
38

CHAPTER 4

CSPN TOOL OVERVIEW AND IMPLEMENTATION DETAILS

And if you don't give up and you don't give in you may just be OK. from "In the
living years."

--Mike Rutheford

4.1 CSPN tool overview

The CSP-to-Petri net (CSPN) tool is textual based. The initial specification and

parameterization work must be completed using a text editor (see Figures 15, 16, 38, 42, and

43) for examples of P-CSP specifications). Viewing the Petri net's distribution of places and

transitions as a graph after a translation is accomplished by setting the "-d" (for dot) on the

command line.1 Other command line options are described in Table 4.

The translation rules described in Chapter 3 and enumerated in the Appendix A are

codified in the CSPN tool (CSP-to-Stochastic Petri Net). In brief, the mechanism consists of

decomposing individual CSP constructions into canonical Petri net structures. The elemental

Petri net structures are linked together in a hierarchical fashion according to their adjacency

and nesting within the CSP specification. Once CSPN has created this network of linked

structures it traverses the net and expands the process descriptions which are represented as

sub-Petri nets into larger and larger nets. Also, as CSPN decomposes the CSP constructions,

it identifies and records service and failure rate annotations which are embedded in the P-

CSP specification. When CSPN encounters failure annotations (and the "-f" command line

option is set), it creates supplemental failure transitions with a failure rate as designated in the

annotation. When CSPN encounters service rate annotations it will assign those values to the

1Version 1.0 of CSPN does not automatically invoke the dot program to create the postscript graphic file. To
do so use the command: >> dot -Tps filename.dot > filename.ps . Dot is a available from AT&T Bell
Laboratories.

39

appropriate (timed) transition in the resultant SPNP specification. All of the values assigned

from annotations are subject to change if the user so chooses during an interactive CSPN run.

Once the preliminary structure of the Petri net is complete, CSPN must reconcile

synchronization points because all CSP input/output actions rendezvous at a particular point.

This point is a transition that is named by the message being sent and received. Finally,

CSPN generates the Petri net graphic specification and the SPNP Petri net specification file

"<file>_spnp.c." All of these activities occur at various levels of user controllable interaction

as will be described.

4.2 Translation phases of the CSPN tool

There are four basic activities (parts) involved in the context of Figure 26. The first part

(1) involves specification. The second part (2-7) involves running CSPN which invokes any

of the available command line options (see Table 3). See Appendix C for the Composition

Phase 4 algorithms. The third part (8-10) is interacting with CSPN to direct how the SPNP

analysis is run (setting the SPNP run parameters) and to parameterize the elements of the

translation (e.g., assign rates and probabilities to the resultant transitions). The fourth and

last phase (11-12) concerns the structural and stochastic analysis of the Petri net.

Stochastic
Results

Resolve
Recursion

Phase

Synthesis
Phase

Filter and
Graphics

Phase

Output file:
fn.dot

Output file:
fn_spnp.c

Analysis Phase

Failure
Annotation

Phase

Synchronization
Phase

Composition
Phase

Decomposition
Phase

Scan/Parse
Phase

Specification
Phase

1 2 3 4 5 6

121110987

Figure 26. Activities associated with the translation phases of the CSPN tool.

Structural analysis involves viewing the distribution of places and transitions of the

40

graphical representation of the Petri net.2 The stochastic analysis involves running SPNP to

derive dependability and performance results based on the work from phase three (i.e.,

parameterizing the model) and relating the results to the graph and back to the original

specification. The SPNP specification file may be edited to finely tune specific values of the

parameters or other characteristics of the SPNP specification prior to running the analysis.3

Once SPNP is run, the results can be considered in the process of conducting further analysis.

P-CSP S pecif ication
base d on system
requirements lex

scanner
yacc
parser

Tokens

Hash table
stores
symbols and
their
attributes

(csp.y)(csp.l)

(getsym)

(net_main)

Scan/Parse
Phase

Specification
Phase

Decomposition
Phase

Composition
Phase

Synchronization
Phase

--File name is sy1
SysSimpleEx =
 PROCESS Eg1 =
 SEQ{SEQ{SEQ{
 P1(),
 P2(),
 NDC{
 P11(),
 P12()}},
 P3(),
 P4()},
 P5(),
 P6()},
 SEQ{P7(),P8()};
 PROCESS Eg2 =
 SEQ{P9(),P10()};
NDC{Eg1(),Eg2()}.

Run CSPN u si ng. ..
$> c sp -osy1 -f Sy1

(scoring)

Combine
component Petri

nets into a
"system" Petri net.

(procPosition)

(replProc)

(RegisterProcess)

(deleteProc)

(expn)

Resolve
synchronization
links (messages).

(syncLink)(netSearch)

Individual
CSP constructions

→ into atomic
canonical Petri
net structures.

Synthesis Phase

(decodeSys)

System
coincidence

matrix is decoded
to produce the
output files.

(gen)

(choose)

(usage)
(cmd_main)

Resolve Recursion
Phase

(rResolve)

This phase uses reachability as
a criteria with in the context of
a recursive construction to
decide whether to break a tail
recursive link.

Failure Annotation
Phase

(addFailures)
Tail
recursive
loop

Failure rate
annotations cause
failure transitions

to be created.

Process of
reconciling

recursive links
(create/break).

User interaction:
 -set SPNP parameters,
 -set prioities/rates/probs.

