
Chapter in “Component-based Software Quality: Methods and Techniques," A book edited by Alejandra Cechich, Mario Piattini, and
Antonio Vallecillo (October 2002).

1

Assessment of High Integrity Software Components for
Completeness, Consistency, Fault-Tolerance, and Reliability

Hye Yeon Kim, Kshamta Jerath and Frederick Sheldon 1

Software Engineering for Dependable Systems Laboratory

Abstract
The use of formal model based (FMB) methods to evaluate the quality of the components is an
important research area. Except for a growing number of exceptions, FMB methods are still not
really used in practice. This chapter presents two case studies that illustrate the value of FMB
approaches for developing and evaluating component-based software. In the first study, Z (or Z)
and Statecharts are used to evaluate (a priori) the software requirement specification of a
Guidance Control System for completeness, consistency and fault-tolerance. The second study
evaluates (post-priori) the reliability of a complex vehicle system using Stochastic Activity
Networks (SANs). The FMB framework presented here provides further evidence that such
methods can indeed be useful by showing how these two different industrial strength systems
were assessed and the results. Clearly, future investigations of this nature will help to convince
software system developers using component based approaches that such FMB methods should
be considered as a valuable tool toward improving the software product lifecycle (quality,
schedule and cost).

1. Introduction
To manage increasing complexity and maximize code reuse, the software engineering community
has, in recent years, put considerable effort into the design and development of component-based
software development systems and methodologies (Cox & Song, 2001). The concept of building
software from existing components arose by analogy with the way that hardware is now designed
and built, using cheap, reliable standard “off-the-shelf” modules. Therefore, the success of
component based software technology is dependent on the fact that the effort needed to build
component based software systems can be significantly decreased compared to traditional custom
software development. Consequently, component producers have to ensure that their commercial
components possess trusted quality (Wallin, 2002). To achieve a predictable, repeatable process
for engineering high-quality component based software systems, it is clear that quality must be
introduced and evaluated at the earliest phases of the life cycle.

Developing component-based software (CBS) systems is facilitated by component
reusability. The development process for CBS is very similar to the conventional software
development process. In CBS development, however, the requirements specification is examined
for possible composition from existing components rather than direct construction. The
components can be functional units, a service provider (i.e., application programs, Web-based
agent or enterprise system (Griss & Pour, 2001)), or components of an application ranging in size

1Kim (hyekim@samsung.com [+82-11-9740-8012]) is a researcher at Network T/F, Bluetooth Research Group (Samsung Electro-
Mechanics, HQ [314, Meatan-3Dong, Paldal-Gu, Suwon, Kyounggi-Do, South Korea, 442-743]), Jerath (kjerath@eecs.wsu.edu [+01-
509-335-1789]) is a Ph.D. student at Washington State University (Sch. of EECS [PO Box 642752, Pullman, WA 99164-2752 USA]),
and Sheldon (sheldon@acm.org [+01-865-576-1339]) is a research staff member at Oak Ridge National Laboratory (ORNL,
Computational Science and Engineering Div., Applied Software Engineering Research Group [PO Box 2008, Oak Ridge, TN 37831-
6363 USA]) and director of the SEDS (Software Engineering for Dependable Systems) Laboratory which he founded while a
professor at WSU. The authors wish to thank Dr. Tom Potok (potokte@ornl.gov), who is the Applied Software Engineering
Laboratory Group Lead at ORNL, and Dr. Stefan Greiner at DaimlerChrysler (RIC/AS) for their help and critique. Also, Kelly
Hayhurst, who is a research scientist at NASA Langley, working in the area of design correctness and certification, provided
immeasurable, crucial and essential, support with respect to the GCS Requirements Specification. Her help and encouragement is
deeply appreciated.

2

from a subsystem to a single object2. To ensure the quality of the final product, assessment of
such components is obligatory. Some form of component qualification at the earliest possible
phase of system development is therefore necessary to avoid problems in the latter phases and
reduce life-cycle costs.

Evaluation of the software system must take into consideration how the components behave,
communicate, interact and coordinate with each other (Clements, Bass, Kazman, & Abowd,
1995). Reliability, a vital attribute of the broader quality concept, is defined as the degree to
which a software system both satisfies its requirements and delivers usable services (Glass, 1979).
Quality software, in addition to being reliable, is also robust (and fault tolerant), complete,
consistent, efficient, maintainable, extensible, portable, and understandable.

In this chapter, we discuss how one can evaluate the quality of the components using formal
model based (FMB) methods (e.g., Z, Statecharts, and Stochastic Activity Networks). We present
a FMB framework for assessing component properties like completeness and consistency of
requirement specifications using Z and Statecharts; and approaches for verifying properties like
reliability using two different stochastic modeling formalisms. Two case studies are discussed in
this context based on both a mission critical (guidance control) software requirements
specification and a vehicular system with various interacting components (possibly) provided by
different vendors. The assessment of quality (i.e., reliability) for elements such as anti-lock
brakes, steer-by-wire and traction control are considered based on empirical data. Naturally, a
single example showing the complete process would be ideal. However, our group had two
different projects (one with NASA and the second with a road vehicle manufacturer). Although
different applications dealing with slightly different artifacts, there are convenient similarities
(i.e., comparable properties) in their application domain: embedded real-time command and
control responsive systems. These different but similar systems understandably interrelate and it
is hoped that the reader can bridge the difference.

2. Background
Component-based software development (CBSD) approaches are based on developing software
systems by selecting appropriate off-the-shelf components and then to assemble them using well-
defined software architecture3. CBSD can significantly reduce development cost and time-to-
market, and improve maintainability, reliability and overall quality of software systems.
However, quality assurance technologies for CBS must address two inseparable questions: 1)
How to certify quality of a component? 2) How to certify quality of software systems based on
components? (Our case studies focus on this aspect) To answer these questions, models should be
developed to define the overall quality control of components and systems; metrics should be
found to measure the size, complexity, reusability and reliability of components and systems; and
tools should be selected to test the existing components and resulting system(s). Component
requirements analysis is the process of discovering, understanding, documenting, validating and
managing the requirements for a component.

Hamlet et. al., address the first question for quality assurance technologies listed above:
Namely, how to certify the quality of a component? They present a (basic | fundamental) theory
of software system reliability based on components. The theory describes how component
developers can design and test their components to produce measurements that are later used by
system designers to calculate composite system reliability (i.e., without having to implement and
test the system being developed). Their work describes how to make component measurements

2A software component is a unit of composition with contractually specified interface and explicit context dependencies only. It can be
deployed independently and is subject to composition by third parties. The most important characteristic is the separation of the
component interface from its implementation.
3 The software architecture of a program or computing system is the structure(s) of the system that comprise the software components,
the externally visible properties of those components and the relationship among them.

3

independent of operational profiles, and how to incorporate the overall system-level operational
profile into the system reliability calculations. In principle, their theory resolves the central
problem of assessing a component. Essentially, a component developer cannot know how the
component will be used and so cannot certify it for an arbitrary use; but if the component buyer
must certify each component before using it, component-based development loses much of its
appeal. This dilemma is resolved if the component developer does the certification and provides
the results in such a way that the component buyer can factor in the usage information later,
without having to repeat the certification (Hamlet, Mason, & Woit, 2001).

