APPENDIX A

CSP-TO-PETRI NET CANONICAL TRANSLATION DIAGRAMS

76

77

In this appendix a complete collection of standard trandlations from classic CSP and P-
CSP to Petri nets is provided. The CSP primitives include STOP, SKIP (not included in
CSP), recursion, parallel, deterministic and nondeterministic choice, hiding and sequential
compositions. Thearrow (—) is aso shown in various compositions.

Figure A-1 shows STOP which performs no action and never terminates (like deadlock)
and SKIP which performs no action and terminates are shown at the top. In the center of
Figure A-1 simple recursion is presented (note that P-CSP incurs an extra dummy transition
which is an immediate non-timed transition). In the bottom, a parallel composition is shown
and P-CSP uses two dummy transitions.

Figure A-2 shows DC (deterministic choice) where P-CSP employs three dummy
transitions. In the center NDC (nondeterministic choice) is shown which also uses three
dummy transitions. Note that the sdt1 and sdt2 dummy transitions are given as such because
associated with each is a (by definition) probability. In the bottom of this figure, a sequential
composition using the arrow is shown. The CSP trandlation for hiding is also shown (thereis
no P-CSP equivalent at thistime).

Figure A-3 shows Mu.X (recursion where "X" can be any character). Compare the
various configurations and notice that the translations are comparable to those of Figure 13
which defines the way CSPN translates P-CSP. Figure A-3 provides equivaent but reduced
trandations. The top half shows tail recursion and the bottom show a variation of such which
cuts the tail recursion. Recursion using the CSP prefix notation is desirable because it
describes the entire behavior of a process that eventually stops. For example, it would be
tedious to write the full behavior of some systems which cycle over and over (e.g., atrain
crossing or vending machine). Recursion is useful for describing repetitive behavior patterns
using much shorter notations. Such systems should not require a prior decision on the length
of life of an object in order to permit the description of objects that continue to act and

interact with their environment indefinitely.

78

Figure A.4 shows two varieties of synchronization. The first (top half) is blocking send
and receive. This forces synchronization to occur while preventing either participant from
moving forward until the other catches up. The CSPN tool has adopted this method because

the interpretation of chnl!msg combined with chnl?msg was more natural (i.e., closer to the

' STOP SKIP (not defined in CSP)
Classic CSP: P-CSP: P-CSP: @ o @
@ T (o Performs 1 SKI P + SKI P
Performs no ' no action I
action and never i —— STCP STOP | and Q Q
terminates! terminates.
Recur si on

Classic CSP: P-CSP: @
uX. (b —=X) Mu. X{b() } %

@ X

— 1 b

Paral | el Conposition
Classic CSP: P-CSP: @
all b PAR{a(),b()} |

Q acts oy
L4 E s
O O SN

Figure A.1 Trangdationsfor (top) STOP / SKIP, (center) recursion and (bottom) PAR.

79

Det erm ni stic choice conposition
Classic CSP; allb P-CSP; DC{a(), b()}
from environment from environment
from environment from environment Q Q
@, @ : :
\ '/b dt 1 dt 2
—a
T ? 9
O O v b
+dt 2
O
Nondet erm ni sti c choi ce conposition
Classic CSP: P-CSP: @
allb NDC{ a(), b()} - \
T sdt 1 T sdt 2
A ' o
g dt 1
Sequential conposition and hiding
ClassicCSP. a—b P-CSP. a—b ClasscCSP. (a—b—c)\b)
O, ® O,
e e e
O O O
v v v
=" S0 5
Q O SameinP-CSP | Notimplemented in RCSP Q

Figure A.2 Trandlationsfor (top) DC, (center) NDC and (bottom) arrow and hiding.

80

Recur si ve conposition
ClassicCSP. uX. ((bT1c)—X

e

P-CSP:

Mi. X{NDG{ b(),c()}}
P
&
/N

Classic CSP;
uX. (brc—X)

5
)
O

X —
Second step
O (®
zf\b\:{c()-»q 'i‘x
ol o
+dt2 %b\‘:c
O/ O

The two recursive trandations shown here (top and bottom) are the same translations as
those shown in Figure 13 except those shown here are reduced. In thetop figure, there
are two fewer transtions and one less place. In the bottom figure, there are also two

fewer transitions and two fewer places.

Figure A.3 Trandation of recursive compositions in areduced format.

81

Synchroni zati on using input and out put actions

C|aSSIC CSP: Train
Train= Pictured at right T

(InTransit); chnl ! arrive = Chnl ? arrive

(Chritarrive Atintersect

(Chnl!depart +Train);

Gate

Gate=

(Chnl?arrive —Closg);

Chnldepart —Open —Gate);
(P P) Synchroni zati on
Event

Nonbl ocki ng Synchroni zati on using i nput and output actions

Classic CSP: Trai

. rain
Train= Pictured at right .
(InTransit); Chnl ! arrive

(Chnitarrive —Atintersect);

(Chnl!depart +=Train);

Gate=

(Chnl?arrive —Close);

(Chnl2depart —Open —Gate);

Atlntersection l Chnl ? arrive

Asynchronous
Communication
Event

Synchronization is syntactically the same for both CSP and P-CSP. There are 2 possible
tranglations that could be used. In the Petri net fragments shown, the train sends and the
gateisreceives. The actua synchronizing action (dt:arrive) is an immediate transition
and itsfiring is necessary before either process can proceed. In the bottom of the figure
the sending process (Train) is not blocked and can proceed (this 2nd type of
synchronization is not used by the CSPN tool).

Figure A.4 Trandations showing blocked and non-blocked send synchronization.

82

Par al | el

and sequenti al

conposi tion

Classic CSP:

(a—b—c) [|p;(d—b—e)

P-CSP:
(®

Y Gt 1

PAR{SEQ{a(), c() },
SEQ{d(),e() }{b}};

© ® O G
:}& ——
a d v v
dt:b
P o
4 6 e
O T
%C &18 Q Q Above: a() must actually
é é %dt 2 be ch'b, and d() must
actually be ch?bto be
correct using CSPN
Paral | el and Nondeterm ni stic choice comnposition
Classic CSP: P-CSP. PAR{{a—=NDC{b(),c()}},
a—(bric)||(bric) —a {ND b(),c()}—a}};
v
dt 1
i b—— ——C @ Q
\@/ — —a dt4—é %—dtS
/ :\] - Q @
:} :C a dt24 %dt3 i}b i]c
o
56 b Q& .
— O — ——a
o v
Q O
dt 6
O

Figure A.5 Combined trandations for parallel, sequential and nondeterministic choice.

83
inherently synchronous semantics of CSP) and more readable. Also, using the notion of
hiding in CSP, both actions (input and output) can be replaced by tau (like "\b" in Figure A.2
bottom). In the bottom half (of Figure A-4) a message is output (on channel "Chnl") while
processing continues (a token is distributed to place pk) for the sending process independent
of whether the message is received. On the receiving end, the transition that models the
activity of message input (on the channel "Chnl" is this case) fires only after both places pk
and p; have tokens. The interpretation of this type of communication is that the receiver must
wait for the message from the sending process (the Train in this case). Thisis known as a
blocking receive.

