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SUMMARY & CONCLUSIONS 

A case study was performed to validate the integrity of a 
software requirements specification (SRS) for Guidance 
Control Software (GCS) in terms of reliability and fault-
tolerance. A partial verification of the GCS specification 
resulted. Two modeling formalisms were used to evaluate the 
SRS and to determine strategies for avoiding design defects 
and system failures. Z was applied first to detect and remove 
ambiguity from a part of the Natural Language based (NL-
based) GCS SRS. Next, Statecharts and Activity-charts were 
constructed to visualize the Z description and make it 
executable. Using this formalism, the system behavior was 
assessed under normal and abnormal conditions. Faults were 
seeded into the model (i.e., an executable specification) to 
probe how the system would perform.  The result of our 
analysis revealed that it is beneficial to construct a complete 
and consistent specification using this method (Z-to-
Statecharts). We discuss the significance of this approach, 
compare our work with similar studies, and propose 
approaches for improving fault tolerance. Our findings 
indicate that one can better understand the implications of the 
system requirements using Z-Statecharts approach to facilitate 
their specification and analysis. Consequently, this approach 
can help to avoid the problems that result when incorrectly 
specified artifacts (i.e., in this case requirements) force 
corrective rework.   

1. INTRODUCTION 
Highly reliable systems demand rigorously engineered 
software.  A failure in the control software of mission critical 
systems can be disastrous.  It is difficult to create a reliable 
specification because such control software tends to be highly 
complex.  To avoid problems in the latter development phases 
and reduce life-cycle costs, it is crucial to ensure that the 
specification be reliable.  Reliability, as applied to the 
software requirements specifications, means: (1) is the 
specification correct, unambiguous, complete, and consistent;  
(2) can the specification be trusted to the extent that design 
and implementation can commence while minimizing the risk 
of costly errors; and (3) how can the specification be defined 
to prevent the propagation of errors into downstream 
activities? 

The completeness of a specification is defined as a lack of 

ambiguity in implementation. The specification is incomplete 
if the system behavior is not specified precisely because the 
required behavior for some events or conditions is omitted or 
is subject to more than one interpretation (Ref. 1). Consistency 
means that the specification is free from conflicting 
requirements and undesired nondeterminism (Ref. 2).   

The typical SRS is highly dependent on natural language. 
Natural language (NL)-based specifications are often subject 
to multiple interpretations.  Even when such specifications are 
developed systematically, it is difficult to ensure their integrity 
without some form of correctness checking.  Generally, 
correctness checking obligates the use of a mathematically 
based requirements specification language (RSL).  Such 
languages are notoriously difficult to understand, and 
minimally require a proficient level of knowledge in discrete 
mathematics and/or some formal logic system.  This poses a 
serious concern to industry because many different classes of 
requirements exist.  Different stakeholders typically signify 
various ways of looking at the problem. Thus, in regards to the 
requirements specification, a multi-perspective analysis is 
important, as there is no single correct way to analyze system 
requirements (Ref. 3). The usefulness of the requirements 
specification is diminished by not being understandable to the 
diverse set of stakeholders. Nevertheless, to avoid the 
confusion caused by ambiguity, we investigated the merits of 
two different mathematically based RSLs.  

Consequently, in this case study Z was used to clarify 
intentions, identify assumptions and explain correctness in 
light of ambiguous statements found in the SRS. Statecharts 
were chosen to model the Z specifications because a key goal 
was visualization, testability and pre-development evaluation. 
A clear distinction of our approach as compared to others is 
that we did not combine Z and Statecharts together. We 
translated the SRS into Z completely and then translated the Z 
specification into Statecharts.  Next, we evaluate the 
usefulness of this approach by applying it to a small but 
critical part of the SRS. 

2. RELATED WORKS 
There have been numerous studies conducted that combine a 
Z representation with some formal method for the benefit of 
visualization and dynamical assessment.  Xudong He suggests 
using a hybrid formal method called PZ-nets that combine 
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Petri nets and Z notations (Ref. 4). PZ-nets provide a unified 
formal model for specifying the overall system structure, 
control flow, data types and functionality. Sequential, 
concurrent and distributed systems are modeled using a 
valuable set of complementary compositional analysis 
techniques. However, modular and hierarchical facilities are 
needed to effectively apply this approach to large systems.  

Hierons, Sadeghipour, and Singh present a hybrid 
specification language µSZ (Ref. 5). The language uses 
Statecharts to describe the dynamical system behavior and Z 
to describe the data and data transformations. In µSZ, 
Statecharts define sequencing while Z is used to define the 
data and operations. Their data abstraction technique uses 
information derived from the Z specifications to produce an 
extended finite state machine (EFSM) defined by the 
Statecharts. The EFSM poses properties that can be utilized 
during test generation. These properties help solve the 
problem of setting up the initial state and checking the final 
state of a test to assist in test automation. Both the dynamic 
behavior specified in Statecharts and the individual operations 
are checked using this method.   

