared
to a single common ontology. On the other hand, there are
a large number of possible combinations a user may
choose potentially generating a huge number of ontology
combinations. Current ontological approaches for merging
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Figure 2 Example of commons and subset ontologies.

heterogeneous data sets have been successful, but require
all data owners to participate in building a single common
view.  For this reason, a large number of possible data set
combinations ontologies for every possibility cannot be
“pre-built.”  Instead, we used software agents to build the
desired ontology combination on-the-fly for each user-
generated merge and query/search operation (as shown in
Figure 1 bottom half). In this fashion only relevant merges
are implemented, avoiding the need to generate all possible
combinations while satisfying the possibility for merges
that consider all possible combinations (including the
intersection of every data set).

2 BACKGROUND
The computer science use of the term “ontology” has
undergone some evolution since it was borrowed from
philosophy by John McCarthy in the late 1970s, and today,
as a subject area, it is normally taken as nearly
synonymous with knowledge engineering in AI,
conceptual modeling in databases, and domain modeling in
Object-oriented design. In light of this shift in meaning, it
is important to maintain that “ontology” is not simply a
new word for something computer scientists have been
doing for 20–30 years; ontology is hundreds, if not
thousands, of years old, and there are many lessons learned
in those centuries that we may borrow from philosophy
along with the term [8]. Ontologies provide a natural,
declarative way of identifying concepts and terms. If two
agents agree on the upper nodes of a taxonomy, they can
jointly traverse the taxonomy until they find the location of
a newly introduced concept [9]. Thus, they can build a
shared understanding of their content language. It is this
fact that makes interesting [6]. Ontologies have proven to
be a useful tool for data integration across heterogeneous
data sets.

In effect, an ontology specifies a vocabulary that is
used to discuss a problem domain. For example, an
ontology for baseball would include terms such as ball,
bat, glove, strike, foul, etc.  But it is not so much what
terms are used, but what those terms mean that reaches to
the core of how ontologies are used.  For example,
changing the language of an ontology from English to
French changes the terms used, but does not change the

concepts specified by the terms [1].  Gruber sums this up
well when he describes an ontology as an “explicit
specification of a conceptualization”[2].

In several revisions from 1993 to 1995, Gruber
represents a foundational set of design criteria to guide the
development of ontologies in support of knowledge
sharing activities.  Gruber applies formal engineering
discipline to ontology design using a core set of five
design criteria as follows.  The ontology should provide
clarity in defining terms and coherence by being logically
consistent.  It should provide extendibility to allow
expansion without affecting existing definitions, and
should have minimal encoding bias so that the notation
used to describe a concept does not restrict alternative
ways to understand the concept.  Finally, an ontology
should have Minimal ontological commitment, meaning
that the description of concepts should be as loose as
possible to permit flexible use of the described concepts.
These seminal design criteria form the basis for a series of
ontological studies.

Recently in this series, Holsapple and Joshi [3] adopt
Gruber’s view and give a taxonomy of five approaches to
Gruber’s ontology design criteria.  First lets consider the
inspirational approach. In this case, an individual uses
their own insights and viewpoint to develop an ontology of
the domain that is then (hopefully) adopted by other users.
The inductive approach builds an ontology based on a
specific (set of) case(s) within the domain and is refined by
evolving toward a more generalized ontology. The
seductive approach moves in the opposite direction,
beginning with an ontology built upon general principles
of the domain and evolving toward fulfilling specific
cases.  The synthetic approach is a combination of existing
ontologies into a single all-encompassing ontology that
describes the combined domain.  Finally, in the
collaborative approach, a team of individuals incorporates
aspects of the other approaches to build an ontology using
the combined viewpoints and (possibly) using existing
ontologies as an anchor.  Holsapple and Joshi find the
collaborative approach the most useful for their problem,
and present a case study using it.

These various ontology based approaches, from
Gruber to Holsapple and Joshi, provide methods to
discover the homogeneity that may be found among
heterogeneous data sets, and from that, build a common
ontology.  However, these approaches assume that
participants are capable of migrating their data to a new
ontology; this was not the case in our problem. The varied
data collections within DOE are tightly coupled to their
associated business processes.  So much so, that it became
unclear whether the business model drives the data or the
data drives the business model.  Migrating the data to a
common ontology would necessitate a prohibitively
expensive change to long and well-established business
models.  Thus, these powerful approaches are not suited to
our problem without a variation from previously seen
ontology-based data fusion.
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Figure 3 Software agents used to build ontologies.

