
To Appear: Annals of Software Engineering 1999: Special Volume on Software Reliability, Testing and Maturity

COMPOSING, ANALYZING AND VALIDATING SOFTWARE MODELS TO ASSESS THE

PERFORMABILITY OF COMPETING DESIGN CANDIDATES

Frederick T. Sheldon1

School of Electrical Engineering and Computer Science
Washington State University

PO Box 642752
Pullman, Washington 99164-2752, USA

E-mail: Sheldon@eecs.wsu.edu

Stefan Greiner
Performance Modeling & Process Control Research Group

Department of Computer Science IMMD IV
The University of Erlangen-Nürnberg

Martensstrasse 1, 91058 Erlangen, Germany
E-mail: Stefan.Greiner@daimlerchrysler.com

1 This work was partially supported by NASA ARC / Stanford ASEE faculty program fellowship (Automated S/E group) and the University of
Erlangen Visiting Scholar program.

ii

ABSTRACT

In a perfect world, verification and validation of a software design specification would be possible before any code

was generated. Indeed, in a perfect world we would know that the implementation was correct because we could

trust the class libraries, the development tools, verification tools and simulations etc. These features would provide

the confidence needed to know that all aspects (complexity, logical and timing correctness) of the design were fully

satisfied (i.e., everything was right). Right in the sense that we built it right (its correct with respect to its

specification) and it solves the right problem. Unfortunately, it’s not a perfect world, and therefore we must strive to

continue to refine, develop and validate useful methods and tools for the creation of safe and correct software.

This paper considers the analysis of systems expressed using formal notations. We introduce our framework,

the modeling cycle, and motivate the need for tool supported rigorous methods. Our framework is about using

systematic formal techniques for the creation and composition of software models that can further enable reasoning

about high-assurance systems. We describe several formal modeling techniques within this context (i.e., reliability

and availability models, performance and functional models, performability models etc.). This discussion includes a

more precise discourse on stochastic methods (i.e., DTMC and CTMC) and their formulation. In addition, we

briefly review the underlying theories and assumptions that are used to solve these models for the measure of

interest (i.e., simulation, numerical and analytical techniques). Finally, we present a simple example that employees

generalized stochastic Petri nets and illustrates the usefulness of such analysis methods.

1

1. Introduction

Modern high-assurance systems share five key attributes: (1) reliable, meaning they are correct, (2) available,

meaning they remain operational, (3) safe, meaning they are impervious to catastrophe (fail-safe), (4) secure,

meaning they will never enter a hazardous state, and (5) timely, meaning their results will be produced in time to

satisfy deadlines (i.e., timing correctness). The correctness, safety and robustness of a critical system specification

are generally assessed through a combination of rigorous specification capture and inspection; formal modeling and

analysis of the specification; and execution and/or simulation of the model/specification.

In our view of the world, we constrain the classic notions of verification and validation to first confirming that

at least all of the possibly bad things we could think of can not happen or at least the chances of happening are well

bounded. Second, that the performability of the models (or blueprints) of the systems (i.e., system models) that we

plan or propose building are determined to be adequate with respect to function, structure and behavior and with

respect to the assumptions of the operating environment and potential hazards. Moreover, our goal is to refine our

approach as a framework for the formal representation and analysis of software components and architectures that

relate specifications to programs and programs to behavior. Thus, in our view of the world the focus is tool-

supported rigorous methods for reasoning about software and systems as a constructive approach to software design

and evolution.

Table 1. Modeling techniques described in Section 3.

Modeling Approach Model types Para

Reliability block diagrams (RBD) Structuring to show how the reliability of individual components affect
the overall system reliability.

3.1.1

Reliability graphs Provides a generic ordering of components from source to sink useful in
reliability analysis.

3.1.2

Fault trees Safety / hazard analysis. 3.1.3

Stochastic process algebras Performance using stochastic annotations (advantage: composability of
parallel systems).

3.2.1

Precedence graphs Dependency among processing entities showing task partitioning and
processor allocation.

3.2.2

Markov - Stationary DTMC / CTMC
- Transient CTMC

Availability, reliability and performance (both steady state and transient
behavior).

3.2.3

Queuing networks
Local - global balance
Product form solutions

Performance measures independent of time (i.e., statistical equilibrium or
steady state); transient solutions of only simple queuing systems are
available in closed form: measures include number of jobs in the system,
queue length, utilization, throughput, response and wait time.

3.2.4

Markov reward models Availability. 3.3.1

Petri Nets (PNs) Mathematical models of systems whose dynamics are characterized by
concurrency, synchronization, mutual exclusion and conflict.

3.4.1

Generalized Stochastic PNs (GSPN) Performance analysis of distributed systems. 3.4.2

Extensions to GSPNs Constructs designed to reduce the complexity of the GSPN
representation form while maintaining the fidelity of the solution results.

3.4.3

Process algebras and SPN combined Combined functional and stochastic analysis. 3.4.4

This article first presents some important issues as they relate to today’s software engineering challenges.

Second, we introduce a framework for the modeling and analysis of systems and software called the modeling cycle.

2

Third, inside the context of this framework, we review a set of known computational modeling techniques which are

organized by their measures of interest (i.e., performance, reliability, availability etc.) as summarized in Table 1.

This review discusses the rationale, approach, challenges and caveats associated with their solution methods.

Finally, a fairly simple example is given to illustrate the

usefulness of such techniques.

1.1. The challenges that lie ahead for software and systems

In a recent collection of articles [Yen 1998], some important

issues associated with practical high assurance design strategies

are reported and the challenges that lay ahead. These articles

highlight key applications such as ensuring passive safety (i.e.,

not requiring a system to initiate any action to arrive at a safe

state) for a missile warhead; developing highly reliable

miniaturized avionics for long-life deep-space applications that

exhibit continuous system operation for up to 15 years and is

highly evolvable (e.g., subject to preventive/corrective on-board

maintenance); using fault tolerance to ensure continuously

available systems because the cost of downtime is extremely

high; avoiding unplanned (or even planned) outages by using

predictive techniques which are based on behavioral models of

such systems; capturing and creating realistic (i.e., faithful) models of all relevant environmental and system

requirements and verifying the various attributes of the system with respect to the model(s); and closing the gap

from specifications and models to synthesized programs using some combination of domain theory and reuse library

of high integrity components (i.e., providing formal traces extracted from the proofs that relate specifications to

programs and programs to execution).

The common denominator among all these challenges is complexity. Complexity in such systems is one of, if

not the most important properties that make the design and implementation of high assurance systems so difficult.

Furthermore, as the complexity of future systems increase, the more important it becomes to evaluate and predict

their behavior. To better understand the complexity, it is common practice to create a model. Hence the term model-

based specification, used widely in software engineering, came into being [Sommerville 1996].

1.2. The compromise between realism and simplicity

The eventual customer of a new (or enhanced) system desires one which is reliable, responsive and has a

reasonable cost. If any single one of these qualities is missing, it could mean the eventual ruin of the customer and

perhaps the supplier. If a legacy or prototype system exists, then it is possible to answer many questions with

regards to performance and dependability by direct measure. If not, then we must defer to techniques that allow us

to predict the behavior of a system during the conception and specification, and to modify the design before actual

implementation. Figure 1 shows the relation between the realism (or faithfulness) and simplicity (tractability) of a

model [Marie 1993]. How closely a model mirrors its originator or the vision of the new system is in direct conflict

Very
faithful but
intractable

Faithful but
relatively
intractable

Relatively
faithful and
tractable

Unfaithful
but very
tractable

System Under Development
(Proposed System)

REAL
SYSTEM

Model 1 Model 2 Model 3 Model 4

Figure 1. A model is always a compromise
between faithfulness and simplicity.

3

with how easily and efficiently the model can be analyzed (i.e., solved with respect to its predicted behavior). One

must consider only those facets of the system that are important to the behavior of interest.

1.3. Conquering complexity using parallel computers

Parallel computers with large amounts of main memory gain more and more importance when analyzing

models. For the model, it does not matter if we solve it on a sequential or parallel computer. However, the problem

that often occurs is that many of the underlying analysis algorithms are designed for sequential machines. Since

main memory is not as big a problem in today’s machines, the focus has shifted to how can the algorithms (problem

to be solved) be partitioned over some number of n processors. If this is not done properly, the communication

overhead between processors will kill the advantage of having multiple processors solving the same problem

simultaneously. Much research is underway to extend these algorithms to parallel machines.

2. Creation and composition of software models

The basic modeling philosophy begins by identifying the essential components of the system and the different ways

they interact. This means that many assumptions will be introduced. In making these assumptions we must keep in

mind the following three basic modeling considerations: (1) simplicity, (2) ease of evaluation, and (3) adequacy of

measurements [Lazowska 1984]. The key to a successful modeling examination is the skill to introduce

assumptions. The principles of the modeling cycle are shown in Figure 2a.

As was mentioned at the beginning, today’s real life systems are typically very complex. This fact prevents us

from making a direct analysis. Therefore a series of abstraction steps (two basic steps described here) are necessary

to obtain system measures from the real system. All these steps together give the modeling cycle. Initially, the

system model is created at an abstract level (i.e., abstract model) that specifies the system at the five-hundred foot

level.2 To do an analysis of the system we need measures of the system using some type of measurement technique

(i.e., we start at the Real System place, top of Figure 2a). The Proposed System place is detailed later, but without a

real system to compare to, a great deal of work is needed to explore the parameter space.

The data collected from system measurements are used to parameterize the abstract model. However, usually

the system model will still contain too many details that prevent an efficient system analysis. In a second

abstraction step the computational model is created (one-thousand foot level) which allows an easier and more

efficient system analysis. The computational model can be considered to be the highest level of model abstraction.

The process of refining the computational model is a matter of building confidence in the model. Thus, in Figure 2a

the process of operational validation is performed which results in a modified system and with modified system

input parameters/data. This step can be repeated until the computed performance measures fulfill the requirements.

If there exists no way to gather system measurements for the purpose of parameterizing the system model then

there may be a great deal of more work to do. In addition, the stopping rule for performing operational validation is

now based on relative comparisons from one iteration to the next. Different model parameterizations are used to

compare the different design (or implementation) candidates with the goal of making architectural design decisions.

2 Five hundred-foot level is a terminology used here to assign a number to the degree of abstraction employed. It’s a relativistic
term, so if you think of ground level (or zero feet), that is at a very low (e.g., the bare machine) system level. The thousand-foot
level is more abstract than say the five hundred-foot level. The thousand-foot level here roughly corresponds to employing
additional simplifying assumptions.

4

Load Model Configuration
Model

System Model (abstract level)

(i.e., Operational
Profile)

Parameter
-ization

Computational ModelingConceptual Validation

CTMC - Continuous Time Markov Chain

Simulation
Model

State
Probabilities

Real System

Performance Measures

Solvers

Computational Models

Data CollectionDescriptive Modeling

Proposed System

System
Measures

Performance
and Performability

Model

•GSPN
•SAN

Reliability and
Availablity Model

•Block Diagrams
•Graph
•Fault Trees

Model Description Language
(Mosel, P-CSP, Promela, CSPL)

Model Solutions

Performability
Model

•Markov Reward

Performance Model

•Queuing Networks
•Stochastic Activity Nets
•Stochastic Process Algbr
•Precedence Graph Models
•Markov Models

Mathematical
Model

Analytical
Queuing
Network

Numerical
CTMC

Modified Model
and Data

Operational
Validation

Figure 2a. The modeling cycle shows the principle steps of the modeling process.

In simple terms, using a technique commonly known as sensitivity analysis (see paragraph 1.1.5) to optimize the

model's structure toward achieving critical functional and non-functional requirements [Blake 1988; Heidelberger

1988; Choi 1993; Mainkar 1993].

2.1. Model parameterization out of data collection

During the elaboration of a model, the distinction between discrete and continuous variables is made. Introducing a

continuous variable facilitates the model solution (i.e., some problems are easier to solve in the continuous domain

compared to the discrete case). The only restriction comes if the simplification gives unhappy consequences with

regards to the validity of the result.

Another simplification is made if the elaboration of a very faithful model introduces a large number of

deterministic variables (family(s) thereof) and would result in an intractable model. A common simplification

consists of replacing a family of n deterministic variables x1, …, xn with a unique random variable X the distribution

of which depends on the characteristics of the variables of x 1, …, xn. This simplification pertains to the model and it

is of course the model that is random and not the real system. It is also important not to go too far, for example

replacing the X (random variable) with x = E[X]. When there is a lack of information on the variables

5

System
Measures

System Model
(abstract level)

Computational Models

Model Solutions

Operational
Validation

Modified Model
and Data

Performance Measures

Real SystemProposed System

Computational Modeling

Descriptive Modeling

Validation and Model Refinement

Model Solution

Figure 2b. Modeling-cycle emphasizing the principle steps.

("parameters" in Figure 2a) using a

probabilistic universe is a place often visited

which then leads to the use of random

variables.

If we are lucky, measured data can be the

major source for parameterization. System

measurement can help in the process of

deciding which components of the system are

important in regards to the measure of interest.

It is useless to measure for instance the

average response time of a computer system if

what we are interested in is the mean time to

failure (naturally, that also depends on how

we define failure). We must stand back and

think about the modeling purpose before the

commencing the measurement process.3

2.2. Descriptive modeling

The result of descriptive modeling is a formal specification. In this step, we abstract from all the system details

those, which are not necessary to the purpose(s), defined for the model (e.g., the color or weight of the system). The

system model can be divided into two parts, the load and the configuration model. The configuration model gives

the system component level structure while the load model gives a typical load (operational) profile. The load

profile has a great deal to do with the quality of the system results and it is possible to have different load models for

a system to differentiate the system results. There are various tools available that support the load modeling process

[Calzarossa 1991].