Bussow and Weber present a mixed method consisting of 
Z notations and Statecharts (Ref. 6). Each method was applied 
to a separate part of the system.  Z was used in defining the 
data structures and transformations. Statecharts were used in 
representing the overall system and the reactive behavior. The 
Z notations were type checked with the ESZ type-checker but 
the Statechart semantics were not fully formalized.  In 
addition, there are several other case studies that utilized Z for 
defining data while Statecharts were used as a behavioral 
description method (Ref. 7, 8, 9). 

3. THE CHOICE OF METHODS 
A 2-step process was performed using Z/Statecharts.  First, the 
NL-based GCS specification was transformed using the Z 
notation.  Z Schemas were abstracted from the GCS SRS. This 
compositional process helped to clarify ambiguities. Second, 
the Schemas were transformed into Statecharts/Activity-charts 
and symbolically executed to assess the model’s behavior 
based on the GCS-specified mission profile. 
3.1. Z : a Mathematical Language of Logic, Sets, and 

Relations  
The Z notation is a mathematical language equipped with an 
underlying theory of refinement that enables nondeterminism 
to be removed (mechanically) from abstract formulations to 
result in more concrete specifications. In combination with 
natural language, it can be used to produce a formal 
specification. Refinement yields a new Z description that 
provably conforms to its predecessor and is closer to 
executable code (Ref. 10). Schema's are the main structuring 
mechanism used to create patterns and objects. The notation is 
used to model system states. In this work, the state of the 
system and the relationship between the ARSP and the state of 
various components were explained. The production of such a 
specification helps us to understand requirements, clarify 
intentions, and construct proofs (i.e., identify assumptions and 
explain correctness). These facilities were useful and essential 
in clarifying ambiguities and solidifying our understanding of 

the requirements. 
3.2. Statecharts: State-based Formal Diagrammatic 

Language 
Statecharts constitute a visual formalism for describing states 
and transitions in a modular fashion, enabling clustering 
orthogonality (i.e., concurrency) and refinement, and 
supporting capability for moving between levels of 
abstraction. Technically speaking, the kernel of the approach 
is the extension of conventional state diagrams by AND/OR 
decomposition of states together with inter-level transitions, 
and a broadcast mechanism for communication between 
concurrent components. The two essential ideas enabling this 
extension are the provision for depth (level) of abstraction and 
the notation of orthogonality. In other words, Statecharts = 
State-diagrams + depth + orthogonality + broadcast-
communication (Ref. 11). 

Statecharts (using STATEMATE1) provide a way to 
specify complex reactive systems both in terms of how objects 
communicate and collaborate and how they conduct their own 
internal behavior. Together, Activity-charts and Statecharts 
are used to describe the system functional building blocks, 
activities, and the data that flows between them. These 
languages are highly diagrammatic in nature, constituting full-
fledged visual formalisms, complete with rigorous semantics 
providing an intuitive and concrete representation for 
inspecting and checking for conflicts (Ref. 12). The Activity-
charts and Statecharts were used to specify our conceptual 
system model for symbolic simulation.  With the simulation 
method, we verified our assumptions, injected faults, and 
identified hidden errors that represent inconsistencies or 
incompleteness in the specification. 

4.  TRANSFORMATION OF THE DIFFERENT 
SPECIFICATIONS 

We now discuss the transformation from the SRS to the 
Statecharts representations via Z. The Altitude Radar Sensor 
Processing (ARSP) module specification showing inputs, 
outputs, and subsystem processing descriptions was chosen 
for the purpose of our study. The SRS provides a data 
dictionary with variable definitions, type, and units, and a 
brief description of variables and functions. This descriptive 
information is shown in Appendix A.  We abstracted the NL-
based module specification into Z, preserving variable names, 
operations (i.e., functionality), dependency and scope. Figure 
1 provides an example using the FRAME_COUNTER input 
variable that illustrates the complete translation from Z to 
Statecharts. The FRAME_COUNTER is defined as an integer 
with range [1,231-1]. In Z, the FRAME_COUNTER is 
declared as a set of natural numbers in the signature part, and 
the range of the variable is defined in the predicate part (lower 
half of the schema). The Statechart representation of the 
FRAME_COUNTER variable is presented with the direction 
of data transfer from EXTERNAL into the ARSP Module. Its 
type and value range are defined in the Statemate data 

                                                                        

1 STATEMATE Magnum – product of i-Logix, was used for this case study. 
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dictionary. 
In translating from the NL-based SRS to Z, four 

ambiguously specified requirements were identified. The first 
one concerns the rotational direction assumed by the use of the 
term “rotate.”  Secondly, an undefined third order polynomial 
was revealed that is used to estimate the AR_ALTITUDE 
value (see Appendix A).  The third issue (i.e., ambiguity) 
concerns the use of the AR_COUNTER variable for two 
different purposes, which implies that it has two different 
types. Finally, there is uncertainty regarding the scope of the 
AR_COUNTER variable that brings into question which 
module should use and/or modify this variable.  

