
76

APPENDIX A

CSP-TO-PETRI NET CANONICAL TRANSLATION DIAGRAMS

77

In this appendix a complete collection of standard translations from classic CSP and P-

CSP to Petri nets is provided. The CSP primitives include STOP, SKIP (not included in

CSP), recursion, parallel, deterministic and nondeterministic choice, hiding and sequential

compositions. The arrow (→) is also shown in various compositions.

Figure A-1 shows STOP which performs no action and never terminates (like deadlock)

and SKIP which performs no action and terminates are shown at the top. In the center of

Figure A-1 simple recursion is presented (note that P-CSP incurs an extra dummy transition

which is an immediate non-timed transition). In the bottom, a parallel composition is shown

and P-CSP uses two dummy transitions.

Figure A-2 shows DC (deterministic choice) where P-CSP employs three dummy

transitions. In the center NDC (nondeterministic choice) is shown which also uses three

dummy transitions. Note that the sdt1 and sdt2 dummy transitions are given as such because

associated with each is a (by definition) probability. In the bottom of this figure, a sequential

composition using the arrow is shown. The CSP translation for hiding is also shown (there is

no P-CSP equivalent at this time).

Figure A-3 shows Mu.X (recursion where "X" can be any character). Compare the

various configurations and notice that the translations are comparable to those of Figure 13

which defines the way CSPN translates P-CSP. Figure A-3 provides equivalent but reduced

translations. The top half shows tail recursion and the bottom show a variation of such which

cuts the tail recursion. Recursion using the CSP prefix notation is desirable because it

describes the entire behavior of a process that eventually stops. For example, it would be

tedious to write the full behavior of some systems which cycle over and over (e.g., a train

crossing or vending machine). Recursion is useful for describing repetitive behavior patterns

using much shorter notations. Such systems should not require a prior decision on the length

of life of an object in order to permit the description of objects that continue to act and

interact with their environment indefinitely.

78

Figure A.4 shows two varieties of synchronization. The first (top half) is blocking send

and receive. This forces synchronization to occur while preventing either participant from

moving forward until the other catches up. The CSPN tool has adopted this method because

the interpretation of chnl!msg combined with chnl?msg was more natural (i.e., closer to the

dt2

a b

dt1

a b

a b PAR{a(),b()}

Parallel Composition

Classic CSP: P-CSP:

STOP

Performs no
action and never
terminates!

STOP

STOP STOP

or

SKIP

SKIP (not defined in CSP)

SKIPPerforms
no action
and
terminates.

Classic CSP: P-CSP: P-CSP:

or

µX.(b → X) Mu.X{b()}

b

Recursion

Classic CSP: P-CSP:

X

Figure A.1 Translations for (top) STOP / SKIP, (center) recursion and (bottom) PAR.

79

from environment

dt2

a b

dt1

from environment

from environmentfrom environment

a b

DC{a(),b()}a b

Deterministic choice composition

Classic CSP: P-CSP:

dt2

a

b

a→b

Same in P-CSP

a

c

τ

(a→b→c)\b)

Sequential composition and hiding

Classic CSP: P-CSP:

Not implemented in P-CSP

Classic CSP:a→b

a

b

a b

sdt1 sdt2

dt1

a b NDC{a(),b()}

a b

Nondeterministic choice composition

Classic CSP: P-CSP:

Figure A.2 Translations for (top) DC, (center) NDC and (bottom) arrow and hiding.

80

cb

X

Second step

b

X

dt2

{c()->X}

First stepµX.(b c→X)

cb

Mu.X{NDC{b(),{c()->X}}P-CSP:

Recursive composition (with reduction)

Classic CSP:

cb

dummy

µX.((b c)→ X)

cb

X

dt1

Mu.X{NDC{b(),c()}}

cb

Recursive composition

Classic CSP: P-CSP:

The two recursive translations shown here (top and bottom) are the same translations as
those shown in Figure 13 except those shown here are reduced. In the top figure, there
are two fewer transtions and one less place. In the bottom figure, there are also two
fewer transitions and two fewer places.

Figure A.3 Translation of recursive compositions in a reduced format.

81

Train Gate

Synchronization
Event

Chnl ! arrive Chnl ? arrive

dt:arrive

pi

pi+1

pj

pj+1

Classic CSP:
Train=
(InTransit);
(Chnl!arrive →AtIntersect);
(Chnl!depart →Train);

Gate=
(Chnl?arrive →Close);
(Chnl?depart →Open →Gate);

Synchronization using input and output actions

Pictured at right

Synchronization is syntactically the same for both CSP and P-CSP. There are 2 possible
translations that could be used. In the Petri net fragments shown, the train sends and the
gate is receives. The actual synchronizing action (dt:arrive) is an immediate transition
and its firing is necessary before either process can proceed. In the bottom of the figure
the sending process (Train) is not blocked and can proceed (this 2nd type of
synchronization is not used by the CSPN tool).

Train Gate

Asynchronous
Communication

Event

Chnl ! arrive Open

Classic CSP:
Train=
(InTransit);
(Chnl!arrive →AtIntersect);
(Chnl!depart →Train);

Gate=
(Chnl?arrive →Close);
(Chnl?depart →Open →Gate);

Pictured at right

Nonblocking Synchronization using input and output actions

Chnl ? arrive

pk

AtIntersection

pi

pi+1

pj

pj+1

Figure A.4 Translations showing blocked and non-blocked send synchronization.

82

b

a d

c e

(a→b→c)||{b}(d→b→e)

dt2

dt1

a d

c e

dt:b

PAR{SEQ{a(),c()},
 SEQ{d(),e()}{b}};

Parallel and sequential composition

Classic CSP: P-CSP:

dt6

dt3

b c

dt2

a dt5

b c

dt4

a

dt1

b c

ab c

a

a→(b c)||(b c)→a

PAR{{a→NDC{b(),c()}},
 {NDC{b(),c()}→a}};

Parallel and Nondeterministic choice composition

Classic CSP: P-CSP:

Above: a() must ac tually
be ch!b, and d() must
ac tually be ch?b to be
cor rect using CSPN

Figure A.5 Combined translations for parallel, sequential and nondeterministic choice.

83

inherently synchronous semantics of CSP) and more readable. Also, using the notion of

hiding in CSP, both actions (input and output) can be replaced by tau (like "\b" in Figure A.2

bottom). In the bottom half (of Figure A-4) a message is output (on channel "Chnl") while

processing continues (a token is distributed to place pk) for the sending process independent

of whether the message is received. On the receiving end, the transition that models the

activity of message input (on the channel "Chnl" is this case) fires only after both places pk

and pj have tokens. The interpretation of this type of communication is that the receiver must

wait for the message from the sending process (the Train in this case). This is known as a

blocking receive.