The design of the configuration can be either hierarchical (vertically organized) or structural (horizontally

organized, a so-called flat model) [Malhotra 1993]. It is possible, in the case of hierarchical modeling, to step-by-

step aggregate and disaggregate various parts of the model and to use different description formalisms and solution

techniques for different aggregates. At each aggregate level the results serve as input for the next higher level

aggregate. In the case of the structural model, the modules and components are all in one layer, no aggregates are

used, and the configuration can only be dismantled into its basic components.

2.3. Computational modeling

The abstract model being too complex for immediate application of mathematical techniques is transformed into a

computational model. Depending on the questions that may be studied, different description techniques are used:

^ Queuing network models for performance analysis [Lazowska 1984; Bolch 1989]

^ Stochastic activity networks for performance analysis [Sanders 1991; Sanders 1995]

^ Stochastic process algebras for performance analysis [Horton 1994; Siegle 1995]

3 Standard reliability measures and input data can also be obtained from the MIL-Handbook or F. D. Power.

6

^ Precedence graph models for performance analysis [Fleischmann 1989]

^ Markov and Markov reward models for performance and performability analysis [Schweitzer 1991; Trivedi

1993; Stewart 1994; Sahner 1996]

^ Generalized stochastic Petri nets for performance and performability analysis [Molloy 1982; Ciardo 1989;

Ciardo 1994; Muppala 1994]

^ Reliability graphs, block diagrams and fault trees for reliability and availability analysis [Sahner 1986;

Reibman 1991; Sahner 1996]

Using a particular description language does not usually mean a particular solution method is applicable (and

visa versa). The step from the system "abstract" model to the computational model gives a simpler model (or

representation form) that is more readily and efficiently analyzed (i.e., solved).

2.4. Model solution

There are two basic methods used to solve the system model: mathematical and system simulation. The

mathematical solution method may be further classified into analytical (non-state-space-based) and numerical (state-

space-based). The mathematical method works by solving a system (or set) of linear or differential equations while

a simulation is differentiated into discrete event simulation and continuous simulation. Combining mathematical

techniques with simulation is called hybrid simulation and when possible, independent components are solved

separately using either technique and is then combined in a stepwise fashion (aggregation/ disaggregation). One

very well known problem when using the numerical method is the high computational cost due to huge state space.

Taking a pragmatic view, there are two ways to cope with this. First we may somehow tolerate or modify the large

state spaces, or second, we may prevent the origination of such large state spaces. Depending on what type of

analysis is desired, either transient or steady state, different efficient solution techniques are available [Greiner

1999]. Section 5 gives an example of both transient and steady state analysis types.

2.5. Validation and model refinement

The process of validation demonstrates that the model accurately represents the desired system behavior with

enough detail [Allen 1978; Allen 1990]. In general, there are three important steps:

^ Verify the model assumptions against the real system (reality check),

^ Analyze the model structure and the logical relations among its components,

^ Compare the behavior of the model under different experimental conditions (e.g., different load models).

We distinguish between operational and conceptual validation because, as shown in Figure 2a and 2b, there

may not be a way to parameterize the model (i.e., extracting system measures from an existing system or its analog).

In the conceptual validation phase the computational model is compared to the system model (i.e., its more detailed

and less abstract predecessor). This comparison must be done to test the assumptions of the higher level abstraction

to determine if the computational model’s assumptions are correct or at least reasonable. In fact, this may be a

process of adjusting things down to a tolerable level of simplification. Conversely, during operational validation,

the computed performance results (i.e., predictions and/or estimates) are compared to the system measures. This is a

very important step because it determines how the system model (and input parameters) may be modified to more

7

 limt → ∞R(t) =0

closely describe the actual system behavior. This process of refinement gives a computational model that more

accurately predicts the real system behavior under different (or new) conditions.

The validation phase will result in a validated final model that may have been modified with respect to its

structure and/or its parameterization (i.e., relationships among variables, initialization and initial state etc.). For

example, modifications to the model can be carried out with the goal of predicting the behavior for the system under

study (SUS). When used in this sense, parts of the model are removed or changed in an effort to investigate the

cause and effects of proposed enhancements or adaptations. Furthermore, once a model is validated it may be used

to perform sensitivity analysis which can be used to support or discredit the modeling assumptions and analysis

conclusion(s) [Choi 1993]. The two most common forms of sensitivity analysis include:

^ Testing the robustness of the computational results against the model assumptions. This requires that the

model be analyzed some number of times to allow comparing the results from one run to the next.

^ Obtaining bounds on the expected performance measures by evaluating the model under worst and/or best

case assumptions.

In effect, the modeling cycle yields many insights into the SUS. These insights result from the different steps in

the modeling cycle and are used to improve the system in some desired aspect. Thus, given a formal model, its

external constraints we can explore what mechanisms are available to optimize the system behavior. For example,

consider such factors as the SUS topology, fault tolerance, timeliness, resource allocation, communications etc.

How do such mechanisms impact the behavioral aspects such as reliability and performability? Refining the system

model can reveal trade-offs in design alternatives such as deciding what features of the system should be changed to

improve the system’s reliability or validating certain assumptions with respect to various performance goals.

3. Modeling techniques

As discussed, different types of models are available to obtain the computational model from the abstract model.

Generally, the choice of model type depends on the answers we wish to obtain from the model. A short list of

available techniques was introduced earlier. Lets now explain these description techniques in more detail.

3.1 Reliability and availability models

These models are used to predict the reliability and, depending on the structure, the presence of failure(s) and repair

of component(s). When considering the measures of both, these terms are often denoted dependability [Muppala

1994]. There are three model types commonly used for reliability and availability analysis: reliability block

diagrams, reliability graphs and fault trees. Before explaining each of these model types, lets first define what we

mean by reliability and availability:

^ The reliability R(t) of a component is the ability of the component to work correctly over a period of time t.

If S denotes the system, then R(t) is given by: R(t) = P(S is working correctly in [0,t]). Thus, if X denotes a

random variable representing the time to failure, then the system reliability at time t is:

R(t) = P(X > t).

This assumes the system cannot work indefinitely with out failure (i.e.,) and the system
is operational at time t=0 (i.e., R(0)=1).

8

C1 C2

C3

C4

a

a

Source

C5

Sink

C1

C4

C2

C5

C3

a) b)

Figure 4. Reliability (a) block diagram, (b) graph of a bridge.

A

t

1

0

A(t)

Figure 3. Typical availability function behavior.

^ The availability A(t) is defined as the probability that the system is operational at time t, regardless of the

number of failures that have occurred up to now: A(t) = P(S is operational at time t). The availability of the

system at t=0 is assumed to be 1, and there exists a steady state availability (Figure 3 shows the typical

behavior of an availability function):

 limt→∞ = A.

It is important to note that if the system is not

repairable, the definition of R(t) and A(t) are

equivalent. Given these definitions, lets explain the

concept and semantics of the descriptive models which

give the important relationship(s) among components

that are assessed to determine the measure (i.e., a

prediction) of interest.

3.1.1 Reliability block diagrams

Reliability block diagrams describe the logical

structure of the system with regard to how the reliability of individual components affects the overall system

reliability. A block in the diagram represents each component. The arcs represent the logical structure between

these components. If we have for example, a set of components in series, the system will run if every component is

operational. A parallel structure runs if at least one of the parallel components is operational. The third possibility is

to have components connected in a k out of n structure. These basic structures can be combined with each in any

desired way. In a system with N components the distribution function for the failure time is:

Consider the model of a bridge used in interconnection networks as shown in Figure 4a. The bridge consists of

the five components C1, C2, C3, C4 and

C5. The system is operational as long

as there is one of the following paths

available: C1C2, C4C5, C1C3C5 and

C4C3C2.

3.1.2 Reliability graphs

A reliability graph is an ordered graph consisting of edges and nodes. In contrast to many other ordered graphs, the

structural relationships between the components that can fail are not described by the nodes but by the edges. The

source node contains no incoming edges while the sink node contains no outgoing edges. For the purpose of

analysis the edges are assigned failure rates, failure probabilities or unavailability probabilities. If there is no path in

the graph from source to sink, the system has failed. The distribution function is the same as for a reliability block

diagram. The equivalent reliability graph for the bridge example is shown in Figure 4b. In this case, the system will

F(t) =
1 − (1− Fi(t)) for a series structure,

i=1

N

∏

F i(t) for a parallel structure.
i =1

N

∏









9

Table 2. Fault tree extensions.

Symbol Name Meaning

The top event appears
if k out of n input
events return a logic 1

The top event appears
if all input events
return a logic 1

The top event appears
if at least one input
gate returns a logic 1

The top event appears
if the input event
occurs and condition
x is fulfilled

k out of n
combina-
tion gate
(here 2/4)

C1 C2 C3 C4

Failure

2/4

Failure

C1 C2 C3 C4

C1 C2 C3 C4

Failure

Top event

x

C1

AND gate

OR gate

IF gate

fail if the edges labeled C1,C2 and C4,C5 both fail. Note

that as long as a path, for example C4, C3, C2 or C1, C3, C5

exists from source to sink, the system is operational.

3.1.3 Fault trees

Fault trees have their roots in the hardware world (no pun

intended) but they are equally applicable to software and

especially when considered together as a system. A fault

tree can be considered as an elaborated depiction of an

undesired event (i.e., failure) to the system and is usually

critical from a cost or safety standpoint. This event

constitutes the top level happening in the tree and

generally consists of the complete or catastrophic failure.

It is very important to choose this event carefully. In the

case that the top event is too general, further development

of and solution of the fault tree may become

unmanageable. On the other side, if it’s too specific, the

analysis may not provide a sufficiently broad view of the

system.

Failures happen when an (undesirable) event (or chain of events) occur(s). Multiple events may occur in parallel

or sequentially. These undesirable events may happen because a fault (or defect) has been encountered (or invoked).

They may be associated with hardware or software and/or some anomaly or user error such as an unexpected

environmental occurrence or input. A fault tree thus depicts the logical interrelationships of basic events that lead to

the undesired top event. The tree is tailored from the top event down to all of the basic events that could possibly

lead to causing the top event to occur. The tree cannot cover all possible faults, but only those that may lead to the

top. Moreover, these faults are not complete in the sense that the tree covers all possible events that lead to the top.

The structure of the tree can be considered as a complex of articles known as gates which permit or inhibit the

passage of the fault logic up the tree (logic 1 at the node if the event occurs, otherwise 0). The input to a gate is

either a basic event or the output of another gate. Basic events are the leaves of the tree (that have no inputs) and the

top event is the root (has no output). Furthermore, we assume the basic events are mutually independent with

known probability (or rate) of occurrence. Apart from the basic AND and OR gates many other gate types have

been introduced [Villemeur 1992]. The most important extensions are shown in Table 2. If we assume the fault tree

does not contain repeated events and the number of inputs at a gate is equal to n, the distribution function for the

failure time of the system is:

FFaultTree(t) =

1− (1− Fi(t)) OR gate,
i =1

n

∏

Fi(t) AND gate,
i =1

n

∏
n

i()F(t)i(1− F(t))n− i k out of n gate
i= k

n

∑













10

T1

T2 T3

K1

T5

K2

T6

T2

T3

K3

T7

T1

K4

T8

T4

P1 P2P1 P2
T1

T5

T6

T2

T3

T7

T8

T4

T5 T6

T7

T8

T4

a) b) c)

Figure 5. Precedence graph (a) task partitioning, (b) processor allocation,
and (c) overall model.

3.2 Performance and functional models

Performance models enable us to represent the probabilistic nature of the work the system is exposed to (i.e., subject

to operational conditions). Such methods permit us to predict the ability of the system to carry out the intended

function (work) under the assumption that no components fail.

3.2.1 Stochastic process algebras

A process algebra (PA) is an abstract description language that provides a general mathematical model for

representing real systems by the terms or expressions of the model, and manipulating these terms in order to analyze

the behavior of the systems [Milner 1989]. Thus, one of the main advantages provided by PAs are their

composability. PAs have been used to specify and design computer system. The basic idea is that these systems can

be readily decomposed into subsystems, which operate concurrently and interact with each other as well as their

common environment [Hoare 1985]. The process behavior is described within an algebra, which provides a set of

operations to structure and refine such systems. It avoids many of the traditional problems associated with

parallelism in programming (i.e., interference, mutual exclusion, interrupts, multithreading, semaphores, etc.) and it

includes many advanced structuring ideas (e.g., monitor class, module, package, critical region). PAs give a secure

mathematical foundation for avoidance of errors such as divergence, deadlock and non-termination and for

achievement of provable correctness in the design and implementation of computer systems. Thus, PAs permit us to

build structured models, meaning that a model can be built using the components of a finer model. It is from the

characteristics of the finer model that the characteristics of the coarser model (or the overall model) are derived.

Process descriptions, based on these algebraic theories, are for example CSP (communicating sequential processes)

and CCS (calculus of communication).

To predict the performance of a system specified using a PA some extensions were introduced and are thus

called stochastic process algebras (SPA). In a SPA, process activities are assigned stochastically distributed times.

This extension enables us to examine the order of events as well as their performance (timeliness). Most of the

approaches are limited to exponentially distributed times which permit them to be mapped to a continuous time

Markov chain (CTMC). The great advantage to a SPA is its formalized underpinnings as a description language and

the availability of a very powerful calculus. The calculus can be used to simplify the model or to prove the

equivalence between processes

[Siegle 1995].