Figure 1. Mapping example from NL-based to Statecharts 
Given these various issues, two scenarios were 

considered. The first scenario assumes the AR_COUNTER is 
updated within the ARSP module while the second scenario 
does not.  Both scenarios were constructed separately and 
compared to understand how Z could be useful in clarifying 
ambiguity and avoiding conflicts. In the SRS, the sign bit of 
AR_COUNTER represents whether the radar echo pulse is 
received on time. In scenario one, this condition is split off 
into the Echo variable while in scenario two the Echo variable 
is not introduced. The Z specification is consistent with the 
SRS as long as the newly defined Echo variable does not 

cause a side affect outside of the ARSP module. Accordingly, 
we defined the Z version of the ARSP specification to account 
for two separate variables. As the result of the process, the 
Echo variable was found to be treated as an additional ARSP 
input, otherwise there is no way to determine if the radar echo 
pulse has been received.  This in turn caused the whole 
specification to be revised to reflect the principle that 
mandates decoupling data (Ref. 3). Therefore, the 
interpretation of Scenario One is inconsistent with the SRS. 

On the other hand, in Scenario Two no additional 
variables were defined.  Only those variables defined in the 
SRS were specified, and all the requirements specified in 
ARSP were covered.  Therefore, this reformulation of the SRS 
was considered as a complete and consistent transformation.  
Consequently, Statecharts were developed based on Scenario 
Two. In this way, Statemate could be used to analyze a model 
that properly conformed to its requirements, which would be 
useful in feeding back into the results of our assessment (i.e., 
symbolic simulation).  We also wanted to confirm what we 
had seen using Z with this other type of formalism, namely 
Statecharts, and determined if indeed our reformulation 
revealed similar ambiguity. The detailed Z specification for 
Scenario Two is described in Appendix B. 

5. THE TRANSFORMATION FROM Z TO 
STATECHARTS 

An ARSP project was created within the Statemate 
framework.  Graphic editors were used to create Statecharts 
and Activity-charts. Once the graphical forms were 
characterized, state transition conditions and data items were 
defined. 

Figure 2. ARSP activity-chart generated with Statemate 
These items and/or conditions trigger activities and state 

transitions that occur within the Statemate model based on 
definitions within the “data dictionary” and/or the “data bank 
browser.” The Activity-chart (shown in Figure 2) and 
Statecharts (see Appendix C) reflect all variables/conditions 
defined in our Z formulation. During simulation, various color 
changes help to show the sequence of state changes that occur 
to validate the system according to its specified structure 
(based on our Schema signatures) and constraints (based on 
our Schema predicates). We changed initial (and current) 
values and conditions while at the same time rerunning and/or 
resuming the simulation in the process of verifying our 
assumptions against the Statechart specification. In this way, 
we exercised the Statechart-based model and generated C code 
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directly from the charts. 

Figure 3. DFD 2.1 SP- Sensor Processing (Ref. 13) 

 The ARSP Activity-chart shows the data flow between 
the data stores and the ARSP module based on the information 
in Figure 2.  The direction of the data flow given by Figure 3, 
which shows what parameters go where, follows the 
information from the SRS data dictionary (Ref. 14). 

6. SPECIFICATION TESTING  
Now we discuss the results of our validation effort based on a 
symbolic simulation of the ARSP Statechart model.  In effect, 
we verified that the ARSP subunit requirements are complete 
and consistent by running the simulation against all of the 
Activity/Statecharts. The data used in the simulation is 
provided in Table 1. 

Five conditions (Case 1-5) as shown in Table 1 were 
defined to test the statecharts. They represent the way we 
visualiZ and were able to scrutinize the Z specification. The 
AR_FREQUENCY value was fixed at 1,500,000,000 to 
calculate the value of AR_ALTITUDE for all test cases. In the 
material presented below, we’ll explain how each of the 
conditions was evaluated, this should help to convince the 
reader that the ARSP subunit is significantly complex (one of 
six different sensor units used by the GCS). 