Finally, in Figure A-5 a number of larger compositions are collected to illustrate a

combined parallel and sequential composition that has synchronization (blocking send and

receive). The CSP translation uses 5 transitions and 8 places while the P-CSP translation

uses 7 transitions and 10 places. In the bottom half of Figure A-5 two nondeterministic

choice constructs are composed in parallel with an action "a" prefixed to the one and an

action "a" suffixed to the other. Notice that the direct CSP translation only uses 6 transitions

and seven places while the P-CSP translation uses 12 transitions and 12 places!

84

APPENDIX B

THE LEX AND YACC SPECIFICATION OF THE PARSEABLE CSP

(GRAMMAR GIVEN IN BACKUS NORMAL FORM)

85

B.1 Lex regular expressions

delimiter [\t\n]
white_space {delimiter}+
letter [A-Za-z_+\-%@]
digit [0-9]
identifier {letter}({letter}|{digit})*
integer {digit}+
comment "--".*$

B.2 Yacc grammar specification

1. System production (start symbol = "system").
system: Identifier Equals processdeclist processlist1 Dot;

2. Processdec used to declare process names.
processdec: PROCESS Identifier Equals processlist1 Semicolon;

3. Processdeclist for listing multiple declarations under system.
processdeclist: EmptyList | processdeclist processdec;

4. Process definitions
process:
 STOP
| LeftBrace stmtlist RightBrace
| PAR LeftBrace processlist2 synclist RightBrace
| SEQ LeftBrace processlist1 RightBrace
| NDC LeftBrace processlist3 RightBrace
| DC LeftBrace guardedproclst RightBrace
| Mu Dot Identifier LeftBrace processlist1 RightBrace
| processcall;

5. Failable describes the format of an annotation (rate or probability).
failable:
 FAIL LeftParen rEquals Real RightParen
| FAIL LeftParen pEquals Real RightParen;

6. Probable describes the format of a probability annotation.
probable:
PROB LeftParen pEquals Real RightParen

7. Servable describes the format of a service rate annotation.
servable:
SERV LeftParen rEquals Real RightParen

8. Biprocess distinguishes an annotated process and permit such on any process.
biprocess:
 process | process Colon failable
| process Colon probable
| process Colon servable

9. Processlist1 permits one or more processes in a list.
processlist1: biprocess | processlist1 Comma biprocess;

86

10. Processlist2 permits no less than two processes in a list.
processlist2:
biprocess Comma biprocess | processlist2 Comma biprocess;

11. Processlist3 permits no less than two processes in a list and specialized for NDC.
processlist3:
biprocess Comma biprocess | processlist3 Comma biprocess;

12. Synclist used with PAR to indicate synchronization messages.
synclist: EmptyList | LeftParen anyvarlist RightParen;

13. Anyvar used to permit concise grammar of the rule for lists.
anyvar: booleanvar | variable;

14. Anyvarlist specifies an arbitrary number of anyvar in a list.
anyvarlist: anyvar | anyvarlist Comma anyvar;

15. Statement list allows an arbitrary number of statements to be listed.
stmtlist: stmt | stmtlist Comma stmt;

16. Statements can compose a process.
stmt:
implication
| expression
| input
| output
| SKIP;

17. Implication (a statment event -> action [for P->Q use SEQ{P(),Q()}].
implication:
stmt Arrow consequent | variable Arrow consequent | biprocess;

18. Consequent belongs to the right hand side of an arrow.
consequent: variable | biprocess;

19. Processcall is an instance of a declared PROCESS and is simply set to Identifier().
processcall: Identifier LeftParen RightParen;

20. Assignment is covered by expression in integer

21. Input
input: channel InSym variable;

22. Output (note an operand is an integer or boolean expression).
output: channel OutSym operand;

23. Guarded process is defined for use in the guarded process list.
guardedprocess: guard biprocess;

24. Guarded process list
guardedproclst:
guardedprocess | guardedproclst Comma guardedprocess;

87

25. Guard us used to provide for choosing an alternate in a determinstic choice (DC).
guard: input
| booleanexpr AND input
| booleanexpr AND SKIP;

26. Recursive definition is defined in the definition of processes (see Mu).

27. Channel is matched by paring a input message with an output message.
channel: Identifier;

28. Variable
variable: Identifier;

29. Boolean variable (AtSym to distinguish a variable from a boolean variable).
booleanvar: AtSym Identifier;

30. Expression
expression: integerexpr | booleanexpr | relationalexpr;

31. Boolean expression.
booleanexpr:
booleanvar
| TRUE
| FALSE
| booleanexpr AND booleanexpr
| booleanexpr OR booleanexpr
| NOT booleanexpr
| booleanvar VarAsgn booleanexpr;

32. Relational expression.
relationalexpr:
operand LESym operand
| operand LTSym operand
| operand EQSym operand
| operand NESym operand
| operand GESym operand
| operand GTSym operand;

33. Integer expression.
integerexpr:
operand Plus operand
| operand Minus operand
| operand Star operand
| operand Slash operand
| operand VarAsgn operand
| Minus operand;

34. Operand.
operand:
Integer
| variable
| integerexpr
| relationalexpr;

88

35. Monadic operand (never used).
36. Dyadic operand (never used).
37. Integer is defined in lexer.
38. Digits are defined in lexer.
39. Digit is defined in lexer.
40. Declaration (never used).
41. Type (never used).
42. Selection (never used).
43. Conditional (never used).
44. Option (never used).
45. Loop (never used).
46. Relational operator (never used).
47. Timer (never used).
48. Hide (never used).

89

APPENDIX C

CO-MATRIX EXPANSION ALGORITHMS

90

This appendix presents five algorithms. The first chooses one of three methods of expansion

(Section C.1), the 3 expansion methods (Section C.2-4), and 'expand' which combines two

matrices into one (Section C.5),. First, the variable definitions are presented immediately

below: Note, the user defined types are found at the end of Appendix C.