Another natural reason for CBSD is the drive to shorten the SD lifecycle, which motivates the
integration of commercial off-the-shelf (COTS) components for rapid software development. To
ensure high reliability using software components as their building blocks, dependable
components must be deployed to meet the reliability requirements. The process involves
assembling components together, determining the interactions among the integrated components,
and taking the software architecture into consideration. Black-box based approaches may not be
appropriate for estimating the reliability of such systems, as it may be necessary to investigate the
system architecture, the testing strategies, as well as the separate component reliabilities. In (Lo,
Kuo, Lyu, & Huang, 2002) the authors assume components are independent and can be viewed as
composed of logically individual components that can be implemented and tested independently.
In addition, transfer of control among software components follows a Markov process4. Sherif,
Bojan, & Hany (1999), propose a similar analysis technique for distributed software systems. The
technique is based on scenarios that are modeled as sequence diagrams. Using scenarios, the
authors construct Component-Dependency Graphs (CDG) for reliability analysis of component-
based systems.

The growing reliance on COTS components for developing large-scale projects comes with a
price. Large-scale component reuse leads to savings in development resources, but not without
having to deal with integration difficulties, performance constraints, and incompatibility of
components from multiple vendors. Relying on COTS components also increases the system's
vulnerability to risks arising from third-party development, which can adversely affect the quality
of the system, as well as causing expenses not incurred in traditional software development. The
authors of (Sedigh-Ali & Paul, 2001) introduce metrics to accurately quantify factors contributing
to the overall quality of a component-based system, guiding quality and risk management by
identifying and eliminating sources of risk.

An artifact or component is fit-for-purpose if it manifests the required behavior(s) in the
intended context(s), while the same is true for the composed system. The therefore is fit-for-
purpose and consists of some number of artifacts in some context. Furthermore, we need to know
the quality of the whole system. It doesn't make any sense to talk about the quality of a single
artifact as a stand-alone entity, independent of any particular context. There is no absolute
(context-free) measure of quality. However (see Veryard, 1997), under some special
circumstances, it is possible to carry out a completely definitive test to demonstrate that a given
artifact completely satisfies a given (formal) specification. Still, this does not prove that the
artifact actually meets the users stated or implied needs. A requirements statement describes what
an object must satisfy when used for a given purpose, in a given context (i.e., the actual
requirements). When developing an object for reuse, however, the developer usually does not
have access to the complete set of concrete requirements. Instead, the developer attempts to build
reusable objects by working against a generalized statement of requirements that hopefully covers
a reasonable range of actual requirements.

4 The next transfer of control to be executed is independent of the past history and depends only on the present component.

4

2.1 Assessing requirement specifications using Z and Statecharts

As is well known, CBS development begins by specifying the requirements like any other
software development effort. The Software Requirements Specification (SRS) describes what the
software must do. Naturally, the SRS takes the core role as the descriptive documentation at every
phase of the life-cycle. Therefore, it is necessary to ensure the SRS contain correct and complete
information for the system. For that reason, employing a verification technique is necessary for
the specification to provide some support of prototyping, correctness proofs, elaboration of test
data, and failure detection. To avoid problems in the latter development phases and reduce the
life-cycle costs, it is crucial to ensure that the specification be complete and consistent.

The completeness of a specification is defined as a lack of ambiguity in the implementation.
The specification is incomplete if the system behavior is not specified precisely because the
required behavior for some events or conditions is omitted or is subject to multiple interpretations
(Leveson 1995). Consistency, the presence of a lack of ambiguity in requirements, means the
specification is free from conflicting requirements and undesired non-determinism (Czerny,
1998).

Typically, fault-tolerance is considered as an implementation methodology that provides for
(1) explicit or implicit error detection for all fault conditions, and (2) backup routines to guarantee
continued service of critical functions in case errors arise during operation of the primary
software (Pradham, 1996). For the SRS, it can be defined as (1) existence of specified
requirements to detect errors for all fault conditions, and (2) presence of specified requirements
that support the system robustness, software diversity, and temporal redundancy for continuing
service of critical system functions in the case of failure.

Most problems can be traced to the requirements specification typically due to the ambiguity
(Fitch, 2001). Formal methods unambiguously define the requirements of software with respect to
its specification. They are the primary way to have a rigorous definition of correctness of the
system requirements. The decision to use formal specifications mainly depends on the criticality
of the component, in term of severity of fault consequences and of the complexity of its
requirements or of its development (Pradham, 1996).

Z is classified as a model-based specification language equipped with an underlying theory
that enables non-determinism to be removed mechanically from abstract formulations that result
in concrete specifications. In combination with natural language, it can be used to produce a
formal specification (Woodcock & Davies, 1996). Lets just review some of the basic elements
that make Z useful which by the way compose part of our FMB framework strategy.

Axiom is one way to define a global object in Z. It
consists of two parts: declaration and predicate (see
Figure 1). The predicate constrains the objects
introduced in the declaration.

Schemas are the main structuring mechanism used to create patterns and objects. The schema
notation is used to model system states and operations. A schema consists of two parts: a

declaration of variables and a
predicate constraining their values
(see Figure 2). The name of a
schema is optional, however, it is
more convenient to give a name
because it can be referenced within

other schemas.

Declaration

Predicate

Figure 1: Form of axiomatic definition

Schema name

Declaration

Predicate

Figure 2: Form of a schema

5

The free type is used to define new types similar to the enumerated types provided by many
programming languages (Jacky, 1997). The free type in Figure 3 introduces a collection of
constants, one for each element of the set
source. Constructor is an injective
function whose target is the set
Free_type_name. Consistency of free type
can only be validated when each of the
constructions (i.e., the set source) is involved with Cartesian products, finite power sets, finite
functions, and finite sequences (Woodcock & Davies, 1996). Axioms and abbreviations are used
to define global constants and functions. The abbreviation T_n==seq N represents T_n is another
name for a sequence of natural numbers.

The state of the system and the relationship between the states of various components can be
explained using the aforementioned Z formalism. The production of such a specification helps
one to understand requirements, clarify intentions to identify assumptions and explain
correctness. These facilities are useful and essential in clarifying ambiguities and solidifying
one’s understanding of the requirements.

Statecharts, a state-based formal diagrammatic language, are a visual formalism for
describing states and transitions in a modular fashion, enabling cluster orthogonality (i.e.,
concurrency) and refinement, and supporting the capability for moving between levels of
abstraction. The kernel of the approach is the extension of conventional state diagrams by
AND/OR decomposition of states together with inter-level transitions, and a broadcast
mechanism for communication between concurrent components. The two essential ideas enabling
this extension are the provision for depth (level) of abstraction and the notion of orthogonality. In
other words, Statecharts = State-diagrams + depth + orthogonality + broadcast-communication
(Harel, 1987).

Statecharts provide a way to specify complex reactive systems both in terms of how objects
communicate and collaborate and in terms of how they behave internally5. Together, Activity-
charts and Statecharts are used to describe the system functional building blocks, activities, and
the data that flows between them. These languages are highly diagrammatic in nature,
constituting full-fledged visual formalisms, complete with rigorous semantics that provide an
intuitive and concrete representation for inspecting and (mechanically) checking for conflicts
(Harel & Politi, 1998). The Activity-charts and Statecharts are used to specify conceptual system
models for symbolic simulation. Using the simulation method, assumptions are verified, faults
may be injected, and hidden errors are identified that represent inconsistencies or incompleteness
in the specification.

Ambiguous statements in the SRS are revealed during the construction of Z schemas. When a
misinterpreted specification in Z is uncovered during the execution of the Statecharts model, Z
specification is refined using the test results.

2.2 Predicting reliability using stochastic formalisms

As with hardware systems, CBS systems can be modeled early on during the system lifecycle.
A mathematical model is used to predict (estimate in the case that empirical data is available) the
value of some quality attribute. For example, the reliability of the software system is based on
parameters that are previously known or evaluated during integration and test of the software-
components (Glass, 1979). Modeling and subsequent sensitivity analysis of these models can
provide measurements regarding overall software-system reliability and suitability of a particular
component for being used as part of the whole system context.