Table 1. ARSP Specification Test Input and Output  
 Variable Case 1 Case 2 Case 3 Case 4 Case 5 

FRAME_COUNTER 2 2 1 1 3 
AR_STATUS - - [0, 0, 0, 0] - [0, 1, 0, 0] Input 

AR_COUNTER -1 19900 -1 20000 -1 
AR_STATUS KP KP [1, 0, 0, 0] [0, -, -, -] [1, 0, 1, 0] 

K_ALT KP KP [1, 1, 1, 1] [1, -, -, -] [0, 1, -, 1] Output 
AR_ALTITUDE KP KP [*, -, -, -] [2000,-,-,-] KP 

-  Don’t care,  KP  Keep Previous value, *  An estimated value. 

The values of the ARSP output variables are given in 
Table 1 (KP indicates that the first two element values of the 
output are the same). All of the output values are the same as 
expected. All the transitions, activities, and states in the charts 
were activated precisely as expected. All of the variables were 
updated as expected. The expected values were calculated 
based on the given equations in NL-based SRS.  Therefore, 
the result of this simulation shows the previous Z specification 
was developed correctly. We used simulation of the 
specification for discovering hidden faults and their location. 
To accomplish this, faults were injected into the model to 
simulate memory corruption (expected due to the harsh space 
born lander mission environment.) 

Four new issues arose during the fault injection process. 
(1) Some correct inputs produced incorrect outputs;  (2) The 
Statecharts approach has a better chance of predicting possible 
faults in the system. (Because the Z specification cannot 
provide a way of predicting the transitions from state to state 

i.e., Z is not executable); (3) During the symbolic simulation, 
we found some week points where faults were lurking (e.g., 
errors described in Appendix C);  (4) Consequently, there are 
many design decisions to be made in the process of 
developing a model (i.e., specification).  Finding the correct 
formulation is a process of refinement and validation, which 
was facilitated using this approach combined with symbolic 
simulation. Some requirements were found to be 
inconsistent/incomplete because they produced incorrect 
results. 

Table 2 shows the specification testing results using fault 
injection. It describes what state variable is altered at what 
system state. The system states are the states defined in the 
Statecharts model. Obviously, the starting state 
“CURRENT_STATE” shows as a weak system state because 
any module, improperly initialized, will produce an erroneous 
output. According to the result table, the CALCULATION 
and ODD system states are the most vulnerable states to incur 
failures.  

Table 2. Fault Injection Simulation Result 
Altered state variable 

FRAME_COUNTER AR_COUNTER AR_STATUS 
Case Case Case 

Fault injected State 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
CURRENT_STATE x x x x x x x x x x x x x x x 

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b 
CALCULATION b b b b b b b x x x b b x b x 

ODD b b b b b b b x x x b b x b x 
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b 

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b 
KEEP_PREVIOUS b b b b b b b b b b b b b b b 

DONE b b b b b b b b b b b b b b b 
x  incorrect outputs, b no defect 

Based on the simulation results using fault injection, we 
discovered that the SRS was incomplete.  To remedy the 
situation, the AR_FREQUENCY value must be bounded to 
prevent the AR_ALTITUDE value from exceeding its limit. 
Thus, one of the following conditions should be included: 
1¯AR_FREQUENCY¯AR_COUNTER * 75000, or 
AR_COUNTER = -1 v (0 ¯ AR_COUNTER ¯ 
AR_FREQUENCY/75000). In other words, one of these two 
relational expressions must resolve to true. 

7. CONCLUSION 
The result of our analysis revealed that it is beneficial to 
construct a complete and consistent specification using this 
method (Z-to-Statecharts).  In the process, we uncovered some 
ambiguity issues associated with our interpretation of the NL-
based specification. 

The outputs from the ARSP module were examined and 
shown to be consistent with our expectations by running 
simulations based on the Statecharts/Activity-charts. All of the 
state activation/transition paths were in the correct order as 
expected for all test cases. Moreover, no nondeterministic 
state transitions were detected for all simulation runs (based 
on the conditions provided). In this context, the simulation has 
provided a way to determine the consistency of the 
requirements. 

The output values from the simulation were checked and 
compared against the requirements found to be valid. After 
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running various simulations using fault injection, we 
uncovered several issues indicating that the SRS is 
incomplete. In addition, several vulnerable states were 
identified because faults were injected into the Statecharts and 
tested. Though the GCS NL-based SRS did not specify fault 
tolerance, we conclude that the system would not be able to 
tolerate certain system faults. Through the whole process of 
this case study, we found that the SRS for the ARSP module 
was consistent yet not complete and not fault-tolerant. 
Therefore, our findings indicate that one can better understand 
the implications of the system requirements using this 
approach (Z-Statecharts) to facilitate their specification and 
analysis. Consequently, this approach can help to avoid the 
problems that result when incorrectly specified artifacts (i.e., 
in this case requirements) force corrective rework.   

