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ABSTRACT 
 
Structured models of systems allow us to determine their 
reliability, yet there are numerous challenges that need to be 
overcome to obtain meaningful results. This paper reports the 
results and approach used to model and analyze the Anti-lock 
Braking System of a passenger vehicle using Stochastic Petri 
Nets. Special emphasis is laid on modeling extra-functional 
characteristics like coincident failures among components, 
severity of failure and usage-profiles of the system. 
Components generally interact with each other during 
operation, and a faulty component can affect the probability of 
failure of other components. The severity of a failure also has 
an impact on the operation of the system, as does the usage 
profile - failures which occur during active use of the system 
are the only failures considered (i.e., in reliability calculations).  

INTRODUCTION 

A complex system (like an embedded vehicle system) is 
composed of numerous components and the probability that the 
system survives (efficient or acceptable degraded operation) 
depends directly on each of the constituent components. The 
reliability analysis of a vehicle system can provide an 
understanding about the likelihood of failures occurring in the 
system and an increased insight to manufacturers about 
inherent “weaknesses.” (Jerath and Sheldon 2001) Therefore, 
this paper provides the basis of how to gain such insights using 
SPNs, for an example, analyzing an ABS system. Special 
emphasis is laid on modeling extra-functional characteristics 
like coincident failures among components, severity of failure 
and usage-profiles of the system. 

If a system does not contain any redundancy – that is, if 
every component must function properly for the system to 
work – and if component failures are statistically independent, 
then the system reliability is simply the product of the 
component reliabilities. Furthermore, the failure rate of the 
system is the sum of the failure rates of the individual 
components (Siewiorek and Swarz 1992). The assumption that 
failures occur independently (in a statistical sense) in hardware 
components is a widely used model for predicting the 
reliability of hardware devices. However, components 
generally interact with each other during operation, and a faulty 
component can affect the probability of failure of other 
components too (Balbo 2000). Such failures are not coincident 

in the sense that they occur simultaneously, but in the fact that 
failure of one increases the probability of the failure of another.  

Another aspect of modeling failures occurring in the system 
is their severity. Severity of a failure is the impact it has on the 
operation of the system. It is closely related to the threat the 
problem poses, in functional terms, to the correct operation of 
the system (Vouk 2000). Severity is an important candidate to 
weight the data used in reliability calculations and should be 
incorporated into the model to determine the probability that 
the system survives, including efficient or acceptable degraded 
operation. 

The reliability of a system also depends on its usage profile 
– users interact with the system in an intermittent fashion, 
resulting in operational workload profiles that alternate 
between periods of “Active” and “Passive” use. Reliability is 
concerned with the service that is actually delivered by the 
system as opposed to a system’s capacity to deliver such 
service (Meyer 2000). Specifically, while considering usage 
profiles, faults need not necessarily cause failures since they 
can be repaired; failures occurring during “active” use of the 
system only should contribute to reliability calculations. 

In (Sheldon et al. 2000), the authors presented Stochastic 
Petri Net (SPN) models of a vehicle dynamic driving 
regulation (DDR) system. Subsystem representations of the 
Anti-lock Braking system (ABS), the Electronic Steering 
Assistance (ESA), the traction control (TC) and a combined 
model were developed and analyzed for critical failures. In this 
paper, we focus on the Anti-lock Braking system and develop 
Stochastic Petri Net models to model the coincident failures of 
components, severity of failures and usage-profiles.  Naturally 
this is but one component of the total system and the issue of 
scalability of this approach is a subject for future work.  

The paper is organized as follows. The section “System 
Description and Modeling Approach” briefly describes the 
structural and functional aspects of an Anti-lock Braking 
System (ABS) and the Petri Net approach to modeling. 
Sections “Modeling Coincident Failures and Severity” and 
“Modeling Usage-Profiles” present the assumptions, SPN 
models and results for the Petri-nets modeling coincident 
failures and severity of failures, and usage-profiles 
respectively. Finally, the conclusion and the scope for future 
work are discussed in the section “Conclusion and Future 
Work”. 

SYSTEM DESCRIPTION AND MODELING 
APPROACH 



 

 

In this section, we briefly examine the structural composition 
of an Anti-lock Braking System and its functionality. 
Stochastic Petri Nets (SPNs) were used to model the system 
and the Stochastic Petri Net Package (SPNP) to analyze the 
models. The modeling and analysis approach is discussed later 
in this section. 