 /* *
 * Three matrices are involved: C = A <- B where "<-" means
 * "is inserted into by." So A is the original matrix, B is
 * the matrix which is poured and C is the new matrix that
 * holds both combined.
 */
int orA, rA, /* orA x ocA is size of A (original)*/
 ocA, cA, /* rA x cA is size of C (new) */
 rB, cB, /* rB x cB is size of B (pored) */
 rlb, rub, /* B row lower and upper bounds in C*/
 clb, cub, /* B column lower and upper bounds in C*/
 rlbA, rubA, /* A row lower and upper bounds in C*/
 clbA, cubA; /* A column lower and upper bounds in C*/
 curLnkIndx = 0, /* Current link index */
 rowMark = 0,
 colMarkRht = 0,
 colMarkLft = 0,
 Bflag = FALSE_,
 Aflag = FALSE_,

p_matrix A = NULL,
 B = NULL,
 C = NULL;

FILE *epn;
void prtExpn(FILE *epn); /* Prototype */
void expand(FILE *epn, int rm); /* Prototype */
char *synclink(FILE *epn, entryptr s); /* Prototype */

void expn(FILE *epn, int cpi, netNodeptr nnptr)
{
int e,f,i,j,row,col,link,
 k, /* k number of nodes in this list */
 typ =0,
 thinA =FALSE_,
 symthere =0; /* Boolean: Is symbol there? */
nodeptr p =NULL,
 cur_p =NULL,
 q =NULL;
entryptr s0 =NULL,
 s1 =NULL;
char *call =NULL;

91

C.1 Algorithm for choosing the correct expansion method

k = (nnptr ->numNodes); /* k is now 1 more than needed */
while (((p=(nnptr ->net[--k])) != NULL) && (k > -1)) {
 s0 = look (p ->n_name, &symthere);
 if (symthere < 1) {
 fprintf(epn,"\nExpn: Symbol %s not found!",p->n_name); exit(1);
 }
 fprintf(epn,"\n\nSearching links of net[%d], symbol: %s", k, s0 ->name);
 DisplayProcessList(epn, 0, s0->p_pl);
 cur_p = p; /* Skip over the head node (a pnode) */

 if ((p=p->link) == NULL) fprintf(epn,"\nExpn: No sibs for this pnode!");
 else {
 curLnkIndx=0;
 for (q = p; q != NULL; q = q -> link) {
 curLnkIndx++;
 typ = q->n_type;
 fprintf(epn,"\n%d. Symbol: %s, Type: %d",curLnkIndx, q->n_name,typ);

 /* There are three cases where an expansion is appropriate:
 * (1) Node type is 5-9 (PAR, SEQ, NDC, DC, MU)
 * (2) Node type is 10 and cpi=0 (cpi is current process index)
 * Node type 10 indicates an instance of a previously defined
 * process known as a process call.
 * (3) Node type 11 is really type 10 except it was 1st encountered
 * in "PROCESS symbol =", thus was marked as type 11.
 */
 if (((typ > SKIP_PROC) && (typ < PROC_CALL)) || (typ == STMT_LIST) ||
 ((typ == PROC_CALL) && (cpi == 0)) || (typ == PROCESS_DEC)) {

 s1 = look (q ->n_name, &symthere);
 if (symthere < 1) {
 fprintf(epn,"\nSymb %s not found in symbol table!",q ->n_name);
 }
 else {
 /* *
 * This logic determines the size of the matrices involved.
 */
 rA = s0 ->rsize; /* Row size of A */
 cA = s0 ->csize; /* Col size of A */
 orA= rA; /* Save the original Rsize of A */
 ocA= cA; /* Save the original Csize of A */
 rB = s1 ->rsize; /* Row size of B */
 cB = s1 ->csize; /* Col size or B */
 /* *
 * Check if the B Matrix is null and if so abort the expansion.
 */
 if ((rB == 0) || (cB == 0) || (s1->p_prm == NULL)) {
 fprintf(stderr,"\nIn expn[B]: %s has null matrix!",q->n_name);
 fprintf(stderr,"\n%s may have not been declared!",q->n_name);
 fprintf(stderr," Expansion must be aborted ...\n\n");
 exit(1);
 }
 /* *
 * Rem: B is inserted into A (A<-B (or A is expanded by B)
 * Thus the following logic sets the stage for an expansion:
 */

92

 fprintf(epn,"\n\nExpansion includes the following:");

 A = s0 ->p_prm;
 fprintf(epn,"\n\nA: %s",s0->name);
 DisplayProcessList(epn, 0, s0->p_pl);
 print_prm(epn,A,s0->rsize,s0->csize);

 B = s1 ->p_prm;
 fprintf(epn,"\n\nB: %s",q->n_name);
 DisplayProcessList(epn, 0, s1->p_pl);
 print_prm(epn,B,s1->rsize,s1->csize);

 /* *
 * Calc size of the new C matrix (unless B matrix is null)
 */
 thinA = FALSE_;
 rA = rA+(rB-1);
 if (A[orA-1].p_row[ocA-1] > 0)
 cA = cA+(cB-2);
 else
 if (A[orA-1].p_row[ocA-1] < 0) {
 cA = cA+(cB-2);
 thinA = TRUE_;
 }
 else
 fprintf(stderr,"\nA[orA][ocA] = 0! Aborting expansion ...");

 /* *
 * Create the new matrix C that A and B will be combined into.
 * ---
 */
 C = prmatrix(rA,cA);
 fprintf(epn,"\n\nC: A<-B is a new (%dx%d) Matrix",rA,cA);

 /* *
 * Determine the rowMark where expansion begins. The rowMark
 * tracks the place in A that will be replaced. s0->p_pl is the
 * process list of A, q->name is the process who will be replaced.
 * Determine where that is in the co-matrix (0 =1st position).
 */
 rowMark=procPosition(s0->p_pl, q->n_name);
 if (rowMark == -1) {
 fprintf(stderr,"\nrowMark undetermined!");
 exit(1);
 }
 /* - - - - - - - - - - - - - -<<1>>- - - - - - - - - - - - - */
 /* *
 * Use Method I if B goes into Upper Left corner of C.
 */
 if (rowMark == 0) {
 fprintf(epn,"\n\nRunning Method 1:\n-----------------");

 SEE SECTION C.2 FOR METHOD 1 LOGIC

 } /*fi use Method 1 */

93

 else {
 /* - - - - - - - - - - - - - -<<2>>- - - - - - - - - - - - */
 /* *
 * Use Method II if B goes into Lower Right corner of C.
 * A goes into Upper left corner of C.
 */
 if (rowMark == (orA-1)) {
 fprintf(epn,"\n\nRunning Method 2:\n-----------------");

 SEE SECTION C.3 FOR METHOD 2 LOGIC

 } /*fi use Method II */
 else {
 /* - - - - - - - - - - - - - -<<3>>- - - - - - - - - - - - -
 *
 * Method III: all other cases B goes in center of C.
 */
 fprintf(epn,"\n\nRunning Method 3:\n-----------------");