APPENDIX A: NL-BASED ARSP SPECIFICATION 
The specifications provided below are exactly as they appear in the 
GCS SRS (Ver. 2.2). The material provided here in Appendix A has 
been reproduced exactly as it appears in the original SRS. This is 
done to document and preserve the basis form, which this case study 
was conducted. 

INPUT 

OUTPUT 

 
PROCESS:  It is only necessary that this functional module perform 
its normal calculations every other frame, namely on the odd-
numbered frames; however, it is required that this functional module 
execute every frame.  The reason for this is that during its normal 
processing it must rotate history variables.  This means that during 
the frames when it does not need to calculate new outputs, namely 
the even-numbered frames, it must still rotate its history variables 
and set its new or current values equal to the previous values, thus 
creating double entries for each rotated variable.  By doubling the 
entries, consistency of time histories will be maintained at the 
expense of keeping two copies of each value in these variables, and 
forcing the functional module to execute every frame. 

The processing of the altimeter counter data (AR_COUNTER) 
into the vehicle's altitude above the planet's terrain depends on 
whether or not an echo is received by the altimeter radar for the 
current time step.  The distance covered by the radio pulses emitted 
from the altimeter radar is directly proportional to the time between 
transmission and reception of its echo.  A digital counter 
(AR_COUNTER) is started as the radar pulse is transmitted.  The 
counter increments AR_FREQUENCY times per second.  If an echo 
is received, the lower order fifteen bits of AR_COUNTER contain 
the pulse count, and the sign bit will contain the value zero.  If an 
echo is not received, AR_COUNTER will contain sixteen one bits. 

• ROTATE VARIABLES:  
Rotate AR_ALTITUDE, AR_STATUS, and K_ALT. 

• PERFORM ALTERNATE PROCESSING:  
If FRAME_COUNTER is an even number, insure that the 
current values of AR_ALTITUDE, AR_STATUS, and 
K_ALT are equal to the previous values of AR_ALTITUDE, 
AR_STATUS, and K_ALT respectively. 

• DETERMINE ALTITUDE:  
a. If an echo is received, convert the AR_COUNTER value to 

a distance to be returned in the variable AR_ALTITUDE 
according to the following equation: 

  
 

 

b. If an echo is not received, compute AR_ALTITUDE as 
follows: 

1) If all four previous values of AR_STATUS are healthy:
order to smooth the estimate of altitude; fit a third-or
polynomial to the previous four values 
AR_ALTITUDE. Use this polynomial to extrapolate
value for AR_ALTITUDE for the current time step. 

2) If any of the previous four values of AR_STATUS
failed: Set the current value of AR_ALTITUDE equal
the previous value of AR_ALTITUDE. 

• UPDATE STATE: Set the current values for AR_STATUS a
K_ALT according to the following table. 

Table 3: Determination of Altitude Status 
CURRENT STATE ACTIONS TO BE TAKEN 

ECHO RETURNED? 
All 4 previous 

AR_STATUS values 
healthy? 

AR_STATUS K_ALT2 

yes don’t care healthy 1 
no yes failed 1 
no no failed 0 

APPENDIX B: Z ARSP SPECIFICATION 
The second Z scenario of the ARSP module is described here.  T
only assumption in this scenario is that the AR_COUNTER va
must be updated from outside of the ARSP module and is ready 
immediate use. When the AR_COUNTER value is –1 this indica
that the echo of the radar pulse has not yet been received.  If 
AR_COUNTER value is a positive integer, this means that the ec
of the radar pulse arrived at the time indicated by the value of 
counter.  

The ARSP_RESOURCE schema (Figure 1) defines the AR
module input and output variables. The FRAME_COUNTER
(Signature [Sig.] 1) is an input variable giving the present fra
number and is typed as a natural number. AR_FREQUENCY? (S
2) represents the rate at which the AR_COUNTER? has b
incremented and is typed as a real number.  The AR_COUNTE
(Sig. 3) is an input variable that is used to determine 
AR_ALTITUDE value and its type is an integer. The K_ALT
K_ALT_2, K_ALT_3, K_ALT_4, and K_ALT_NEW (Sig. 
variables are defined as sets of binary elements. T
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE
AR_ALTITUDE_4, and AR_ALTITUDE_NEW (Sig. 5) 

                                                                        
2 The K_ALT value is used in the Guidance Processing (GP) module
determine the correction term value of GP_ALTITUDE variable. If K_AL
0, the correction term is set to zero. Otherwise, a non-zero value is used in
correction term.   
3 The "?" notation in Z represents a variable as an input. The NL-Based S
defined some variables as both input and output. Z does not provide a wa
describe this. So, those variables were treated as variables with neither 
nor "!" notation. 
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defined as a set of real numbers that altitude as determined by 
altimeter radar. AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, 
AR_STATUS_4, and AR_STATUS_NEW (Sig. 6) are defined as 
binary values that represent health status for the various elements of 
the altimeter radar. The AR_STATUS, AR_ALTITUDE, and 
K_ALT (Sig.s 7-9) arrays hold the previous 4 values of their 
elements respectively.  