Finally, in Figure A-5 a number of larger compositions are collected to illustrate a
combined parallel and sequential composition that has synchronization (blocking send and
receive). The CSP tranglation uses 5 transitions and 8 places while the P-CSP translation
uses 7 transitions and 10 places. In the bottom half of Figure A-5 two nondeterministic
choice constructs are composed in parallel with an action "a" prefixed to the one and an
action "a" suffixed to the other. Notice that the direct CSP trandlation only uses 6 transitions

and seven places while the P-CSP trandlation uses 12 transitions and 12 places!

APPENDIX B

THE LEX AND YACC SPECIFICATION OF THE PARSEABLE CSP
(GRAMMAR GIVEN IN BACKUS NORMAL FORM)

84

B.1 Lexregular expressions
delimter [\t\n]
whi t e_space {delimter}+
letter [A-Za-z_+\ - %
digit [0-9]
identifier {letter}({letter}|{digit})*
i nt eger {digit}+
comment B
B.2 Yaccgrammar specification
1. System production (start symbol = "system™).
system ldentifier Equals processdeclist processlistl Dot;
2. Processdec used to declare process names.
processdec: PROCESS Identifier Equals processlistl Sem col on
3. Processdeclist for listing multiple declarations under system.
processdeclist: EnptylList | processdeclist processdec;
4. Process definitions
process:
STOP
| LeftBrace stntlist RightBrace
| PAR LeftBrace processlist2 synclist R ghtBrace
| SEQ LeftBrace processlistl RightBrace
| NDC LeftBrace processlist3 RightBrace
| DC LeftBrace guardedprocl st R ghtBrace
| Mu Dot ldentifier LeftBrace processlistl R ghtBrace
| processcall
5. Failable describes the format of an annotation (rate or probability).
fail abl e:
FAIL LeftParen rEqual s Real Ri ghtParen
| FAIL LeftParen pEqual s Real Ri ghtParen
6. Probable describes the format of a probability annotation.
pr obabl e:
PROB Left Paren pEqual s Real Ri ghtParen
7. Servable describes the format of a service rate annotation.
servabl e:
SERV LeftParen rEqual s Real Ri ghtParen
8. Biprocess distinguishes an annotated process and permit such on any process.
bi process:
process | process Colon failable
| process Col on probable
| process Col on servable
9. Processlistl permits one or more processesin alist.

processlistl: biprocess | processlistl Conma biprocess;

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24,

86

Processlist2 permits no less than two processesin alist.

processli st 2:
bi process Coma bi process | processlist2 Comma bi process;

Processlist3 permits no less than two processesin alist and specialized for NDC.

processli st 3:
bi process Coma bi process | processlist3 Comma bi process;

Synclist used with PAR to indicate synchronization messages.
synclist: EnptyList | LeftParen anyvarlist Ri ghtParen;

Anyvar used to permit concise grammar of the rule for lists.
anyvar: bool eanvar | vari abl e;

Anyvarlist specifies an arbitrary number of anyvar in alist.
anyvarlist: anyvar | anyvarlist Comma anyvar;

Statement list allows an arbitrary number of statementsto be listed.
stmtlist: stnt | stntlist Comma stnt;

Statements can COMpPOSe a Process.
stnt:
i mplication
| expression
| 1nput
| out put
| SKIP;
Implication (a statment event -> action [for P->Q use SEQ{ P(),Q()}].
i mplication:
stm Arrow consequent | variable Arrow consequent | biprocess;

Consequent belongs to the right hand side of an arrow.
consequent: variable | biprocess;

Processcall is an instance of adeclared PROCESS and is simply set to Identifier().
processcall: ldentifier LeftParen R ghtParen;

Assignment is covered by expression in integer

I nput
i nput: channel InSym vari abl e;

Output (note an operand is an integer or boolean expression).
out put: channel Qut Sym operand;

Guarded processis defined for use in the guarded process list.
guar dedprocess: guard bi process;

Guarded process list

guar dedpr ocl st :
guar dedprocess | guardedprocl st Comra guar dedprocess;

25.

26.
27.

28.

29.

30.

31

32.

33.

87

Guard us used to provide for choosing an alternate in a determinstic choice (DC).
guard: i nput

| bool eanexpr AND i nput

| bool eanexpr AND SKI P

Recursive definition is defined in the definition of processes (see Mu).

Channel is matched by paring ainput message with an output message.
channel : ldentifier;

Variable
vari able: ldentifier;

Boolean variable (AtSym to distinguish a variable from a boolean variable).
bool eanvar: At Sym ldentifier

Expression
expression: integerexpr | bool eanexpr | relational expr

Boolean expression.

bool eanexpr:
bool eanvar
| TRUE
| FALSE
| bool eanexpr AND bool eanexpr
| bool eanexpr OR bool eanexpr
| NOT bool eanexpr
| bool eanvar Var Asgn bool eanexpr

Relational expression.

rel ati onal expr:
oper and LESym oper and
| operand LTSym operand
| operand EQSym operand
| operand NESym oper and
| operand GESym operand
| operand GISym oper and;

Integer expression.
i nt egerexpr:
operand Pl us operand
| operand M nus operand
| operand Star operand
| operand Sl ash operand
| operand Var Asgn operand
| M nus operand;

Operand.

oper and:
I nt eger
| variable
| integerexpr
| relational expr;

35.
36.
37.
38.
39.
40.
41.
42.
43.

45.
46.
47.
48.

Monadic operand (never used).
Dyadic operand (never used).
Integer isdefined in lexer.
Digits are defined in lexer.
Digit isdefined in lexer.
Declaration (never used).
Type (never used).

Selection (never used).
Conditional (never used).
Option (never used).

Loop (never used).

Relational operator (never used).
Timer (never used).

Hide (never used).

88

APPENDIX C

CO-MATRIX EXPANSION ALGORITHMS

89

90
This appendix presents five algorithms. The first chooses one of three methods of expansion
(Section C.1), the 3 expansion methods (Section C.2-4), and ‘expand’ which combines two
matrices into one (Section C.5),. First, the variable definitions are presented immediately

below: Note, the user defined types are found at the end of Appendix C.

/* * * % *x * % * *x *x * *x * *x * * *x * *x * *x * * *x * *x * * *x *

* Three matrices are involved: C = A <- B where "<-" neans
* "is inserted into by." So Ais the original matrix, Bis
* the matrix which is poured and Cis the new matrix that

* hol ds bot h conbi ned.