An example of a SPA is TIPP

(TImed Processes and Performance

evaluation) which is one of a good

number of Timed Process Algebra

(e.g., Algebra of Timed Processes

[ATP], CCS Shared Resources

[CCSR] based on CCS, Timed CSP

[TCSP], U-LOTOS or Urgent

LOTOS, etc.). When specifying a

system, each process term is assigned

11

a transition system. Let ACT denote the set of action names and PDF a set of probability density functions. The

core of the description language is then given by [Rettelbach 1996]:

^ a ∈ ACT,

^ Fa ∈ PDF,

^ S proper subset ACT, and

^ A set of process variables VAR with X ∈ VAR.

The syntax of TIPP can then be given by:

P := 0 | X | (a, Fa).P | P + Q | P||sQ | recX : P

^ 0: is the empty process that can perform no actions,

^ (a, Fa).P: the process performs action a and behaves then like process P. The time to perform the action is

given by the function Fa

^ The process P + Q behaves like P or Q depending on which partial process performs its action first,

^ P ||sQ: the partial process P and Q work concurrently; only actions in the set s are executed together, and

^ recX: P describes a recursive term with infinite behavior.

TIPP has been used to model multiprocessor systems by mapping them onto a load and a configuration model.

The TIPP project focuses on a basic framework that supports functional specification as well as performance

evaluation in a single process algebraic formalism.

3.2.2 Precedence graphs

Another description technique for performance modeling is precedence graph models [Fleischmann 1989].

Precedence graphs are also used to model parallel algorithms as shown in Figure 5. The structure is represented by

an acyclic graph AG = (T, E) where T denotes the set of nodes and E represents the set of edges:

^ The nodes correspond to the different tasks, and

^ The edges (t i, Tj) ∈ E represent the dependencies between the tasks. A task Ti can be processed as soon as

all its predecessor tasks have been processed.

A precedence graph is designed in three basic steps. In the first step, the partition of the parallel algorithm into

tasks is decided (Figure 5a). Next, the tasks are assigned to a processor (P1 or P2 in Figure 5b). In this example, the

tasks T1, T2, T3, T7 and T8 are assigned to processor P1 and T4, T5 and T6 are assigned to P2. In the last step, the

communication structure is considered (Figure 5c). By assigning a processing time (or rate) to each of the nodes, the

overall processing time of the parallel structure may be calculated. Precedence graph models with conjoint (or

shared) connections of the tasks have the disadvantage that only static process assignments can be modeled and

analyzed, while for dynamic strategies (processor assignment and communication) the so called event traces may be

considered and analyzed [Fleischmann 1989].

12

Time

D
ep

en
de

nt
 v

ar
ia

bl
e

(p
ro

ce
ss

 b
eh

av
io

r)

4-con/con

3-con/dis

1-dis/dis

2-dis/con

Figure 6. Possible types of stochastic processes.

3.2.3 Markov models4

Real life models are usually very

complex where many components

interact with each other. The models

presented so far are limited to the extent

that it is either impossible or very

difficult to capture all of the complex

interactions. Markov models may well

be the best choice when it comes to a

great deal of complexity [Trivedi 1982;

Reibman 1989; Stewart 1994]. Hence,

we discuss Markov chains, which are a

very important and special case of

stochastic processes.

Consider the set X = (Xt; t ∈ T) of random variables defined on the probability space (Ω, A, P) with Xt : Ω → S.

The set X is called a stochastic process and is denoted X(t) in the following. The elements x ∈ S are called the states

and S is called the state space of the stochastic process. The sample space t as well as the state space S of the

stochastic process X(t) can be either discrete or continuous. This results in four different types of stochastic

processes as shown in Figure 6.

In Figure 6, possibility 1 and 3 are called chains to show clearly the discreteness of the state space and to

distinguish them from their continuous counterpart, possibility 2 and 4. If the future behavior of the stochastic

process depends only on the current state then we may call the stochastic process a Markov process. Otherwise, the

stochastic process is called a non-Markov process (Semi-Markov process). Depending on the state space of a

Markov process, we can differentiate:

^ Discrete state Markov processes

^ Discrete time: DTMC (possibility 1, in Figure 6), and

^ Continuous time, CTMC (possibility 3, in Figure 6).

^ Continuous state Markov processes (possibility 2 and 4, Figure 6).

The following discussion considers only discrete state Markov processes (i.e., DTMC Sections 3.2.3.1-3), while

CTMCs are discussed in Sections 3.2.3.4-6.

3.2.3.1. Discrete Time Markov Chains (DTMC)

The state of the process for DTMCs is observed at a discrete set of times and the future behavior of the process

depends only on the current state. This important property is called the Markov property (or memoryless property).

The discrete parameter space T is represented by the set of natural numbers {0, 1, 2, …}. Successive observations

define the random variables X0, X1, …, Xn, … at time steps 0, 1, 2, 3, … n, … Thus, this important property can be

satisfied:

4 The material presented here is of fundamental importance to stochastic analysis and it distinguishes the theory from which most of the modeling
techniques presented here are based.

13

P{Xn+1 = xn+1 | X0 = x0, X1 = x1, …, Xn = xn}

= P{Xn+1 = xn+1 | Xn = xn }.

The conditional probabilities here are known as the single step transition probabilities of the Markov chain.

They give the conditional probability of making a transition from state xn to state xn+1 when the time parameter

increases from n to n+1. They are denoted by p(n)
ij = P{Xn+1 = j | Xn = i}. In a homogeneous DTMC these

probabilities are independent of n and can be written as pij = P{Xn+1 = j | Xn = i}, for all n = 0, 1, … The transition

probability matrix P is formed by placing all possible pij in row i and column j, for all i and j. The elements of the P

matrix satisfy the following two properties: 0 ≤ pij ≤ 1, and for all i,

ij
p =1

∀j
∑

When the Markov chain is nonhomogeneous, the elements pij are replaced with pij(n) and the matrix P with P(n).

The Chapman-Kolmogorov equations give us the method for determining the n-step transition probabilities. If we

generalize the single step transition probability matrix to one that is n-step, we get a matrix whose elements are p(n)
ij

= P{Xm+n = j | Xm =i}. These elements may be obtained from the single step transition probabilities.

P(n)(m,m+1, …, m+n) = P(m)P(m+1)…P(m+n).

For a homogenous DTMC we may write

pij
(n) = P{Xm + n = j | Xm = i}, ∀m = 0, 1,2, ...

Thus, we can see that pij = pij
(1). Using the Markov property, the following recursive formula may be used for

calculating the p(n)
ij:

pij
(n) = pik

(h)pkj
(n −h) , o < h < n.

∀k
∑

In matrix notation, the Chapman-Kolmogorov equations are written as,

P(n) = P(h)P(n-h).

This association states that it is possible to write an n-step homogeneous transition probability as the sum of

products of an h-step and (n-h) step transition probabilities. To go from i to j in n steps, it is necessary to go from i

to an intermediate state k in h steps, and then from k to j in the remaining n-h steps. By summing over all possible

intermediate states k, we consider all possible distinct paths leading from i to j in n steps:

P(n) = PP(n-1) = P(n-1)P.

From this we can see that the matrix of n-step transition probabilities is obtained by multiplying the matrix of

one-step transition probabilities by itself (n-1) times (i.e., P(n) = Pn).

3.2.3.2. Attributes of DTMC

The states in a DTMC may be characterized based on their long run behavior. A state is transient if during an

infinite interval of time the state is entered only a finite number of times. Otherwise, it is called recurrent. For

14

recurrent states, the mean recurrence time can be used to differentiate the states into positive recurrent (mean

recurrence time is finite) and null recurrent (mean recurrence time is infinite). Null recurrent states only exist in

infinite state spaces. An absorbing state is said to be absorbing if once entered, it is never left (i.e., only incoming

arcs and no outgoing arcs). State k is called periodic if there is an integer m > 1 with pm
kk =0. If such an m exists,

then it is called the period of the state k, otherwise that state is said to be aperiodic.

3.2.3.3. Stationary distribution of a DTMC

If we run a number of DTMCs at the same time, then ut
k denotes the percentage of DTMCs that are in state k at time

t. Once the DTMCs have run long enough, we find ut ≅ ut+1, or in other words lim t →∞ ut = u . Thus, the long run

behavior of the DTMC is not dependent on the initial “starting” state any more. When considering only one DTMC,

the stochastic vector u is called the stationary distribution which means that at any time t, the DTMC will be in state

k with probability uk. Stationary distributions can be used to compute steady state performance measures such as

node utilization. There are DTMCs with none, one or several stationary distributions. A unique stationary

distribution exists only for an ergodic DTMC. A DTMC is ergodic if it is irreducible and all states are positive

recurrent and aperiodic. Irreducible means that if every state can be reached from every other state (i.e., if there

exists an integer m for which p(m)
ij > 0 for every pair of states i and j). Let S be the set of all states in a Markov

chain, and let S1 and S2 be two subsets of states that partition S. S1 is said to be closed if no one-step transition is

possible from any state S1 to any state in S2. In general, any nonempty subset S1 of S is said to be closed if no state

in S1 leads to any state outside S1 in any number of steps (i.e., p(n)
ij = 0, for i ∈ S1, j ∉ S1, n ≥ 1) [Stewart 1994]. If

S1 consists of a single state, then that state is called absorbing state (i.e., pii = 1, an absorbing state can be considered

to be a failed state). If the set of all states is closed and does not contain any proper subset that is closed, then the

Markov chain is known to be irreducible. On the other hand, if S contains proper subsets that are closed, the chain is

known as reducible.

3.2.3.4. Continuous Time Markov Chains (CTMC)

If the states of a Markov process are discrete and state transitions may occur at any point in time, we say the process

is a CTMC. Let the random variable X = {X(t), t ≥ 0} denote the stochastic process with discrete states space S.

This stochastic process forms a CTMC if for all integers n, and for any sequence t0, t1, …, tn, tn+1 such that 0 ≤ t0 < t1

< … < tn < tn+1. Thus, for any set of time points ti, random variables X and states xi the following relationship holds:

P{X(tn+1) = xn+1 | X(t0) = x0, X(t1) = x1, …, X(tn) = xn}

= P{X(tn+1) = xn+1 | X(tn) = xn}.

= px0x1(t0,t1) . px1x2(t1,t2) … pxn-1xn(tn-1,tn).

This last equation corresponds to the probability of a path with fixed initial starting state, and the prior equation

denotes the conditional probability of moving from state xn to xn+1 in the interval [tn, tn+1] under the condition that we

are in state xn at time tn.

15

3.2.3.5. Stationary distribution of a CTMC

The notation of a stationary distribution for a DTMC was introduced above. In the same way a stationary

distribution for CTMCs is defined. The CTMC is stationary (or has a stationary distribution) if the vector π(t)

reaches a statistical balance. This is exactly the case if there exists a time t0 with π(t) = π ∀t ≥ t0. In this case the

state probabilities are constant (π'(t) = 0 ∀t ≥ t0) and simplifies to:

0 = π j jk
q − π k kj

q
j≠ k
∑

j ≠k
∑

0 = πQ.

Instead of a differential system of equations we now get a system of linear equations to solve (various solution

methods are available). In addition, the solution now depends on the condition that the sum of all state probabilities

is equal to one. Together, with this condition we get the solution vector π, which is called the stationary

distribution. This solution fulfills the steady state property π = π P ∀t > 0. Once a CTMC reaches steady state, it

will remain there for all time points t ≥ t0, which follows from π(t) = π(0)P(t) = π(0)P(t0)P(t-t0) = π(t0)P(t-t0) = πP(t-

t0) = π. Up until the time t0, the CTMC is said to be in a transient status. The similar transient distribution is now

explained.

3.2.3.6. Transient distribution of a CTMC

Sometimes it's important to understand how performance measures evolve over time. This is accomplished by

computing the π(t) vector of state probabilities repeatedly over the desired interval of time, known as transient

analysis. To perform this analysis, the CTMC is not permitted to be acyclic. Acyclic means that once a state has

been visited [entered] it will never again be visited. To determine the state probabilities π(t) the Kolmogorov system

of differential equations must be solved: P’(t) = P(t).Q, (where P is the CTMC stochastic matrix which gives the

various state to state transition rates and Q is known as the generator matrix (or infinitesimal generator matrix Q).

Once P(t) is determined the solution vector π(t) is given by solving:

π(t) = π(0)P(t).

In addition, we can determine the mean time a Markov process spends in state i during the interval [0, t]. This

measure is given by the following integral:

Li (t) = π i (x)dx
0

t

∫

In practice, we often find systems that are not repairable (i.e., once it fails, it will never recover). For a CTMC

this means once this state is reached, there is no way out. Such states are called absorbing, and an important

measure is, for example, the mean time to absorption (MTTA). Let limt→∞ Li(t)=π i denote the mean time that the

Markov process spends in the state i before entering an absorbing state. To determine τι we can partition the state

space S of the CTMC into absorbing states SA and transient states S T. By reordering the generator matrix Q, we get

a sub-matrix QT that contains only the transient states. By taking the limits t→infinity we obtain a linear system of

equations for determining the vector τ:

16

µ1

µ4

µ2

µ3

Figure 7. The central server queuing network model.

Μ

µ

1

Figure 8. The machine repairman queuing model.

0 = τQT + πT(0).

By using the vector τ, the following simple expression for the mean time to absorption can be given:

MTTA = τ i
i ∈ST

∞

∑

Along our way, we have always assumed there exits methods to determine a solution of the state vector π(t).