 SEE SECTION C.4 FOR METHOD 3 LOGIC

 }/* esle in all other cases */
 }/* esle */
 /* *
 * CLEAN UP: Free the old prmatrix to conserve memory.
 */
 for (i = 0; i < s0 ->rsize; i++) {
 free(A[i].p_row);
 free(A);
 }
 /* *
 * Update the symbol table entry for this pnode
 */
 s0 ->rsize = rA; s0 ->csize = cA; s0 ->p_prm = C;
 /* *
 * replProc takes a process list and replaces a process name
 * known to exist in the list by another process list of
 * one or more process names.
 */
 call= replProc (&(s0 ->p_pl), s1 ->name , &(s1 ->p_pl));
 if (call == NULL) {
 fprintf(stderr,"\nExpn: ReplProc failed update %s",s0 ->name);
 exit(1);
 }
 /* *
 * Adjust the link index to comply with the prior expansion
 */
 curLnkIndx=curLnkIndx+rB-1;
 } /*esle*/
 } /*fi (typ...*/
 } /*rof*/
 } /*esle*/
} /*elihw*/
 fprintf(epn,"\nCompleted expansion!");
}/*npxe*/

94

C.2 Algorithm for expansion method 1 (upper LH corner)

 /* *
 * Determine indexes for B whose size is rB x cB (C <- B).
 * rlb = row lower bound, rub = row upper bound
 * clb = col lower bound, cub = col upper bound
 */
 rlb = curLnkIndx - 1; rub = rlb + rB - 1;
 clb = 0; cub = clb + cB - 1;
 /*-*
 * Expand A (3x4) with B (5x6) into C (7x8).
 *
 * 0 1 2 3 4 5 6 7 0 1 2 3
 * C: 0 - b b b b b 0 0 A: 0 -|+ a a <-a's put in C,
 * 1 b b b b b b 0 0 1 y|g g g begin at C[4,6].
 * 2 b b b b b b 0 0 2 y|g g g
 * 3 b b b b b b 0 0 / \
 * 4 b b b b b + a a / Rows 1 and 2:
 * 5 y 0 0 0 0 g g g / put g's in C,
 * 6 y 0 0 0 0 g g g / start at C[5,5].
 * /
 * Rows 1 and 2: put y's
 * in C start at C[5,0].
 * ---
 * In C above, 0's are constant (i.e., not x-fered from A or
 * B into C). Also note that the "-" and "+" paired in A are
 * now seperated as shown in C.
 * ---
 * Determine indexes for A whose size is orA x ocA (C <- A).
 */
 rlbA = rA - (orA -1); rubA = rA - rlb - 1;
 clbA = cA - (ocA -1); cubA = cA - clb - 1;
 (void)expand(epn, ZERO);

 /* *
 * In Method I, finish copying the y's (if any) from A to C.
 */
 if (orA > 1) {
 fprintf(epn,"\nMethod I exception!");
 i = rB;
 for (j = 1; j < orA; j++) {
 C[i].p_row[0] = A[j].p_row[0];
 i++;
 }
 }

C.3 Algorithm for expansion method 2 (lower RH corner)

 /* *
 * Determine indexes for B whose size is rB x cB (C <- B).
 * rlb = row lower bound, rub = row upper bound
 * clb = col lower bound, cub = col upper bound
 */
 rlb = rowMark;
 rub = rlb + rB - 1;

95

 if (!thinA) clb = cA - cB;
 else clb = cA - cB + 1;
 cub = cA - 1;
 /* *
 * Determine indexes for A whose size is orA x ocA (C <- A).
 * ---
 */
 rlbA = 0;
 rubA = orA - 2;
 clbA = 0;
 cubA = ocA - 1;

 /*-
 * Case: 1
 * (orA x ocA) (rB x cB) (rA x cA)
 *
 * 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7
 *A: 1 a a a a z + B: 1 - + b b --> C: 1 a a a a 0 0 z
 * 2 a a a a z 2 b b b b 2 a a a a 0 0 z
 * 3 a a a a z 3 b b b b 3 a a a a 0 0 z
 * 4 a a a a z 4 b b b b 4 a a a a 0 0 z
 * 5 y y y - + 5 0 0 0 - + b b
 * / 6 0 0 0 b b b b
 * Case 2: 7 0 0 0 b b b b
 * If A[5,5]="-" => C(8x6). 8 y y y b b b b
 *
 * Here (in case 1), A(5x5) + B(4x4) -> C(8x7).
 * There is one variation (Case 2) occurs when the "-" is
 * in the last column (e.g., occurs with Mu recursion). In
 * this case, A(5x5) + B(4x4) -> C(8x6).
 *
 * For e.g.., (remember rowMark=row to replace [exactly]):
 *
 * Case 1: C(8x7) Case 2: C(8x8)
 *
 * rlb = 4 (counting from 0) 4
 * rub = 7 = 4 + 4 - 1 7
 * clb = 3 = 7 - 4 3 = 6 - 4 + 1 (test)
 * cub = 6 = 7 - 1 5 = 6 - 1
 *
 * rlbA= 0 0
 * rubA= 3 = 5 - 2 3
 * clbA= 0 0
 * cubA= 4 = 5 - 1 4
 *
 * For case 1 (where C[5,5] = "+") the z's in A are moved
 * to the last col of C ONLY if "+" otherwise, they stay
 * put (this is handled in the method 2a exceptions below).
 * Similarly, in either case 1 or case 2, the y's in A are
 * moved to the last row in C ONLY if "+" otherwise they
 * stay put (this is handled in the method IIb exceptions).
 *
 * If a "z" or a "y" is moved it must be replaced by a "0".
 * --
 */
 (void)expand(epn,ZERO);

96

 /* * * * <<< Method IIa Exception >>> * * * * * * * * * * *
 * Catch all the ones (+'s) in last column which are to be
 * moved to the new last column. These +'s are outputs
 * from transitions to the last place in A so now they
 * must be connected to the new last place (test cases are
 * t2, t10 and wgood). Only consider rows above rowMark.
 * --
 */
 if (!thinA) {
 i = rowMark;
 for (i=rowMark-1; i>=0; i--) {
 if (A[i].p_row[cubA] > 0) {
 C[i].p_row[cub] = A[i].p_row[cubA];
 C[i].p_row[cubA] = 0;
 fprintf(epn,"\nMethod IIa expn (linked last place)!");
 }
 }
 }
 /* * * * <<< Method IIb Exception >>> * * * * * * * * * * *
 * Moving the y's form the marked row if they are "+".
 * --
 */
 for (j=clbA; j < clb; j++) {
 if (A[rlb].p_row[j] > 0) {
 C[rub].p_row[j] = A[rlb].p_row[j];
 C[rlb].p_row[j] = 0;
 fprintf(epn,"\nMethod IIb expn (linked recursive loop)!");
 }
 }

C.4 Algorithm for expansion method 3 (centrally located)