*/
i nt orA, rA, /* orA X ocAis size of A (original)*/
OCA, CA, /* TAX cAis size of C (new) */
rB, cB, /* rBx cBis size of B (pored) */
rib, rub, /* B row | ower and upper bounds in C+/
cl b, cub, /* B colum | ower and upper bounds in Ct/
rlbA, r ubA, /* A row | ower and upper bounds in C+/
cl bA, CubA; /* A columm | ower and upper bounds in Ct/
cur Lnkl ndx =0, /* Current link index */
r owMar k =0,
col Mar kRnht = 0,
col Mar kLft = 0,
Bf | ag = FALSE_,
Af |l ag = FALSE ,
p_matrix A = NULL,
B = NULL,
C = NULL;
FI LE *epn,
voi d prt Expn(FI LE *epn); /* Prototype */
voi d expand(FI LE *epn, int rnj; /* Prototype */
char *syncl i nk(FI LE *epn, entryptr s); /* Prototype */
voi d expn(FILE *epn, int cpi, netNodeptr nnptr)
{
i nt e, f,i,j,rowcol,link,
, /* k nunber of nodes in this list */
typ =0,
t hi nA =FALSE_,
synt here =0; /* Bool ean: |s synbol there? */
nodept r p =NULL,
cur_p =NULL,
q =NULL;
entryptr sO =NULL,
sl =NULL;

char *cal | =NULL;

91

C.1 Algorithm for choosing the correct expansion method

k = (nnptr ->numNodes);

while (((p=(nnptr ->net[--Kk]))

s0 =

ook (p ->n_name, &synthere);

if (symhere < 1) {
fprintf(epn,"\nExpn: Synbol % not found!",p->n_nane); exit(1);

fprintf(epn,"\n\nSearching |inks of net[%],

/* kis now 1l nore than needed */

Di spl ayProcessLi st(epn, 0, sO->p_pl);

cur_p = p;

= NULL) && (k > -1)) {

synbol : %", k, sO ->nane);

/* Skip over the head node (a pnode) */

if ((p=p->link) == NULL) fprintf(epn,"\nExpn: No sibs for this pnode!");

el se {

cur Lnkl ndx=0;
(a=p; g!=NUL g=gqg->1link) {
cur Lnkl ndx++;

typ = g->n_type,
fprintf(epn,"\n%. Synbol: %,

/* There are three cases where an expansion is appropriate:
(1) Node type is 5-9 (PAR, SEQ NDC, DC, M)
(2) Node type is 10 and cpi=0 (cpi is
Node type 10 indicates an instance of a previously defined
process known as a process call
(3) Node type 11 is really type 10 except it was 1lst encountered

for

*

= %k X X 3 X %

/
f

in "PROCESS symnbol

Type: %

', curLnkl ndx, g->n_nane,typ);

current process index)

, thus was narked as type 11

((typ > SKIP_PROC) && (typ < PROC_CALL)) || (typ == STMI_LIST) []
(t ==0)) ||

(typ == PROCESS_DEC)) {

printf(epn,"\nSynb % not found in synbol table!",q ->n_nane);

(
((typ == PROC_CALL) && (cp
sl = look (q ->n_nane, &synthere);
if (symhere < 1) {
f
}
el se {

/* * * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * *x * * *x * * *

* This logic determ nes the size of

*/

rA = s0 ->rsize; /*
cA = sO ->csi ze; /*
orA=rA /*
OCA= CcA; /*
rB = sl ->rsize; /*
cB = s1 ->csize; /*

/* * * % *x * % * % *x % *x *

* Check if the B Matrix is
*/
if ((rB==20) || (cB==0)

fprintf(stderr,"\nln expn[B]:

Row si ze
Col size
Save t he
Save t he
Row si ze
Col size

the matrices invol ved.

of A */
of A */
original Rsize of A */
original Csize of A */
of B */
or B */

* * % *x % *x * % *x % *x * * *x * *x * *x *

nul | and

if so abort the expansion.

|| (sl->p_prm== NULL)) {

fprintf(stderr,”"\n% may have not
fprintf(stderr,"” Expansion nust

exit(1);

% has null matrix!", g->n_nane);

been decl ared!", g->n_nane);

be aborted ...\n\n");

/* * * *x % * *x * * *x * * *x * * *x * * *x *x * * *x * * *x * * *x * * %

* Rem Bis inserted into A (A<-B (or Ais expanded by B)
* Thus the following logic sets the stage for an expansi on

*/

92

fprintf(epn,"\n\nExpansi on includes the follow ng:");

A =5s0 ->p_prm

fprintf(epn,"\n\nA %", sO->nane);

Di spl ayProcessLi st(epn, 0, sO->p_pl);
print_prn(epn, A sO->rsi ze, sO->csi ze) ;

B =sl1 ->p _prm

fprintf(epn,"\n\nB: %", g- >n_nane);

Di spl ayProcessLi st(epn, 0, sl->p _pl);
print_prn{epn, B, sl1->rsize, sl->csize);

/* * * % *x * *x * *x *x % *x * *x * * *x * *x * *x * * *x * *x * *x * * *x *

* Calc size of the new C matrix (unless B matrix is null)
*/
thi nA = FALSE ;
rA = rA+(rB-1);
if (AJorA-1].p_row ocA-1] > 0)
CA = cA+(cB-2);
el se
if (AlorA-1].p_row ocA-1] < 0) {
CA = cA+(cB-2);
thi nA = TRUE_;

}
el se
fprintf(stderr,"\nAlorAl[ocA] = 0! Aborting expansion ...");
/********************************
* Create the new matrix Cthat A and B will be conbined into.
K o e e o e o e
*/

C = prmatrix(rA cA;
fprintf(epn,"\n\nC. A<-B is a new (%lx%) Matrix",rA cA;

/* * * % % * *x % % *x * % *x * % *x * % * *x % * *x * * *x * * *x * * *

* Determ ne the rowhark where expansi on begins. The rowvark

* tracks the place in Athat will be replaced. sO0->p pl is the
* process list of A g->nane is the process who will be replaced.
* Determine where that is in the co-matrix (0 =1st position).

*/

r owMar k=pr ocPosi ti on(s0->p_pl, g->n_nane);

if (rowvark == -1) {
fprintf(stderr, "\ nrowvark undetern ned!");
exit(1);
[* - - - - - - G B T Y |

/* * * *x k* * *x % * * *x % * *x * % *x * % * *x * * *x * * *x *

* * %
* Use Method | if B goes into Upper Left corner of C
* * *

*x * * % % *x * * *x * * % % *x * * % *x *x * * % *x *x * * * */
if (rowvark == 0) {
fprintf(epn,"\n\nRunning Method 1:\n----------------- "),

SEE SECTION C. 2 FOR METHOD 1 LOG C

} /*fi use Method 1 */

93

el se {

O < w5 T
/*******************************
* Use Method Il if B goes into Lower Right corner of C

* A goes into Upper left corner of C

*

/

if (rowmvark == (orA-1)) {

fprintf(epn,"\n\nRunning Method 2:\n----------------- ");

SEE SECTION C. 3 FOR METHOD 2 LOG C

[*fi use Method Il */

el se {

J* - - = - o o o 4 4 4 4 - - LgL3B>- - - - - e 4 - e - - e
* *x % *x * *x * % *x % *x * *x * *x * * *x * *x * *x * * *x * *x * * *
* Method I11: all other cases B goes in center of C
*/
fprintf(epn,"\n\nRunning Method 3:\n----------------- ");

SEE SECTION C. 4 FOR METHOD 3 LOG C

}/* esle in all other cases */
}/* esle */

/* * * % *x * % * % *x % *x * * * % *x * *x * * *x * *x * *x *

* CLEAN UP: Free the old prnatrix to conserve nenory.