See [Greiner 1999] for the transient and steady state

solution of DTMCs and CTMCs.

3.2.4. Queuing network models

Queuing network (QN) models are a well-known

modeling paradigm. This is primarily due to their

compactness and simplicity. A QN consists of at least

two service stations that are connected to each other.

Sources in the real system (e.g., machines, CPUs, printers,

airplanes...) are mapped to a node in the QN. The node

itself can be further divided into the service unit and the queue that stores customers (i.e., jobs). For the system to

work we need jobs circulating in the system. Once a job is served at one node it moves to the next node or returns to

the same node.

There are several different types of QNs, open, closed and mixed networks. Open QNs are characterized by the

fact that jobs arrive from the outside at the network and leave it once they have received their service. This means

especially, that at any time the number of jobs is not constant. The opposite of open QNs are closed QNs where the

number of jobs in the system is always constant (i.e.,

once a job leaves the system another new job

immediately replaces it). The third class is mixed QNs

where some jobs belong to the open job class and some

jobs belong to the closed job class. A simple example of

a QN is shown in Figure 7. This is the very well known

central server model proposed by [Buzen 1971]. Node 1

represents the CPU that processes jobs with rate µ1. The

other nodes model peripheral devices such as disk,

printer, or backup devices etc.

Another well-known QN is the machine-repairman model, shown in Figure 8. The strength of this model

comes from the fact that it can be used to model many different types of systems. If, for example, the M machines

correspond to terminals and the repairman represents the computers, then we have the model of a terminal system.

In Kendall’s notation, a node in a QN can have many different characteristics as for example the node type, the

service strategy or type of service processes, etc. Kendall’s notation is used to describe elementary queuing systems

[Kleinrock 1975; Bolch 1989]: A/B/m/C – queuing discipline (CDF is cumulative distribution function),

17

Table 3. Abbreviations for CDFs used in Kendall’s notation.

Abbr. Cumulative Distribution Function

M Exponential distribution

Ek Erlang distribution with k places

Hk Hyperexponential distribution with k phases

Ck Cox distribution with k phases

Gk General distribution

GI General independent distribution

D Deterministic distribution

where A denotes the CDF of the arrival process:

µ =

1

T S
 ,

and B denotes the CDF of the service process:

λ =

1

T A
 .

Since the arrival and service processes are stochastic, their CDF has a great influence on the system behavior

and the mathematical tractability. From a mathematical standpoint, exponentially distributed service times can be

handled best. For A and B the abbreviations shown in Table 3 are used.

Furthermore, m denotes the number of servers (m ≥ 1), and C denotes the capacity of the node (number of jobs

in the queue + number of jobs in the server). Usually, when C is not specified, an infinite capacity is assumed.

Finally, the queuing discipline (also called the service strategy) determines the policy for picking jobs from the

queue. The most important disciplines include

the ones listed in Table 4. A simple example of

Kendalls notation is for example the expression:

M / G / 1 / 5 – RR

Which means that we have an

exponentially distributed arrival process,

general distributed service process, one server, a

finite queue with capacity five, and the round

robin service strategy (respectively).

Table 4. Important queuing disciplines.

Abbr. Description of Strategy

FCFS First-Come-First-Served: jobs are served in the order they arrive.

LCFS Last-Come-First-Served: the last job in the queue is served first.

SIRO Service-In-Random-Order: the next job to be served is chosen in random order.

RR Round Robin: the system uses a periodic time sliced method. Unfinished jobs may be pre-empted and
placed at the end of the queue but will eventually finish.

PS Processor-Sharing:

Priorities Job selection depends on its priority, which may be assigned to a job's remaining processing time or to
the importance of a job. Priorities may be permanent or change while time passes (dynamic priorities).

Preemption If the queuing discipline is LCFS / priority, the current job may be preempted. If a higher priority job
arrives and the current job is preempted then a preemptive resume strategy is defined. Otherwise, if the
job is allowed to finish before the higher priority job is given access it’s called a Head Of Line strategy.

3.2.4.1. Local balance – Global balance

As we have discussed for Markov chains, the behavior of a system can be described using CTMCs. The steady state

probabilities πi are computed from πQ=0. This equation says that for each queuing network in steady state, the flux

into a state is equal to the flux out of that state and is called conservation of flow, as shown here:

π j q jij ∈S
∑ = qiji∈ S

∑ .

18

This is the global balance equation (GBE). Since the number of equations can be extremely large, an alternate

technique is needed. The GBE can be split into local balance equations to describe system behavior. But this is

possible only if the network can fulfil certain characteristics concerning inter-arrival, service times, and queuing

disciplines. The local balance equations are much easier to solve. Queuing networks that have a unique solution of

the local balance equations are called product form networks (the departure and arrival rates to a state i are equal).

Not every network can be solved using the local balance equations. However, there always exists a solution of the

GBE. Therefore, global balance can be considered as a sufficient, but not necessary condition for local balance.

Networks with a solution to the local balance equations are said to have the local balance property (which, by the

way is a unique solution to the GBE). If every node in the network fulfil the local balance property then: (1) the

network has a product form solution and (2) the overall network has the local balance property. The importance of

these results are derived from the fact that whenever the overall network has the local balance property, the separate

nodes behave as if they were single queuing systems and can therefore be considered in isolation.

3.2.4.2. Product form solutions

The term product-form was introduced by [Jackson 1963; Gordon 1967] which considered open and closed QNs

with exponentially distributed arrival and service rates. Three results, namely the theorem of Jackson, the theorem

of Gordon/Newell and the theorem of BCMP are very important because they enable the use of analytical techniques

for the solution of product form queuing networks.

3.3. Performability models

Performability is a fabricated word that combines the two terms performance and reliability. The performability

discipline tries to merge these two modeling paradigms. The systems under consideration are so-called degradable

systems, meaning the system may be able to survive the failure of one or more system components. Once a system

component fails, the system may continue to operate with a reduced performance. In such cases, it is necessary to

consider both performance and reliability together. A common technique for modeling degradable systems is the

Markov reward model (MRM). There are other techniques such as Semi-Markov reward models [Ciardo 1992b],

Markov regenerative reward models [Logothetis 1997] and the monolithic Markov model [Greiner 1999]. The

monolithic method combines the structural oriented performance model with the failure oriented reliability model.

This model presents a very high solution overhead compared to the MRM.

3.3.1. Markov reward models

A MRM is a homogeneous Markov process together with a reward function r(i) which assigns each state i a reward

r(i). Let Xt, t≥0 denote a Markov process with finite state space S. This Markov process is completely described by

the generator matrix Q and the initial probability vector π(0). If we assign the reward function r : S → ℜ to this

Markov process, we get what is called an MRM. In general, there are four types of reward functions:

^ Assume the Markov process X is in state i at time ti. It then obtains the reward tir(i) per unit of time. The

reward r(i) can therefore be considered as the performance level of the system while being in state i. A

reward can be positive or negative. Negative rewards connote a loss instead of a gain. Since the system

produces work at a rate r(i) during the time it occupies state i, we call this a rate based reward model.

^ The rate based reward model is extended so that the reward also depends on the time t and we obtain r(i,t).

19

0a 1a 2aλ
µ

r f r f r f

0b 2b1b

3a 4a 5aλ
µ

λ
µ

λ
µ

λ
µ

r f r f r f

3b 5b4b
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

f r f r f r f r f r f

5cλ λ λ λ λ

r

0c 1c 2c 3c 4c

S1

r f

fr

S2

S3

b)a)

Performance
Level 1

Performance
Level 2

Performance
Level 3

Figure 10. CTMC example a) Monolithic system model of the M/M/2/5 system as
compared to b) MRM model of the M/M/2/5 system.

λ

µ

µ

Figure 9. A simple M/M/2 system

^ A third class of rewards are the impulse-based rewards r(i,j) which are associated with each transition from

state i to state j. Whenever such a transition occurs, the cumulative system reward is increased by r(i,j).

^ Impulse-based reward models can also be time dependent, which leads to r(i,j,t).

These reward models can even be mixed within the same model. Due to the general definition of the reward,

MRM are a very powerful extension of Markov models. Let us review some important reward measures.

3.3.2. Certain important Markov reward measures

A MRM can yield three types of steady state as well as transient performance measures. Expected value of the

reward rate, accumulated reward and distribution of the instantaneous reward. Usually we are interested in the

overall reward picked up in an interval [0,t]. This reward measure is called the accumulated reward and tells us for

example how much money we have lost or gained in the interval.

3.3.3. A simple Markov reward example

The complexity of computing performability measures using a

monolithic system model (Figure 10a) compared to using the

MRM (Figure 10b) is much greater. To illustrate this, lets consider

the queuing network (M/M/2/5 system) shown in Figure 9. Since

we assume a finite buffer with capacity 5, the corresponding

CTMC has exactly six states (i.e., the nodes denote the number of jobs in the system). Lets assume that the M/M/2

server fails with a rate f and is repaired with rate r. Jobs arrive at the system with rate λ and are processes with rate

µ. The corresponding monolithic system model consists of three layers, the top layer (level 1), denoting the case

when both servers are operational, the middle layer (level 2) denoting the case when one of the two servers fail, and

the bottom layer (level 1) denoting that both servers have failed. In level 3 only jobs can arrive because both

available servers are failed. Switching between layers take place with rate f (failure) and r (repair). To understand

the throughput per unit time tp we’ll need to determine the number of customers served per time unit. Since the

system has redundancy the failed servers can be repaired, tp also depends on the performance level. The fact that for

performability analysis using a monolithic model all performance levels have to be explicitly represented means

there is a great deal more complexity. Imagine what happens if, instead of two servers, we have h servers and a

maximum number of n jobs. Instead of n+1 states (in the case of MRM) the monolithic model gives (n+1)(h+1)

states. The overall

number of states

therefore grows

exponentially in

system complexity

and linearly in the

number of

performance levels.

In the MRM model a

whole layer is

20

represented by one state and the vertical transition rates between the performance levels in the monolithic model are

now the transition rates in the MRM (see Figure 10b).

The state probabilities of the resulting Markov process provide the portion of time spent in performance level i.

The probabilities combined with the throughput of performance level i permit us to determine the throughput per

time unit tp. The savings in complexity are readily seen and the MRM modeling can therefore be considered as

splitting the problem into a performance model and a reliability model. Actually the splitting of the monolithic

model into a performance/ reliability model only approximates the monolithic model’s behavior, but this is actually

a very good approximation. The rates of the performance and reliability model differ in magnitudes and therefore

before switching into another performance layer steady state is achieved.

Its should be clear by now that to describe the Markov reward model (or any Markov model) by hand is a

complex and error prone task. It would be better if another high level description technique is needed which offers

an easier modeling paradigm but still has the power of Markov models. One possible description technique is

stochastic Petri nets, which are explained below.

3.4. Performance and performability models

Generally, Markov and MRM model types can be applied to a wide range of problems. They are powerful modeling

techniques, however inherent in the Markov models are two basic problems. First, the appearance of a Markov

model is usually far removed from the general feel and shape of the modeled system. Second, the state space grows

exponentially in the system complexity and makes it very difficult to specify a model correctly. Stochastic Petri nets

overcome these difficulties by providing a descriptive formalism that is closer to the modeled system but offers the

modeling power of Markov models. There are many tools available for the specification and analysis of SPNs such

as SPNP [Ciardo 1994], GreatSPN [Chiola 1985] or UltraSAN [Sanders 1995].

3.4.1. Basics of Petri nets

The PN in its simplest form is a directed bipartite graph, where the two types of nodes are known as places (circles)

and transitions (bars). Places normally represent events while transitions represent actions. In modeling [Murata

1989], using the concept of conditions and events, places represent conditions, and transitions represent events. A

transition has a certain number of input places and output places representing the preconditions and post-conditions

of an event. The places are connected to the transitions by input and output arcs.

A transition is enabled if all its inputs contain at least one token (depending on the input arc multiplicity).

When a transition is enabled, it can fire (asynchronously), leading the Petri net into a different arrangement of

tokens. A marking represents a configuration of tokens in the places of the Petri net, and denotes the state of the

Petri net. A marking is reachable if, starting in an initial marking, it is obtained by a sequence of firings. The

reachability graph is the set of all reachable markings connected by arcs representing the transition firings. In a

generalized stochastic Petri net (GSPN), each transition has an associated firing time, which can be zero (immediate

shown as dark bars) or an exponentially distributed random variable (timed shown as light bars). Any GSPN with

only immediate transitions is automatically just a simple Petri net.

Completion of the action defined by a transition causes a token (one or more depending on the output arc

multiplicity) to be assigned to each of its output places. When a place is the input to several transitions, only one of

21

the transitions is enabled non-deterministically.5 As transitions are enabled, the state of the Petri net moves from

marking to marking. An inhibitor arc prevents a transition's firing when its corresponding input place contains

tokens (simple Petri nets that include such arcs have been shown to be Turing equivalent).

3.4.2. Generalized stochastic Petri nets (GSPNs)

A Stochastic Petri net (SPN) is simply a Petri net which has been extended in several ways. These extensions

embed the model into a stochastic environment by associating a random time with each of the transitions in the net.