Anti-lock Braking System 

The Anti-lock Braking System is an integral part of the total 
braking system in a vehicle. Applying excessive pressure on 
the brake pedal, or panic slamming the brake pedal, can cause 
wheels to lock up and possibly send the vehicle careening into 
a terrifying skid. The ABS prevents wheel lockup during an 
emergency stop by modulating the brake pressure and permits 
the driver to maintain steering control while braking.  

The ABS consists of the following major components: 
• Wheel Speed Sensors: These measure wheel-speed 

and transmit information to an electronic control unit. 
• Electronic Control Unit (Controller): This receives 

information from the sensors, determines when a 
wheel is about to lock up and controls the hydraulic 
control unit. 

• Hydraulic Control Unit (Hydraulic Pump): This 
controls the pressure in the brake lines of the vehicle. 

• Valves: Valves are present in the brake line of each 
brake and are controlled by the hydraulic control unit 
to regulate the pressure in the brake lines. 

Under braking, the electronic control unit (ECU) “reads” 
signals from electronic sensors monitoring wheel rotation. If a 
wheel’s rate of rotation suddenly decreases, the ECU orders the 
hydraulic control unit (HCU) to reduce the line pressure to that 
wheel’s brake. Once the wheel resumes normal operation, the 
controls restore pressure to its brake. Depending on the system, 
this cycle of “pumping” can occur at up to 15 times per second. 
The result is that the tire slows down at the same rate as the 
car, with the brakes keeping the tires very near the point at 
which they will start to lock up. This gives the system the 
highest steering capability. Anti-lock braking systems use 
different schemes depending on the type of brake in use. In the 
model developed we assume a four channel four sensor ABS. 
The model can be easily modified to represent other ABS 
schemes.  

Modeling And Analysis Using SPNs 

A powerful tool for modeling systems composed of several 
processes (such as a failure process and a repair process) is the 
Markov Model. Markov Models are a basic tool for both 
reliability and availability modeling. Stochastic Petri Nets 
(SPN) can be used to generate the (large) underlying Markov 
chain automatically starting from a concise description of the 
system. Stochastic Petri Nets are commonly used to evaluate 
the performance and reliability of complex systems (Balbo 
2001) because the graphical nature of SPNs lends itself to a 
more intuitive understanding of the system’s inner workings 
and allows one to understand dependencies better. This enables 
one to identify conflicts and address localities where the 
overall system performance is more significantly affected.  

Since the system we study here is very complex, this 
prevents us from making a direct analysis. Two distinct 

problems that arise while using SPNs are largeness and 
stiffness (Popstojanova and Trivedi 2000). The size of a 
Markov Model for the evaluation of a system grows 
exponentially with the number of components in the system 
and stiffness is due to the different orders of magnitude 
between the rates of failure-related events in different 
components. A series of abstraction steps are needed and the 
key element in our modeling approach was to identify the 
essential components of the system, the different ways in 
which they interact and introduce various assumptions. The 
details of the models developed and the assumptions made are 
discussed in the next two sections. 

We described the models in CSPL (C-based Stochastic Petri 
net Language) and the stochastic analysis was carried out using 
SPNP (Stochastic Petri Net Package), a versatile modeling tool 
(Ciardo et al. 1989). The models were solved using Version 6 
of SPNP installed on a Sun Ultra 10 (400Mhz) with 500MB of 
memory (dedicated to solving the models). The models took 
approximately 5 days of continuous execution before 
converging to solution. This time may have been drastically 
reduced we believe had the Multi-level solution method been 
available within the SPNP package (Greiner and Horton 1996).  

MODELING COINCIDENT FAILURES AND SEVERITY 

The assumption that failures occur independently is a widely 
used and often successful model for predicting the reliability of 
hardware devices. However, as mentioned above, components 
generally interact with each other during operation, and a faulty 
component can affect the probability of failure of other 
components too (Balbo 2000).  Severity of a failure is the 
impact it has on the operation of the system and is an important 
candidate to weight the data used in reliability calculations. In 
this section, we describe the Petri net models developed to 
model coincident failures and severity of failures for the Anti-
lock Braking System. 