3 APPROACH
Given the aforementioned ontological approaches to data
merging we decided that the power of these tools showed
great promise.  Current ontological approaches to the
merging of heterogeneous data have been successful, but
require the owners of the data to participate in the adoption
of a single common ontology.  In our case, we cannot go to
a single, all encompassing, common ontology because of
the importance of concepts occurring in most, but not all
data sources. The solution to this would be to build a series
of ontologies for all possible combinations of the
underlying data sets. However, in our case this is an
intractable problem and we decided to explore the
possibility of using software agents to perform the
ontology building tasks automatically.

Foundational to our approach is the use of the
Extensible Markup Language (XML) as the mechanism
for capturing data [7].  Each laboratory has a different
mechanism for capturing data, from databases, to
spreadsheets, to ad hoc text files and various combinations.
Using a series of specialized software tools, the various
data formats are converted into XML.  XML provided an
efficient mechanism to bring the distributed and
heterogeneous data formats into a powerful, flexible, and
common format for providing a standard ontology-to-
software agent interface [4]. Consequently abstracting
unnecessary details from the underlying datasets proves to
be a sufficiently rich environment for the software agents
to perform the merging of ontologies.

A system coordinator was developed to provide
software agents the ability to understand the various data
sets and enable the agents to merge ontologies.  While
formal ontologies have a great many strengths, one potent
drawback is the learning curve associated with using them.
In our problem, the data owners who understood the data
did not have the time for such a learning curve. To address
this conflict, we devised a simple system that specifies
data concepts by defining the equivalence relations
between a data owner’s local data concepts and other
participating data concepts. Our technique works in the
same way that the concept for “table” can be specified by
showing equivalence to an already understood concept of
the Spanish word “mesa,” and/or the French word
“tableau,” and/or the Italian word “tavolo,” Although
intentionally informal in its execution, the specification of
the data concepts by their relationships meets Gruber’s
definition of an ontology.

For example, as shown in Figure 3, the first data set,
Data Owner A provides a simple list of data elements.  In a
parallel column the list of elements is repeated.  The first
column is labeled Local Data Concept List; the second
column is labeled Master Data Concept List. Together
they represent a simple ontology, i.e., a specification of the
data concepts represented by a mapping from the Local
Data Concept List to the Master Data Concept List.  Next
we incorporate data from Data Owner B where data
owners A and B know each other’s data.  This is the case
across most of the DOE system; most data owners know
their data as well as its relationship to a small number of
the other data systems. This knowledge context provided
the basis for constructing composite ontologies (i.e.,
master data concept).

For the second data set, Data Owner B looked at Data
Owner A’s ontology mapping.  Data Owner B could then
provide us the knowledge needed to build a new ontology
mapping, mapping B’s data to the Master Data Concept
List. Each data concept in a local data list was mapped to
the same concept in the Master Data Concept List. If Data
Owner B had data that was not in the Master Data Concept
List, a new entry was added to the Master Data Concept
List.  Conversely, if a data concept in the Master Data
Concept List was not present in the local ontology then
there was no mapping established from his Local Data
Concept List to the Master Data Concept List.  In the end,
the system consists of three elements: (1) Master Data
Concept List, (2) Local Data Concept List to Master Data
Concept List Ontology for Data Set A, and (3) Local Data
Concept List to Master Data Concept List Ontology for
Data Set B.

This process continues for each new data set.  Each
new data owner uses the previous work to help determine
their ontology as a specification of the mapping from their
Local Data Concepts List to the Master Data Concepts
List.  Questions pertaining to proper mappings are resolved
(through discussion) between the new data owner and the
data owner that previously added the data concept to the
Master Data Concepts List.