 /* Determine indexes for B whose size is rB x cB.
 * rlb = row lower bound, rub = row upper bound
 * clb = col lower bound, cub = col upper bound
 * Remember: A<- expanded by <-B
 */
 rlbA = 0;
 rubA = rowMark -1;
 clbA = 0;
 rlb = rowMark;
 rub = rlb + rB -1;
 /* *
 * Find point in A for expanding B (1st '-' in marked row)
 */
 j = 0;
 while (A[rowMark].p_row[j] >= 0) j++;
 clb = j;
 cubA = clb + ONE;
 cub = clb + cB -1;
 /* *
 * Mark the RHS of A to be pushed right past B
 * Mark the LHS of A to be replacement starting point.
 */
 colMarkRht = cubA;
 colMarkLft = clb;

97

 /*-*
 * Finish all columns in marked row up to clb (x's in comment
 * below).
 */
 for (j = 0; j < clb; j++) C[rowMark].p_row[j] = A[rowMark].p_row[j];

 /*-*
 /* Finish the middle box...
 *
 * C: a a a a g g g g g g
 * a a a a g g g g g g
 * x x b b b b b b a a
 * a a b b b b b b a a
 * a a b b b b b b a a
 * a a b b b b b b a a
 * a a b b b b b b a a
 * a a a a a a a a a a
 * a a a a a a a a a a
 *
 * At this point, a's come from A and b's are put from
 * the B matrix (x's have been put but a's have not).
 * g's are then added in the next segment of code.
 */
 (void)expand(epn, ZERO);

 /*-*
 * Finish update for the upper part of A which (g's in
 * the above comment) goes in the URH corner of C.
 */
 clbA = colMarkRht +1;
 cubA = ocA -1;
 rlbA = 0;
 rubA = rowMark -1;
 clb = cA - (cubA - clbA) -1;
 cub = cA - 1;
 rlb = 0;
 rub = rowMark -1;

 e = rlb;
 for (i = rlbA; i <= rubA; i++) {
 f = clb;
 for (j = clbA; j <= cubA; j++) {
 C[e].p_row[f] = A[i].p_row[j];
 if (!(f>cub)){f++;}
 else {
 fprintf(stderr,"\n1-Method III error(clb)!\n");
 exit(1);
 }
 }
 if (!(e>rub)){e++;}
 else {
 fprintf(stderr,"\n2-Method III error(rlb)!\n");
 exit(1);
 }
 }

98

 /*-*
 * colMarkRht is the clb + 1 replacement point
 * Finish update for the lower part of A (LHS or x's)
 *
 * A: d d d d d "-" is replaced by B
 * d - d d d
 * x y y y y Put x's ---> C
 * x y y y y
 */
 e = rowMark + rB;
 for (i = rowMark + 1; i < orA; i++) {
 for (j = 0; j < colMarkLft; j++)
 C[e].p_row[j] = A[i].p_row[j];
 e++;
 }
 /*-
 * colMarkRht is the clb+1 replacement point (delta =cA-ocA)
 * Finish update for the lower part of A (RHS or y's)
 * colMarkLft is the col 2 in fig below where the minus is
 * (which is the same as the clb).
 *
 * 1 2 3 4 5
 * A: 1 t t t t t t's & e's are put using above code
 * 2 e - d d d "-" is replaced by B (d's are handled
 * 3 x y y y y as exceptions below).
 * 4 x y y y y Put y's ---> C
 */
 e = rowMark + rB;
 for (i = rowMark + 1; i < orA; i++) {
 f = cA - 1;
 for (j = ocA - 1; j >= colMarkLft; j--)
 C[e].p_row[f--] = A[i].p_row[j];
 e++;
 }
 /*-*-*-*-*- <<< Method III Exceptions >>> -*--*-*-*-*-*-*-*
 * --
 * The output from the transition being expanded must go to
 * the same place it was before. Check the rest of the row
 * right of the intersection of A[rowMark][colLftMark] for
 * pluses (+1). Place them in the last row of the B matrix
 * inside of C. The same distance from the last col in C
 * as they are in from the last col in A.
 *
 * 1 2 3 4 5
 * A: 1 t t t t t t's, e's, x's are put using above code
 * 2 e - d d d "-" is replaced by B (d's are handled
 * 3 x y y y y as exceptions below).
 * 4 x y y y y Put d's ---> C
 *
 * The idea is to connect the output from the transition being expanded
 * to the same place as it originally was connected to in A (a place
 * basically). Note the following code assumes that the last row of B has
 * a plus (i.e., that its actually connected as it was in the higher
 * level abstraction to another place.
 *

99

 * A case where this is not true: SEQ{P1(), P2(), STOP}. Until you know
 * exactly what's in the transition being expanded you cannot decide to
 * eliminate the connection. Here the STOP doesn't have an O/P place!
 * This case is assumed not to occur. First print some diagnostics:
 */
 if (s0->type == NDC_PROC){
 fprintf(epn,"\nMethod III exception!");
 prtExpn(epn);
 print_prm(epn, C, rA, cA); fprintf(epn,"\n");
 zeroGapEnds = colMarkRht + (cA - ocA);

 /* Zero out the columns starting with the column ColMarkRht
 * making sure to stay above the rowMark
 */
 for (i = 0; i < rowMark; i++)
 for (j = colMarkRht; j < zeroGapEnds; j++)
 C[i].p_row[j] = 0;

 /* C <- A for the values on the right of the zeroGap
 * column(s) and above the rowMark. Rem... the colMarkRht
 * defines the boundary in A (not C) where the expansion
 * occurs (just one col to the left of the colMarkRht column).
 */
 zeroGap = cA - ocA;
 for (i = 0; i < rowMark; i++)
 for (j = colMarkRht; j < ocA; j++)
 C[i].p_row[zeroGap + j] = A[i].p_row[j];
 for (j=colMarkRht; j< ocA; j++)
 C[rowMark+rB-1].p_row[cA-(ocA-j)] = A[rowMark].p_row[j];
 }

C.5 Expand algorithm for combining co-matrices

/* Expand copies the old matrices (A, B) to the new one (C). */
void expand(FILE *epn, int rm) {
 int i, j, e, f, m, n; /* Miscellaneous indices */
 e = rm; m = 0;
 for (i = 0; i < rA; i++) {
 f = 0; n = 0;
 for (j = 0; j < cA; j++) {
 if ((i>=rlb) && (i<=rub) && (j>=clb) && (j<=cub)) {
 C[i].p_row[j] = B[m].p_row[n++];
 Bflag=TRUE_;
 }
 else {
 if ((i>=rlbA) && (i<=rubA) && (j>=clbA) && (j<=cubA)) {
 C[i].p_row[j] = A[e].p_row[f++];
 Aflag=TRUE_;
 }
 }
 } /*rof*/
 if (Bflag) {Bflag=FALSE_; m++;}
 else
 if (Aflag) {Aflag=FALSE_; e++;}
 } /*rof*/
}