The most general extensions allow the usage of random variables for times (rates).6 The underlying stochastic

process is captured by the extended reachability graph (ERG), a reachability graph with additional stochastic

information on the arcs. The ERG has been shown to be reducible to a CTMC [Marsan 1984] provided that

exponential distributions are used for transition firing rates. Since an SPN permits a probability distribution to be

associated with arcs (or transitions) they are very suitable for modeling system performance and reliability. Thus,

each transition is associated with a random variable that expresses the delay from the enabling to the firing of the

transition. When multiple transitions are enabled, the transition with a minimum delay fires first (known as the race

model). The transition rate from state M
i
 to M

j
 = q

ij
 is given by q

ij
 = λ

i1
 + λ

i2
 + . . .+λ

im
 where λ

ik
 is the delay in

firing a transition tk which takes the Petri net from marking M
i
 to M

j
 (when several transitions enable the firing from

M
i
 to M

j
). Another way to resolve such conflicts is the assignment of priorities to transitions. See an especially

clear discussion of SPN models in chapter 7 of [Sahner 1996]. Markov and performability models are covered in

the same book (chapters 4, and 6 respectively). Examples of these types of models are available in part two

(chapters 9, 10 and 12). Also refer to [Levenson 1987; Lewis 1988; Murata 1989; Sahner 1993; Kavi 1994; Balbo

1995; Laprie 1995] for more details on Petri nets and SPNs, as well as Markov processes and Markov Reward

processes.

3.4.3. Extensions to GSPNs

Over time, many extensions have been made to PNs and GSPNs. Some of the best known include [Greiner 1999]:

^ Arc multiplicity is a short hand notation that replaces the need to draw multiple arcs from the same source

to destination in such a way that some number of k tokens are either consumed or produced. This

extension does not increase the modeling power of the GSPN.

^ Inhibitor arcs work just the reverse from the normal input arc: they disable a transition in any marking

where the number of tokens in a place is equal or bigger than one (or k ≥ 1). They are just the complement

of a regular input arc.

^ Priorities are enforced by the rule: a transition may fire only if no transition with a higher priority (integer

value) is enabled at the same time.

^ Guards extend the concept of priorities in the sense they allow the specification of predicates about when

the transition can become enabled. This extension tends to make the PN easier to understand but does not

increase the Petri net’s modeling power.

5Coincidentally, if several conflicting immediate transitions are enabled in a marking, a firing probability must be defined. If at least one
immediate transition is enabled, the marking is said to be a vanishing marking (otherwise, if only timed transitions are enabled [or no immediate
transitions are enabled] the marking is called tangible). If a feasible marking exists where no transitions are enabled the net is deadlocked. The
term marking is often used interchangeably with “state.” A marking in a Petri net is a configuration of tokens which represent a distinct state.
6When there are multiple transitions enabled by one token, a probability is associated with each of the involved transitions. Such a transition is
immediate and its firing is instantaneous (no time is consumed).

22

^ Marking dependent firing rates allows the firing rate of a marking to be any function of the number of

tokens in any place(s) of the Petri net.

^ Marking dependent arc multiplicity is applied to the problem of moving some number of n tokens from one

place to the other. This works quite well when places need to be flushed once a certain event occurs.

3.4.4. Expressing the functional aspects of a PN using a process algebra

Typically, process algebraic laws allow the rewriting of a system description into another, while preserving the

notion of correctness that is captured by the equivalence used in the underlying semantic model [Donatelli 1994;

Donatelli 1995]. Their inherent support of compositional reasoning enables the construction of complex systems as

the combination of conceptually simpler systems [Balbo 1992; Balbo 1993; Balbo 1994; Buchholz 1994]. In this

work the dependability of systems is studied to devise techniques to prevent, detect and compensate for anomalies.

An experimental tool for translating between the CSP (communicating sequential processes) process algebra and

SPNs was developed to explore the specification and analysis of stochastic properties for concurrent systems.

Moreover, the idea is to translate the functional system description (using a CSP-based language, P-CSP) into the

information needed to predict behavior as a function of observable and stochastic parameters (topology, timeliness,

communications and failure categories). The P-CSP language is similar to TIPP presented in paragraph 3.2.1,

otherwise refer to [Hoare 1985]. The modeling approach uses a theory based on proven translations between CSP

and Petri nets [Olderog 1986; Olderog 1987]. The grammar and CSP-to-Petri net (CSPN) tool enable service and

failure rate annotations to be related back to the original CSP specification. The annotations are then incorporated in

the next round of translations and stochastic analysis. The tool automates the analysis and iterative refinement of the

model. Within this setting, one can investigate whether functional and non-functional requirements have been

satisfied [Sheldon 1995; Sheldon 1995a; Sheldon 1996b; Sheldon 1998].

When the models are refined, the reliability and performance requirements can also be refined to reveal trade-

offs in design alternatives such as deciding (1) what are the critical system elements; (2) what features of the system

should be changed to improve the system's reliability; (3) or validating performance and reliability goals using

stochastic system models. To address these issues, critical requirements are abstracted and the system is described

using the P-CSP process algebra. Once the model specification has been translated, we enumerate modeling

assumptions, estimate model parameters, and solve the model for specific values of the parameters using Markov

analysis [Ciardo 1991; Ciardo 1992a; Ciardo 1992b; Ciardo 1992c; Ciardo 1993]. At this point it is easy to introduce

timing constraints among feasible markings and to employ any of the numerous tools developed for stochastic Petri

net analysis mentioned above[Ciardo 1987; Koller 1997].

4. Solution techniques

The type of model to be chosen for description depends mostly on the performance measures of interest. Yet, these

models are only syntactic sugar if no method is provided to solve them. Each type of model has its own specific

solution technique and may also be solved using different solution techniques. A product form queuing network

may for example be solved by simulation, solving the underlying CTMC or using an analytical method.

23

Continuous Simulation

Time driven

Discrete Event Simulation

Event
based

Ac tivity
based

Process
based

Transaction
based

Scheduling

Event driven

Simulation Models

Figure 11. Classification of simulation methods.

4.1. Simulation

Simulation can be considered a very important method for the analysis and planning of complex systems. This

development is supported by the availability of computers and since simulation has gained considerable acceptance

by industry, it may be considered as one of the key technologies of the 90s [Gangl 1993]. Simulation possesses the

ability to map from the real or planned system to a program that can be as detailed as need be. This allows us to

analyze, observe and evaluate the dynamic behavior of the system under many different conditions. For this reason,

simulation is very useful in many different application areas. Simulation may, at times, be the only feasible method

for ascertaining the performance measures of interest if we want to avoid building expensive prototypes or running

expensive tests. The most important and difficult task when performing a simulation is that of finding and

developing a realistic model without being too detailed or too abstract.

4.1.1. Classification of simulation methods

Because a simulation model allows us to analyze the dynamic behavior of a system over time, the mapping of events

and the continuation of time are key. Different types of simulations are possible based on the continuance of time

(see Figure 11). When referring to continuous simulation, the state of the system changes constantly in time and the

relations between the states are usually described by differential equations (e.g., the speed of car during

acceleration). See [Liebl 1995] for more details.

4.1.2. Discrete event simulation (DES)

DES was originally designed for the solution of queuing network problems. A sequencing variable was used to

represent the monotonically simulated time (the model's clock). There are two ways this is done. The first uses time

driven advance of the clock and the second uses event driven time advance (so-called a time epoch). For time driven

advance the period is of fixed length, while in the event driven case the clock jumps to the time of the next event

(i.e., state changes occur only at the time of an event). The execution, creation and deletion of events (an occurrence

that causes a state change), through an ordered event list. Implementation concepts for such lists are discussed in

[Evan 1988]. Practically all modern simulation engines follow the event driven paradigm. Apart from the definition

of an event, we need also to describe the concepts of activities and processes. An activity is a collection of

operations that can change the current state of an entity

(anything that is described by one or more attributes)

whereas a process is a sequence of logically connected

events that are ordered in time. Event driven DES can be

further refined into the type of scheduling strategy. Theses

scheduling strategies can be considered as different

worldviews of DES. See for instance [Evan 1988; Carson

1992; Barner 1994; Liebl 1995; Hein 1996] for a more

detailed description of these techniques.

4.2. Numerical solution techniques

Simulation is not always the method of choice when it

comes to assessing system models. Simulation may be very

time and resource consuming. It is often the case that

24

numerous repetitions of runs are necessary to achieve the confidence levels required. Also, if you are trying to

predict an extremely rare event (e.g., MTTF for a high assurance system) then simulation may be completely

infeasible. However, Parallel DES has enabled a quantum leap with respect to these limitations. In many cases

Markov models provide an attractive alternative and very powerful modeling paradigm.

4.2.1. Generation methods

Since it is cumbersome and errors prone to derive the Markov model directly, GSPNs are used to describe the

underlying Markov model. This separation into a higher level model (GSPN model) and the computational model

(underlying system of equations) gives the modeler more freedom to concentrate on the system being described.

Before being able to solve the underlying system of equations, first the different states of the Markov model are

generated form the GSPN description. In general, the analysis of a GSPN can be separated into four steps:

^ Generation of the ERG (extended reachability graph) which defines the underlying Semi-Markov process,

^ Transformation of the Semi-Markov process into a CTMC by eliminating the vanishing markings

(markings with zero sojourn times),

^ Transient, or steady state analysis of the CTMC, and

^ Calculation of the performance measure(s).

An ERG is a directed graph where the nodes correspond to the markings (states) of the GSPN and the weighted

arcs represent the rates or probabilities from which the state transitions occur. There are two basic algorithms used

in generating the CTMC (i.e., reachability graph –with vanishing markings eliminated): (1) Post elimination after

generating the complete ERG, and (2) On-the-fly elimination which requires less memory because fewer states are

actually generated. See [Allmaier 1997; Greiner 1999] for more details.

4.2.2. Methods for linear systems of equations

For the solution of linear systems of equations (steady state case) many exact as well as approximate methods can be

applied. Since in the case of a CTMC the underlying Q matrix is usually sparse and has a high dimension, an

iterative method is used. These methods work fine as long as the CTMC is not stiff (meaning the values in the Q

matrix are different by orders of magnitude) since in this case numerical solution techniques usually do not converge

or the convergence is very slow. The solution of a non-stiff CTMC may be accomplished using various standard

methods and for an efficient solution method for stiff CTMCs see [Horton 1994; Horton 1995; Greiner 1996]

4.2.3. Methods for differential systems of equations

To compute the vector p(t) of the state probabilities, the matrix P is solved to determine the transient solution using

the Kolmogorov differential system of equations. The problem thereby reduces to the computation of the sum of the

matrix powers which is numerically critical since negative elements on the main diagonal of Q can lead to numerical

instability. A well-known method for transient analysis is Uniformization [Stewart 1994], also known as

randomization or Jensen's method. This method is based on the idea that the generator matrix Q be transformed into

a stochastic (probability) matrix P with ||P|| < 1. The fact that the norm of the matrix is smaller than one guarantees

that the algorithm for computing the nth power is stable. The reader is referred to [Greiner 1999] for additional

details.

25

4.3. Analytical solution techniques

In contrast to the numerical solution techniques, which are based on the model's state space, analytical solution

techniques are not. Many efficient algorithms for calculating the performance measures of product form networks

have been developed. The two most important exact methods for closed product form queuing networks (PFQN)

are the mean value analysis (MVA) and the convolution algorithm. Both algorithms are iterative methods and

unfortunately both (as is the nature of exact methods) are very time and memory consuming once the network grows

in size and/or number of nodes. Therefore, approximations to these exact methods are needed. A very well known

approximation method is the summation method. Methods for closed PFQNs have a simpler formulation than

methods for open and mixed PFQNs. To fill the gap between the closed and open/mixed methods, the closing

method is used which delivers either exact or approximate results, depending on the nature of the underlying solver.

Another important class of queuing networks is the non-product form type (NPFQN) which can not be solved using

an exact method. The obtained results are always approximate (take for instance the method of Marie which

delivers very good results). To provide specifics concerning these methods is beyond the scope of this paper. The

reader is referred to [Greiner 1999] for additional details.

5. Example

Operating systems that use dynamic priority mechanisms are very common. Nevertheless, it is difficult to develop

an accurate analytical model to evaluate their performance, mainly due to the different forms of dependency

between the various constituent parts. To illustrate this difficulty, we examine the performance of the BS2000

OPERATING SYSTEM (running the Siemens 7.500 system family [Dedie 1988; Stiegler 1988]), that implements

dynamic priorities. A Stochastic Reward Net model (SPN implemented with rewards (i.e., MRM as defined above))

is developed that comprehends the dynamic priority mechanism, several different contexts (e.g., kernel and user

contexts), as well as the ability to change the hardware configuration (i.e., adding CPUs). As will be seen, this model

suitable for using empirically acquired data. Systematic performance evaluation methods (aside from direct

measurement) of computer and operating systems have gained more importance due to their increasing complexity.

5.1. Functional level abstraction

The functionality of a general purpose operating system can be grouped into the following four elementary blocks:

I/O, USER, SYSTEM and KERNEL. The I/O block models the activities of the system like disk access. The USER

block provides the machinery for running the user's processes. When a user application is started, an interrupt occurs

and the interrupt number is determined in the KERNEL block, which decodes it and activates the appropriate

interrupt handling routine (IHR). The IHR executes in the SYSTEM block. For each elementary block an analytic

sub-model is defined, whose degree of accuracy depends on the purpose of the analysis. In the following, we

concentrate on the modeling of one priority mechanism implemented inside the USER block. The priority

mechanism is crucial because it guarantees that high priority jobs will have shorter response times than lower

priority jobs. Two possible priority strategies include dynamic (priorities can move up and down to prevent a job

from starvation) and static priorities (often a mixture of preemptive and non-preemptive static service). Here we

evaluate increasing-decreasing dynamic priorities since this type of priority assignment is commonly used in real

time systems.