(solve)
(checkType)

(isDummy)

Relate the stochastic
parameters back to the
P-CSP specification

SPNP input file uses the
CSPL language. This file
describes the Petri net,
including failure annotations,
and other discrete and
stochastic parameters.

Output file: fn_spnp.c

Analysis Phase
Output file: fn.dot

 Run dot using...
> dot -Tps fn.dot > fn.ps

Generate graphics to view
distribution of places and

transitions.

This file describes the
Petri net as a net list,
including labels of each
place and transition.

A net list containing
transition labels and
draw control parameters.

Decodes the
system co-matrix

to produce the
graphical

representation.

Filter and Graphics
Phase

Run SPNP using...
> spnp fn_spnp

Manually revise specific SPNP
characterizations of the Petri

net Spec. such as reward
functions.

Directed graph used
to verify structural

characteristics (e.g.,
correctness and race

hazzards)

(filter)

(genDotFile)

Special characters
inherited from the CSP
specification are removed
for SPNP compliance.

Stochastic Results
Relia bi lity
and MTTF

Data structure hierarchy
captures specification
structure

Coincidence matrix

Figure 27. Context diagram and translation phases of the CSPN tool.

2This option causes CSPN to generate a fn.dot file which is processed to provide the graphical representation
of the Petri net (embedded postscript). Dot is a tool used to create the Petri net graphic. The CSPN version 1.0
does not automatically invoke the dot program to create the postscript file. To do so, the user must manually
run dot using the following command: >> dot -Tps filename.dot > filename.ps.
3The SPNP specification file can be run for a simple analysis without manual intervention.

41

In viewing Figure 27, note that the following eight steps occur during the translation

process: (1) Scanning and Parsing –action rules embedded in the parser enable CSPN to

capture the structural semantics of the specification, (2) Decomposition –allocating or scoring

a coincidence matrix for each CSP element and the recording of any annotated service rates

and probabilities, (3) Composition –combining elemental coincidence matrices and building

their requisite process lists, (4) Synchronization –resolution or combining of message links,

(5) Failure annotations –if active, an appropriately annotated process is augmented with a

failure transition, (6) Resolving recursion, (7) Synthesis phase –takes the system coincidence

matrix and creates the SPNP Petri net specification file during an interactive session with the

user, and (8) Filter –removes special characters inherited from the CSP specification that are

not valid in an SPNP specification and graphics –creates a digraph specification net list that

is later compiled using “dot” to produce an embedded postscript graphic. In general, Figure

27 shows the various translation phases and the use of SPNP as it applies to this approach.

The names in parenthesis are the C-function name(s) and are associated with a given phase.

The CSPN tool is used in the context of the seven steps listed in Table 3.

TABLE 3

GENERAL STEPS FOR USING THE CSPN TOOL

Step Description of steps in the approach

1. Abstract the critical elements of the requirement specification and formulate a CSP specification
for the system under study.

2. Translate between CSP and Stochastic Petri nets.

3. Assign performance and reliability parameters among subsystem components.

4. Analyze the Petri nets for stochastic properties [using SPNP] (validate performance and
reliability goals using stochastic system models).

5. Decide what features of the system should be 1changed to improve the system's reliability (and/or
other stochastic properties, e.g., performance).

6. Augmentation: relate stochastic properties back to top level (CSP) specifications (e.g., failure
rates, service rates, error handling).

7. Understand the effect these non-functional requirements have on cost..

42

4.3 Running the CSPN tool

Running CSPN (i.e., $> csp <options> specification-file) and using the various

command line options described in Table 4 enables the numerous features and functionalities.

For example, if the user is in the process of correcting the syntax of the CSP specification

then it would not be necessary to specify any of these options, only the input file. Also, if the

user just wants to understand how the CSP specification looks in terms of the structural

characteristics (i.e., investigating inherent weaknesses in communications, race hazards etc.)

TABLE 4

LISTING OF THE CSPN COMMAND LINE OPTIONS.

 Option Description

 -h Used to generate a help screen which displays the contents of the table below: “csp -h”

 -v Used to set the verbose mode and is only valid when the "-o" option is specified. An
interactive menu is invoked which allows the user to set SPNP run parameters.

 -f Used to generate failure transitions into the filename_spnp.c file. This option enables
detection of failure annotations and causes interactive inputs with the "-o" option
specified.

 -F Set to invoke the filter which will replace the 3 special characters (?,!,:) in the
filename_spnp.c with SPNP compliant characters (_i_, _o_, and _ respectively).
Otherwise, SPNP will not compile the input file. Valid only when the "-o" option is
used.

 -s Use the default service rates for timed transitions. If no service rate is specified as an
annotation then CSPN will use 0.1.

 -o<name> To generate the SPNP input specification file (filename_spnp.c) this option must be
specified ("name" is optional and the default used is the tool name "cspn").

 -i<number> Number of iterations used by SPNP (default is 2000).

 -a<number> Rate for return to initial marking from absorbing markings (default is 0.0).

 -p<number> Set floating point precision used by SPNP (default is 0.000001).

 -P Set to enable selection of priorities for individual transitions (the default is none).

 -d Set to generate a "dot" graphics file. Dot uses this digraph specification file to generate
the graphical representation of the Petri net.

 -n Set to enable a network list file. This file shows how CSPN has interpreted the
structural aspects of the CSP specification.