100

C.6 User defined data types

/* Integer array of pointers to the rows in the matrix called the Process
 * Relation Table (prm) which is dynamically allocated (2-D array matrix).
 */
typedef struct int_array
 {
 int *p_row;
} IArray;
typedef IArray *p_matrix;

typedef struct entrydef /* Symbol Table entry definition */
 {
 char *name; /* Symbol name */
 short type; /* Sym type (assume < 32,767 impl dpndt) */
 short uid; /* Unique id number (process id or pid) */
 char *frate; /* Failure Rate in ASCII */
 char *fprob; /* Failure probability in ASCII */
 char *sprob; /* Service Probability in ASCII */
 char *srate; /* Service Rate in ASCII */
 char *p_pl; /* Process list ptr (can be diff types) */
 short rsize; /* Number of rows in PR Matrix */
 short csize; /* Number of cols in PR Matrix */
 p_matrix p_prm; /* Process Relation (PR) Matrix */
 struct entrydef *next; /* Link to next ENTRY */
} ENTRY;
typedef ENTRY *entryptr;

typedef struct nodedef
{ char *n_name; /* Ptr to the node/symbol name */
 char *n_fail; /* NULL if no fail rate/prob spec'd */
 short israte; /* Boolean: legal vals (-1, 0, 1) */
 short n_type; /* Node type consistent w/ symbols */
 short uid; /* System level unique identifier */
 struct nodedef *link; /* Ptr to next node, if any */
 } NODE;
typedef NODE *nodeptr; /* Ptr to a NODE structure */

101

APPENDIX D

RAILROAD CROSSING USING A MONITOR

102

D.1 Overview of the multiple train / monitor problem

This appendix describes a solution to: (1) the race (safety) hazard (described in ¶5.5)

and, (2) controlling passage of multiple trains using a monitor to arbitrate the trains and the

gate. Figure E.1 shows the monitor's finite state machine. We assume that trains cannot

arrive simultaneously but that they do arrive in close enough succession that it would be

dangerous for the gate to be opened if another train is pending. The Petri net of Figure E.2 is

a translation of the CSP in Figure E.2. Table E.1 describes the markings and failure states.

Monitor =
((T1 ? a T2 ? a) & GateClosed → Monitor);

((T1 ? a T2 ? a) & GateOpen → (GateCh !
 Close) → Monitor);

(((T1 ? d) & (T2 ? a) (T2 ? d) & (T1 ? a))
 → Monitor);

(((T1 ? d) & (T2 ? a) (T2 ? d) & (T1 ? a))
 → (GateCh ! Close) → Monitor).

CSP for Monitor:

If not(T2? a).

If not(T1? a).

If Gate is open.

If G
ate

 is
 op

en
.

After Gate is finshed closing.

After Gate is finshed opening.

(1)

(1)

(2)

(3)

Gate
Closed

Gate
Open

MONITOR

IDLE

T1? d
ToG!Open

T1? a
ToG!Close

T2? d
ToG!Open

T2? a
ToG!Close

(1) If Gate is closed.

(2) If t1 is approaching.

(3) if t2 is approaching.

FSM for Monitor:

Figure D.1 Finite sate machine and CSP for the monitor.

T
2!

 d

Train passing
intersection

T
1!

 d

Train in
transit

Open

TG? Close

Msg rcv'd
gate open

Msg rcv'd
gate
closed

TG? Open

Gate
closed

Closed

TG! StayC

Gate
open

Depart Msg
rcv'd

Tx?d

Two trains T1 and T2

Gate
closed

TG! Open

TG! StayC TG! Close

Tx? a

Gate
closed

= Inhibitor Arc (Token in P13 prevents t14 firing)

In
_T

ra
ns

it

T
1!

 a
T

2!
 a

In
_T

ra
ns

it

At_Intersection

1 2 3 4

5 6 7 8

18

19

20

21

14

15

12 1311

109

17

116

At_Intersection

Train passing
intersection

Train
approaching

Train
approaching

Train in
transit

Monitor Gate

Figure D.2 Petri Net for the monitor (controller) to handle multiples trains.

103

Improving the system's performability is accomplished using more "slack" time for the

Gate process to finish its task. Requiring the Train to send the arriving "a" signal sooner

effectively increases the slack. Thus we have analyzed the Performability of the system by

changing the slack time. The Stochastic Petri net of Figure D.2 is analyzed for reliability of

the system under various failure modes. In this case, the Petri net elucidated the need for

additional synchronization (so as to avoid a safety-critical failure). Accordingly, this is

facilitated by translating CSP specifications into Stochastic Petri nets.

TABLE D.1

FAILURE MODES AND MARKINGS FOR THE RR-MONITOR

Mrkng Monitor Trains Gate Possible Failure Type

M1 Status = open Both in transit Open Assume failure is not possible

M2 Status = open TxCh ! a Open Critical communication failure

M3 TxCh ? a Tx approaching Open Critical communication failure

M4 Status=pendng train
& GateCh!close

Tx approaching Open Critical communication failure

M5 Status = wait Tx approaching GateCh?close Critical communication failure

M6 Status = wait Tx approaching Closing Critical mechanical failure

M7 Status = closed Tx at crossing Closed Assume failure not possible

M8 Tx ? a Tx at crossing Closed Critical communication failure

M9 Status = closed TxCh ! d Closed Non-critical communication failure

M10 Status= pending
train and TxCh ? d

Tx approaching
+ one in transit

Closed Non-critical communication or
critical system failure (of monitor)
possible.

M11 Status= not pending
train and closed

One at crossing,
one in transit

Closed Assume failure is not possible

M12 TxCh ? d Both in transit Closed Non-critical communication failure

M13 GateCh ! open Both in transit Closed Non-critical communication failure

M14 Status = wait Both in transit GateCh?open Non-critical communication failure

M15 Status = wait Both in transit Opening Non-critical mechanical failure

FM16 Mcf and Mncf Communication failures

FM17 Mcf and Mnfc Mechanical failure (of gate)

FM18 Mcsf System failure (of monitor)

FM19 Mtf Timing failure (of train/gate)

Communication failures possible (Key: a → approaching, d → departing):
1) Failure when train sends message. 3) Failure when monitor sends message.
2) Failure when monitor receives message. 4) Failure when gate receives message.