*/

for (i = 0; i <s0 ->rsize; i++) {
free(A[i].p_row;
free(A);

/* * * % *x * % * * *x * *x * *x * * *x * *x * *x * * *x * *x * * *x *

* Update the synbol table entry for this pnode

*/

sO ->rsize = rA;, sO ->csize = cA;, sO ->p prm= C
/******************************

* repl Proc takes a process |ist and replaces a process nane

* known to exist in the |list by another process |ist of

* Oone Or nDre process nanes.

*/

call = replProc (& sO ->p_pl), sl ->nanme , &(sl ->p_pl));

if (call == NULL) {
fprintf(stderr,"\nExpn: ReplProc failed update %", s0O ->nane);
exit(1);

/* * * *x % * *x * * *x * * *x * * *x *x * * *x * * *x * * *x * * *

* Adjust the link index to conply with the prior expansion
*/
cur Lnkl ndx=cur Lnkl ndx+r B- 1;
} /*esle*/
Y oIrfi (typ... ¥/
} /*rof*/
} /*esle*/
} /*elihw/
fprintf(epn,"\nConpl eted expansion!");
}/ *npxe*/

C.2 Algorithm for expansion method 1 (upper LH corner)

/* * * % *x * *x * % *x % *x * *x * *x * * *x * *x * *x * * *x * *x * * *

* Determ ne indexes for B whose size is rB x cB (C <- B).

* rilb = row | ower bound, rub = row upper bound
* clb = col I ower bound, cub = col upper bound
*/

rib curbnklindx - 1; rub rkb +rB - 1;

clb 0; cub clb + ¢cB - 1;

[Rk k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_Kk_Kk_k_Kk_Kk_Kk_k_Kk_Kk_k_k_k_k_x*

Rows 1 and 2: put y's

in Cstart at (5,0].
In C above, 0's are constant (i.e., not x-fered fromA or
Binto C. Also note that the "-" and "+" paired in A are
now seperated as shown in C
* Determ ne indexes for A whose size is orA x ocA (C <- A).
*/
rtbA=rA- (orA-1); rubA
clbA = cA - (ocA -1); cubA
(voi d) expand(epn, ZERO);

* Expand A (3x4) with B (5x6) into C (7x8).

*

* 01234567 0123

*C O-bbbbbo0oO A 0-|+aac<-asput inC
* l1bbbbbbo00O0 l1vylggg begin at (4, 6].
* 2bbbbbbo0o0 2vylggo

* S3bbbbbbo0o / \

* 4 bbbbb+aa / Rows 1 and 2:

* 5y 0000ggg / put g's in C,

* 6 yoo00ggg / start at (5,5].
) /

*

*

*

rA- rlb - 1;
cA - clb - 1;

/* * * *x % * *x * * *x * % *x * % *x * * * *x * * *x * * *x * * *x *

* In Method I, finish copying the y's (if any) fromAto C
*/
if (orA>1) {
fprintf(epn,"\nMethod | exception!");
i = rB;
for (j =1;] <orA j++) {
di].p_row0] = Aj].p_row0];
i ++;
}
}

C.3 Algorithm for expansion method 2 (lower RH corner)

/* * * *x % * *x * * *x * % *x * % *x * * * *x * * *x * * *x * * *x *

* Determ ne indexes for B whose size is rB x cB (C <- B).
* rilb = row | ower bound, rub = row upper bound

* clb = col Iower bound, cub = col upper bound

*/
rib
rub

r owMar k;
rlb + rB - 1;

if ('thinA) clb = cA - cB;
else clb = cA - cB + 1;
cub = cA - 1;

/* * * *x % * *x * * *x * % *x * % *x * * * *x * * *x * * *x * * *x *

* Determ ne indexes for A whose size is orA x ocA (C <- A).

*/

ri bA = 0;

rubA = orA - 2;
cl bA = 0;

CubA = ocA - 1;

/*_

* (orA x ochA) (rB x cB) (rA x chA
12345 1234 1234567
A laaaaz + B 1-+bb --> C laaaa0®0z
2aaaaz 2bbbb 2aaaa0boz
3 aaaaz 3 bbbb 3aaaa0bO0z
4 aaaaz 4 bbbb 4 aaaal00z
5yyy- + 5000- +bb
/ 6 000bbbb
Case 2: 7000bbbb
If A[5,5]="-" => C(8x6). 8yyybbbb

Here (in case 1), A(5x5) + B(4x4) -> C(8x7).

There is one variation (Case 2) occurs when the "-" is
in the last colum (e.g., occurs with Mi recursion). In
this case, A(5x5) + B(4x4) -> C(8x6).

For e.g.., (remenber rowiark=row to replace [exactly]):
Case 1: C(8x7) Case 2: C(8x8)
rib = 4 (counting from Q) 4
rub = 7 =4+4-1 7
clb = 3=7-4 3=6- 4+ 1 (test)
cub= 6 =7-1 5=6-1
ribA= 0 0
rubA= 3 =5- 2 3
clbA= 0 0
CubA= 4 =5 -1 4
For case 1 (where (C[5,5] = "+") the z's in A are noved

to the last col of C ONLY if "+" otherw se, they stay
put (this is handled in the nethod 2a exceptions bel ow).
Simlarly, in either case 1 or case 2, the y's in A are
noved to the last rowin C ONLY if "+" otherw se they
stay put (this is handled in the nmethod Il1b exceptions).

E I T T R R R I I N N N BN N N T N R T R T R N B

or a "y" is noved it nmust be replaced by a "0".

(voi d) expand(epn, ZERO) ;

95

96

[* * * * <<< Method |la Exception >>> * * * x % x % x & x *
* Catch all the ones (+'s) in last colum which are to be
* moved to the new | ast colum. These +'s are outputs

* fromtransitions to the last place in A so now t hey

* must be connected to the new | ast place (test cases are
* t2, t10 and wgood). Only consider rows above row\varKk.
*
*
[

-~

('thinA) {
i = rowMark;
for (i=rowMark-1; i>=0; i--) {
if (Ali1].p_rowcubAl > 0) {
dil.p_rowfcub] = Ali].p_row cubAl;
di].p_row cubA] = 0;
fprintf(epn,"\nMethod Ila expn (linked |ast place)!");

}
}
[* * * * <<< Method |1b Exception >>> * * * x & x % x & x *
* Moving the y's formthe marked row if they are "+".
*/
for (j=clbA;, j < clb; j++) {
if (Alrlb]l.p_rowj] > 0) {
qrub].p_rowj] = Alrlb].p_rowj];
qrlib].p_rowj] =0;
fprintf(epn,"\nMethod I1b expn (linked recursive loop)!");
}

}

C.4 Algorithm for expansion method 3 (centrally located)

/* Determne indexes for B whose size is rB x cB.
* rilb = row | ower bound, rub row upper bound
* clb = col I[ower bound, cub col upper bound
* Renenmber: A<- expanded by <-B

*/

ri bA = 0;

rubA = rowMark -1;

cl bA = 0;

rlb = rowMark;

rub =rlb + rB -1;
/*****************************
* Find point in A for expanding B (1st '-' in marked row)
*/

i =0

while (Alrowvark].p_rowj] >= 0) j++;

clb =j;

cubA = clb + ONE

cub =clb + ¢cB -1;

/* * * % *x * % * * *x * *x * *x * * *x * *x * *x * * *x * *x * * *

* Mark the RHS of A to be pushed right past B
* Mark the LHS of A to be replacenent starting point.