Figure 1. ARSP_RESOURCE Schema 

Figure 2. ARSP Schema 
The ARSP schema (Figure 2) is the main functional schema of 

the ARSP module. The ARSP_RESOURCE schema is imported (and 
is modified) in the Signature 1.  The Altitude_Polynomial function 
(Sig. 2) obtains the AR_ALTITUDE as input and estimates the 
current altitude by fitting a third-order polynomial to the previous 
value of the AR_ALTITUDE. AR_STATUS_Update (Sig. 3), 
K_ALT_Update (Sig. 4), and AR_ALTITUDE_Update (Sig. 5) 
update AR_STATUS, K_ALT, and AR_ALTITUDE array with their 

_NEW values respectively. The expression “FRAME_COUNTER? 
mod 2” is used on 7 occasions to determine if the 
FRAME_COUNTER? is odd or even.  

Predicate * requires that the current AR_ALTITUDE, 
AR_STATUS, and K_ALT element values be the same as the 
predecessors when FRAME_COUNTER? is even.  Predicate + 
defines the AR_ALTITUDE update. The update takes the current 
value, calculated by the Eq. 1, when FRAME_COUNTER? is odd 
and AR_COUNTER? is greater than or equal to zero. Predicate , 
states that the AR_ALTITUDE value is updated (i.e., estimated) by 
the Altitude_Polynomial function. This is done when 
FRAME_COUNTER? is odd, AR_COUNTER? is -1, and all the 
AR_STATUS elements are healthy. 

The AR_STATUS, AR_ALTITUDE, and K_ALT variables 
were defined as a 4-element array in the SRS. Z does not have a 
specific array construct so these variables are designed as 4-element 
Cartesian products.  The array can also be represented as a 4-element 
sequence.  The Cartesian product method was chosen because this 
composition assumes that any element can be accessed directly 
without having to search though the sequence. The predicates *, +, 
and , represent the variables ranges. The predicate - defines the 
values for the sets in the Signature 5.  
Predicate - requires that the current value in AR_ALTITUDE be the 
same as the previous values when FRAME_COUNTER? is odd, 
AR_COUNTER? is -1 and any of the elements in AR_STATUS are 
not healthy.  Predicate . requires that the updates to AR_STATUS 
and K_ALT occur when FRAME_COUNTER? is odd and the 
AR_COUNTER? is -1.  Predicate / requires that the updates to 
AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd, 
the AR_COUNTER? is -1, and all of the AR_STATUS elements are 
healthy. Predicate 0 requires that the updates to AR_STATUS and 
K_ALT occur when FRAME_COUNTER? is odd, AR_COUNTER? 
is -1, and any of the elements in AR_STATUS is not healthy. 

APPENDIX C: STATECHARTS  

Figure 3. INIT Statechart 
The “@INIT” control activity in the ARSP activity chart represents 
the link to the INIT Statechart. INIT Statechart shows the 
initialization of the ARSP module and a portion of the ARSP 
operational schema (Fig.2).  The default transition activates the 
CURRENT_STATE when the ARSP activity of the ARSP activity 
chart is begun.  The transition from the CURRENT_STATE state to 
KEEP_PREVIOUS_VALUE state describes predicate * of Fig.2.  
The KEEP_PREVIOUS_VALUE state is one of the module 
termination states. The termination states are marked with “>” at the 
end of the state name. The transition from the CURRENT_STATE to 
the CALCULATION state represents a condition where the value of 

 
 

FR A M E _C O U N T E R ? : N  
A R _  FR E Q U E N C Y ? : R  
A R _C O U N T E R ? : Z  
K _A LT _1 , K _A LT _2 , K _ A LT _3, K _A LT _ 4 , K _A LT _N E W : {0,1}  
A R _A LT IT U D E _ 1 , A R _A LT IT U D E _ 2, A R _A LT IT U D E _ 3 , 
A R _A LT IT U D E _ 4 , A R _A LT IT U D E _ N E W : R  
A R _ST A T U S_1 , A R _ST A T U S_2 , A R _ST A T U S_3, A R _ ST A T U S_4, 
A R _ST A T U S_N E W : {healthy, fa iled} 
K _A LT : K _A LT _ 1  x  K _A LT _2  x  K _ A LT _3  x  K _A LT _4  
A R _ST A T U S: A R _S T A T U S _1  x  A R _ST A T U S_2 x  A R _ST A T U S_3  x  