104

In the Petri net of Figure D.2, we assume that all transitions can fail. The failure modes

associated with transitions can be translated into failure modes of their corresponding CSP

actions. When interpreting the failures of these actions, the user should identify critical

failures. Improbable failures are easily identified in the Petri net (i.e., some transitions may

not realistically fail or can be reasonably tolerated). Such evaluations can lead to an

augmentation of the system model such as that of the multi-train/monitor system shown in

Figure D.2. The markings in Table D.1 are based on the feasible states that trace the natural

(and familiar) process: (M1) an idle state, (M2-5) communication transactions between the

train, monitor, gate and status = pending train, (M6) gate begins to close, (Mtf) timing

failure if train arrives before the gate is closed, (M7-9) process of a new train arriving while

the current train is passing, (M10) monitor has to decide not to open the gate when the

current train departs since there is a pending train, (Mcsf) safety critical failure of the

monitor, (M11) the current train starts the departing process and no trains are pending, and

(M12-15) involve the actions necessary to restore the system to the idle state.

G
at

e
is

op
en

 a
nd

bo
th

 tr
ai

ns
 in

tra
ns

it.

Tr
ai

nX
 s

en
ds

 'a
' m

sg
.

M
nt

r r
cv

's
'a'

 m
sg

.
St

at
us

=
pe

nd
in

g

tra
in

 a
nd

 m
nt

r

se
nd

s
clo

se
 c

m
d

to
 g

at
e.

G
at

e
rc

v'd
 c

lo
se

 c
m

d.

St
ar

t g
at

e
clo

sin
g.

G
at

e
clo

se
d

an
d

Tr
ai

nX
 a

t

cr
os

sin
g.

M
nt

r r
cv

'd
 'a

' m
sg

whi
le

 T
ra

in
X

at

cr
os

sin
g.

Start gate opening.

Gate rcv'd open cm
d.

Both trains are

in transit and

m
ntr sends open

cm
d to gate.

M
onitor rcv'd 'd'

m
sg from

 second

train and gate is

closed.

One train at

crossing sent

'd' m
sg and one

in transit (none

pending).

M
ntr rcv's 'd'

m
sg, but other

train is pending

(departed train

now in transit).

Pending train and

TrainX sends

departing 'd' m
sg.

µ1 µ2 µ6µ4µ3 µ5 µ7 µ8M1 M2 M3 M4 M5 M7 M8

µ14 µ10µ12µ13 µ11 µ9µ15

Non-Critical Failure
Critical
Failure

Mcf
Critical Timing
FailureMtf

Critical
System
Failure
(of monitor)

Mcsf

M6

τ6

σ9

λ1
c λ2

c λ3
c λ4

c λ5
m

λ8
cλ10

cλ11
cλ13

cλ14
m

λ7
c

M15 M14 M13 M12 M10 M9M11

Mncf

Safe states

λ12
c

= communication failure rateλ
c

λ
m = mechanical failure rate

Figure D.3 State transitions [CTMC] for the trains-monitor-gate.

105

Figure D.3 shows the formalized flow of events and actions (i.e., CTMC) which include

two failure states: (Mcf) safety critical failures involving gate closure, and (Mncf) non-

critical failures involving gate opening. Markings FM16-19 enumerate all failure categories.

Realistically, one should account for the transitions which take the system from anywhere

trains are being received (or are passing by) to new arrivals without having to visit the idle

state. Admittedly this diagram is simplified, yet it incorporates all states necessary for

receiving subsequent trains (assuming arrivals are not simultaneous).

Markings M6 and M7 are (safety) critical markings because the slow firing transitions

(TG?close [t5]) and (Closed [t6]) make it possible for the train to enter the intersection before

the gate has properly (or completely) closed. Similarly, non-critical conditions occur when

the train departs the intersection but the gate stays closed resulting from the slow firing of

transitions (TG?open [t7]) and (Open [t8]).1

The CSP specification (and the corresponding Petri net) can be refined or augmented to

state how such hazards could be avoided or handled. For example, communication failures

can be handled using time-out and re-transmit techniques. Gate closing failures can be

handled by sounding an alarm. Tolerance to time-related failures can be improved by

requiring more slack time. In Figure D.3 the only critical deadline, is the one that requires

the gate to close before the train arrives (i.e., gate closure must complete in a time less than:

(distance to the gate when "arriving" signal was sent)
(the speed of the train)

A failure mode resulting from incorrect (both logical and timing) operation of the

monitor is modeled. The monitor must track all approaching trains, and command the safe

operation of the gate. In controlling the gate, the monitor prevents the gate from opening

when a train departs if another is too close down the line that opening the gate would

endanger other traffic since the next train could arrive before the gate could again be closed.

1Note: Waiting in M7 is assumed so that the gate has time to close (the end of the delay is the event that allows
the next state transition to occur. Considering M11 we see that no waiting is necessary since the gate is already
closed (i.e., a pervious train just passed trough).

106

D.2 Stochastic analysis

Using conventional techniques (i.e., SPNP's Markov solvers), discrete and/or continuous

analyses can be performed. Mathematica was used to compute the reliability of the

railroad crossing system with different failure rates (or probabilities) and service rates (e.g.,

speed of the train, gate closing/opening rates etc.). The sensitivity of the system to variations

in train speed (µ7) and the gate closure rates (µ 6) were evaluated. The system's

performability was studies to determine how reliably the gate closes before the train arrives

with and without hardware and communication failures (i.e., mechanical gate failures [λ5, λ13

superscript 'm'] and communication failures [λ1,2,3,4,7, and λ8,10,11,12,13 superscript 'c']) . The

values used (and hence the results of the analysis) are only for illustrating the approach (i.e.,

do not attach empirical significance to the failure rates or MTTFs obtained. This type

analysis is useful in exploring different fault-handling mechanisms and the cost of providing

fault-tolerance.2 The discrete analysis was not performed.

D.2.1 Continuous analysis

The results shown in Figures D.4 through D.7 predict reliability over the same

operational life: up to 10,000 time units (tus) on the x-axis (each unit is further divided into

1000 sub-tus). The sensitivity of the a system to different transition rates (i.e., µ6 and µ7 for

the various train speeds and the speed of the gate closing) are presented in Figure D.4. Note,

the "rel" stands for reliability and is the instantaneous reliability of the data point at 10,000

tus. However, since the reliability was so close to zero the plotter stopped at the position

indicated by the arrow head. The predicted mean time to failure is also provided (MTTF). In

Figure D.5 the effect of varying the timing failure rate, in the presence of timing failures

[including σ9 failures caused by software or hardware or timing problems]) is shown.