Thus, in this process, the Master Data Concepts List is
a union of the data concepts across all participating data
sets, and a given data set’s ontology is a mapping
specifying the relationships between the intersection of
that data set’s local data concepts and the master data
concepts.  Relationships among a selection of the local
data sets’ ontologies can be determined using the Master
Data Concepts List as a point of common reference.  It is
interesting to note that there is no centralized ontology for
the entire system.  Instead, it is distributed across the
ontology mappings of the individual data sets and the
Master Data Concepts List.  For example, Data Set A’s “PI
Name” specifies the same concept as Data Set B’s “Project
Lead” but this cannot be directly determined at one
centralized point; rather it is determined via the data set
ontologies and the Master Data Concepts List.  Software
agents use this distributed ontology to provide the
functionality of a centralized ontology and the ability to be
flexible in meeting the varied needs of the users.
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As described above, we applied this approach on data
from five national laboratories. These laboratories are very
large and present massive data sets across a diverse set of
repositories (e.g., databases, spreadsheets, and simple
ASSCI files, etc.). We manually created the local
ontologies, and used these ontologies to create XML
representations of the data at the laboratories. From this
base, we then applied our approach to building dynamic
on-the-fly ontologies using agents.

4 AGENT ONTOLOGIES
For each data set, we establish a Data Agent that is
assigned the responsibility of knowing how to retrieve data
from the underlying data repository as well as present the
data to the overall system for merging.  The data agent
uses the ontology that was built by the data owner for that
local data set. That ontology mapping allows the data
agent to act in a bilingual manner, that is, to understanding
both the local and master concepts.  Based on the master
data concepts side of the ontology, the agent understands
the language of the agent community; based on the local
data concepts side of the ontology, he understands how to
retrieve his local data; and based on the mapping between
the two sides of the ontology, he understands how to
translate between them.

A Data Integration Agent is the final piece of the
system that builds merged ontologies, on-the-fly,
according to a user’s desires.  The Data Integration Agent
directs and coordinates the activities of the data agents in
the system’s software agent community. The Data
Integration Agent is also responsible for accepting requests
from a Graphical User Interface (GUI) Agent, another
important type of bilingual agent, responsible for
translating user requests into the language of the software
agent community, and then translating the results into a
visualization useful to the user. The Data Integration Agent
distributes the GUI Agent’s requests to the appropriate
data agents, merges the results from the data agents, and
passes the merged data back to the GUI Agent for
visualization as shown in Figure 4.

Because this is a software agent community, the
modules of the system, in the form of software agents, are
very loosely coupled. This is true (first) because each
agent can be built in any manner, irrespective of the other
agents but compliant to the agent community’s web-based
interface.  Second, the agents may be geographically
separated, operating from any accessible point on the web.
Third, there is fault tolerance in the system because the
system will continue to function if some data agents are
unavailable.  A missing agent obviously cannot contribute
data to a solution, but will not prevent a solution from
being created. Fourth, there may be multiple GUI agents to
meet a variety of preferences from the user community.
Clearly, the agents and ontology approach provides an
eloquent efficient and extensible solution.

4.1 Agents Build a Common Ontology

When a user of the system first brings up the GUI, the GUI
Agent asks the Data Integration Agent for a list of

available data sets, that is, a list of available data agents.
The Data Integration Agent then checks the list of data
agents that are registered, and verifies the availability of
each.  This agent then reports the availability to the GUI
Agent, who displays the available data sources to the user.
The user then selects the desired data sources and the
software agents dynamically create a merged ontology for
the selected data sources.

To create this merged ontology, the Data Integration
Agent sequentially distributes the Master Data Concepts
List to the data agents chosen by the user.  The first data
agent compares this concept list to his local ontology, and
deletes from this list the data concepts that are not found
(i.e., the data concepts that are not in the local ontology).
The data agents then hands the reduced data concept list
back to the Data Integration Agent who then passes the
reduced list to the next data agent selected by the user.
This process continues for each of the user-selected agents
until all have seen the list.

The trimmed data concepts list resulting from this
process is the intersection of the data concepts captured
within the participating systems.  Note how this process is
the reverse of the way the Master Data Concepts List was
originally generated.  In building the Master Data
Concepts List, the data owners each added concepts from
their local data sets that are new concepts to the Master
Data Concepts List.  Here, the data agents remove data
concepts that are not part of their local ontology from a
copy of the Master Data Concepts List.