Assumptions 

To allow a Markov chain analysis, the time to failure of all 
components is assumed to have an exponential distribution. 
This signifies that the distribution of the remaining life of a 
component does not depend on how long the component has 
been operating. The component does not “age” or it forgets 
how long it has been operating, and its eventual breakdown is 
the result of some suddenly appearing failure, not of gradual 
deterioration (Trivedi 2001). While this might be true for 
electronic components, the failure of other mechanical parts 
like valves might occur due to gradual deterioration. However, 
mechanical parts are generally replaced at regular intervals and 
essentially can be assumed not to age for our purposes. Hence, 
the assumption of an exponential distribution of failures for all 
components is justified.  

To consider the severity of failures, every component is 
assumed to operate in three modes: normal operation, degraded 
operation or causing loss of stability. The system is assumed to 
fail when more than five components function in a degraded 
state or, more than three components cause loss of stability; or 
the failure of an important component causes the loss of the 
vehicle. A component operating in a degraded condition causes 
its failure rate to increase by two orders of magnitude, while a 
component causing loss of stability causes the failure rate to 



 

 

increase by four orders of magnitude. The correlation between 
failure rates of two “related” components (to model coincident 
failures) is consistent with the above scheme. 

Since the model is an abstraction of a real world problem, 
predictions based on the model must be validated against actual 
measurements collected from the real phenomena. A poor 
validation may suggest modifications to the original model 
(Trivedi 2001). 

Model 

The ABS is represented as a combination of all the important 
components it consists of, as shown in Figure 1. It represents 
the operation of the ABS under normal, degraded and lost 
stability conditions. Loss of vehicle, extreme degraded 
operation and extreme loss of stability signify critical failures 
and determine the halting condition for the model. The model 
is initialized with a single token in the start place. When the 
central_op and the axle_op transitions fire, a token is deposited 
in each place that represents a component of the ABS. The 
operation of each component is now independent of every 
other component (except where coincident failures are modeled 
explicitly).  

The model of a component of the ABS is shown in Figure 2. 
The component depicted here is the controller. Every 
component either functions “normally” as shown by the 
controllerOp transition or “fails” as shown by the controllerFail 
transition. A failed component may either cause degraded 
operation, loss of stability or loss of vehicle. The probability of 

any one of these three transitions occurring is different for each 
component. When the failure causes either degraded operation 
or loss of stability, the component continues to operate, though 
the failure rate increases by two and four orders of magnitude 
respectively. At the same time, a token is deposited in either 
controllerDegraded or controllerLOS, as the case may be, to be 
able to identify which component caused the entire system to 
fail. 

Coincident failures are modeled in a similar manner. The rule 
for calculating failure rates is shown in Figure 3. The failure of 
a component A to a degraded mode causes the failure rate of a 
“related” component B to increase by two orders of magnitude. 
The failure of component A to a lost-stability mode causes the 
failure rate of a “related” component B to increase by four 
orders of magnitude.  

The function that calculates the failure rate of the transition 
controllerFail is shown in Figure 4. It is assumed that tubing 
malfunction affects the operation of the controller. Hence, 
while calculating the failure rate of the controller, the normal 
rate is increased by two orders of magnitude if the tubing has 
failed causing degraded operation (indicated by a token in the 
tubingDegraded place).  
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double controllerRate() 
{ 
       double controller_rate = 0.0000006; 
 
       if (mark("controllerLOS") > 0) return controller_rate * 10000; 
       if ((mark("controllerDegraded") > 0)  
  || (mark("tubingDegraded") > 0)) 
 return controller_rate * 100; 
       return controller_rate; 
} 

Figure 4: Variable Rate to Model Coincident Failure
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function failureRateForB() 
{ 
        // other calculations for severity of failure 
 
        // coincident failures 

if failedA(degraded) then 
failureB = failureB * 100; 

else if failedA(loss of stability) then 
failureB = failureB * 10000; 

} 

Figure 3: Rule for Failure Rates 
oincident failures have been represented in the 
ver, coincident failures between other 
 be easily modeled by suitably modifying the 

ction of the component in question using the 
Figure 3. The model is easily extensible to 
mponents deemed relevant to the ABS. 
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reliability at various time instances were determined and 
plotted as a function of time.  