2More elaborate fault-handling and fault-recovery mechanisms should be used to tolerate or prevent safety
critical failures, while less attention may be paid to non-safety critical failures. Failure to open the gate may
anger people waiting at the crossing but such failures can be handled inexpensively by providing a mechanism
to manually open the gate. On the other hand, failure to close the gate is more severe, so traffic at the crossing
should be alerted reliably and automatically.

107

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

1/µ7 = 90% of the time the train takes at most 500tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 10, 20 or 50tus to close.

λ1= 0.0000001

λ2= 0.0000001

λ3= 0.0000001

λ4= 0.0000001

λ5= 0.0001

τ6= 0.0000908

λ7= 0.0000001

λ8= 0.0000001

σ9= 0.001

λ10= 0.0000001

λ11= 0.0000001

λ12= 0.0000001

λ13= 0.0000001

λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=* 0.002
µ7=** 0.0002
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*µ6 = this rate was varied from .002, .05, to .1.
∗∗µ7 = this rate was varied from .0002, .005, to .01.

Rel= 2.66424 x10-28
Mttf=156255tus Rel= 7.78592 x10-7 and Mttf=710722tus

Rel= 4.14431 x10-6 and Mttf=806585tus

Medium µ's(train & gate deadline 200 & 20tus respectively)

Small µ's (train & gate deadline 500 & 50tus respectively)

Large µ's (train & gate deadline 100 & 10tus respectively)

Figure D.4 Performability for different train and gate speeds (based on CTMC).

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

λ1= 0.0000001
λ2= 0.0000001
λ3= 0.0000001
λ4= 0.0000001
λ5= 0.0001
τ6=* 0.0000908
λ7= 0.0000001
λ8= 0.0000001
σ9=*** 0.001
λ10= 0.0000001
λ11= 0.0000001
λ12= 0.0000001
λ13= 0.0000001
λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=** 0.1
µ7=** 0.01
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*τ6 = this rate was varied from 0.0 to .0000908.
∗∗µ6 and µ7 = held constant at 0.1 and 0.01.
∗∗∗σ9 = held constant at 0.001 (zeroed in 3rd run).

Rel= 0.157822 and Mttf=4.56108 x106tus

Rel= 9.87701 x10-6 and Mttf=867394tus

Rel= 0.415168 and Mttf=6.65255 x106tus

1/µ7 = 90% of the time the train takes at most 100tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 10tus to close.

Run2: All λ failure rates (comm. and mech. failures) zeroed.

Run3: Same as run2 plus monitor failure rate (σ9) also zeroed.

Run1: Timing failure rate (τ6) zeroed.

Run1 Run2 Run3

Figure D.5 Performability for different timing failure and monitor failure rates.

108

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

λ1= 0.0000001
λ2= 0.0000001
λ3= 0.0000001
λ4= 0.0000001
λ5= 0.0001
τ6=* 0.00000908
λ7= 0.0000001
λ8= 0.0000001
σ9= 0.001
λ10= 0.0000001
λ11= 0.0000001
λ12= 0.0000001
λ13= 0.0000001
λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=** 0.01
µ7=*** 0.001
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*τ6 = rate was varied from .00000908,
 .00001816 to .0000454.
∗∗µ6 = varied from .01, .005 to .002.
∗∗∗µ 7 = held constant at .001.

1/µ7 = 90% of the time the train takes at most 1000tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 100, 200 and 500tus to close.

Run2: γ = 5 and Timing failure rate = 2*τ6.
Run3: γ = 5 and Timing failure rate = 5*τ6.

Run1: γ = 10 and Timing failure rate = τ6.

Run1

Run2

Run3

Rel= 4.96663 x10-9 and Mttf=523045tus

Rel= 1.66653 x10-25 and Mttf=175260tus

Rel= 5.18987 x10-30 and Mttf=148256tus

Timing ratio γ = train approach time/gate close time.
Timing failure rate τ6 = .00000908 as the basis.

Figure D.6 Performability for different train speeds and gate closing speeds.

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

λ1= 0.0000001
λ2= 0.0000001
λ3= 0.0000001
λ4= 0.0000001
λ5= 0.0001
τ6=* 0.0000908
λ7= 0.0000001
λ8= 0.0000001
σ9=*** 0.001
λ10= 0.0000001
λ11= 0.0000001
λ12= 0.0000001
λ13= 0.0000001
λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=** 0.002
µ7=** 0.0002
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*τ6 = this rate was varied from 0.0 to .0000908.
∗∗µ6 and µ7 = held constant at 0.002 and 0.0002.
∗∗∗σ9 = held constant at 0.001 (except zeroed in
 third run).

Rel= 7.00537 x10-13 and Mttf=355539tus

1/µ7 = 90% of the time the train takes at most 500tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 50tus to close.

Run1

Run2

Run3

Run2: All λ failure rates (comm. and mech. failures) zeroed.

Run3: Same as run2 plus monitor failure rate (σ9) also zeroed.

Run1: Timing failure rate (τ6) zeroed.

Rel= 3.75932 x10-13 and Mttf=347869tus

Rel= 5.0716 x10-17 and Mttf=265654tus

Figure D.7 Performability for different train speeds and gate closing speeds.

109

Figure D.6 shows the relation between the time needed for the train to reach the

intersection (1/µ7), the time needed for the gate to close (1/ µ6) , and the timing failure rate

(τ6). These parameters are negatively correlated (i.e., as the slack time [1/µ7 - 1/ µ6] gets

smaller τ6 increases). The differences between rates associated with the train and the gate

transitions were taken as a factor of 10, 5 and 2 for runs 1 - 3 while the τ6 timing failure rate

varied from 0.00000908 by a factor of 2 and 5 for runs 1 - 3 respectively. As can be seen

from the graphs, the performability of the system decreases dramatically as the slack time

decreases.

In order to study the effect of the timing critical transition rates on the predefined failure

rates Figure D.7 is included. Compared this figure to Figure D.5. All of the parameters are

the same except that instead of assuming large transition rates for µ6 and µ7 (i.e., 0.1 and 0.01

respectively) smaller rates were assumed (i.e., 0.002 and 0.0002).

D.3 Summary

The results show that the model is fairly sensitive to small changes in the rate

assignments. There is less of an impact to the performability caused by the inherent failure

rates of the subsystems when the transition rates are small. For example, comparing the

difference between the best and the worst MTTF in each of the three runs of Figure D.5, we

find a difference of a factor of 10, whereas that same comparison in Figure D.7 yields only a

difference factor of 0.5 (approximately). Once again, do not attach any significance to the

actual numbers. These numbers only illustrate the usefulness of these analyses in designing

real-time systems with sufficient slack times and fault-tolerance to achieve a desired level of

performability.