5 Statecharts are utilized in this respect by way of the Statemate Magnum tool.

Figure 3: Free type notation

6

Stochastic Petri Nets (SPNs) and Stochastic Activity Networks (SANs) are formalisms that
can be used to create concise representations or models of real-time, concurrent, asynchronous,
distributed, parallel or non-deterministic systems. Tools exist to automatically generate and solve
the underlying Markov chains from these representations.

Structurally, SANs consist of four primitive objects: places, activities, input gates and output
gates [28, 29]. Places represent the state of the modeled system. They are represented graphically
as circles. Each place contains a certain number of tokens, which represents the marking of the
place. The set of all place markings represents the marking of the network. Activities represent
actions in the modeled systems that take some specified amount of time to complete. They are of
two types: timed and instantaneous. Timed activities have durations that impact the performance
of the modeled system, and are represented as hollow ovals. Instantaneous activities represent
actions that complete in a negligible amount of time compared to the other activities in the
system. Case probabilities, represented graphically as circles on the right side of an activity,
model uncertainty associated with the completion of an activity.

Input gates control the enabling of activities and define the marking changes that will occur
when an activity completes. They are represented graphically as triangles with their point
connected to the activity they control. Like input gates, output gates define the marking changes
that will occur when activities complete. The only difference is that output gates are associated
with a single case. They are represented graphically as triangles with their flat side connected to
an activity or a case.

We discuss reliability modeling of component-based software systems (using SANs)
emphasizing failure severity levels and coincident errors among components to predict the overall
system reliability. The reliability of a CBS system is a function of the reliabilities of the
individual components that compose the complete system. If the components were all
independent of each other, the overall reliability would simply be the sum of the reliabilities of all
the individual components. However, in practice, this is hardly the case. Components interact
with each other, depending on other components for control information or data. Any
representation claiming to realistically model the system must take this interaction into
consideration. Coincident errors have been considered and modeled for predicting system
reliability in (Arlat, Kanoun, & Laprie, 1990; Dugan, 1994; Eckhardt & Lee, 1985; Kanoun &
Borrel, 1996; Littlewood & Miller, 1989; Nicola & Goyal, 1990; Sahner & Trivedi, 1986).

Further, errors or defects occurring in the system have varying levels of severity and pose
different levels of threat to the overall system operation. A system having considerable number of
high-severity defects is certainly less reliable than a system having more low-severity defects.
Predicting the reliability or availability based on these characteristics of the system provides more
objective and concrete information that can be used in assessing the risk tradeoffs and integrity
levels. Severity is an important candidate to weight the data used in reliability calculations and
must be incorporated into the model to determine the probability that the system survives,
including efficient or acceptable levels of degraded operation. Severity of failures has been
considered in the context of gracefully degrading systems in (Gay, 1979) and modeled using
Markov Reward Models in (Hecht, Tang, & Hecht, 1997).

Modeling and prediction of system reliability on the basis of these three characteristics is
explained in the next section. Practical issues that stand in the way of developing such models
include: (1) obtaining component reliability data, (2) a simple yet effective model being able to
capture only limited (but significant) interactions among components, (3) the need to estimate
fault correlation between components, and (4) reliability depends on how the system is used,
making usage information an important part of the evaluation (Littlewood & Strigini, 2000).

7

Component 1

Component 2

Component n

Component
Reposito ry

Software
System

5. Compose and deploy t he components using a framework for components

4. Adapt t he selected components so t hat t hey suit t he
 exist ing component model or requirements specificat ion

3. Alte rnatively, creat e a cust om component fo r use in t he syst em

6. Replace earlier wit h later versions of components

2. Select t he components t hat meet t he requirements of t he syst em

1. Find components that may be used in t he syst em

Abst ract Not ion of a
Component

Model represent ing a
Component
Actual
Component

Key:

Specification

Design and
Modeling

Implemen-
tation

Requirement
verification and

validat ion using Zed
and St atechart s

Reliabilit y
assessment using

stochastic
modeling

1, 2 and 3

4, 5 and 6

Figure 4: FMB development framework for CBS system.

Further, two distinct problems that arise while using Markov processes are largeness and
stiffness (Popstojanova & Trivedi, 2000). The size of a Markov model for the evaluation of a
system grows exponentially with the number of components in the system. If there are n
components, the Markov model may have up to 2n states. This causes the analysis to take a great
deal of time. Stiffness is due to the different orders of magnitude (sometimes 106 different)
between the rates of occurrence of performance-related events and the rates of rare, failure-related
events. Stiffness leads to convergence difficulty in solving the model (i.e., numerical instability).
Any attempt at modeling using Markov models must address these two problems. A case study is
presented in Section 4 to illustrate the use of our technique on a real-world problem and how the
challenges can be overcome.

3. A Framework for Evaluating Quality
We present two different studies that combine three formal approaches (i.e., logical analysis using
Z, visualization, simulation and testing using Statecharts, and stochastic analysis using SANs)
into a general FMB framework for the development of CBS systems. A CBS system is made up
of numerous components that may be derived from different sources, including COTS or other

proprietary components.
It is important to first
identify the appropriate
components for the
system being built, by
carefully analyzing the
system requirements
(Crnkovic, 2002). Figure
4 shows a process for
selecting the appropriate
components

• I d e n t i f y u s a b l e
components. T o
investigate all possible
components that may be
useful in the system, a
vast number of possible
candidates must be
available as well as tools
for finding them.

• Select components that
m e e t s y s t e m
requirements. Often the
requirements cannot be
fulfilled completely. A
trade-off analysis is
needed to adjust the
system architecture and
t o r e f o r m u l a t e
requirements when
s e l e c t e d , e x i s t i n g
components do not
completely cover stated
requirements . This

8

System Specification

Using Zed for
completeness and

consistency checking

Using property based
formal method (i.e.,
UltraSan, Petri nets)

Reliable, complete,
consistent and fault

tolerant system
specification

Using executable
formal method

(i.e., Statechart)
to asses fault

tolerance

Component
1

Component
2

Component
n

Reliable and fault
tolerant component

based system

Figure 5: Applying formal methods to CBSD.

analysis will determine whether existing components may be used.

• As necessary, create proprietary components for use in the system. In the CBSD process this
procedure is less attractive because it involves more effort and lead-time. On the other hand,
components that include core-functionality of the product are likely to be developed internally as
they will provide the competitive advantage of the product.

• Adapt the selected components to the existing component model or requirement specification.
Some components may be directly integrated into the system while others will be modified
through a modification and refinement process (e.g., using wrapping code for adaptation, etc.).

• Compose and deploy the components using an appropriate framework. Component models
themselves would provide the framework needed.

• Replace earlier versions with updated component versions. This corresponds with system
maintenance (both perfective and corrective).

This process enables the selection of suitable components for building the CBS system. The
lower part of Figure 4 illustrates the development stages of a CBS system needed to ensure
quality (complete, consistent and dependable). The process starts with the specification stage, in
which there exist only abstract notions of different components. The components are identified
and requirement verification and validation of the software requirement specification can be
carried out using Z and Statecharts (or other suitable formal analysis method and tools). It is
important to uncover bugs and ambiguities in the requirements earlier in the lifecycle than later,
to avoid having to take (more) costly corrective actions at later stages in the process.