 -t Set to generate a symbol table file containing all the data recorded for each element
(process names, constructions, variables, channels, ...) of the process specification.

43

then adding the "-d" option would enable only the production of the graph. The "-F" option

invokes a filter and is necessary only when the user plans to run an SPNP analysis. The "-f"

option is a nice feature because it enables the analyst to assume a failure free environment by

simply ignoring any embedded fail annotations that may exist in the CSP specification

(without "-f" CSPN ignores failure annotations). Omitting failure annotations from the P-

CSP specification has the same affect. The option "-s" streamlines the process of generating

the SPNP input specification by assigning default service rates to timed transitions without

querying the user to provide such. As mentioned above, the "-o" option generates a file for

SPNP analysis. It is best if a file name be given with this option (i.e., "-ofilename"). This

settles the problem of overwriting previous files generated using the default name that is

assigned by CSPN if no name is provided. The "-i", "-a" and "-p" options are used to

parameterize the SPNP run by setting the iteration number, absorbing rate (for recycling back

to the initial marking), and precision for floating point operations respectively. The "-P"

option is only valid when "-o" is used and enables the user to assign priorities to any of the

transitions. The "-d", "-n" and "-t" options are useful when something unexpected happens

after running CSPN such as a run time error. The user may wish to rerun the translation and

view the internal data structures that are generated during the translation process.

4.4 CSPN data structures

Internally, there are four basic data structures employed by CSPN: (1) Symbol table

which maintains attributes assigned to all system elements (actions, processes,

communications and constructions), (2) Process lists which consist of all the names of the

associated actions/processes involved in a particular construction, (3) A network of linked

lists which capture the structure of the specification (adjacency and nesting), and (4) The

bipartite digraph which defines the structural character of the Petri net is represented as a

coincidence matrix . The coincidence matrix (or co-matrix) maintains the distributions of

places, transitions and their connectivity.

44

P-CSP:... PAR{{Ch?msg}, {Ch!msg} (msg)};

 p1 p2 p3 p4 p5 p6 p7 p8
T dt1 - + +
R Ch?msg - +
A dt:msg - + - +
N dt2 - - +
S Ch!msg - +

P

Q

R

p1

p2

p3

p4

p7

P

Q

R

dt2

p1

p2

p3

p4

dt1

p5

p6

CSP:... P;Q||R

P-CSP:... PAR{SEQ{P, Q}, R};

 p1 p2 p3 p4 p5 p6 p7
T dt1 - + +
R P - +
A Q - +
N R - +
S dt2 - - +

Note: each box in the Petri net (excluding transitions) represents a process.

CSP:... P;Q;R

P-CSP:... SEQ{P,Q,R};

T p1 p2 p3 p4
R P - +
A Q - +
N R - +
S

+ indicates an arc output from
transition R to place p4.

- indicates an arc from p3 is input
to transition R.

The coincidence matrix provides a uniform data structure that
can be used to manipulate (combine and reduce the Petri nets).

dt1

dt2

p8

p5

dt:msgp4 p7

Ch?msg

p3

p2

p6

p1

Ch!msg

Note: each box in the Petri net (excluding transitions) represents a process.

Note: each box in the Petri net (excluding transitions) represents a process.

Figure 28. P-CSP constructions with co-matrix and Petri net representations.

The construction of the n-by-m co-matrix is defined in terms of the transitions (CSP-process

names become transition names). Transitions are associated with rows (from top to bottom).

45

Places are associated with columns (numbered from left to right starting from zero). A non-

zero element in the matrix A represents an arc which links a transition to a place or a place to

a transition. Elements (aij) can have one of three values (zero, +1 or -1): aij = +1 indicates an

arc from the transition of row i to the place of column j; aij = -1 indicates an arc to the

transition of row i from the place of column j. The process list stores the transition names in

the order of their appearance in the CSP specification. The naming of places is ordered (e.g.,

p1, p2, ... pn), and the meaning associated with each is defined in terms of the transitions

with which they are connected. Each element and each expanded composition from the CSP

specification has a coincidence matrix (or co-matrix) maintained in the symbol table.

Figure 28 gives examples of P-CSP compositions. During the parsing phase, each

construct (e.g., PAR, SEQ, etc.) is separated into its component elements (process names,

channels, variables) and represented as a sub-Petri net. The sequential (i.e., SEQ) construct,

shown in the top portion of Figure 28, illustrates scoring of the co-matrix (marked with "-" or

"+") to denote input to and output from the given transition (e.g., P, Q, R). The middle part

of Figure 28 shows a similar translation for the parallel (i.e., PAR) construct and the last part

shows a synchronized parallel construction.

4.5 Petri net compositions

{use Method 3
 expansion}

else

A

A

{use Method 2 expansion}else if

A

{use Method 1 expansion}if

Expand Co-matrix A using B
B

B

B

Figure 29. Choosing a combining method for expansion that depends on locality.

The Petri net compositions, based on the P-CSP specification structure, are achieved by

46

combining the co-matrices of the component Petri nets to obtain a new co-matrix for the

combined Petri net. Combining all of the sub-component co-matrices produces a complete

system Petri net. The combining process expands one co-matrix by another. Figure 29

highlights the basics that involve expanding a co-matrix A by another co-matrix B. Thus,

depending on the locality of co-matrix B one of three possible expansion methods is used.

Expand A (3x4) with B (5x6) into C (7x8).