In Figure 5, the Y-axis gives the measure of interest - the 
reliability; while the time range (0 to 50K hours) is shown 
along the X-axis. The shape of the curve is not a property of 
the system but of how the data was collected from the Petri net 
model. As expected, the reliability steadily decreases with 
time. The line marked with diamonds indicates the reliability 
function when coincident failures are modeled and the line 
marked with squares indicates the reliability function when 
coincident failures are not modeled (entirely overlapped). For 
the limited number of coincident failures that were modeled, it 
is clear that the Mean Time to Failure (MTTF) for the model 
with coincident failures (784,856.4 hrs) is approximately 421 
hours less than the model without coincident failures 
(785,277.6 hrs). 
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evident that the model representing the coincident failures 
predicts the system reliability closer to the real picture. 

MODELING USAGE-PROFILES 

A software-based product’s reliability depends on just how a 
customer will use it. The operational profile – quantitative 
characterization of how a system will be used – is essential in 
software reliability engineering (Musa 1993). We extend the 
idea of operational profiles – considering the use of a software 
system during testing; into usage profiles – the usage of the 
system (hardware and software) for modeling and reliability 
analysis. The usage profile considers the intermittent use of a 
system – alternate periods of active and passive use. Such 
intermittent use influences the mean time to failure and 
reliability of the system (Meyer 2000). In this section, we 
describe the Petri net models developed to model usage-
profiles for the Anti-lock Braking System. 

Assumptions 

Unlike traditional reliability models where repair of 
components is not considered, when considering intermittent 
use it is important to note that faults need not necessarily cause 
failures. Faults occurring only during the active use cause 
failures while those occurring during passive use can be 
repaired. Hence repair can affect reliability calculations. For 
simplicity, we assume an infinite repair rate of all components. 

Further, in order to comprehend the significance of 
intermittent use on reliability, we assume two usage-profiles 
exceedingly different in degree. The first profile models sparse 
use of the Anti-lock Braking System e.g. a driver who is 
extremely cautious while driving the vehicle (longer periods of 
passive use). The second usage profile models dense use of the 
anti-lock braking system e.g. a driver in perilous conditions 
like driving over ice (frequent active use periods).  
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igure 6 displays the difference between the two reliability 
ctions more subtly. The reliability functions diverge starting 
und 350 hours of operation, and the difference becomes 
cernible after around 13K hours of operation. The difference 
tinues to increase with time. It is significant to note that the 

ference in Mean Time To Failure between the two cases 
omes marked only beyond the average lifetime of the 
icle. For the limited number of coincident failures that have 
n modeled, the difference of 421 hours in the two cases is 
sidered well within the confidence interval. However, it is 

Again, for simplicity and to allow Markovian analysis, the 
active period duration is assumed to be exponentially 
distributed, as are the failure rates of the components. The 
second usage-profile is assumed to have a rate two orders of 
magnitude greater than the first usage profile. In order to work 
around the stiffness problem in Petri nets caused by the 
difference in magnitude between the failure rates of the 
components and the active period duration distribution rates, 
the duration distribution rates are assumed to be factored by the 
failure rates of individual components. 

Model 

To incorporate the usage-profiles scenario in the ABS model, 
the model of each individual component as depicted in Figure 2 
was extended as shown in Figure 7. The figure again shows the 
controller component with the additions to the model marked 
in red. When a failure occurs (failedController) the next step is 
to determine whether the system was in active use or not, 
because only a failure occurring when the system is in active 
use contributes towards reliability calculations. The parameter 
1/mu indicates the mean duration of active use while the 
parameter 1/alpha indicates the mean duration of passive use.  

If the failure occurs during the active-use period 
(inUseController), the system either continues to operate in a 
degraded mode (degraded operation - controllerDegradedOp 
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Figure 6: Difference in Reliability Functions 



 

 

or lost-stability - controllerLOSOp) or causes loss of vehicle 
(controllerLOVOp). If the failure occurs during passive use of 
the system (repairableController), the fault can be repaired and 
an infinite repair rate is assumed. The system continues to 
operate as if no failure had occurred. 