After verifying the requirement specification, the CBS system is designed and prototyped
using mathematical models (e.g., stochastic or analytic techniques) to evaluate and predict the
quality and reliability of the proposed system. Reliability assessment can be carried out using
stochastic modeling methods if the reliability data
for the individual components and possible
correlation between components is available.
Without such data, the analysis can also be
conducted using hypothetical values for the
purpose of determining the system sensitivities.
As shown in Figure 5, the use of these formal
methods (Z, Statecharts and SANs) at different
stages in the CBSD lifecycle may result in the
development of a dependable CBS system
(assuming the model is transformed into the
implementation – a significant assumption).

4. Two Case Studies
This section applies the concepts and framework
presented above using two different case studies.
The first study presents the use of both Z and
Statecharts for verification and validation of
software requirements of a Guidance Control
Software (GCS) System for the Viking Mars
Lander. The second study models and analyzes
the reliability of an Anti-lock Braking System of a
passenger vehicle.

9

INPUT
AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT
AR_ALTITUDE AR_STATUS

K_ALT

PROCESS:
It is only necessary that this functional module …

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none

RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

Module Specification Data Dictionary

Z Specification

Statecharts

NL-Based SRS

Figure 6: Translation example from NL-based to Statecharts.

4.1 Assessment of GCS System Requirements

The GCS principally provides control during the Lander’s terminal descent phase6. After
initialization, the GCS starts sensing vehicle altitude. When a predefined engine ignition altitude
is sensed, the GCS begins guidance and control of the vehicle. The software maintains the vehicle
attitude along a predetermined velocity-altitude contour. Descent continues along this contour
until a predefined engine shut off altitude is reached or touchdown is sensed.

The completeness of a specification is defined as a lack of ambiguity in the implementation.
The specification is incomplete if system behavior is not precisely specified because the required
behavior for some events and conditions is omitted or is subject to more than one interpretation
(Leveson, 1995). Consistency, the presence of a lack of ambiguity in requirements, means the
specification is free from conflicting requirements and undesired non-determinism (Czerny,
1998). Typically, fault-tolerance is considered as a implementation methodology that provides
for (1) explicit or implicit error detection for all fault conditions, and (2) backup routines for
continued service to critical functions in case errors arise during operation of the primary
software (Pradham, 1996). For the SRS, fault-tolerance can be defined as (1) existence of
requirements to detect explicit or implicit errors for all fault conditions, and (2) presence of
specified requirements that support system robustness, diversity, and temporal redundancy for
continuing service of
critical functions in case
of failure.

In this first study we
qualified a subset (i.e.,
four components) of the
GCS requirements in a
two-step process for
completeness,
consistency, and fault-
tolerance. Z was applied
first using abstraction to
detect and remove
ambiguity from the
Natural Language based
(NL-based) GCS SRS.
Next, Statecharts and
Activity-charts were
constructed from the Z
description to enable
v i s u a l i z a t i o n a n d
symbolic simulation
(i.e., inputs, processing
and outputs). The
system behavior was
assessed under normal
a n d a b n o r m a l
conditions. Faults were
seeded into the model
(i . e . , e x e c u t a b l e

6 The Lander has three accelerometers, one Doppler radar with four beams, one altimeter radar, two temperature sensors, three
gyroscopes, three pairs of roll engines, three axial thrust engines, one parachute release actuator, and a touch down sensor.

10

Figure 7: ARSP schema with predicate expressions numbered 1-4.

specification) to simulate abnormal conditions. In this way, the integrity of the SRS was assessed
which identified both missing and inconsistent requirements.

Using our approach, the NL-based requirements are first re-written into the Z notation. The
schema construct is the principle structuring mechanism (using refinement based predicate and
propositional logic and set theory). Eighty percent of the SRS was completely translated into
schemas thereby clarifying and concretizing the selected requirement subset. The schemas were
subsequently (and iteratively) translated into Statecharts (and Activity-charts), which provided a
new (executable) perspective. Simulations were performed to verify that no non-deterministic
state and activity transitions exist. Some improperly defined function and data items were found
in the schemas. For example, we found that correctly specified (when compared to the SRS)
function and data items in both the Z and Statechart models elicited unexpected outputs during
simulation. We refined the schemas as a consequence to avoid erroneous simulation output.

Furthermore, during the simulations, faults were injected into State and Activity-charts by
changing state variable values at various breakpoints (chosen randomly, see Figure 8). The
outputs were then compared to the expected output (i.e., determined by the formula given in the
SRS). This procedure enabled us to evaluate the system’s ability to cope with unexpected system

failures. Figure 6 shows an
example us ing the
FRAME_COUNTER input
variable that illustrates the
complete translation cycle.
The top box in Figure 6
represents the NL-based
SRS. The middle box of
Figure 6 represents the Z
Specification while the
bottom box shows the
Statechart model of the
ARSP (Altimeter Radar
Sensor Processing) sub-
module. In the SRS, the
FRAME_COUNTER is
defined as an integer with

range [1–(231-1)]. In Z, the FRAME_COUNTER is declared as a set of natural numbers in the
signature part, and the range of the variable is defined within the schema’s predicate. The
Statechart representation of the FRAME_COUNTER variable is presented with the direction of
data transfer from EXTERNAL to the ARSP Module. Its type and value range are defined in the
Statemate data dictionary (not shown)7.

7 For this case study, four components of the GCS system were assessed including the ARSP, Roll Engine Control Law Processing
(RECLP), CP (Communication Processing), and GP (Guidance Processing) components. Each component was evaluated both
separately and in an integrated form using our Z/Statecharts approach.

11

ARSP_
CONTROL

ARSP_
START

ESTIMATE_
ALTITUDE

DONE

CALCULATE_
ALTITUDE

KEEP_
PREVIOUS

KEEP_
PREVIOUS_
VALUE

Variable Name Injected Fault
FRAME_COUNTER Yes

AR_COUNTER No
K_ALT No

Figure 8: State transition diagram shows fault injection locale.

Table I: ARSP component simulation result
Transition PathsName of Chart Activity / State Name

1 2 3 4
ARSP E1 E1 E1 E1

ARSP
@ARSP_CONTROL E2 E2 E2 E2

ARSP_START E3 E3 E3 E3

KEEP_PREVIOUS_VALUE E4 - - -

ESTIMATE_ALTITUDE - E4 - -

CALCULATE_ALTITUDE - - E4 -

KEEP_PREVIOUS - - - E4

ARSP_CONTROL

DONE E5 E5 E5 E5

Ei entered in ith order, - not activated.

The ARSP, as a
functional unit ,
reads the altimeter
counter provided by
the altimeter radar
sensor and converts
the data into a
measure of distance
to the surface of
Mars. The ARSP
schema (Figure 7)
d e s c r i b e s t h e
function of the
ARSP unit. The

Schema imports the ARSP_RESOURCE and ARSP_FUNCTION schema for modification8.
Predicate (1) requires that the current AR_ALTITUDE, AR_STATUS, and K_ALT element
values be the same as the predecessors when the FRAME_COUNTER? is even. Predicate (2)-(4)
describe the ARSP functional unit in the same manner as is written for predicate 1.

The bottom part of Figure 6 is the Activity-chart for the ARSP schema shown in Figure 7 and
has one control state linked to a Statechart (i.e., @ARSP_CONTROL). This ARSP Statechart
model has 4 distinct paths that were tested for fault-tolerance using the fault injection method
(described above). The simulation results for each path (i.e., the state transitions shown in Figure
8) are presented in Table I. E1 in Table I means that the given state is entered at the first when the

execution started. The
“–” mark in Table I
indicates that the state
is not entered during
model execution. The
Activity and State
names are the names
of the activities and
sta tes f rom the
Statechart.