 0 1 2 3 4 5 6 7 0 1 2 3
 C: 0 - b b b b b 0 0 A: 0 -|+ a a a's put in C, begin at C[4,6].
 1 b b b b b b 0 0 1 y|g g g
 2 b b b b b b 0 0 2 y|g g g
 3 b b b b b b 0 0
 4 b b b b b + a a
 5 y 0 0 0 0 g g g
 6 y 0 0 0 0 g g g

Rows 1 and 2:put g's in C,start at C[5,5].

Rows 1 and 2: put y's in C start at C[5,0].

Figure 30. Diagram of expansion method one.

The Method 1 algorithm is pictured in Figure 30. The C matrix dimensions C[x,y] are

determined as follows: x = xa + xb - 1 and y = ya + yb - 2 (where [xa,ya], and [xb,yb] are the

dimensions of the A and B matrices). In the C matrix diagram, 0's are constant (i.e., not

assigned from A or from B to C). Also, the "-" and "+" shown in A are now separated

diagonally as shown in C.

Case 1: Expand A (5x5) with B (4x4) into C (8x7).

 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7
A 1 a a a a z + B 1 - + b b --> C 1 a a a a 0 0 z
 2 a a a a z 2 b b b b 2 a a a a 0 0 z
 3 a a a a z 3 b b b b 3 a a a a 0 0 z
 4 a a a a z 4 b b b b 4 a a a a 0 0 z
 5 y y y - + 5 0 0 0 - + b b
 6 0 0 0 b b b b
 7 0 0 0 b b b b
 8 y y y b b b b
Case 2: If A[5,5]="-" => C(8x6).

Figure 31. Diagram of expansion method two.

Method 2 is described in Figure 31. In case 1, the resultant C matrix is 8x7. Case 2 is a

variation which occurs when "-" is discovered in the last column and row. This will occur

47

1 2 3 4 5 6 7

P1

P2

P3

P5

P6

- +

- +

- +

- +

- +

- +

SEQ0

P4 6x7

5x6

2x3

The expansion methods provides
a means to combine two co-matricies.

Using expansion method 3

p7

P4

P1

P2

P3

P5

P6

p3

p2

p1

p4

p6

p5

SEQ{P1,P2,P3,SEQ{P5,P6},P4}

Combined

1 2 3 4 5 6SEQ0

P1

P2

P3

SEQ1

P4

- +

- +

- +

- +

- +

1 2 3SEQ1

- +

- +

P5

P6Combine

SEQ0 SEQ0

SEQ1
p3

p2

p1

p4

P1

P2

P3

SEQ1

p6

P4

p5
p3

p2

p1

P5

P6Combine p3
and p5

Combine p1
and p4

Figure 32. Diagram of expansion method three (shows Petri nets and co-matrices).

when a recursive construct is used in the P-CSP specification. In such a case the last column

is dropped and the C matrix is 8x6. Also, for case 1 (where A[m,n] = C[5,5] = "+"), if a "z"

in A is "+" then it will be moved to the last column (same row).4 Similarly, in either case 1

or 2, a "y" in A is "+" then it is moved to the last row in C (same column). The Method 3

expansion is too detailed to describe in the same terms as was done for Method 1 and 2 (refer

to the Appendix C for the code on Method 3). The basic idea is given in Figure 32 which

shows how the SEQ1 co-matrix (analogous to co-matrix B in Figure 29) is inserted into the

4Method 2a exception: catch all the +'s in last column which are to be moved to the new last column. These +'s
are outputs from transitions to the last place in A so now they must be connected to the new last place in C.
Only consider rows above rowMark which is the row being expanded (with the "- +" pair in the diagram).

48

SEQ0 co-matrix (analogous to co-matrix A in Figure 29). The expansion replaces the

transition SEQ1 by the two process names P5 and P6. The final combined result retains the

SEQ0 name. Note, the term SEQ is a key word (for sequential composition of processes), it

may itself be considered a process. CSPN treats each occurrence of this type as a unique

process by appending a unique number to the name (0 is appended to the first occurrence of

SEQ to give SEQ0 and the next occurrence of SEQ will have "1" appended). This strategy

allows the program to track each occurrence of a given keyword type. The keywords

subjected to numbering include SEQ, PAR, NDC, DC, STOP and SKIP.5

Expanding Sys[0], Net: TrainXing
Searching links of net[1], symbol: PAR1
ProcList0: 1-dt1 2-Train 3-Gate 4-dt2
1. Symbol: dt1, Type: 21
2. Symbol: Train, Type: 10

Merge processes PAR1 <- Train
Expansion includes the following:
A: PAR1
ProcL1: 1-dt1 2-Train 3-Gate 4-dt2
PR Mtr: 1 2 3 4 5 6
 [1]: - + 0 + 0 0
 [2]: 0 - + 0 0 0
 [3]: 0 0 0 - + 0
 [4]: 0 0 - 0 - +

B: Train
ProcL2: 1-InTransit 2-Togate!Arrive
 3-dt!Arrive 4-AtIntersection
 5-Togate!Depart 6-dt!Depart

PR Mtr: 1 2 3 4 5 6 7
 [1]: - + 0 0 0 0 0
 [2]: 0 - + 0 0 0 0
 [3]: 0 0 - + 0 0 0
 [4]: 0 0 0 - + 0 0
 [5]: 0 0 0 0 - + 0
 [6]: 0 0 0 0 0 - +