To work around the state explosion problem that occurred 
due to the increase in the number of states in the model, the 
model was simplified. The usage parameters were incorporated 
while calculating the failure rate itself for each component. The 
modified function for calculating the failure rate in light of the 
usage-profile is shown in Figure 8. The value of mu was 
assumed to be 2.5 for infrequent active use periods and 250 for 
frequent active use periods. As stated in the assumptions and 
shown in Figure 8, the value of these usage distributions was 
factored by the actual failure rate of the component to avoid 
stiffness in the model. 

Results And Discussion 

Transient analysis of the developed ABS model was carried 
out and the reliability was measured between 0 and 50K hours. 
The expected values of reliability at various time instances and 
different usage profiles was determined and plotted as a 
function of time. The results are depicted in Figure 9. The Y-
axis gives the measure of interest - the reliability; while the 
time range (0 to 50K hours) is shown along the X-axis. The 
shape of the curve is not a property of the system but of how 
the data was collected from the Petri net model.  

As expected, the reliability steadily decreases with time. The 
top line indicates the reliability function when the usage of the 
system is infrequent and the bottom line indicates the reliability 
function when the usage of the system is frequent. The 
reliability of the system with heavy usage decreases alarmingly 
within the first 1K hours of operation, while the reliability of 
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Figure 7: SPN Model with Usage Parameters
Reliability Analysis with Usage Profiles
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ystem with not so heavy usage decreases perceptibly only 
 2.5K hours of operation and then steadily afterwards. 
, the mean time to failure (MTTF) for the high usage case 
1022.9 hours as opposed to 775111.7 hours for the low 

e case, a difference of approximately 4089 hours.  

 important fact to consider is that some components are 
 only for a few minutes during the entire lifetime of the 
cle (10-15 years) while other components like the tubing 
sed all of the time during that period. Hence, the usage of 
rent components is different even within a given usage 
ile and will affect the actual reliability. However, what is 
rtant is the approach we used and the results clearly 
ate that it is important to consider the usage profiles while 

rmining the reliability for any given system. 

CLUSION AND FUTURE WORK 

 this paper, we have shown how to model coincident 
res, severity and usage-profiles in the Anti-lock Braking 
m of a passenger vehicle using Stochastic Reward Nets. 

made some simplifying assumptions in order to manage the 
plexity of the system being modeled apart from handling 
eneral challenges in the modeling like state explosion and 
ess. The Stochastic Petri Net models were developed for a 

 channel four sensor ABS. The model, however, is easily 
nsible to model other schemes of ABS. Other coincident 
res between components can be easily modeled by suitably 
double controllerRate() 
{ 
 double controller_rate = 0.0000006; 
 
 // usage parameter 
 controller_rate += controller_rate * mu(); 
 
 if (mark("controllerLOS") > 0) return controller_rate * 10000; 
 if ((mark("controllerDegraded") > 0)  

|| (mark("tubingDegraded") > 0)) 
  return controller_rate * 100; 
 return controller_rate; 
} 

Figure 8: Variable Rate to Model Usage Parameter 

ifying the failure rate function of the component in 
tion. Similarly, other profiles with different usage 
meters can be easily incorporated and analyzed. SPNP was 
 to specify the system and carry out the reliability analysis. 

major obstacle in modeling using SPNs was the persistent 
 explosion problem. This caused the programs to abort due 
nsufficient memory while solving the Markov chains. 
hastic Activity Networks (SANs) (Sanders and Meyer 
) are a stochastic extension to SPNs and are used for 
rmability evaluation. As shown in Figure 10, composed 

els in SANs exploit symmetries in the model to reduce the 
ber of reachable states. The models can be specified and 
yzed using UltraSAN, a software tool for model-based 
rmance, dependability and performability evaluation of 

puter, communication and other systems (Sanders 1994-
The goal of future work is to specify SAN models for the 
-lock braking system, analyze them using UltraSAN and 
pare the results obtained for SPN models. 



 

 

Further, the Anti-lock Braking system is a small part of the 
DDR (Dynamic Driving Regulation) system which consists of 
subsystems like the Anti-lock Braking system (ABS), the 
Electronic Steering Assistance (ESA), the traction control (TC) 
(Sheldon et al. 2000). Another goal is to develop and analyze a 
model extended for critical (mission-safety) failures that scales 
well for the composed model emphasizing coincident failures, 
severity of failures and usage-profiles and analyze it for critical 
failures. 
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