A R _ST A T U S_4   
A R _A LT IT U D E : A R _ A L T IT U D E _1  x  A R _ A LT IT U D E _2  x  
A R _A LT IT U D E _ 3  x  A R _ A LT IT U D E _ 4  
A R _C O U N T E R ? e  -1 ..32767  
A R _FR E Q U E N C Y ? e  1 ..245 0000 000  
FR A M E _C O U N T E R ? e  1 ..2147483647 
A R _A LT IT U D E _ 1  e  1 ..2000  ¶  A R _ A L T IT U D E _2  e  1 ..2000 ¶  
A R _A LT IT U D E _ 3  e  1 ..2000  ¶  A R _ A L T IT U D E _4  e  1 ..2000 ¶  
A R _A LT IT U D E _ N E W  e  1 ..2000  

A R SP_R E SO U R C E  
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INIT 

[MOD(FRAME_COUNTER, 2)=1]/ 
st!(CALCULATE) 

CURRENT_STATE 

KEEP_PREVIOUS_VALUE> CALCULATION 

[MOD(FRAME_COUNTER, 2)=0]/ 
AR_ALTITUDE(3):=AR_ALTITUDE(2); 
AR_ALTITUDE(2):=AR_ALTITUDE(1); 
AR_ALTITUDE(1):=AR_ALTITUDE(0); 
AR_STATUS(3):=AR_STATUS(2); 
AR_STATUS(2):=AR_STATUS(1); 
AR_STATUS(1):=AR_STATUS(0); 
K_ALT(3):=K_ALT(2); 
K_ALT(2):=K_ALT(1); 
K_ALT(1):=K_ALT(0) 

 
D  A R S P _ R E S O U R C E  
A lti tu d e_ P o lyn o m ia l: A R _ A L T IT U D E  f  R  
A R _ S T A T U S _ U p d ate : A R _ S T A T U S _ N E W  x  A R _ S T A T U S  f  
A R _ S T A T U S  
K _ A L T _ U p d ate : K _ A L T _ N E W  x  K _ A L T  f  K _ A L T  
A R _ A L T IT U D E _ U p d ate : A R _ A L T IT U D E _ N E W  x  A R _ A L T IT U D E  f  

A R _ A L T IT U D E  

F R A M E _ C O U N T E R ? m o d  2  =  0  ¤  A R _ A L T IT U D E ’ =  
A R _ A L T IT U D E _ U p d ate  (A R _ A L T IT U D E _ 1 , A R _ A L T IT U D E )  
¶  A R _ S T A T U S ’ =   A R _ S T A T U S _ U p d a te  (A R _ S T A T U S _ 1 , 
A R _ S T A T U S ) ¶  K _ A L T ’ =  K _ A L T _ U p d ate  
(K _ A L T _ 1 , K _ A L T ) 

F R A M E _ C O U N T E R ? m o d  2  =  1  ¶  A R _ C O U N T E R  ˘  0  ¤  
A R _ A L T IT U D E ’=  A R _ A L T IT U D E _ U p d a te  (A R _ C O U N T E R ? *  
3 0 0 0 0 0 0 0 0  d iv  A R _ F R E Q U E N C Y  d iv  2 , A R _ A L T IT U D E ) 

F R A M E _ C O U N T E R ? m o d  2  =  1  ¶  A R _ C O U N T E R  =  -1  ¶  A R _ S T A T U S  
=  (h ea lth y , h e a lth y , h e a lth y , h e a lth y ) ¤  A R _ A L T IT U D E ’ =  
A R _ A L T IT U D E _ U p d ate  (A lti tu d e _ P o lyn o m ia l A R _ A L T IT U D E , 
A R _ A L T IT U D E )  

F R A M E _ C O U N T E R ? m o d  2  =  1  ¶  A R _ C O U N T E R  =  -1  ¶  A R _ S T A T U S  
Î (h e a lth y , h e a lth y , h ea lth y , h ea lth y) ¤  A R _ A L T IT U D E ’ =  
A R _ A L T IT U D E _ U p d ate  (A R _ A L T IT U D E _ 1 , A R _ A L T IT U D E ) 

F R A M E _ C O U N T E R ? m o d  2  =  1  ¶  A R _ C O U N T E R  ˘  0   ¤   
A R _ S T A T U S ’ =  A R _ S T A T U S _ U p d a te(h e a lth y , A R _ S T A T U S ) ¶  
K _ A L T ’ =  K _ A L T _ U p d ate (1 , K _ A L T ) 