26

System block Kernel block IO block

User block

Arriving jobs Finished Jobs

p_sys p_io

p_user

Figure 12. Block diagram for a micro-kernel operating system.

5.1.1. Block diagram model

Because it is expensive to run code in the

kernel context, we try only to run basic

(short lived) tasks there, while other work is

performed by lower level hardware (e.g.,

DMA). Thus, the kernel blocks other tasks

less time who then can perform more useful

work. This approach, where the kernel

context performs only the basic work of a

system call is called micro-kernel approach [Deitel 1990] (in contrast to the macro-kernel approach where all

operations are performed in the kernel). The micro-kernel determines only the interrupt number and initiates the

corresponding routine before it exits. Consider, the case of a page fault. A micro-kernel system traps to the system

kernel whom performs the corresponding routine to load the new page and then goes back to the interrupted

program. In this way, its not necessary for the CPU to stay in the kernel context all of the time. As soon as the

location of the page is found and loaded into the main memory, the CPU is free to do other useful work. Older

operating systems use the macro-kernel approach, new ones use the micro-kernel approach. Only basic interrupt

handling and error recovery is done in the micro-kernel while the rest is done outside the kernel (see Figure 12 in

which the central process bubble represents the micro-kernel).

5.1.2. Dynamic priorities

Having developed the block diagram, let’s apply this representation to the real operating system with dynamic

priorities. Compared to Unix, BS2000 supports three different processing modes [Deitel 1990]: transaction, dialog

and batch processing. The transaction-processing mode gains importance as many commercial products are based on

distributed database access. In this case, mutual exclusion is needed as is provided by the transaction-processing

mode. Take, for instance, airline reservation databases distributed over the world. In such a system, we must be

guaranteed that any held reservation can not be overbooked. BS2000 supports this mechanism and to model this

mode, we include the task scheduler PRIOR to show how the priority mechanism works (see [Dedie 1988; Stiegler

1988; Greiner 1995a; Greiner 1995b]).

5.2. Modeling the operating system with a stochastic reward net (SRN)

System complexity makes it impossible to manually construct the entire state space. We therefore use SPNs as

shown in Figure 13. The basic model is provided in the top-half and the details of the USER context are provided in

the bottom half. It is straightforward to define the different subsystems from the block diagram representation. There

is a 1:1 mapping between the block diagram of the Figure 12 representation and the BS2000 job model in Figure 13.

The block diagram model can be mapped directly to the SRN model. Guards (also known as enabling functions) and

multiplicity arcs are used for a more compact description.

27

SIH

I-disk-ser

t-CPU-USER

DISK
t-CPU-sih

t-SIH-ser

SIH-ser

decision

t-end

CPU

SIH context

SYS context

P0

S1

USERser
TS

SYS-ser t-CPU-sys

SYS
t-SYS-ser

t-premption

t-disk

t-SYS

t-USER

t-arrival

t-USER

P0

P2

PP1

PP2

S1

S2

TH2

TH1

RS2

RS1

T2

T1

T5

TS

T12

T13

T4

PL

S3

S5

P1

S4

Detailed USER context

IO context

USER context

CPU

SIH

CPU

CPU

CPU

TP

– variable multiplicity arc

Figure 13. SPN model of the BS2000 operating system (bottom half gives the Detailed User Context).

The arrival of jobs to the system is represented by the transition tarrival . To limit the number of states, a

maximum number K of jobs in the system is given. If this number is reached, no other jobs may enter the system. A

guard is associated with the transition tarrival which returns TRUE when the total number of jobs in the SIH

(interrupt handling and error recovery), SYS (perform system calls), I/O (set up I/O, memory access, disk access)

and USER contexts is ≤ K. The guard function associated with transition tarrival assuming only two priority classes

is shown here in Figure 14. The notation #(P) is used to indicate the number of tokens in place P:

28

A token in place CPU (Figure 13 top) indicates

the CPU is available. All contexts require the CPU be

activated and is represented by the immediate

transitions, t_CPU_sih, t_CPU_sys, t_disk, T1, ..., Tn.

When a new job enters, it is processed inside the SIH

context. Transition t_SIH_ser represents the service

time. To exit the SIH context, a token is put back in the CPU place to indicate the CPU is now free. At this point,

there are four possible actions as described in the Table 5.

Table 5. Alternative paths for a job leaving the System Interrupt Handler context.

Actions A Job May Take After Leaving the SIH Context:

1. Move to the I/O context, where jobs are served on a FCFS basis. When the I/O is complete, the CPU is informed by an
interrupt. Therefore the token is given back to the SIH queue to wait for further service. The I/O works independently
from the rest of the system, which means that both the CPU and I/O can work in parallel.

2. Move to the SYS context to perform a system call. If some other job arrives in the SIH context during the system call,
the job currently being served in the SYS context is preempted (i.e., jobs in the SIH context have higher priority). The
token that indicates the job has been preempted is moved to the SYS queue (the SYS place in the diagram) and a new
token is put back in the CPU place (indicating the SIH job can now have the CPU). If no preemption occurs, the job
(i.e., token) that was just served (to completion), is moved back into the SIH queue and a token that represents the CPU
is free is moved onto the CPU place.

3. Move to the USER context. This context is given here as a block diagram and shall be described in more detail in the
following section. Up to here we can assume any kind of micro-kernel general purpose operating system because
nothing has been said about the characteristics of the USER context. To model BS2000 we choose a dynamic priority
system.

4. Leave the system because the job has completed.

The decision (with a certain probability) of which context (SYS, I/O or USER) the job switches after it is served

by the SIH context is done at the place decision. This probability can be given in the program as a variable. We do

not consider the system as one big complex system but use a hierarchical approach to represent the system. It is up

to the modeler what level of detail to use for the different boxes. In this case, apart from the USER context, all other

contexts are modeled in a very simple way. It is possible to give a more detailed description for each box but we are

mostly interested in the dynamic priority structure of the system. Thus, a detailed model of the USER context is

used. However, a more detailed model of the I/O behavior can be developed while giving a simpler model for the

USER context, etc. In this way, a hierarchical representation of the system as an SRN with different components

(boxes) is very flexible given the choice of which box to study and model in more detail. It is also possible to

consider several system aspects at the same time in the model (like dynamic priority system and I/O behavior). In

contrast, the state space of the system will probably be very big so that it would be necessary to use hierarchical

system solution techniques [Ciardo 1993]. Note, by varying the number of tokens in the place CPU, it is possible to

change the number of CPUs available. Thus, it is possible to model a single processor and a multiprocessor

operating system with only minor changes. For a detailed discussion of the USER context see [Greiner 1995a;

Greiner 1995b]. The assumptions used for this example are given in Table 6.

enabling_type ftarrival() {
int tot;
tot = #(SIH) + #(SIHser) + #(SYS) + #(SYSser) +

#(Disk) + #(P1) + #(P2) + #(PL) + #(PP1) + #(PP2);
return(tot <= K ? 1 : 0);}

Figure 14. Enabling function for transition t-arrival.

29

Table 6. The assumptions made about the BS2000 operating system in developing the SRN of Figure 13.

System Assumptions

1. Jobs start and finish in the kernel context. For BS2000, this context is called SIH (System Interrupt Handling).

2. The system is open with arrival rate λarrival. To prevent the state space from becoming infinite we assume a maximum

number K of jobs in the system. The maximum number of jobs in the system is 10.

3. Context switches within the CPU are assumed to take place in zero time (it is easy to relax this assumption) and jobs
waiting for service increase their priority. It is difficult to model the real increase-decrease of priorities and thus, this
behavior is approximated by linear functions.

4. As soon as a job obtains the CPU it works until it is preempted or it finishes.

5. Priority order within contexts is: SIH > SYS > USER (and only one user job class is allowed).

6. All jobs are preemptable. When a higher priority job arrives, the job in the CPU is preempted (i.e., its priority is lower).

7. Only jobs waiting in the USER context increase and decrease their priority (dynamic priorities).

8. Typically, during day only 5% of the arriving jobs are batch-jobs [Stiegler 1988]. Therefore, we assume no batch jobs
are run during daytime. At night, most jobs are batch, so this assumption is not valid. It is possible to introduce another
job class for batch jobs, but this would severely increase computation time. Our model is based on daytime data.

The USER context of Figure 13 shows two priority levels (only two are shown for the sake of simplicity, but we

could easily add more levels). This context is entered by a job when the transition tuser fires (priority 1 > priority 2

… > priority n). The priority class to which an arriving job belongs is determined according to a probabilistic

distribution (random switch) modeled by the immediate transitions (RS1 and RS2). Place P1 models the queue of

priority class 1. Place PL represents a macro-state where all the jobs with priority lower than n are stored (here n is

2). Transitions T1 and T2 are enabled when there are no other jobs being served in side the USER context. In other

words, if the total number of tokens in places PP1, and PP2 is equal to zero. A guard (enabling function) can be

defined as shown in Figure 15. Moreover, as the USER has a lower priority that any of the other contexts (except for

the IO context), it can get the CPU only when

there are no other jobs in any of the other

contexts. This is enforced by assigning a lower

priority to transitions Ti than transitions t_CPU_sys and t_CPU_sih. As soon as either of the transitions T1 or T2

fires, a token is removed from the CPU place indicating that the CPU is now busy processing the USER context job.

Note, jobs must be sequentially processed according to their priority. Thus, the inhibitor arc from place P1 to

transition T2 (or in general, Pi to Ti+1) guarantees that the priority class i+1 jobs wait for the class i jobs to finish.

Also, a token in place S1 indicates the CPU is busy processing a USER context job whose priority is identified as i if

a token is in place PPi.

Transition TS models the time slot assigned to the job. For each time slot the priority of the running job is

decreased by one while the priority of the jobs waiting are increased by one. Thus, when the time slot has

completed (i.e., TS fires) one token is deposited in place S2 and two tokens are deposited in place S3. When the

number of tokens in place S3 is equal to a predefined value PI (i.e., cycles allowed prior to inverting the priority),

then transition TP is enabled and the priority of waiting jobs (i.e., those which have not been processed) is increased

by one. Note that the arcs entering/departing this transition TP are variable multiplicity arcs that remove from a

priority class as many tokens as they find and then transferring them to the immediately higher priority class. By

varying the PI cycle value, different priority changing thresholds can be tested.

Int fT1T2() {return((#(PP1)==1 || #(PP2)==1) ? 0:1);}

Figure 15. Enabling function (guard) for transitions Ti (i=1,2)

30

The value obtained by decreasing the number of tokens in place S3 by one indicates how much the priority level

of the running job has been reduced (remember, a new token is deposited in S3 each time transition TS fires).

Transitions T4 and T5 are enabled according to this value (i.e., based on the priority of the job being served and on

the priority of the waiting jobs). Transition T4 indicates the probability Ppre that a job preempted by higher level

priority jobs still remains inside the

USER context. Thus, 1-Ppre is the

firing probability of the immediate

transition T12 which models a job

exiting the User context. Transition T5 models that instead of leaving, the job cycles again back for another slot of

CPU time inside the User context with probability Pcycle. The enabling functions that define this behavior are

shown in Figure 16.

Transitions THi (i=1,2 in this

example) are enabled according to the

original priority of the preempted job and

based the number of CPU cycles that the

job has already taken. These transitions

deposit a token to a priority queue

according to the final priority of the

processed job which is evaluated as the

difference between its original priority

and the number of tokens in place S3

minus one. Place PL, the macro queue

(described above) is entered by all

preempted jobs whose final priority is

(theoretically) less than n [n=2 here].

Since, in this example, only two priority classes are assumed which gives rise to the enabling functions of Figure 17.

In such a case, place PL is entered by all priority one jobs that had more than two CPU cycles and by all priority two

jobs that had at least one cycle. A token is deposited in the CPU place when transition THi or T13 fires to release

Int fT4() {
if (#(S3)==0 || #(S1)!=0) return(0);

else { if (#(P1)>0) return (1);
else { if (#(P2)==0) return(0);

else { if (#(PP1)==0) return(1);
else { if ((#(S3)-1)==2) return(1);

else return(0);
}

}
}

}
}

Int fT5() {
if (#(S1)!=0 || #(P1)>0 || #(S3)==0 || (#(S3)-1)==N ||

#(SIH)>0) return(0);
else { if (#(P2)==0) return (1);

else { if (#(PP1)==0) return(0);
else { if ((#(S3)-1)==2) return(0);

else return(1);
}

}
}

}

Figure 16. Enabling functions (guards) for the transitions T4 and T5.

int fTH1(){return((#(S4)==1 && #(PP1)==1) ? 1:0);}

int fTH2(){return((#(PP1)==1 && #(S4)>1) || (#(PP2)==1 && #(S4) > 0) ? 1:0);}

Figure 17. Enabling functions (guards) for the transitions TH1 and TH2.

Table 7. The guards, variable arc functions and transition-priority
relationship for the SRN of Figure 13.