C: A<-B is a new (9x11) Matrix
Running Method 3:

ProcL3: 1-dt1 2-InTransit 3-Togate!Arrive
 4-dt!Arrive 5-AtIntersection
 6-Togate!Depart 7-dt!Depart
 8-Gate 9-dt2

PR Mtr: 1 2 3 4 5 6 7 8 9 0 1
 [1]: - + 0 0 0 0 0 0 + 0 0
 [2]: 0 - + 0 0 0 0 0 0 0 0
 [3]: 0 0 - + 0 0 0 0 0 0 0
 [4]: 0 0 0 - + 0 0 0 0 0 0
 [5]: 0 0 0 0 - + 0 0 0 0 0
 [6]: 0 0 0 0 0 - + 0 0 0 0
 [7]: 0 0 0 0 0 0 - + 0 0 0
 [8]: 0 0 0 0 0 0 0 0 - + 0
 [9]: 0 0 0 0 0 0 0 - 0 - +

 •

 •

 •

 Completed expansion!

Replace with Train symbol.

Train inserted
in the PAR1

Figure 33. CSPN run shows before and after combining coincidence matrices.

In Figure 33 a more complex expansion is depicted where the "Train" symbol is located

within the process list of the PAR1 symbol. CSPN expands PAR1's coincidence matrix

(matrix A) by inserting the coincidence matrix of the Train (matrix B) into matrix A at the aij

location (at i=2 and j=2). Because the Train symbol is of type 10 (indicating a compound

5Incidentally, the first four words listed give rise to P-nodes which constitute composition constructs which can
themselves contain other P-nodes or L-nodes. Lnodes are nodes which can be 'listed' inside of a P-nodes (e.g., a
channel!output or channel?input) which themselves are atomic. Not mentioned are stmtlist, MU.identifier, and
SystemID which are other possible Pnodes. These distinctions are made for the purpose of capturing structural
characteristics of the specification.

49

sub-Petri net that can be embedded into other Petri nets), it can be replaced by its expanded

coincidence matrix (including the replacement of the Train symbol in the PAR1 process list

with the Train's process list). The resultant C matrix has 9 rows and 11 columns.

The combining of the sub-Petri net co-matrices is constrained to preserve the process

algebraic structure in three dimensions (1) adjacency of terms within a process, (2) adjacency

among declarations of processes and (3) nesting. Figure 34 shows an instance of the data

structure which is used to capture all three structural dimensions. Adjacency refers to the

sequential ordering of terms in the algebra while the word nesting is used in the normal

algebraic sense. The first type of adjacency is illustrated by the sequence of process

components: PAR1, dt1, Train, Gate, Arrive, Depart, dt2. In the case of nested structures,

each new level of nesting requires a new NET[i+1] be appended to the tail of the declared

process pointed to by SYS[i]. Each of the two lists is anchored by a pointer contained in an

array of pointers. The two arrays SYS[] and NET[] are shown in Figure 34 as anchoring the

lists of either adjacent or nested structures. The second type of adjacency (among declared

PAR1

Trai nX in g

dt1

Trai n

Gat e

Ar riv e

De pa rt

dt2

SYS [0]

NE T[0]

PAR1

NE T[1]

SEQ1

Trai n

In Tran sit
Tog at e!A rri ve

dt! Ar riv e

At In t erse ct io n

Tog at e!D ep art

dt! De pa rt

SEQ1

SYS [1]

NE T[0]

NE T[1]

SEQ2

Gat e

Clo sed

Tog at e?De pa rt

dt? Dep ar t

Op en

Tog at e?Ar riv e

dt? Arr ive

SEQ2

SYS [2]

NE T[0]

NE T[1]

Nesting

Adjacency
within a
process

TrainXing =
 PROCESS Train =
 SEQ{InTransit(),{Togate!arrive},AtIntersection(),{Togate!depart}};
 PROCESS Gate =
 SEQ{{Togate?arrive},Closed(),{Togate?depart},Open()};
 PAR{
 Train(), Gate() {arrive, depart}}.

Adjacency among declared processes

Three Dimension Process Hierarchy

Figure 34. Data structure for nesting and adjacency detected in the specification.

50

processes) is recorded sequentially as follows SYS[0], SYS[1], ... SYS[n]. The SYS[0]

pointer always gives the system identifier (the actual symbol itself is pointed-to by NET[0]

[see Figure 37 to verify this example]) and the body (or main part) of the system

composition. Each new SYS[i] pointer is a new "PROCESS" declaration. Each new

NET[i+1] is a new level of nesting. The list attached to a given NET[i] contains the

components within a given process constructor (so-called a p-node using the nomenclature of

Figure 36).

Figure 35 gives another example of the linking associated with the process hierarchy for

the specification named "SysSimpleEx." In this example, the nesting is overstated. Thus, the

leg of SYS[1] runs from NET[0] to NET[5]. The first element of each list is the name of the

process node (p-node for short, which caused a new NET[i] pointer to be generated).6 The p-

nodes of the SYS[1] leg are as follows: Eg1, SEQ1, SEQ2, SEQ3, PAR1 and SEQ4. The

depth is 6 but the level of nesting is not depth 6 (the deepest level of nesting is actually 4).