Figure 8 gives the
finite state machine
representation of the
Statecharts model for
the ARSP component
showing four different
state transition paths.
To appreciate how the
fault injection is
performed note for
e x a m p l e , t h e
simulation starts from
t h e f i r s t s t a t e

“ARSP_CONTROL”. When the simulation process reaches to the “ARSP_START” state, the
selected variable value is altered (i.e., representing an injected fault, e.g., memory error). The

8 Note, the various “_update” functions used in the ASRP schema are defined in the ASRP_FUNCTION schema, which is not shown.

12

simulation is then continued until the “DONE” state is reached. At this point the output values are
compared with the expected values.

Table II details the steps used for injecting faults by altering a system state variable (i.e.,
FRAME_COUNTER) at a certain state or so-called breakpoint (i.e., ARSP_START) during the
simulation. The expected values of the output variables are not the same as the actual values of
the output due to the state variable change. Again, the expected values are determined based on
equations given in the requirements specification.

Table II. Detailed fault injection data

Variables Before execution Expected values After the execution

FRAME_COUNTER 2 2 2

AR_STATUS - - -Input

AR_COUNTER -1 -1 -1

AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1/0,1,0,0,0]

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1]Output

AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [*, 2000, -, -, -]

- Don’t care, * An estimated value.
The fault injection results are described in Table III (the highlighted ‘x’ indicates the

aforementioned example). This table shows 72 test results (outputs) from 12 different simulation
runs. The “State in which fault is injected” column is the same states defined in the Statecharts
model (also shown in Figure 8). The result table indicates that all output values are incorrect
when faults are injected to the ARSP_START state9. In addition, a fault injected into the
CALCULATE_ALTITUDE state produces erroneous outputs. Therefore, one can conclude these
two Statechart model states are the most vulnerable.

Table III. ARSP fault injection result10

Altered state variable
FRAME_COUNTER AR_COUNTER AR_STATUS

Path Path Path
State in which fault is injected

1 2 3 4 1 2 3 4 1 2 3 4
ARSP_START x x x x x x x x x x x x

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b
ESTIMATE_ALTITUDE b b b b b N/A b b b N/A b b

CALCULATE_ALTITUDE b b b b b b x b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b

DONE b b b b b b b b b b b b
x incorrect outputs, b no defect, N/A not applicable.

Based on the simulation results, the SRS was determined to be incomplete. To remedy the
situation, the AR_FREQUENCY value must be bounded to prevent the AR_ALTITUDE value
from exceeding its limit. To do this, one of the following conditions should be included:

o 1 ≤ AR_FREQUENCY ≤ AR_COUNTER * 75000

o AR_COUNTER = -1 | (0 ≤ AR_COUNTER ≤ AR_FREQUENCY / 7500011

9 Any false/erroneous input given in the initial state causes incorrect output and the ARSP_START state is the initial state for the
ARSP component.
10 The two states Keep_Previous_value and Keep_Previous are similar but different.
11 “|” indicates logical OR.

13

Figure 9: GCS Activity-chart

Figure 10: GCS schema.

Using Statemate, a GCS Activity-chart (Figure 9) is developed inside of the GCS project.
Activities are represented by rectangles and States are represented by rectangles with rounded
corners. Every activity must have only one control state. The GCS activity (representing the GCS
schema – see Figure 10) interacts with four data stores (represented by rectangles with dotted
vertical edges), which contain data definitions. The data stores contain the same variable
definitions as in the corresponding Z schemas. The “@” symbol indicates a chart linked to a
particular state or activity. For example, the @GCS_CONTROL state represents a link with the
GCS_CONTROL Statechart. The @ARSP, @CP, @ GP, and @ RECLP activities represent the
four GCS components
and are linked to their
own Activity-charts
respectively.

The GCS project
has GCS Activity-
charts and four sub-
Activity-charts. Each
Activity-chart has one
control state that is
linked to a Statechart.
Most of the Statecharts
used for controlling
activities are divided
i n t o s e v e r a l
Statecharts, which use
super-states to reduce
complexity. Table IV
gives the execution
orders of the GCS
Statechart model ,
which are equivalent to
the Z specification of the GCS system. The execution test results showed that the Statecharts
model does not have absorbing states or activities. Moreover, all of the activities and states are
reachable and there is no inconsistency in the model. This result showed that it is feasible to
assess the overall structure of components integration using Z and Statecharts for completeness

and consistency. The
approach provides a
way to deal with a
complex se t o f
requirements for a
componen t based

embedded control system symbiotically utilizing verification and validations tools (Z/eves from
ORA Canada [ORA, 2002 #50] and Statemate from ilogix [I-Logix, 2002 #49]).

14

Disc break (4 indpt)

Wheel speed sensor (4 indpt) S1-4 = Speed sensors

R1-2 Turning angles (of the vehicle and the tires respectively)
Rear

R1

0

90

Brake

Pressure

Master
break

cylinder

Electronic brake
control module

(EBCM)

RR

RF

0

R2

90

2

2 4

B1 B2

B3 B4

S3 S4

S1 S2

Accerometer

LF

LR

Anti-lock Breaking / Anti-skid Controller

Hydraulic
modulator valve

assembly

B1-4 = Brakes (LF, RF, LR, RR)

Figure 11: Top-level schematic shows sensors/actuators and processing.

Table IV. GCS excerpt high-level activity or state charts simulation result
Name of Chart Activity/State Name Activity/State Transition order

@GCS_CONTROL En1 Ex33

@ARSP En4 Ex7

@GP En14 Ex17

@RECLP En24 Ex27

GCS

@CP En9 Ex12 En19 Ex22 En29 Ex31

INITIALIZATION En2 Ex3

@SUBFRAME1 En5 Ex13

@SUBFRAME2 En15 Ex23
GCS_CONTROL

@SUBFRAME3 En25 Ex33

RUN_ARSP En6 Ex8SUBFRAME1
RUN_CP En10 Ex11

RUN_GP En16 Ex18SUBFRAME2
RUN_CP En20 Ex21

RUN_RECLP En26 Ex28SUBFRAME3
RUN_CP En30 Ex32

En i: entering the activity/state on ith order, Exi: exiting the activity/state on ith order.

4.2 Reliability Assessment of the ABS of a Passenger Vehicle

The increasingly common use of software embedded in critical systems has created the need to
depend on them even more than before, and to measure just how dependable they are. Knowing
that the system is reliable is absolutely necessary for safety-critical systems, where any kind of
failure may result in an unacceptable loss of human life. This case study used an analytical
approach for estimating the reliability of a CBS system. It demonstrates our approach to
estimating the reliability of the system by taking the architecture of the CBS system and the
reliabilities of the individual components into consideration.

4.2.1 Anti-Lock Braking System Description

The system under study here is an embedded vehicle sub-system (including both hardware and
software components). A complex embedded vehicle system (like the Anti-lock Braking System)
is composed of
numerous components
and the probability that
the system survives
(efficient or acceptable
degraded performance)
depends directly on
each of the constituent
components.

Anti-lock Braking
System (ABS) is an
integrated part of the
total vehicle braking
system. It prevents
wheel lockup during an
emergency stop by
modulating the brake
pressure and permits
the driver to maintain
steering control while
braking. Figure 11 shows a top level schematic of the ABS. The ABS of a passenger vehicle is

15

Hydraulic Pump

Toggle Switch
Pressure Tank

DrainValve
InletValve

Replicate(4)
Central

Wheel

Join

Main brake cylinder

Piping

Hydraulic Pump

Pressure Sensor
Speed Sensor Toggle Switch

Limiting Valve

Pressure Tank

DrainValve
InletValve
DrainValve
InletValve

Replicate(4)
Central_1

Wheel

Join

Tubing
Controller

Central_2

Figure 12: The ABS composed SAN model.