The final reduced data concepts list, in conjunction
with each participating data agent’s ontology, constitutes a
shared ontology across the participating data sets. This
ontology is dynamically generated based on a request from
a user, and is evaluated against the latest information from
each local data source. Participating agents can each
understand and provide information about all the data
concepts that are shared across the participating systems,
which significantly increase the capability of current
ontologies.  Moreover, the full system addresses Gruber’s
five ontology design criteria.  Using relationships to
specify concepts provides C l a r i t y  and Coherence.
Extendibility has been shown in the process by adding new
data sets.  And the succinct specification renders Minimal
Encoding Bias and Minimal Ontological Commitment.
This process could also be thought of as the software agent
version of Holsapple and Joshi’s collaborative approach to
ontology design, producing results in much the same way a
group of collaborating humans would have done, but
significantly faster, and with far greater accuracy.

4.2 Querying Over Merged Data

The GUI offers the human user an interface to specify a
query over distributed data as if it were collected in one
location under a single schema.  Our version of the GUI
was designed to provide the user with rich query
capabilities to permit users the capability to specify right
down to the data fields of interest (as in an SQL select)
and, at the same time, permitting constraints on data field
values (as in an SQL where).
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Figure 4. Agents used to integrate various ontologies

Queries are passed to the Data Integration Agent who
partition the query out to the selected set of data agents.
Agents are then responsible to fulfill the query over their
local data set.  The underlying XML data set may be stored
in any manner usable by the data agent.  Each data agent
uses the local ontology mapping to convert the query
request from the Data Integration Agent into a format
usable against the respective data set.  The answer to the
query is then translated back into the format used by the
software agent community and returned to the Data
Integration Agent. For example, from Figure 3 a general
search for a PI Name of “smith” would be translated to a
search over a Project Lead with the name “smith” within
System B. Both the query and the response are provided in
XML format.  The XML format enables the Data
Integration Agent to assemble the individual responses
from the data agents.  The data integration agent then
passes the assembled query response back to the GUI
agent for presentation to the user.

5 RESULTS
After completing the system design, five data owners were
engaged by participating in a prototype demonstration.
This selection was of sufficient size to test our approach;
five data sets producing (25-1) or 31 possible combinations
of merged data sets over which a user might wish to query
[5].  This number is too large for the data owners to build
all 31 possible ontologies, yet large enough to test the
strength of our software agent enabled ontology-building
approach.

The data owners were enthusiastic about the potential
solution yet skeptical about using software agents.  All
prior efforts with the same goal were unsuccessful.  These
data owners are extremely busy; they could only give
small amounts of time to help validate our approach. Yet,
the approach proceeded better than expected.  It took more
time to explain the approach to the data owners than to
actually incorporate their data.  Some data took longer than
others to incorporate (i.e., define in terms of a compliant
ontology) because of varied native formats, but none of the
data took more than a couple of days.

The system performed seemlessly.  Acquisition times
for query results were negligible, with network latency

being the bottleneck.  Delays were similar to downloading
a web page of typical complexity, well within most typical
users’ tolerances for delay.  The sponsor deemed the
prototype a success. Due to the success of the prototype,
the DOE decided to implement the system across all of its
installations, estimating a cost savings of $39 million per
year. Consequently, the DOE has now begun the process
of building a production system based on our prototype.

6 CONCLUSIONS
Ontology based merging of data has proven to be a viable
technology in a great many instances, but not all problem
domains yield to these techniques.  We have described a
problem domain where data owners have data that they
wish to share, but they cannot move to a single common
ontology because of the potential loss of information
(incoherency). One inadequate approach uses a series of
ontologies for all possible (i.e., brut-force) combinations of
data, but is computationally expensive.

Using our approach we have demonstrated the use of
software agents to dynamically create merged ontologies,
which significantly reduce the cost of developing brut-
force ontologies, while providing the broadest access to
distributed information. These ontologies meet the
requirements stated by Gruber and others producing a
shared ontology across the participating data sets. In this
approach, ontologies are dynamically generated based on a
user request that is evaluated against the latest ontological
information from each local data source. Participating
agents can each understand and provide information about
all the data concepts that are shared across the participating
systems, which significantly increases the capability of
current (i.e., latest agent derived) ontologies.  The
implementation of this approach produced significant
financial benefit, and will see broad deployment in the
near future.

One idea that kept occurring as each new data set was
added was the automation of ontology production.  The
idea would be that software would make an initial draft of
a new data set’s ontology.  The time required to generate a
final draft of the ontology would then be reduced,
requiring only a final editing and/or verification by the
data owner.  We envision building ontologies by using
clustering techniques; new data concepts would naturally
cluster close to matching data concepts that already exist.
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