To translate the nesting and the adjacency out of this leg into a Petri net, we must traverse the

tree as shown in Figure 35 from left to right and from the bottom up. Actually, we start from

the bottom of SYS[1] and move right to the end and then finish with SYS[0]. Let us consider

the SYS[1] leg starting at NET[5]. Moving up the leg past NET[4] to NET[3] we encounter a

p-node "PAR1" which must be expanded. By virtue of the syntactical correctness, we are

guaranteed that the this p-node has been fully expanded. Thus, by accessing the symbol table

entry for "PAR1" we find the list of sub-components (which includes dt1, P11, P12, dt2), and

simply replace PAR1 in SEQ3’s list (i.e., at position NET[3]) with the PAR1 list of sub-

components. Actually the list is known as a process list (i.e., contains the sub-component

symbols, each separated by a comma) and individual elements of the list are known as p-

nodes. The new process list for SEQ3 that results is the following P1, P2, dt1, P11, P12, dt2.

This same kind of replacement (expansion) mechanism continues until the top of the leg is

6See Figure 36 for a definition of P-nodes and L-nodes.

51

SysSimpleEx =
 PROCESS Eg1 =
 SEQ{SEQ{SEQ{P1(),P2(),PAR{P11(),P12()}},P3(),P4()},P5(),P6()},SEQ{P7(),P8()};
 PROCESS Eg2 =
 SEQ{ P9(), P10() };
 PAR{ Eg1(), Eg2() }.

Nesting

PAR2

SysS im pl eEx

dt3

Eg 1

Eg 2

dt4

SYS [0]

NE T[0]

PAR2

NE T[1]

SEQ1

Eg 1

SEQ2

P5

P6

SEQ1

SYS [1]

NE T[0]

NE T[1]

SEQ5

Eg 2

P9

P10

SEQ5

SYS [2]

NE T[0]

NE T[1]

SEQ4

SEQ2

SEQ3

P3

P4

NE T[2]

SEQ3

P1

P2

PAR1

NE T[3]

PAR1

dt1

P11

P12

NE T[4]

SEQ4

P7

P8

P4

NE T[5] dt2

Adjacency
within a
process

Nesting

Adjacency among
declared processes

Nest-
ing

Process Hierarchy for SysSimpleEx

Figure 35. Process hierarchy for system "SysSimpleEx" with exaggerated nesting.

visited (i.e., at NET[0] = "Eg1"). The process is then repeated for both SEQ1 and for SEQ4.

Thus, to recompose the whole process algebraic system in terms of a Petri net from the

combined "SYS[] x NET[]" structure CSPN expands each of the p-node component and

records the results in the symbol table entry recursively. Refer to Figure 36 for a relational

diagram of the network (or process hierarchy) data structures and to Figure 37 for an exact

definition of the (1) symbol table entry, (2) the net_node and (3) the node data structures used

in recording the process hierarchical structure.

52

4.6 P-CSP semantics as it relates to the data structures

The structural characteristics of a P-CSP specification necessitate the framework of P-

nodes and L-nodes defined in Figure 36. Table 5 enumerates the various symbol names

assigned to the P-CSP components during the translation (parsing). The P-nodes are

anchored by the "SYS[]" array. This is an array of NET_NODE pointers. The L-nodes are

anchored by an array of NODE pointers called "NET[]." Each NET_NODE contains a

NET[] array to capture both the nesting and adjacency defined within a P-node.

System

Process
declaration

Process
instances

L-node

Process
nodes

P-node

Each process declaration causes a net_node
structure to be allocated and linked to the sys[i]
which is a pointer to a NET_NODE. Therefore
sys[i] contains as many non-null pointers as there
are PROCESS declarations.

Each L-node (list node) is linked
to its sibling as a NODE within a
P-node.

The system body or "main"
part of the specification is
linked from sys[0].

Sys[0..n] where n+1 is the
number of net_nodes
allocated.

Sys[0]

NET[1..m]

Sys[1..n]

There are two levels of data
used in this framework (P-
nodes and L-nodes). The
first is sys[], an array of
"net_node" pointers. The
net_node is a structure that
is allocated for each P-node
declaration. The second is
net[], an array of "nodes"
pointers to all of the L-
nodes for this P-node.

System
main body

Each P-node (process node) is
linked from sys[1..n] array.

Figure 36. Relational diagram for the network (or process hierarchy) data structures.

The P-CSP grammar distinguishes 3 categories of primitive elements. The P-nodes are

the composition statements used to express the semantics of the system description. The list

elements (or L-nodes) are instances of pre-declared processes, variables or channels. The

final category is other elements which consist of all other elements not included by the

previous two categories (e.g., connectives, grouping symbols or punctuation). Each element

is assigned a type number according to Table 5.