*/
col Mar kRht = cubA;
col MarkLft = cl b;

/*_*

* Finish all colums in nmarked row up to clb (x's in comrent

* bel ow).

*/

for (j =0; j <clb; j++) Crowvark].p_rowj] = Alrowvark].p_rowj];

J XKk k_k_ ok _ck_k_k_k_k_k_k_k_k_k_k_k_k_Kk_k_Kk_k_Kk_Kk_*_Kk_*_x%

/* Finish the m ddl e box...

*

C

DY OYOOYDLDYX DD
DY OYOOYDLDYX DD
QO TCTCTOTTOLO®
QO TCTCTOTTOLO®
D YOO TOCTTTKCQQ
D YOO TOCTTTKCQQ
D YOO TOCTTTKCQQ
D YOO TOCTTTKCQQ
DYDY IDYVYQEQ
DYDY IDYVYQEQ

* %k X ok 3k X X 3k X X X

At this point, a's cone fromA and b's are put from
the B matrix (x's have been put but a's have not).
g's are then added in the next segnment of code.

*

*/
(voi d) expand(epn, ZERO);

J Rk ok ok ok ok _k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_Kk_K_k_Kk_*_Kk_*_%

* Finish update for the upper part of A which (g's in
* the above conment) goes in the URH corner of C

*/

cl bA = col MarkRht +1;

CubA = ocA -1,

rl bA = 0;

rubA = rowvark -1;

clb = cA - (cubA - clbA) -1;

cub = cA - 1;

rlb = 0;

rub = rowvark -1;

e =rlb;

for (i = rlbA i <= rubA i++) {
f = clb;

for (j = clbA, j <= cubA;, j++) {
de].p_rowf] = Ali].p_rowj];
if (!(f>cub)){f++}
el se {
fprintf(stderr,"\nl-Method Il error(clb)!\n");
exit(1l);

}
if (!(e>rub)){e++;}
el se {
fprintf(stderr,"\n2-Method Il error(rlib)!\n");
exit(1l);

-

*

*

* Ok X X kX

/

e
fo

}
/*-

*

*
*
*
*
*
*
*
*
*
*

*

¥ 0% % Sk kX %k X F 3k X X 3k X X X F

98

ko _k_k_k_K_Kh_Kk_Kk_Kk_Kk_*_K_K_Kh_k_Kk_Kk_*_K_K_Kh_k_*k_*k_*_%*_%*_*

col MarkRht is the clb + 1 replacenent point
Fi ni sh update for the lower part of A (LHS or x's)

AN ddddd "-" is replaced by B
d- ddd
XYVYyVyy Put x's ---> C
Xyyyy

= rowMark + rB

r (i =rowark + 1; i < orA i++) {

for (j = 0; j < colMarkLft; j++)

de].p_rowj] = Ali].p_rowj];

e++;

k_k_k_Kk_Kk_Kk_Kk_Kk_K*_K*_*K _*_K*_*K _*_*_* _*_*_* _*_*_* _*_*_%*_*_%*_

col MarkRht is the cl b+l replacenent point (delta =cA-ocA)

Fi ni sh update for the lower part of A (RHS or y's)
col MarkLft is the col 2 in fig below where the mnus is
(which is the sane as the clb).
12345
A1ttt tt t's & e's are put using above code
2e-ddd "-" is replaced by B (d's are handl ed
3XYyVyyy as exceptions bel ow).
4 Xyyyy Put y's --->C
= rowMark + rB
r (i =rowark + 1; i < orA i++) {
f = cA- 1,
for (j = ocA- 1; j >= col MarkLft; j--)
del.p_rovf--1 = Ali].p_rowj];
e++;
okokox. <<< Method 111 Exceptions >>> ---*_x_*_*_%_x_x

The output fromthe transition bei ng expanded nust go to
the sane place it was before. Check the rest of the row
right of the intersection of AlrowMark][col LftMark] for
pluses (+1). Place themin the last row of the B matrix
inside of C The sane distance fromthe last col in C
as they are in fromthe last col in A

12345
A1ttt tt t's, e's, x's are put using above code
2e-ddd "-" is replaced by B (d's are handl ed
3Xyyyy as exceptions bel ow).
4 Xyyyy Put ds --->C

The idea is to connect the output fromthe transition being expanded
to the sane place as it originally was connected to in A (a place
basically). Note the foll owi ng code assunes that the last row of B has
a plus (i.e., that its actually connected as it was in the higher

| evel abstraction to another place.

99

A case where this is not true: SEQ(P1(), P2(), STOP}. Until you know
exactly what's in the transition being expanded you cannot decide to
elimnate the connection. Here the STOP doesn't have an QP pl ace!
This case is assuned not to occur. First print sone diagnostics:

/

f (s0->type == NDC _PROC){

fprintf(epn,"\nMethod 11l exception!");

prt Expn(epn);

print_prnm(epn, C rA cA,; fprintf(epn,"\n");

zer oGapEnds = col MarkRnt + (cA - ocA);

_ % kX X X

/* Zero out the colums starting with the col utmm Col Mar kRht
* making sure to stay above the rowvark
*/
for (i =0; i < rowhark; i++)
for _(j = col I\/_artht; j < zeroGapEnds; j++)
di].p_rowfj] = 0;

C<- Afor the values on the right of the zeroGap
colum(s) and above the rowiark. Rem .. the col MarkRnht
defines the boundary in A (not C) where the expansion

* occurs (just one col to the left of the col MarkRnht col um).