Transition Guard
t-arrival See Figure 14
T1 and T2 See Figure 15
T4 and T5 See Figure 16
TH1 and TH2 See Figure 17
TP #(S2) = PI

Transition-priority relationship
(t-sys, t-end, t-USER, tDISK) > t-pre > t-CPU-SIH > t-CPU-SYS >
(T1, T2, T4, T5, TH1, TH2, RS1, RS2, T12, T13) >
TS, t-arrival, t-SIH-ser, t-SYS-ser, t-DISK-ser)

Arc designations Variable arc functions
PP1 → T13 #(PP1)
PP2 → T13 and PP2 → TH2 #(PP2)
S3 → T12 and S3 → T4 and T4 → S4 #(S3)
PL → TP and TP → P2 #(PL)
P2 → TP and TP → P1 #(PPL)
T2 → S3 #(S2)=PI

31

0.150.10 0.200.050.00
0.0

2.0

4.0

6.0

8.0

priority 1
priority 2

N
um

be
r

of
 j

ob
s

in
 t

he
 q

ue
ue

s

Time [sec]

4.03.0 5.02.0

Number of CPU's
1.0

M
ea

n
re

sp
on

se
 t

im
e

[s
ec

]

0.0

0.5

1.0

1.5

2.0

2.5

Arrival rate = 0.1
Arrival rate = 0.001
Measured values

Figure 18. Queued jobs over time, arrival rate 1.0 (L) and variation in the
number of CPUs (R).

the CPU. When a job leaves the USER context (i.e., the firing of transition T13) it immediately enters the SIH

context as represented by the arc from T13 to place SIH. Table 7 gives the enabling (guard) functions, the transition-

priority relationship and the variable (multiplicity) arc functions for the two priority class model presented in this

example. In addition, to extend this example by adding additional priority classes would require that for each new

job class j, a new place Pj be added into the SRN of Figure 13.

5.3. Results and conclusions

The results from solving the SRN model of the BS2000 with the s_io, s_sys, s_user and s_sih firing times

(expressed in msec) of the transitions t_disk_ser, t_sys_ser, TS and t_SIH_ser, are presented in Table 8 (p_io, p_sys,

p_user and p_end represent the distribution of probability for leaving the decision place). To find the meaning of the

different transition probabilities see Figures 12 and 13. Transient and steady state behavior of the system are shown

first. The results for the dynamic priority system are then compared to an operating system with static priorities.

Note, the network is not analyzed for liveness, boundedness, etc.

Table 8. Parameterization of the BS2000 system SRN.

System Parameters (job arrival rate λarrival = 0.005)

Component Definition Transition Probability Service Time
I/O Subsystem Context p_io = 0.05 s_io = 20

System Context p_sys = 0.40 s_sys = 1.0

User Subsystem Context p_user = 0.54 s_user =1.0

Kernel Subsystem Context p_end = 0.01 s_sih = 0.5

5.3.1. Transient analysis

At first we considered transient analysis to find out how long it takes for the operating system to reach steady state

and how the jobs move between different priority classes over time. The result is shown in Figure 18 (left). It can be

seen that within some seconds the system reaches steady state. If we compare this time to the time it takes to boot

the system then the transient behavior of the system can be neglected. Thus, the steady state assumption for our

models is justified. Furthermore it can be seen that for our chosen values after a very short time most of the jobs

move to the highest priority

queue. This depends of course

a lot on the initial distribution

of the jobs over the priority

classes and the system

parameters. But in our case

nearly no jobs are waiting in

the lowest priority queue.

5.3.2. Steady state analysis

By varying the number of

CPU's in the system we can

discover some interesting

results. One might expect, that

32

the higher the number of CPU's, the lower is the mean response time. This is not the case as can be seen in Figure 18

(right), because the higher the number of processors, the more the system is I/O bound (the system must wait for I/O

to finish). For the chosen system parameter values (shown above) the mean response time for a low arrival rate is

nearly constant even as we increase the number of CPU's. For a high arrival rate, the mean response time drops

considerably by adding a second or third CPU but its not worth having more than three processors since the

corresponding decrease in the mean the mean response time is so small. The results for this plot are also compared

to real system measurements and it can be seen that our model results are very close to the measured results.

Table 9. Results derived from the different numbers of phases in the Erlang distribution function.

Results for different distribution functions

Erlang Distr. Phases Arrival rate t λ Number of states

1 2 3.734 1.900 22780
2 2 3.693 1.917 45550
4 2 3.674 1.925 91010
6 2 3.667 1.928 136630
8 2 3.664 1.930 182170

One can argue that the assumption of an exponential distribution for transition TS is not very realistic.

Therefore, consider the analysis of the Petri net using a phase type distribution. Results are shown in the Table 9 and

there are no real differences in the performance values for throughput and response time as the number of phases is

increased. However the number of states is increased considerably! Similar results were obtained when analyzing

the UNIX operating system [Greiner 1993].

To increase (optimize) the system performance without changing the number of CPUs we need to determine

which context a jobs spends most of its computation time. In Figure 19 (top) the relative time spent in each of the

contexts is provided based on the given parameter set. The longer the service time for a USER job the more time

that is spent in the USER context. This is natural based on the type of workload that was chosen (i.e., transaction

processing) environment. In the chosen environment, jobs spend most of their time in the USER context. As soon

as a transaction is started, only a few kernel commands are needed. The rest of the transaction is performed outside

the kernel in the USER context. If we want to increase the performance of the system with its high service times it is

necessary to increase the performance of the USER context because almost ninety five percent of its CPU time is

spent in the USER context. In this case its useless to increase IO performance because, as can be seen in Figure 19

(bottom), most of it’s lifetime a job spends using the CPU (assuming long service times). The lower service time

becomes, the more time a job spends in the IO and for very short service times the job stays about fifty percent of its

computation time in the IO. In such cases, it is worth trying to increase the IO performance because as is evident

from Figure 19 (bottom), the CPU is idle for about fifty percent of the job’s computation time. Naturally, this is due

to fact that IO is so much slower than the CPU (i.e., only one IO cycle for the job will cause many idle cycles for the

CPU).

This example shows how to model dynamic priorities in an operating system using a SRN technique. The

system was specified with certain assumptions. The most important assumption is the approximation of the priority

schema using linear functions. The system model is quite open. This is the case because after the block diagrams for

33

micro kernel system were developed, the BS2000

system could easily be mapped to the SPN model

by characterizing the internal behavior of each

subsystem of the block diagram. The SRN was

described using CSPL (C-based SPN language

[Ciardo 1994]). The block diagram can be easily

transformed into a Petri net. Emphasis is put on

the BS2000priority schema and consequently, a

more detailed model for the USER block was

presented. It is also possible to concentrate on

other parts of the system, like I/O, by specifying

this box in greater detail. In this sense, the model

is very flexible. It is up to the modeler to decide

on which part of the system to focus. For the plots

in Figure 18, only 2 priority classes were used,

but a more general Petri net model with n priority

classes can be seen in [Greiner 1995a]. The

actual number n is open to the modeler.

6. Summary

In this paper we have motivated the need for tool

supported rigorous methods used for reasoning

about software and systems, introduced a

framework codified by the modeling cycle

(Figure 2a and 2b). This approach is predicated by the following premise:

The correctness, safety and robustness of a critical system specification are generally assessed through a

combination of rigorous specification capture and inspection; formal modeling and analysis of the

specification; and execution and/or simulation of the specification (or possibly a model of such) [Yen

1998].

Furthermore, we have introduced some systematic formal techniques for the creation and composition of

software models through a process of abstraction and refinement, and enumerated several formal modeling

techniques within this context currently available to the modeler (i.e., reliability and availability models,

performance and functional models, performability models etc.). This discussion has included a more precise

dialogue on stochastic methods (i.e., DTMC and CTMC) and their formulation. In addition we briefly reviewed the

underlying theories and assumptions that are used to solve these models for the measure of interest (i.e., simulation,

numerical and analytical techniques). Finally, we presented a small example that employs a stochastic Petri net

model of an operating system with dynamic priorities.

20.0Service Time [msec]0.0
0.0

0.5

1.0

Pe
rc

en
ta

ge
CPU in SIH cntxt
CPU in SYS cntxt
CPU in USER cntxt
CPU idle

20.0Service Time [msec]0.0
0.0

0.5

1.0

Job is in the IO
Job is in the CPU

Pe
rc

en
ta

ge

Figure 19. Percentages: a job spends in the different CPU
contexts (top), a job spends in the CPU or IO (bottom).

34

Modeling Formalisms
 (independent languages/methods, theories and

tools)

Mosel

P-CSP

Model
Checking

SPNP

MOSES

Promela SPIN

Stochastic
Analysis

High Level
Description

Language

Model
Verification

and Validation

Stochastic
Analysis

Modeling Formalisms Interoperate
(integrated together in an open toolkit with a

common interface)

SPNP
black box

MOSES

GUK and
FTA

High Level
Description

Language

Model
Verification

and Validation

DUO
Solvers

Mosel

P-CSP

Promela
(SPIN)

Graph
layout

Exists

Exists

Exists

Exists

Exists

Panda
Graphical

Editor

Meta
Language

CSPL

Figure 20. Framework architecture for model based predictive analysis.

7. Future work

Our goal is to continue to develop and refine this approach as an open framework coupled with useful formal

representations and analysis capability for architectures that relate specifications to programs and programs to

behavior. Figure 20 shows a general architecture for DOU which defines a prototype modeling toolkit that promotes

interoperable use of various formalisms (including at least one language used in very powerful model checking

programs) [Burch 1992; Holzmann 1993; Holzmann 1997]. This environment will more easily facilitate the

modeling process and support the analyst with regard to prediction and assessment. The meta-language used as an

intermediate canonical representation form is CSPL (C-based Stochastic Petri net Language) [Ciardo 1994].

The challenges that lie ahead for software and systems are underscored by the seemingly irreversible trend

toward increased complexity as our industry strives to conquer faster, cheaper and better technologies. This

evolutionary trend underscores the need to develop and validate methods and tools for the creation of safe and

correct software.

8. References
Allen, O. (1978), Probability, Statistics and Queuing Theory, Academic Press, New York, NY.
Allen, O. (1990), Probability, Statistics and Queuing Theory, 2nd, Academic Press, New York, NY.
Allmaier, S. C., Kowarschik, M. and Horton, G. (1997), “State Space Construction and Steady-State Solution of

GSPNs on a Shared-Memory Multiprocessor,” 7th. Int'l Wkshp on Petri Nets and Performance Models, IEEE
Computer Society Press, Los Alamitos, CA, pp. .

Balbo, G., Donatelli, Susanna and Franceschinis, Giuliana (1992), “Understanding Parallel Program Behavior
through Petri Net Models,” Journal of Parallel and Distributed Computing, 15, 3, 171-187.

Balbo, G. (1993), “Performance Evaluation and Concurrent Programming,” Messung, Modellierung und Bewertung
von Rechen- und Kommunikationssystemen, Springer-Verlag, Berlin, pp. 1-13.

Balbo, G., Donatelli, S., Granceschinis, G., Mazzeo, A., Mazzocca, N. and Ribaudo, M. (1994), “On the
Computation of Performance Characteristics of Concurrent Programs Using GSPNs,” Performance
Evaluation, 19, 18, 195-222.

Balbo, G. (1995), “On the Success of Stochastic Petri Nets,” Int'l Wkshp on Petri Nets and Performance Modeling,
IEEE CS Press, Los Alamitos, CA, pp. 2-9.

Barner, J. (1994), “Entwicklung, Implementierung und Validierung von Analytischen Verfahren zur Anlyse von
Prioritatsnetzen,” Masters Thesis, In CS Dept. IMMD IV, Univ. of Erlangen-Nurnberg, Germany.

35

Blake, J. T., Reibman, Andrew L. and Trivedi, Kishor S. (1988), “Sensitivity Analysis of Reliability and
Performability Measures for Multiprocessor Systems,” SIGMETRICS, ACM, New York, NY, pp. 177-186.

Bolch, G. (1989), “Leitungsbewertung von Rechensystemen,” TR-1989-IMMD IV, Leitfaden und Monographien
der Informatik - B.G. Teubner Verlagsgesellschaft, Stuttgart.

Buchholz, P. (1994), “Compositional Analysis of a Markovian Process Algebra,” Proceedings PAPM, CLUP, pp.
233-245.

Burch, J. R., Clarke, E.M., and McMillan, K.L. (1992), “Symbolic Modeling Checking: 1020 States and Beyond,”
Information and Computation, 98, 42, 142-170.

Buzen, J. (1971), “Queuing Network Models of Multiprogramming,” Dissertation (Ph.D.), In Division of
Engineering and Applied Physics, Harvard, Cambridge, MA.

Calzarossa, M., and Massari, M. (1991), “Workload Analyzer Tool -WAT- User Guide,” Fifth Int'l Conf. on
Modeling Techniques and Tools for Computer Performance Evaluation, Univ. di Milano, Diparimento di
Scienza dell'Informazione, pp. 1-15.

Carson, J. (1992), “Modeling,” Winter Simulation Conference (Group on Simulation), SIGSIM, ACM New York,
NY, pp. 82-87.

Chiola, G. (1985), “A Software Package for the Analysis of Generalized Stochastic Petri Net Models,” Int'l Wkshp
on Timed Petri Nets, IEEE Computer Society Press, Los Alamitos, CA, pp. 136-143.

Choi, H., Mainkar, Varsha and Trivedi, Kishor S. (1993), “Sensitivity Analysis of Deterministic and Stochastic Petri
Nets,” MASCOTS'93 International Workshop on modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 271-276.

Ciardo, G. (1987), “Toward a Definition of Modeling Power for Stochastic Petri Net Models,” Int'l Wkshp on Petri
Nets and Performance Models, IEEE Computer Society Press, Los Alamitos, CA, pp. 54-62.

Ciardo, G., Muppala J. and Trivedi, K.S. (1989), “SPNP: Stochastic Petri Net Package,” 3rd Int'l Wkshp on Petri
Nets and Performance Models, IEEE Computer Society Press, Los Alamitos, CA, pp. 144-151.