53

typedef struct nodedef {
{ char *n_name; Pointer to the node/symbol name

 char *n_fail; NULL if no fail rate/prob specified
 short israte; Boolean: legal values are (-1, 0, 1)

 short n_type; Node type consistent w/ symbols
 short uid; System level unique identifier

 struct nodedef *link; Pointer to next node, if any
 } NODE;

typedef NODE *nodeptr; Pointer to a NODE strucutre

NODE structure (pnode or lnode instance)

typedef struct entrydef { Symbol Table entry definition
 char *name; Symbol name pointer
 short type; Symbol type (values 0 through 23)
 short uid; Unique identification number (pid)
 char *frate; Failure Rate in ASCII pointer
 char *fprob; Failure Probability in ASCII pointer
 char *p_pl; Process list pointer
 short rsize; Number of rows in PR Matrix
 short csize; Number of cols in PR Matrix
 p_matrix p_prm; Process Relation (PR) Matrix pointer
 struct entrydef *next; Link to next ENTRY
} ENTRY;

typedef ENTRY *entryptr;

ENTRY structure (symbol table entry)

NET_NODE structure (pnodes declaration instance)
typedef struct netdef
{ char *net_name; Pointer to the node/symbol name

 short numNodes; Number of pnodes in this linked list
 short numSibs[NETSIZE]; Number of siblings within each pnode

 nodeptr net[NETSIZE]; Rootptr's to Process Nodes
 } NET_NODE;

typedef NET_NODE *netNodeptr; Pointer to net_node structure

netNodeptr sys[SYSSIZE]; Rootptr's to "PROCESS_DEC" net nodes

NDC

SEQ2 SEQ3 P1SEQ1

SEQ3 P3 P4SEQ2

P5 P6SEQ3

P7 P8NDC

EX1

P2

EX1 16

EX2 4

Sy1 3

EX1

P9 P10PAR1

Sys[0..2]

Net[0..1]

Net[0..4]

Net[0..1]

NDC EX1 EX2

NET_NODE NODE's

NET_NODE

...array of pointers to nodes

NET_NODE

Sy1 =
 PROCESS EX1 =
 SEQ{SEQ{SEQ{P1(),P2()},P(),P4()},P5(),P6()},
 NDC{P7(),P8()};
 PROCESS EX2 =
 PAR{P9(),P10};

NDC{EX1(),EX3()}.

Figure 37. Definitions of the symbol table and process hierarchy data.

TABLE 5

CONSTRUCTS USED IN P-CSP AND THEIR TYPE VALUES

Process nodes and artifacts Channels and variables
NULL_TYPE 0
SYSTEM_ID 1 p-node
STMT_LIST 2 p-node
STOP_PROC 3 l-node
SKIP_PROC 4 l-node
PAR_PROC 5 p-node
SEQ_PROC 6 p-node
NDC_PROC 7 p-node
DC_PROC 8 p-node
MU_PROC 9 p-node
PROC_CALL 10 l-node
PROCESS_DEC 11 special
CHAN_PROC 12 l-node (contains 13-14)
INPUT 13 l-node
OUTPUT 14 l-node

There are twenty three different types.

BOOL_VAR 15 l-node
VAR 16 l-node
EXPRESSION 17 l-node
RIGHTBRACE 18 not defined
LEFTBRACE 18 not defined
BRACE 18 not defined
SEMICOLON 19 not defined
SEMIC 19 not defined
DOT 20 not defined
DUMMY 21 not defined
SYNCH_MSG 22 l-node
GUARD1 23 not defined
GUARD2 24 not defined
RECURSE 25 not defined
RECUR_TOP 26 not defined
SDT 27 not defined
TYPES 28 not defined

54

The symbol table contains all of the identifiers used in the specification (i.e., names of

declared processes, channel variables, simple variables and system defined names) and is the

primary source of information about the system. A hash function enables an efficient means

of accessing the associated data shown in Figure 37. Any symbol used or defined within the

specification is accessible.

4.7 P-CSP’s usage of failure and service rate annotations

When the "-f" option flag is set on the command line, CSPN will incorporate any legal

failure annotations into the SPNP file. Naturally, the "-o<fn>" option must also be

specified, otherwise CSPN will not produce the fn_spnp.c file. Legal annotations are

specified as either a probability ":FAIL(p=x.xx)" or rate ":FAIL(r=x.xx)" of failure.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt1

dt2

ft:InTransit

ft:Togate!arrive

ft:Togate!depart

Fail place
(absorbing)

17

17

2

3

4

5

6

7

14

13

12

11

10

9

158

16

TrainXing =
 -- Two processes Train and Gate consist of
 -- sequential actions and run concurrently.
 -- Two synchronization messages are required
 -- to command the Gate.

 PROCESS Train =
 SEQ{
 InTransit():FAIL(p= 0.01),
 {ToGate ! Arrive}:FAIL(r= 0.02),
 AtIntersection(),
 {ToGate ! Depart}:FAIL(r= 0.03)};

 PROCESS Gate =
 SEQ{
 {ToGate ? Arrive},
 Closed(),
 {ToGate ? Depart},
 Open()};

 PAR{Train(), Gate() {Arrive, Depart}}.

Figure 38. Specifying failure annotations in P-CSP and the resulting Petri net.

This is illustrated in Figure 38. A failure annotation can be related into the specification at

any level. However, only the values that are associated with a non-expandable element (one

55

which may not be further decomposed) will actually be translated into the SPNP file. Thus,

if a rate were attached to the process call: "Train():FAIL(r=x.xx)" in Figure 38

(composed inside a PAR construction) then the value would not be translated into the SPNP

file. Thus, annotations associated with composite processes are not incorporated into the

fn_spnp.c file but can be maintained as a record of the results of any current or subsequent

runs (e.g., failure probability of a group of components).7 Note, that service rates can also be

annotated in a similar fashion with the same caveat that in order to be utilized in the SPNP

file it must be attached to an non-expandable element. The notation is ":SERV(r=x.xx)".

4.8 Linking synchronization primitives

In synclink for symbol: TrainXing ...