* F X

*/
zeroGp = cA - OcA
for (i =0; i < rowwark; i++)

for (j = colMarkRht; j < OCA;, | ++)
qi].p_rowzeroGap + j] = Ali].p_rowj];
for (j=col MarkRht; j< ocA; | ++)
C rowMar k+rB-1] . p_row cA-(ocA-j)] = Alrowvark].p_rowj];

C5 Expand algorithm for combining co-matrices

/* Expand copies the old matrices (A, B) to the new one (C. */
voi d expand(FILE *epn, int rm {
int i, j, e, f, m n; /* M scel | aneous i ndices */
e=rm m=0;
for (i =0; i <rA i++) {
f =0, n=0;
for (j =0; j <cA j++) {
if ((i>=rlb) && (i<=rub) && (j>=clb) && (j<=cub)) {
qi].p_rowj] = B[nl.p_row n++];
Bf | ag=TRUE_;

el se {
if ((i>=rlbA) && (i<=rubA) && (j>=cl bA) && (j<=cubA)) {
Ai].p_rowj] = Ale].p_row f++];

Af | ag=TRUE_;
}

}
} /*rof*/
if (Bflag) {Bflag=FALSE_; m++;}
el se

if (Aflag) {Aflag=FALSE ; e++;}

} /*rof*/

}

C.6 User defined datatypes

/* Integer array of pointers to the rows in the matrix called the Process

* Relation Table (prm which is dynanmically allocated (2-D array matrix).

*/

typedef struct int_array

{

int *p_row,
} 1Array;
typedef [Array *p_matrix;
typedef struct entrydef

{

char *nane;

short type;

short ui d;

char *frate;

char *f prob;

char *sprob;

char *srate;

char *p_pl;

short rsize;

short csi ze;

p_matrix p_prm

st ruct entrydef *next;
} ENTRY;
t ypedef ENTRY *entryptr;
typedef struct nodedef
{ char *n_nane;

char *n_fail;

short israte;

short n_type;

short uid;

struct nodedef *Ilink;

} NODE;

t ypedef NODE *nodeptr;

Synbol Table entry definition */

Synbol nane */

Symtype (assune < 32,767 inpl dpndt) */
Uni que id nunmber (process id or pid) */
Failure Rate in ASCII| */

Failure probability in ASC | */

Service Probability in ASC| */

Service Rate in ASCI| */

Process list ptr (can be diff types) */
Nunber of rows in PR Matrix */

Nunber of cols in PR Matrix */

Process Relation (PR) Matrix */

Li nk to next ENTRY */

/[* Ptr to the node/synbol nanme */

* NULL if no fail rate/prob spec'd */
* Bool ean: legal vals (-1, 0, 1) */
/* Node type consistent w synbols */
* System | evel unique identifier */

* Ptr node,

to next if any */

/* Ptr to a NODE structure */

APPENDIX D

RAILROAD CROSSING USING A MONITOR

101

102

D.1 Overview of the multipletrain / monitor problem

This appendix describes a solution to: (1) the race (safety) hazard (described in 15.5)
and, (2) controlling passage of multiple trains using a monitor to arbitrate the trains and the
gate. Figure E.1 shows the monitor's finite state machine. We assume that trains cannot
arrive simultaneously but that they do arrive in close enough succession that it would be
dangerous for the gate to be opened if another train is pending. The Petri net of Figure E.2 is

atrandation of the CSP in Figure E.2. Table E.1 describes the markings and failure states.

FSM for Monitor: CSP for Monitor:

After Gate is finshed closing:

72 i Gate s open Monitor =
ToG!Close : ((T1? a[l T2 ? a) & GateClosed — Monitor);
Closed
,4 , (TL?a[] T2 2 a) & GateOpen — (GateCh !
MoniTor $ Close) — Monitor);
IpbLE

(1) If Gate is closed.
(2) If t1 is approaching.

(T1?2d)&(T2?2a) [1 (T22d) & (T1? a))

4 — Monitor);
T22d gate
ToG!O pen
Hf not(T1? 2)- (T1?2d)&(T2?a) [[(T2?2d)&(T1?a))

After Gate is finshed opening. — (GateCh | C|OSE) — MOI’]itOI’).

(3) if t2 is approaching.

Figure D.1 Finite sate machine and CSP for the monitor.

= At_| Imersecuon Tx? &
%] © ©
g = S
| approachlng a
c ate
®—> ;@+ » + @ closed @ o TG? CloseC———
Train in T)
vent interstcton 1oy usgrovd
Closed ?]

closed

TG? Open :}
Msg vcvd

Closed

T2rdC— 1

n_Transit ﬁ

.
¥ Train
) approaching
~ 4
= At_Intersection
TGNStayCC——]

TwotrainsT1and T2 Monitor Gate
(O = Inhibitor Arc (Token in P13 prevents t14 firing)

TG!Open[—__ Open :]

Figure D.2 Petri Net for the monitor (controller) to handle multiples trains.

103
Improving the system's performability is accomplished using more "slack” time for the

Gate process to finish its task. Requiring the Train to send the arriving "a" signal sooner

effectively increases the slack. Thus we have analyzed the Performability of the system by
changing the slack time. The Stochastic Petri net of Figure D.2 is analyzed for reliability of
the system under various failure modes. In this case, the Petri net elucidated the need for
additional synchronization (so as to avoid a safety-critical failure). Accordingly, this is
facilitated by tranglating CSP specifications into Stochastic Petri nets.

TABLED.1
FAILURE MODES AND MARKINGS FOR THE RR-MONITOR

Mrkng | Monitor Trains Gate Possible Failure Type
M1 Status = open Both in transit Open Assumefailureis not possible
M2 Status = open TxCh'!a Open Critical communication failure
M3 TxCh?a Tx approaching | Open Critical communication failure
M4 Status=pendng train | Tx approaching | Open Critical communication failure
& GateChl!close
M5 Status = wait Tx approaching | GateCh?close | Critical communication failure
M6 Status = wait Tx approaching | Closing Critical mechanical failure
M7 Status = closed Tx at crossing Closd Assume failure not possible
M8 Tx?a Tx at crossing Closd Critical communication failure
M9 Status = closed TxCh'!d Closed Non-critical communication failure
M10 Status= pending Tx approaching | Closed Non-critical communication or
train and TxCh ?d + onein transit critical system failure (of monitor)
possible.
M11 Status= not pending | Oneat crossing, | Closed Assume failure is not possible
train and closed onein transit
M12 TxCh?d Both in transit Closd Non-critical communication failure
M13 GateCh ! open Both in transit Closd Non-critical communication failure
M14 Status = wait Both in transit GateCh?open | Non-critical communication failure
M15 Status = wait Both in transit Opening Non-critical mechanical failure
FM16 Mcf and Mncf Communication failures
FM17 Mcf and Mnfc Mechanical failure (of gate)
FM18 Mcsf System failure (of monitor)
FM19 Mtf Timing failure (of train/gate)

Communication failures possible (Key: a — approaching, d — departing):

1) Failure when train sends message.
2) Failure when monitor receives message.

3) Failure when monitor sends message.
4) Failure when gate receives message.

104

In the Petri net of Figure D.2, we assume that all transitions can fail. The failure modes
associated with transitions can be translated into failure modes of their corresponding CSP
actions. When interpreting the failures of these actions, the user should identify critical
failures. Improbable failures are easily identified in the Petri net (i.e., some transitions may
not realistically fail or can be reasonably tolerated). Such evaluations can lead to an
augmentation of the system model such as that of the multi-train/monitor system shown in
Figure D.2. The markingsin Table D.1 are based on the feasible states that trace the natural
(and familiar) process: (M1) an idle state, (M2-5) communication transactions between the
train, monitor, gate and status = pending train, (M6) gate begins to close, (Mtf) timing
failureif train arrives before the gate is closed, (M7-9) process of a new train arriving while
the current train is passing, (M10) monitor has to decide not to open the gate when the
current train departs since there is a pending train, (Mcsf) safety critical failure of the
monitor, (M11) the current train starts the departing process and no trains are pending, and

(M12-15) involve the actions necessary to restore the system to the idle state.