Table V: Activity rates model severity and coincident failures

Activity Rate Probability
Case 1 Case 2 Case 3

controllerFail

MARK(controllerLOS) !=0?
controllerRate*10000:

(MARK(controllerDegraded) !=0
|| MARK(tubingDegraded) !=0

?controllerRate*100
:controllerRate)

0.4 0.4 0.2

hydraulicPump
Fail

MARK(controllerLOS) !=0?
hydraulicPumpRate*10000:
(MARK(controllerDegraded) !=0
?hydraulicPumpRate*100

:hydraulicPumpRate)

1.0 - -

composed of the following
components: (i) Wheel Speed
Sensors - These measure wheel-
speed and transmit information
to an electronic control unit. (ii)
Electronic Control Unit
(Controller) - This receives
information from the sensors,
determines when a wheel is
about to lock up and controls
the hydraulic control unit. (iii)
Hydraulic Control Unit
(Hydraulic Pump) - This
controls the pressure in the
brake lines of the vehicle. (iv) Valves - Valves are present in the brake line of each brake and are
controlled by the hydraulic control unit to regulate the pressure in the brake lines.

4.2.2 Stochastic Activity Network (SAN) Model

The ABS is modeled using SANs (Couvillion et al., 1991), which are a stochastic formalism used
for performabil i ty
modeling. Tools exist
t o a u t o m a t i c a l l y
generate the underlying
Markov chains from a
h i g h l e v e l
representation of the
system in the form of a
SAN model. UltraSAN
is an X-window based
software tool for
evaluating systems that
are represented as
SANs.

4.2.2.1. Assumptions. Modeling the ABS using SANs requires a number of simplifying
assumptions. To allow a Markov chain analysis, the time to failure of all components is assumed
to have an exponential distribution. This signifies that the distribution of the remaining life of a
component does not depend on how long the component has been operating. To consider the
severity of failures, every component is assumed to operate in three modes: normal operation,
degraded operation or causing loss of stability. To be able to model coincident failures, some
correlation between failures of certain components (like controller and hydraulic pump) is
assumed.

4.2.2.2. Composed SAN model. The composed ABS model is shown in Figure 12. The model
consists of three individual SAN subnets: Central_1, Central_2 and Wheel. The Wheel subnet is
replicated four times to represent the four wheels of the vehicle. The division into these three
categories is done to facilitate the representation of coincident failures. Such a distribution and
categorization avoids replicating of subnets where unnecessary (for modeling severity and
coincident failures) and thereby prevents the potential state explosion problem.

4.2.2.3. SAN subnets modeling failure severity and coincident failures. All subnets when
combined to form the composed model share some common places: degraded, LOS, LOV and
halted. The first three places represent the severity of failure, while the halted place is relevant in

16

central_2 central2_op

central2_out

hydraulicPump

pressureTank

controller

tubing

hydraulicPumpFail

pressureTankFail

controllerFail

tubingFail

toggleSwitchDegraded_out

controllerLOS_out

tubingDegraded_out

toggleSwitchDegraded

controllerLOS

tubingDegraded

LOV

LOS

degraded

halt_test
halttoggleSwitch toggleSwitchFail

controllerDegraded_out

controllerDegraded

halted

HPFailInhibit

PTFailInhibit

TSFailInhibit

haltInhibit

CFailInhibit

TFailInhibit

Figure 13: Central_2 subnet with the controller component highlighted.

the context of the halting condition (discussed in Section 4.2.2.4). The Central_2 subnet is shown
in Figure 13. The presence of tokens in degraded, LOS and LOV represents the system operation
under degraded mode, loss of stability and loss of vehicle respectively. The system is operating
normally when there are no tokens in any of these three places.

The subnet is instantiated with a single token in the central_2 place. The central2_op activity
fires and deposits a token in each of the five places: hydraulicPump, pressureTank, toggleSwitch,
controller and tubing. The portion of the subnet for the controller component is highlighted in
Figure 13 and discussed here in the context of severity of failures. The controllerFail activity
models the failure of the controller. There are three possible outcomes of this activity. The
controller either fails causing degraded operation (with probability 0.2, output gate
controllerDegraded_out), or causes loss of stability (with probability 0.4, output gate
controllerLOS_out), or causes loss of vehicle (with probability 0.4, output to LOV). In the former
two cases the controller continues to operate in a degraded manner, as is evident by the recycling
back of the token to the controller place. Further, the failure rate in this situation increases by two
(for degraded) and four (for loss of stability) orders of magnitude respectively. The code snippet
that achieves this is shown in Table V.

Coincident failures involving two components are represented by causing the failure of one
component (to degraded operation or loss of stability) to increase the failure rate of the dependent
component. The degeneration of a component A to a degraded mode causes the failure rate of a
“related” component B to increase by two orders of magnitude. The failure of component A to a
lost stability mode causes the failure rate of a “related” component B to increase by four orders of
magnitude. Table V shows the rates for the activities modeling the failure of the controller and the
hydraulic pump (other component failure rates are modeled in a similar manner). Case 1, 2 and 3
represent the probabilities of the failure causing loss of vehicle, loss of stability and degraded
mode respectively.

Since UltraSAN
requires the failure
rate to be specified in
a single statement, the
conditional operator
available in the C
programming
language is used.
C o n s i d e r t h e
controllerFail activity
in Table V. Since a
degenerated tubing
(i.e., in degraded
mode) is assumed to
affect the failure rate
of the controller, if
the number of tokens
i n t h e
tubingDegraded place
is not zero (i.e.,

17

0

0.2

0.4

0.6

0.8

1

1.2

1 0 5 0 100 500 1000 5000 10000 20000 30000 40000 50000

Time (in hours)

Without Coincident Failures

With Coincident Failures

Range of the average lifetime of vehic

Figure 15: Reliability results for severity and coincident failures

MARK(tubingDegraded)!=0), the failure rate for the controller increases by two orders of
magnitude (i.e., controllerRate*100). Similarly, for the hydraulicPumpFail activity, it is assumed
that a failed controller affects the failure rate of the hydraulic pump. Thus, the failure rate for the
hydraulic pump increases by four orders of magnitude if the controller has failed causing loss of
stability, and increases by two orders of magnitude if the controller is operating in a degraded
mode.

4.2.2.4. Reliability Measure and Halting Condition. The required reliability measure is defined
as a reward rate function. The reward rates for the SAN model are defined to take the degraded
operation of the system into consideration.

Reward rates are specified using a predicate and a function. The function represents the rate
at which the reward is accumulated in the states when the predicate evaluates to true. Figure 14
shows the reward rate used to calculate reliability. As long as the system is functioning (i.e., not
in an absorbing state), the reward accumulates as a function of the number of tokens in the
degraded, LOS and LOV places. The function evaluates to 1.0 when there are no tokens in any of
those three places indicating normal operation and complete reliability. The reliability is 0 when
the system has stopped functioning (in an absorbing state). For all other states, the reliability
ranges from 1.0 to 0.0 depending on how degraded the system is (indicated by the number of
tokens in those three places).

This SAN model recycles tokens
when the system is either operating in
normal mode or degraded mode. Thus,
it is necessary to explicitly impose a
halting condition to indicate an
absorbing state. The halted place
common to all the subnets is used to
specify the halting condition. Five or more tokens in degraded, or three or more tokens in LOS, or
one or more token in LOV, cause a token to appear in halted. The presence of a token in this place
is the indication of an absorbing state in the corresponding SAN. This is achieved by having an
input condition on each activity stating that the activity is enabled only if there are no tokens in
the h a l t e d place (i.e.,
M A R K (halted)==0). The
presence of a token in halted
thus disables all the activities
in the model, thereby causing
an absorbing state.