F R A M E _ C O U N T E R ? m o d  2  =  1  ¶  A R _ C O U N T E R  =  -1  ¶  A R _ S T A T U S  
=  (h ea lth y , h e a lth y , h e a lth y , h e a lth y ) ¤  A R _ S T A T U S ’ =  
A R _ S T A T U S _ U p d ate (fa iled , A R _ S T A T U S ) ¶  K _ A L T ’ =  
K _ A L T _ U p d ate(1 , K _ A L T ) 

F R A M E _ C O U N T E R ? m o d  2  =  1  ¶  A R _ C O U N T E R  =  -1  ¶  A R _ S T A T U S  
Î  (h ea lth y , h e a lth y , h e a lth y , h e a lth y)  ¤  A R _ S T A T U S ’ =  
A R _ S T A T U S _ U p d ate (fa iled , A R _ S T A T U S ) ¶  K _ A L T ’ =  
K _ A L T _ U p d ate(0 , K _ A L T ) 
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FRAME_COUNTER is odd which is described as 
“FRAME_COUNTER mod 2 = 1” in Fig. 2.  

Figure 4. ALTIMETER Statechart 
The Altimeter Statechart (Figure 4) is represented by the 

“@ALTIMETER” control activity of the ARSP activity chart.   The 
ODD state is activated by the default transition when the 
CALCULATION activity of the ARSP activity chart is begun.  The 
transition from the ODD state to the ESTIMATE_ALTITUDE state 
occurs when the AR_COUNTER value is set to -1 and all the 
elements of the AR_STATUS value are set to “healthy.”  When this 
transition begins the AR_STATUS and K_ALT values will be 
updated as described by predicate / of Fig.2. The 0 (zero) value of 
the AR_STATUS means “healthy” which corresponds to the value 
given in the SRS data dictionary (Ref. 14).  

The transition from the ODD state to the 
CALCULATE_ALTITUDE state begins when a positive value of the 
AR_COUNTER is given which is equivalent to predicate . of Fig.2.  
The transition from the ODD to the KEEP_PREVIOUS state is 
triggered when the AR_COUNTER value is set to -1 and at least one 
of the AR_STATUS elements is not healthy. This transition has the 
same meaning as predicate 0 in Fig.2. The transition from the 
ESTIMATE_ALTITUDE state to the DONE state happens when the 
ESTIMATION_FINISHED event occurs.  We represented this 
process as an event because the transaction was described as an 
undefined third-order polynomial estimation in the SRS4. The 
transaction from the CALCULATE_ALTITUDE state to the DONE 
state denotes predicate + (Fig.2). The transaction from the 
KEEP_PREVIOUS state to the DONE state denotes the predicate - 
(Fig.2) operation. 
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ALTIMETER 

/AR_ALTITUDE(3) := AR_ALTITUDE(2); 
AR_ALTITUDE(2) := AR_ALTITUDE(1); 
AR_ALTITUDE(1) := AR_ALTITUDE(0) 

ESTIMATION_FINISHED 

/AR_ALTITUDE(3) := AR_ALTITUDE(2); 
AR_ALTITUDE(2) := AR_ALTITUDE(1); 
AR_ALTITUDE(1) :=  
(AR_COUNTER /AR_FREQUENCY)* 300000000/2 

[AR_COUNTER=-1]  
and ([AR_STATUS(0)=1] 
or [AR_STATUS(1)=1] 
or [AR_STATUS(2)=1] 
or [AR_STATUS(3)=1] 
/AR_STATUS(3) := AR_STATUS(2); 
AR_STATUS(2) := AR_STATUS(1); 
AR_STATUS(1) := AR_STATUS(0); 
AR_STATUS(0):=1; 
K_ALT(3) := K_ALT(2); 
K_ALT(2) := K_ALT(1); 
K_ALT(1) := K_ALT(0); 
K_ALT(0) := 0 

[AR_COUNTER>=0] 
/AR_STATUS(3) := AR_STATUS(2); 
AR_STATUS(2) := AR_STATUS(1); 
AR_STATUS(1) := AR_STATUS(0); 
AR_STATUS(0):=0; 
K_ALT(3) := K_ALT(2); 
K_ALT(2) := K_ALT(1); 
K_ALT(1) := K_ALT(0); 
K_ALT(0) := 1 

ODD 
[AR_COUNTER=-1] 
and [AR_STATUS(0)=0] 
and [AR_STATUS(1)=0] 
and [AR_STATUS(2)=0] 
and [AR_STATUS(3)=0] 
/AR_STATUS(0):=1; 
K_ALT(3) := K_ALT(2); 
K_ALT(2) := K_ALT(1); 
K_ALT(1) := K_ALT(0); 
K_ALT(0) := 1 
 

DONE> 

ESTIMATE_ALTITUDE CALCULATE_ALTITUDE KEEP_PREVIOUS 