S S N S S
'S S S > g
NS & S S & & N o S
oo > 9 IES &) > R
K S ° & AR O & & RN
oL & 2 FLE © © Fs S &
° &) © G N4 & ©\ 7 S L&
@ & o X PN & & @ & NS
T & & L 2 & SIS NN
TE <& & £ & & S S
< < < 9
@m@m@u@m Us @Ms m@
}\’C)\c c c m c
1 2 3
Crmcal Timing
Failure
Non-Critical Fail Critical
on-Critical Fallure
Crltlcal ?gﬁ:ﬁ;n
Failurt .
ailure K W (of monitor)
U1 U3 M11
<—] — <—
/8 /; ,<>
QSafe states 6%’ O@, %, 005 ,5470 O s, ’b ~8,
. o, o %0, ® % o o %%
% 3 O, /75\ 25 RNSCNCTIN f/ % %, % ’% %, 00
"= mechanical failure rate %, 2 &/) ‘90 Yo % "9, oy d‘/,'&’?g@); /;) LN N KON
% % 9 9,0 %, % 5. 0, O s,
//)0 o % % PR QY 7, O”o »% 6-/ 2, o;/} %
c N .
2 = communication failure rate 4 ¢ © % %

Figure D.3 Statetransitions [CTMC] for the trains-monitor-gate.

105

Figure D.3 shows the formalized flow of events and actions (i.e., CTMC) which include
two failure states: (Mcf) safety critical failures involving gate closure, and (Mncf) non-
critical failuresinvolving gate opening. Markings FM16-19 enumerate all failure categories.
Redlistically, one should account for the transitions which take the system from anywhere
trains are being received (or are passing by) to new arrivals without having to visit the idle
state. Admittedly this diagram is simplified, yet it incorporates all states necessary for
receiving subsequent trains (assuming arrivals are not simultaneous).

Markings M6 and M7 are (safety) critical markings because the slow firing transitions
(TG?close[ts]) and (Closed [tg]) make it possible for the train to enter the intersection before
the gate has properly (or completely) closed. Similarly, non-critical conditions occur when
the train departs the intersection but the gate stays closed resulting from the slow firing of
transitions (TG?open [t7]) and (Open [tg]).1

The CSP specification (and the corresponding Petri net) can be refined or augmented to
state how such hazards could be avoided or handled. For example, communication failures
can be handled using time-out and re-transmit techniques. Gate closing failures can be
handled by sounding an alarm. Tolerance to time-related failures can be improved by
requiring more slack time. In Figure D.3 the only critical deadline, is the one that requires
the gate to close before the train arrives (i.e., gate closure must complete in atime less than:

distance to the gate when "arriving" signal was sent
(the speed of the train)

A failure mode resulting from incorrect (both logical and timing) operation of the
monitor is modeled. The monitor must track all approaching trains, and command the safe
operation of the gate. In controlling the gate, the monitor prevents the gate from opening
when a train departs if another is too close down the line that opening the gate would

endanger other traffic since the next train could arrive before the gate could again be closed.

INote: Waiting in M7 is assumed so that the gate has time to close (the end of the delay is the event that allows
the next state transition to occur. Considering M11 we see that no waiting is necessary since the gate is already
closed (i.e., apervious train just passed trough).

106

D.2 Stochastic analysis
Using conventional techniques (i.e., SPNP's Markov solvers), discrete and/or continuous
analyses can be performed. Mathematica® was used to compute the reliability of the
railroad crossing system with different failure rates (or probabilities) and service rates (e.g.,
speed of the train, gate closing/opening rates etc.). The sensitivity of the system to variations
in train speed (u7) and the gate closure rates (ug) were evaluated. The system's
performability was studies to determine how reliably the gate closes before the train arrives
with and without hardware and communication failures (i.e., mechanical gate failures[As, A13
superscript 'm'] and communication failures [A 2347, and Ag1011,12,13 superscript 'c]) - The
values used (and hence the results of the analysis) are only for illustrating the approach (i.e.,
do not attach empirical significance to the failure rates or MTTFs obtained. This type
analysisis useful in exploring different fault-handling mechanisms and the cost of providing

fault-tolerance.2 The discrete analysis was not performed.

D.21 Continuousanalysis

The results shown in Figures D.4 through D.7 predict reliability over the same
operational life: up to 10,000 time units (tus) on the x-axis (each unit is further divided into
1000 sub-tus). The sensitivity of the a system to different transition rates (i.e., ws and uy for
the various train speeds and the speed of the gate closing) are presented in Figure D.4. Note,
the "rel" stands for reliability and is the instantaneous reliability of the data point at 10,000
tus. However, since the reliability was so close to zero the plotter stopped at the position
indicated by the arrow head. The predicted mean timeto failureisalso provided (MTTF). In
Figure D.5 the effect of varying the timing failure rate, in the presence of timing failures

[including o g failures caused by software or hardware or timing problems]) is shown.

2More elaborate fault-handling and fault-recovery mechanisms should be used to tolerate or prevent safety
critical failures, while less attention may be paid to non-safety critical failures. Failure to open the gate may
anger people waiting at the crossing but such failures can be handled inexpensively by providing a mechanism
to manually open the gate. On the other hand, failure to close the gate is more severe, so traffic at the crossing
should be alerted reliably and automatically.

107

Performability / Reliability

o o o
- - .
e L3 =]
T P e s

o
.
oo

Large Ww's(train & gate deadline 100 & 10tus respectively)
- - = - Medium w'S(train & gate deadline 200 & 20tus respectively)
"""" Small W's (train & gate deadline 500 & 50tus respectively)

Rel=2.66424 x10-28
Mttf=156255tus

Rel=7.78592 x10-7 and Mttf=710722tus

/ Rel=4.14431 x10-6 and Mttf=806585tus

a000 4000 a000 aooo
Time units*
*Time units: each tick on the x-axisis 1000tus. If atu isasecond then there are
~16mingltic, and 10,000 ticks is ~2778hrs (full range of data).

1/u7 = 90% of the time the train takes at most 500tus to reach the gate crossing.
1/u6 = 80% of the time the gate takes at most 10, 20 or 50tus to close.