4.2.3 Reliability Analysis
Results

The reliability of the system at
time t is computed as the
expected instantaneous reward
rate at time t. To determine
the reliability of the ABS,
transient analysis of the
developed SAN models was
carried out using the instant-
of-time transient solver
available in the UltraSAN
tool. The reliability was
measured between 0 and 5 x

Predicate:
 MARK(halted)==0

Function:
 1.0/(1+MARK(degraded)+MARK(LOS)+MARK(LOV))

Figure 14: Reward rate to calculate reliability

18

104 hours. The time duration was deliberately conservative, even though the average life span of a
passenger vehicle ranges from 3000 – 9000 hours, the reliability measures were determined for up
to 5 x 104K hours.

The reliability measure was predicted at 11 different points along the range of 0-5 x 104

hours. The interval between the points did not remain constant along the entire time range and
therefore the X-axis is not linear and should be taken into account when viewing the results
graphs. The expected values of reliability at various time instances were plotted as a function of
time. In Figure 15, the Y-axis gives the measure of interest - the reliability; while the time range
(0 to 5 x 104K hours) is shown along the X-axis. As expected, the reliability steadily decreases
with time. The dashed line indicates the reliability function when coincident failures are modeled
and the complete line indicates the reliability function when coincident failures are not modeled.

The reliability functions diverge perceptibly after around 1000 hours of operation, and the
difference continues to increase with time. At 5 x 104 hours, the reliability has dropped down to
0.21 when coincident failures are modeled, and down to 0.30 when coincident failures are not
modeled, a difference of 0.09 in reliability in the two cases within 5 x 104 hours. Considering the
time period approximately around the expected lifetime of the vehicle (3,000-9,000 hours), the
difference in reliability after 5000 hours of operation is approximately 0.0253 and after 103 hours
is 0.0493. This clearly indicates that representing severity and coincident failures in the model
contributes to predicting the system reliability that may be closer to how the real system will
behave considering the underlying assumptions.

The Mean Time to Failure calculated at 5 x 104 hours in the case where coincident failures are
not modeled is approximately 29,000 hours, and in the case where coincident failures are
modeled is approximately 25,000 hours, a difference of 4,000 hours. It is important to realize that
these results are only for the limited number of coincident failures and levels of severity that have
been modeled. Clearly, modeling severity and coincident failures have a significant contribution
in determining the system reliability at any given instant of time.

4.2.4 Validity Concerns

A model is always a compromise between precision and simplicity. How closely a model mirrors
its originator or the vision of the system is in direct conflict with how easily and efficiently the
model can be analyzed (i.e., solved with respect to its predicted behavior). The models described
were built incrementally to achieve the best balance between faithfulness to the real system and
keeping the model tractable at the same time. As a result models of higher fidelity (more realistic)
were created progressively.

5. Challenges
The CBSD paradigm has emerged from the concept of building software out of components.
Using components is not such a new concept, as traditional design methods have always tried to
identify parts (modules, classes, functions, etc.) that are appropriate and effectively address the
principle of separation of concerns (moderated by suitable measures of cohesion and coupling).
Moreover, the notion of packaging software in such a way that makes it reusable is not new either
(e.g., generic packages/instantiation, inheritance/polymorphism, etc.). Notwithstanding, the
CBSD paradigm, as a new sub-discipline of software engineering, has been recognized as an
important new development that brings support for developing dependable and maintainable high
integrity systems as assemblies of components as well as strategies for developing components as
reusable entities that are flexible, extensible and maintainable. CBSD faces many challenges,
some of which include (Crnkovic, 2002): component trustworthiness and certification (Morris,
Lee, Parker, Bundell, & Chiou, 2001; Voas & Payne, 2000), composition predictability (Wallnau

19

& Stafford, 2001), requirements management and component selection(Heineman & Councill,
2001; Kim, 2002; Kotonya & Rashid, 2001), long-term management of CBS systems (Crnkovic,
2002), development process models, component configurations, versioning and hierarchy (e.g.,
nesting that causes lack of conceptual integrity (Crnkovic, Larrson, Kuster, & Lau, 2001)),
dependable safety-critical systems and CBSE including trustworthy, scaleable, cost-effective tool
support. These are some of the current challenges. The success of CBSD will heavily depend on
further research and the emergence of standard formalized frameworks (e.g., FMB methods) that
can endure the aforementioned challenges in the critical disciplines that support those essential
activities related to CBS systems development.

6. Conclusion and Future Work
As the demand for more flexible, adaptable, extensible, and robust high integrity CBS systems
accelerates, adopting new software engineering methodologies and development strategies
becomes critical. Such strategies will provide for the construction of CBS systems that assemble
flexible software components written at different times by various developers. Traditional
software development strategies and engineering methodologies, which require development of
software systems from scratch, do not adequately address these needs. CBSD works by
developing and evolving software from selected reusable software components, then assembling
them within appropriate software architectures. CBSD relies heavily on explicitly defined
architectures and interfaces, which can be evaluated using our FMB framework. CBSD has the
potential to:

• Significantly reduce the development cost and time-to-market of enterprise CBS systems,

• Enhance the reliability of CBS systems using FMB methods where each reusable
component assessed in terms of covering and satisfying requirements (e.g., complete,
consistent, etc.) and undergoes reliability analysis as deemed necessary and especially for
high integrity system deployment,

• Improve the maintainability of CBS systems by allowing new, higher-quality components
to replace old ones; and

• Enhance the quality of CBS systems where application-domain experts develop
components, while software engineers specializing in CBSD, assemble the components,

CBSD is in the very first phase of maturity. CBSD using FMB methods is even less mature.
Nevertheless, formal approaches are recognized as powerful tools that can significantly change
the development of software and software use in general. Tools and frameworks for building
applications and systems by means of component assembly will be tantamount in meeting the
challenges ahead. Standardization of domain-specific components on the interface level will
make it possible to build applications and systems from components purchased from different
vendors. Work on standardization in different domains continues, (e.g., the OPC Foundation
(OPC Foundation, 2002), is working on a standard interface to make possible interoperability
between automation and control applications, field systems and devices and business and office
applications)12.

The result of the first study showed how to construct a complete and consistent specification
using this method (Z-to-Statecharts). The process uncovered incomplete and inconsistent
requirements that were associated with ambiguities (i.e., a reader’s interpretation of the natural
language and it inherent lack of precision). We have demonstrated our approach can help to
identify ambiguities the result in incorrectly specified artifacts (i.e., in this case requirements).

12 Support for the exchange of information between components, applications, and systems distributed over the Internet will be further
developed. Works related to XML (Griss & Pour, 2001) will be further expanded.

20

In the second study, the characteristics of failure severity and coincident failures were
successfully incorporated into the model developed for the ABS of a passenger vehicle. The
models evolved over successive iterations of modeling, increasingly refined in their ability to
represent different factors that affect the measure of interest (i.e. system reliability). This
refinement process, we claim, gives a (potentially) more realistic model. For example, the
analyses showed that the reliability predictions were different (i.e., deteriorated) when the non-
functional characteristics of severity and coincident failures were incorporated. However, because
the model is an abstraction of the real world problem, predictions based on the model should be
validated against actual measurements observed from the real phenomena. This study can be the
basis of numerous other studies, building up on the foundation provided and investigating other
areas of interest (e.g., validating predictions against field observations, or finding a more realistic
level of abstraction combined with a higher degree of complexity using supercomputers).

Bibliography
Arlat, J., Kanoun, K., & Laprie, J.-C. (1990). Dependability Modeling and Evaluation of Software Fault-

Tolerant Systems. IEEE Transactions on Computers, 39(4), 504-513.