Ciardo, G., Muppala J. and Trivedi, K.S. (1991), “On the Solution of GSPN Reward Models,” Performance
Evaluation, 12, , 237-253.

Ciardo, G., Muppala J. and Trivedi, K.S. (1992a), “Analyzing Concurrent and Fault-Tolerant Software Using
Stochastic Reward Nets,” Jr. of Parallel and Distributed Comp., , 255-269.

Ciardo, G., Marie, R., Bruell, S., and Trivedi, K. (1992b), “Performability Analysis Using Semi-Markov Reward
Processes,” IEEE Transactions on Computers, 39, 10, 121-1264.

Ciardo, G., Blakemore, A., Chimento, P.F., Muppala, J.K., Trivedi, K.S. (1992c), “Automated Generation and
Analysis of Markov Reward Models Using Stochastic Rewards Nets,” In IMA Volumes in Mathematics and its
Applications, C. Meyer and R.J. Plemmons, Springer-Verlag, Berlin, Germany, pp. .

Ciardo, G., Trivedi K.S. (1993), “A decomposition approach for stochastic reward net models,” Performance
Evaluation, 18, 1, 37-59.

Ciardo, G., Fricks, R., Muppala J. and Trivedi, K.S. (1994), “SPNP Users Manual Version 4.0,” TR-1993-10, Duke
Univ., Dept. of EE, Durham, NC.

Dedie, G. (1988), “Nucleus BS2000 -- Technical Description,” TR-BS200-88, .
Deitel, H. M. (1990), An Introduction to Operating Systems, Addison Wesley, Reading, MA.
Donatelli, S., Franceschinis, G., Mazzocca, N., and Russo, S. (1994), “Software Architecture of the EPOCA

Integrated Environment,” 7th Int'l Conference on Performance Evaluation, Modeling Techniques and Tools
(LNCS 794), Springer-Verlag, Berlin, pp. 335-352.

Donatelli, S., Ribaudo, M. and Hillston, J. (1995), “A Comparison of Performance Evaluation Process Algebra and
Generalized Stochastic Petri Nets,” 5th Int'l Wkshp PNPM, IEEE Computer Society Press, Los Alamitos, CA,
pp. 158-168.

Evan, J. (1988), Structures of Discrete Event Simulation: An Introduction to the Engagement Strategy, Ellis
Horwood Limited, Chicester (W. Sussex) UK.

Fleischmann, G. (1989), “Modellierung und Bewertung Paralleler Programme,” Ph.D. Dissertation, In Computer
Science IMMD IV, Univ. of Erlangen-Nurnberg, Erlangen, Germany.

Gangl, P. (1993), “Simulation - eine Schlusseltechnologie der 90er Jahre: Hoher Nutzen aber geringer Kentnisstand
in der Wirtschaft,” 8th Symp. on Simulation Techniques, Vieweg-Verlag, Germany, pp. 103-106.

Gordon, W., Newell, G. (1967), “Closed Queuing Systems with Exponential Servers,” Operations Research, 15, 2,
245-265.

Greiner, S. (1993), “Leistungsbewertung des Betriebssystems UNIX mit Hilfe approximativer analytischer
Methoden,” TR-1993-9, Univ. of Erlangen, CS Dept. IMMD IV, Erlangen, Germany.

Greiner, S. (1995a), “Performance Evaluation of Dynamic Priority Operating Systems,” 5th Int'l Wkshp PNPM,

36

IEEE Computer Society Press, Los Alamitos, CA, pp. .
Greiner, S. (1995b), “An Analytical Model for the Operating System BS2000,”, CS Dept. IMMD IV, Univ. of

Erlangen, Erlangen, Germany.
Greiner, S., and Horton, G. (1996), “Analysis of Stiff Markov Chains with the Multi-level Method,” European

Simulation Symposium, pp. 801-805.
Greiner, S. (1999), “Stochastic Analysis of Computer Science Applications: Theory, Models and Solution

Methods,” Ph.D. Dissertation, In Computer Science, IMMD IV, Univ. of Erlangen-Nurnberg, Germany.
Heidelberger, P., and Goyal, Ambuj (1988), “Sensitivity Analysis of Continuous Time Markov Chains Using

Uniformization,” Computer Performance and Reliability. Proc. of the 2nd Int'l MCPR Wkshp, North-Holland,
Amsterdam, pp. 93-104.

Hein, A., and Goswami, K.K. (1996), “Conjoint Simulation - A Technique for the Combined Performance and
Dependability Analysis of Large-Scale Computer Systems,” Advances in Simulation, IEEE Computer Society
Press, Los Alamitos, CA, pp. 68-77.

Hoare, C. A. R. (1985), Communicating sequential processes, Prentice-Hall Int'l, London, London.
Holzmann, G. J. (1993), “Design and validation of protocols: a tutorial,” Computer Networks and ISDN Systems, 25,

, 981-1017.
Holzmann, G. J. (1997), “The Model Checker SPIN,” IEEE Trans. on Software Engineering, 23, 5, 279-95.
Horton, G., and Leutenegger, S. (1995), “On the Utility of the Multi-Level Algorithm for the Solution of Nearly Completely

Decomposable Markov Chains,” Second Int'l Wkshp on the Numerical Solution of Markov Chains, Kluwer,
Boston, pp. 425-442.

Horton, J., and Leutenegger, S. (1994), “A Multi-level Algorithm for Steady State Markov Chains,” SIGMETRICS,
ACM, New York, NY, pp. 191-200.

Jackson, J. (1963), “Jobshop-Like Queuing Systems,” Management Science, 10, 1, 131-142.
Kavi, K. M., Sheldon, F.T. (1994), “Specification of Stochastic Properties with CSP,” Int'l Conference on Parallel

and Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA, pp. 288-293.
Kleinrock, L. (1975), Queuing Systems, Volume 1: Theory, John Wiley, New York, NY.
Koller, D., McAllester, David, and Pfeffer, Avi (1997), “Effective Bayesian Inference for Stochastic Programs,”

Fourteenth Nat. Conf. AAAI, AAAI, Menlo Park, CA, pp. 740-747.
Laprie, J. C., Kaaniche, M. and Kanoun, K. (1995), “Modeling Computer Systems Evolutions: Non-Stationary

Processes and Stochastic Petri Nets - Application to Dependability Growth,” Int'l Wkshp on Petri Nets and
Performance Models, IEEE Computer Society Press, Los Alamitos, CA, pp. 221-230.

Lazowska, E. D., Zahorjan, J. , Graham, G.S., Sevcik, K.C. (1984), Quantitative System Performance -Computer
Sys. Analysis Using Queuing Network Models, Prentice Hall, Int'l, London.

Levenson, N. G., and Stolzy, J.L. (1987), “Safety Analysis Using Petri Nets,” IEEE Trans. on Software Engineering,
SE-13, 3, 386-397.

Lewis, A. D. (1988), “Petri Net Modeling and Software Safety Analysis: Methodology for an Embedded Military
Application,” Masters, In Computer Science, Naval Postgraduate School, Monterey, CA.

Liebl, F. (1995), Simulation, Oldenbourg, Munich.
Logothetis, D. a. T., K.S. (1997), “The Effect of Detection and Restoration Times for an Error Recovery in

Communication Networks,” Journal of Network and Systems Management, 5, 2, 173-95.
Mainkar, V., Choi, Hoon and Trivedi, Kishor (1993), “Sensitivity Analysis of Markov Regenerative Stochastic Petri

Nets,” 5th Int'l Wkshp on Petri Nets and Performance Modeling, IEEE Computer Society Press, Los Alamitos,
CA, pp. 180-189.

Malhotra, M., and Trivedi, K.S. (1993), “A Methodology for Formal Expression of Hierarchy in Model Solution,”
Fifth Int'l Wkshp on PNPM, IEEE Computer Society Press, Los Alamitos, CA, pp. 258-267.

Marie, R., and Jean-Marie, Alain (1993), “Quantitative Evaluation of Discrete-Event Systems: Models, Performance
and Techniques,” Fifth Int'l Wkshp on Petri-Nets and Performance Modeling, IEEE Computer Society Press,
Los Alamitos, CA, pp. 2-11.

Marsan, M. A., Balbo, G. and Conte, G (1984), “A Class of Generalized Stochastic Petri Nets for the Performance
Evaluation of Multiprocessor Systems,” ACM Trans. on Computer Systems, 2, 1, 93-122.

Milner, R. (1989), Communication and Concurrency, Prentice-Hall, Int'l, London.
Molloy, M. K. (1982), “Performance Analysis Using Stochastic Petri Nets,” IEEE Trans. on Computers, C-31, 9,

913-917.
Muppala, J. K., Wang, Wei and Trivedi, Kishor, S. (1994), “Dependability Evaluation Through Measurements and

Models,” Fnl. Rpt. NSF Grant CCR-9108114, Duke Univ., EE Dept., Durham, NC.
Muppala, J. K., Ciardo, Gianfranco and Trivedi, Kishor S. (1994), “Stochastic Reward Nets for Reliability

37

Prediction,” TR-1994-12, Duke Univ., EE Dept., Durham, NC.
Murata, T. (1989), “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, 77, 4, 541-580.
Olderog, E.-R. (1986), “TCSP - Theory of communicating sequential processes,” LNCS-255, , 441-465.
Olderog, E.-R. (1987), “Operational Petri Net Semantics for CCSP,” , LNCS-266, , 196-223.
Reibman, A., Smith, R., and Trivedi, K. (1989), “Markov and Markov Reward Model Transient Analysis: An

Overview of Numerical Approaches,” European Journal of Operational Research, 40, 2, 257-267.
Reibman, A., and Veeraraghavan, M. (1991), “Reliability Modeling: An Modeling Overview for System

designers,” Computer, 24, 4, 49-57.
Rettelbach, M. (1996), “Stochastic Process Algebras with Timeless Activities and
Probabilistic Branching Probabilities,” Dissertation (Ph.D.), In Computer Science, Friedrich Alexander Universitaet

Erlangen-Nuremberg, Erlangen, Germany.
Sahner, R., and Trivedi, K.S. (1986), “Reliability Modeling Using SHARPE,” TR-1986-19, Computer Science,

Duke University, Durham, NC.
Sahner, R. A., and Trivedi, Kishor S. (1993), “A Software Tool for Learning About Stochastic Models,” IEEE

Transactions on Education, 36, 1, 56-61.
Sahner, R. T., K. and Puliafito, A. (1996), Performance and Reliability Analysis of Computer Systems - An Example-

Based Approach Using the SHARPE Software Package, Kluwer Academic, Boston, MA.
Sanders, W., Obal, W., Qureshi, A. and Widjanarko, F. (1995), “The UltraSAN Modeling Environment,”

Performance Evaluation, 24, 1, 89-115.
Sanders, W. H. a. M., J.F. (1991), “Reduced Base Model Construction Methods for Stochastic Activity Networks,”

IEEE Journal on Selected Areas in Communications, 9, 1, 25-36.
Schweitzer, P. (1991), “A Survey of Aggregation-Disaggregation in Large Markov Chains,” In Numerical Solution

of Markov Chains, W. Stewart, Marcel Dekker, New York, NY, pp. 150-230.
Sheldon, F. T., Kavi, K.M., and Kamangar, F.A. (1995), “Reliability Analysis of CSP Specifications: A New

Method Using Petri Nets,” Computing in Aerospace 10, AIAA, Reston, VA, pp. 317-326.
Sheldon, F. T., and Kavi, K.M. (1995a), “Linking Software Failure Behavior to Specification Characteristics II,” 4th

Int'l Wkshp on Evaluation Techniques for Dependable Systems, IEEE Computer Society Press, Los Alamitos,
CA, pp. .

Sheldon, F. T. (1996b), “Specification and Analysis of Stochastic Properties for Concurrent Systems Expressed
Using CSP,” Ph.D. Dissertation, In , UMI and CSE Dept., Univ. of TX at Arlington, Ann Arbor, MI.

Sheldon, F. T. (1998), “Analysis of Real-Time Concurrent System Models Based on CSP Using Stochastic Petri
Nets,” 12th European Simulation Multi-conference, SCS Int'l, Amsterdam, pp. 776-783.

Siegle, M. (1995), “Bescgreibung und Analyse von Makovmodellen mit Grossem Zustandsraum,” Ph.D.
Dissertation, In Computer Science IMMD IV, Univ. Erlangen-Nurnberg, Germany.

Sommerville, I. (1996), Software Engineering, Fifth Edition, Addison-Wesley, Reading, MA.
Stewart, W. J. (1994), Introduction to the Numerical Solution of Markov Chains, Princeton University Press,

Princeton, NJ.
Stiegler, H. (1988), “System Overview BS2000 -- Technical Description,” 15-1988, Siemens Corp., Munch,

Germany.
Trivedi, K., Malhotra, Manish (1993), “Reliability and Performability Techniques and Tools: A Survey,” Messung,

Modellierung und Bewertung von Rechen- und Kommunikationssystemen, Springer-Verlag, Berlin, pp. 27-48.
Trivedi, K. S. (1982), Probability and Statistics with Reliability, Queuing and Computer Science Applications,

Prentice Hall, Englewood Cliffs, NJ.
Villemeur, A. (1992), Reliability, Availability, Maintainability and Safety Assessment, John Wiley and Sons, New

York, NY.
Yen, I.-L., Paul, Raymond, and Mori, Kinji (1998), “Toward Integrated Methods for High-Assurance Systems,”

IEEE Computer, 31, 4, 32-34 (including pp. 35-46 by others).