10000

Transition Rates | Failure Rates
uwl= 0.0001 | A 1= 0.0000001
u= 10 1,5 00000001
u3d= 10
= 10 |»3= 0.0000001
u5= 10 |a= 0.0000001
u6=* 0002 |5 0.0001

W=t 00002|
W= 10 |6 0.0000908

us= 10 | A7= 0.0000001
ui(lﬁ 1-8 8= 0.0000001]
M =

W= 10 09= 0.001

wl3= 10 |A10= 0.000001
uwld= 001 |a1l= 0.0000001
uls= 001 |31 (0000001
A13= 0.0000001
Al4= 00001

*u6 = thisrate was varied from .002, .05, to .1.
##u7 = this rate was varied from .0002, .005, to .01.

Figure D.4 Performability for different train and gate speeds (based on CTMC).

Performability / Reliability

Runl: Timing failure rate (t6) zeroed.

- - — - Run2: All A failure rates (comm. and mech. failures) zeroed.
"""" Run3: Same as run2 plus monitor failure rate (c9) also zeroed.

—

000 4000 a000 apoo
Time units*

*Time units: each tick on the x-axisis 1000tus. If atu isa second then there are
~16ming/tic, and 10,000 ticks is ~2778hrs (full range of data).

1/u7 = 90% of the time the train takes at most 100tus to reach the gate crossing.

1/u6 = 80% of the time the gate takes at most 10tus to close.

1gpo00

Transition Rates| Failure Rates

wl= 00001 Al= 0.0000001
w= 10 |A2= 0.000001
u= 10 |[A3= 0.000001
wt= 10 |A= 0.0000001
ws= 10 |A5= 00001
wb=** 01 |[t6=* 0.0000908
w7=** 001 |[A7= 0.0000001
us= 10 |A8 0.0000001
w10 [o9=*** 0001
wlo= 10 |A10= 0.0000001
ull= 10 |[All= 0.0000001
wl2= 10 [a12= 0.0000001
wl3= 10 |[A13= 0.0000001
uld= 001 |Al4= 00001

*16 = this rate was varied from 0.0 to .0000908.
##u6 and u7 = held constant at 0.1 and 0.01.
##+0 9 = held constant at 0.001 (zeroed in 3rd run).

Figure D.5 Performability for different timing failure and monitor failure rates.

108

Performability / Reliability

Timing ratio y= train approach time/gate close time. Transition Rates| Failure Rates
1 Timing failure rate 6 = .00000908 as the basis. wl= 0.0001| A1= 0.0000001
— 1 Runl: y= 10 and Ti mi ng ffajlure rate= 6. ﬁi 18 ;i 88%8%1
0.B — i Run2: y= 5and Timing failure rate = 2* 16. ud= 10 | = 0.0000001
: - = +Run3: y = 5and Timing failure rate = 5*76. u5= 1.0 A5= 0.0001
ue=** 001 [<6=* 0.00000908
0.6} u7=*** 0,001 | A7= 0.0000001

ug= 10 A8= 0.0000001
u9= 1.0 o= 0.001

ulo= 1.0 A10= 0.0000001
ull= 10 A11= 0.0000001
ul2= 1.0 A12= 0.0000001
E5221.66653 X10-25 and Mtf=175260tus ul3d= 10 A13= 0.0000001

Runl uld= 001 |A14= 0.0001
/ Rel=4.96663 x10-9 and Mttf=523045tus u 15= 0.01

o

.

-
T

Run3
Rel=5.18987 x10-30 and Mttf=148256tus

o

.

oo
T

4000 4000 6000 apoo 10000

Time units*
*Time units: each tick on the x-axisis 1000tus. If atu isasecond then there are _ I
~16minsitic, and 10,000 ticksis ~2778hrs (full range of data). 6= %’&%ﬁﬁg"%g&”ﬁwwo&
27 = 90% of the time the train takes at most 1000tus to reach the gate crossing. %6 = varied from .01, .005 to .002.
1/u6 = 80% of the time the gate takes at most 100, 200 and 500tus to close. s 7 = held constant at .001.

Figure D.6 Performability for different train speeds and gate closing speeds.

Performability / Reliability

-------- Runl.: Timing failure rate (t6) zeroed. Transition Rates | Failure Rates
1t — i RuNn2: All A failure rates (comm. and mech. failures) zeroed. ul= 0.0001| A1= 0.0000001]
Run3: same as run2 plus monitor failure rate (o9) also zeroed. u= 1.0 2= 0.0000001]
u3= 1.0 A3= 0.0000001
ud= 1.0 M= 0.0000001
ub= 1.0 A= 0.0001
ue=** 0.002 |t6=* 0.0000908,
u7=** 0.0002| A7= 0.0000001
us= 1.0 A= 0.0000001
ug= 1.0 o9=*** 0.001
ulo= 1.0 A0= 0.0000001
Runl g ull= 1.0 A= 0.0000001
Rel= 5.071(; tjgﬂ and Mitf=265654tus wi2= 10 3 1o= 000000011
Rel=3.75032 x10-13 and Mtf=347869tus ul3= 10 A13= 0.0000001
Run3 ~ uld= 001 |[Al4= 0.0001
Rel= 7.00537 x10-13 and Mttf=355539tus 15 001

a000 4000 6000 apooo 10000
Time units*

*Time units: each tick on the x-axisis 1000tus. If atu isasecond then there are
~16mins/tic, and 10,000 ticksis ~2778hrs (full range of data). *16 = this rate was varied from 0.0 to .0000908.

2/u7 = 90% of the time the train takes at most 500tus to reach the gate crossing. *+16 and 7 = held constant at 0.002 and 0.0002.

1/u6 = 80% of the time the gate takes at most 50tus to close. w09 = R?r(é crarrl)aant at 0.001 (except zeroed in

Figure D.7 Performability for different train speeds and gate closing speeds.

109
Figure D.6 shows the relation between the time needed for the train to reach the
intersection (1/u7), the time needed for the gate to close (1/ wg) , and the timing failure rate
(t¢). These parameters are negatively correlated (i.e., asthedack time[l/u; - 1/ ug] gets
smaller t¢ increases). The differences between rates associated with the train and the gate
transitions were taken as a factor of 10, 5 and 2 for runs 1 - 3 while the ¢ timing failure rate
varied from 0.00000908 by a factor of 2 and 5 for runs 1 - 3 respectively. As can be seen
from the graphs, the performability of the system decreases dramatically as the slack time
decreases.
In order to study the effect of the timing critical transition rates on the predefined failure
rates Figure D.7 isincluded. Compared this figure to Figure D.5. All of the parameters are
the same except that instead of assuming large transition rates for ug and w7 (i.e., 0.1 and 0.01

respectively) smaller rates were assumed (i.e., 0.002 and 0.0002).

D3 Summary

The results show that the model is fairly sensitive to small changes in the rate
assignments. There is less of an impact to the performability caused by the inherent failure
rates of the subsystems when the transition rates are small. For example, comparing the
difference between the best and the worst MTTF in each of the three runs of Figure D.5, we
find adifference of afactor of 10, whereas that same comparison in Figure D.7 yields only a
difference factor of 0.5 (approximately). Once again, do not attach any significance to the
actual numbers. These numbers only illustrate the usefulness of these analyses in designing
real-time systems with sufficient slack times and fault-tolerance to achieve a desired level of

performability.