Cai, X., Lyu, M. R., Wong, K.-F., & Roy, K. (2000, Dec. 5-8, 2000). Component-Based Software
Engineering: Technologies, Development Frameworks, and Quality Assurance Schemes. Proceedings
of the Seventh Asia-Pacific Software Engineering Conference (APSEC'00), Singapore. IEEE
Computer Society, 372-379.

Clements, P., Bass, L., Kazman, R., & Abowd, G. (1995). Predicting Software Quality by Architecture-
Level Evaluation. Component-Based Software Engineering: Selected Papers from the Software
Engineering Institute, 19-25.

Couvillion, J., Johnson, R., Obal II, W. D., Qureshi, M. A., Rai, M., Sanders, W. H., & Tvedt, J. E. (1991).
Performability Modeling with UltraSAN. IEEE Software, 8(5), 69-80.

Cox, P. T., & Song, B. (2001). A Formal Model for Component-Based Software. Proc. of 2001 IEEE
Symposium on Visual/Multimedia Approaches to Programming and Software Engineering, Stresa,
Italy. IEEE, 304-311.

Crnkovic, I. (2002). Component-based Software Engineering - New Challenges in Software Development.
Software Focus, 2(4), 127-133.

Crnkovic, I., Larrson, M., Kuster, F. J., & Lau, K. (2001). Databases and Information Systems, Fourth
International Baltic Workshop, Selected Papers.: Kluwer Academic Publishers.

Czerny, B. (1998). Integrative Analysis of State-Based Requirements for Completeness and Consistency.
Unpublished PhD dissertation, Michigan State University.

Dugan, J. B. (1994, Nov 6-9, 1994). Experimental analysis of models for correlation in multiversion
software. Proc. of 5th Int'l Symposium on Software Reliability Engineering, Los Alamitos, CA. IEEE
Computer Society, 36-44.

Eckhardt, D. E., & Lee, L. D. (1985). Theoretical Basis for the Analysis of Multiversion Software Subject
to Coincident Errors. IEEE Transactions on Software Engineering, 11(12), 1511-1517.

Fitch, D. (2001). Software Safety Engineering (S2E) Program Status. Available: sunnyday.mit.edu/safety-
club/fitch.ppt [2002, Nov 04].

Gay, F. A. (1979). Performance Evaluation for Gracefully Degrading Systems. Proc. of 9th Annual Int'l
Symposium on Fault-Tolerant Computing (FTCS-9), Madison, Wisconsin. IEEE Computer Society,
51-58.

Glass, R. L. (1979). Software Reliability Guidebook. Englewood Cliffs, New Jersey: Prentice-Hall.

Griss, M. L., & Pour, G. (2001). Accelerating Development with Agent Components. IEEE Computer,
34(5), 37-43.

Hamlet, D., Mason, D., & Woit, D. (2001, May 12-19, 2001). Theory of Software Reliability Based on
Components. 23rd International Conference on Software Engineering (ICSE'01), Toronto, Canada.
IEEE Computer Society, 361-370.

21

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8, 231-274.

Harel, D., & Politi, M. (1998). Modeling Reactive Systems with Statecharts.: McGraw Hill.

Hecht, M., Tang, D., & Hecht, H. (1997, June 1997). Quantitative Reliability and Availability Assessment
for Critical Systems Including Software. Proc. of the 12th Annual Conference on Computer Assurance,
Gaitherburg, Maryland.

Heineman, G., & Councill, W. (2001). Component-based Software Engineering: Putting the Pieces
Together (1 ed.). Boston: Addison Wesley.

Jacky, J. (1997). The Way of Z: practical programming with formal methods.: Cambridge University Press.

Kanoun, K., & Borrel, M. (1996). Dependability of Fault-Tolerant Systems - Explicit Modeling of the
Interactions Between Hardware and Software Components. Proc. of 2nd Int'l Computer Performance
and Dependability Symposium (IPDS), Urbana-Champaign. IEEE Computer Society, 252-261.

Kim, H. Y. (2002). Validation of Guidance Control Software Requirements Specification for Reliability
and Fault-Tolerance. Unpublished Master's thesis, Washington State University, Pullman.

Kotonya, G., & Rashid, A. (2001, September 4-6, 2001). A strategy for Managing Risks in Component-
based Software Development. 27th Euromicro Conference, Warsaw, Poland. IEEE Computer Society,
12-21.

Leveson, N. (1995). Safeware - system safety and computers.: Addison Wesley.

Littlewood, B., & Miller, D. R. (1989). Conceptual Modeling of Coincident Failures in Multiversion
Software. IEEE Transactions on Software Engineering, 15(12), 1596-1614.

Littlewood, B., & Strigini, L. (2000). Software reliability and dependability: a roadmap. Proc. of
International Conference on Software Engineering, Limerick, Ireland. ACM Press, 175-188.

Lo, J.-H., Kuo, S.-Y., Lyu, M. R., & Huang, C.-Y. (2002, Aug 26-29, 2002). Optimal Resource Allocation
and Reliability Analysis for Component-Based Software Applications. Computer Software and
Applications Conference, COMPSAC'02, Oxford, England. IEEE Computer Society.

Morris, J., Lee, G., Parker, K., Bundell, G., & Chiou, P. L. (2001). Software Component Certification.
IEEE Computer, 34(9), 30-36.

Nicola, V. F., & Goyal, A. (1990). Modeling of Correlated Failures and Community Error Recovery in
Multiversion Software. IEEE Transactions on Software Engineering, 16(3), 350-359.

OPC Foundation(2002). Available: http://www.opcfoundation.org [2002, Nov 04].

Popstojanova, K. G., & Trivedi, K. (2000). Stochastic Modeling Formalisms for Dependability,
Performance and Performability. Performance Evaluation: Origins and Directions. Springer-Verlag,
403-422.

Pradham, D. K. (1996). Fault-Tolerant Computer System Design.: Prentice Hall.

Sahner, R. A., & Trivedi, K. (1986). A hierarchical, combinatorial-Markov model of solving complex
reliability models. Proc. of ACM/IEEE Fall Joint Computer Conference, Dallas, Texas. IEEE
Computer Society, 817-825.

Sedigh-Ali, S., & Paul, R. A. (2001). Metrics-guided quality management for component-based software
systems. Computer Software and Applications Conference, COMPSAC'01, Chicago, IL. IEEE
Computer Society, 303-308.

Sherif, M. Y., Bojan, C., & Hany, H. A. (1999, October 18 - 21, 1999). A Component-Based Approach to
Reliability Analysis of Distributed Systems. Proceedings of the 18th IEEE Symposium on Reliable
Distributed Systems, Lausanne, Switzerland, 158-167.

Veryard, R. (1997, February 20, 1997). Software Component Quality. Available:
http://www.users.globalnet.co.uk/~rxv/CBDmain/DIPQUE.htm [2002, October 28, 2002].

Voas, J., & Payne, J. (2000). Dependability Certification of software components. Journal of Systems and
Software, 52, 165-172.

22

Wallin, C. (2002). Verification and Validation of Software Components and Component Based Software
Systems. In I. Crnkovic & M. Larrson (Eds.), Building Reliable Component Based Systems.: Artech
House.

Wallnau, K., & Stafford, J. (2001, September 4-6, 2001). Ensembles: Abstractions for a New Class of
Design Problem. 27th Euromicro Conference, Warsaw, Poland. IEEE Computer Society, 48-55.

Woodcock, J., & Davies, J. (1996). Using Z: Specification, Refinement, and Proof.: Prentice Hall
International.