ProcL0: 1-dt1 2-InTransit 3-Togate!Arrive
 4-dt!Arrive 5-AtIntersection
 6-Togate!Depart 7-dt!Depart
 8-Togate?Arrive 9-dt?Arrive
 10-Closed 11-Togate?Depart
 12-dt?Depart 13-Open 14-dt2

Sync message: Arrive,
Find transition: dt!Arrive, at pos: 4.
Matching trans: dt?Arrive, with pos: 9

Sync message: Depart,
Find transition: dt!Depart, at pos: 7.
Matching trans is: dt?Depart, with pos: 11

PR Mtr: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 [1]: - + 0 0 0 0 0 0 + 0 0 0 0 0 0 0
 [2]: 0 - + 0 0 0 0 0 0 0 0 0 0 0 0 0
 [3]: 0 0 - + 0 0 0 0 0 0 0 0 0 0 0 0
 [4]: 0 0 0 - + 0 0 0 0 - + 0 0 0 0 0
 [5]: 0 0 0 0 - + 0 0 0 0 0 0 0 0 0 0
 [6]: 0 0 0 0 0 - + 0 0 0 0 0 0 0 0 0
 [7]: 0 0 0 0 0 0 - + 0 0 0 - + 0 0 0
 [8]: 0 0 0 0 0 0 0 0 - + 0 0 0 0 0 0
 [9]: 0 0 0 0 0 0 0 0 0 - + 0 0 0 0 0
 [10]: 0 0 0 0 0 0 0 0 0 0 - + 0 0 0 0
 [11]: 0 0 0 0 0 0 0 0 0 0 0 - + 0 0 0
 [12]: 0 0 0 0 0 0 0 0 0 0 0 0 - + 0 0
 [13]: 0 0 0 0 0 0 0 0 0 0 0 0 0 - + 0
 [14]: 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - +

Release: Row: 9
 Row: 11

ProcL0: 1-dt1 2-InTransit 3-Togate!Arrive
 4-dt:Arrive 5-AtIntersection
 6-Togate!Depart 7-dt:Depart
 8-Togate?Arrive 9-Closed
 10-Togate?Depart 11-Open 12-dt2

PR Mtr: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 [1]: - + 0 0 0 0 0 0 + 0 0 0 0 0 0 0
 [2]: 0 - + 0 0 0 0 0 0 0 0 0 0 0 0 0
 [3]: 0 0 - + 0 0 0 0 0 0 0 0 0 0 0 0
 [4]: 0 0 0 - + 0 0 0 0 - + 0 0 0 0 0
 [5]: 0 0 0 0 - + 0 0 0 0 0 0 0 0 0 0
 [6]: 0 0 0 0 0 - + 0 0 0 0 0 0 0 0 0
 [7]: 0 0 0 0 0 0 - + 0 0 0 - + 0 0 0
 [8]: 0 0 0 0 0 0 0 0 - + 0 0 0 0 0 0
 [9]: 0 0 0 0 0 0 0 0 0 0 - + 0 0 0 0
 [10]: 0 0 0 0 0 0 0 0 0 0 0 - + 0 0 0
 [11]: 0 0 0 0 0 0 0 0 0 0 0 0 0 - + 0
 [12]: 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - +

Remove

Remove

Figure 39. Resolving synchronization links.

The process of linking the synchronization primitives occurs after all expansions have

completed (except adding failure annotations). In Figure 39 rows 9 and 11 are removed in

merging the output message transition with the matching input message transition.

7Sensitivity analysis is an examination of the effect of small variations in system parameters on the output
measures can be studied by computing the derivatives of the output measures with respect to the parameter
[Mainkar93]. Sensitivity analysis is useful to estimate how the output measures of a system model are affected
by variations of its input parameters (as well as for system optimization and bottleneck analysis).

56

4.9 CSPN file descriptions

There are twelve files that make up the CSPN tool (not including the C files generated by

lex and yacc and two small header files used in the lex and yacc specification files). These

files are named here and are briefly described with respect to their contents (and in some

cases multiple function capabilities): (1) cmd_line.c, (2) csp.l, (3) csp.y, (4) expn_cspy.c, (5)

itoa.c, (6) net.c, (7) petri_cspy.c, (8) prlist.c, (9) prmatrix.c, (10) scoring.c, (11)

symbol_cspy.c, (12) symbol_cspy.h.

4.9.1 Cmd_line.c description

Command line checks for command line arguments. If there are none it uses the

defaults. Otherwise it allows the user to change certain options available from SPNP (SPNP

Reference). There are three other noteworthy functions. The do_file is a function that

displays the command line defaults for each run, usage displays the help screen, gen sets the

defaults for the parameters part of the SPNP.c file, and choose is an interactive routine that is

invoked by the command line verbose mode option flag "-v." This routine allows the user to

choose from any of the available options in the parameters part of the SPNP.c file. Pic1 and

Pic2 are functions associated with choose.

4.9.2 The csp.l and csp.y descriptions

Lex and yacc are tools designed for writers of compilers and interpreters (i.e., any

application that looks for patterns in its input, or has an input or command language). They

help one write programs that transform structured input. Lex takes a set of descriptions of

possible tokens and produces a C routine (called the lexical analyzer or lexer or scanner).

The set of descriptions given to lex is called a lex specification . The lex specification for the

P-CSP language is found in Appendix B and is found in the csp.l file.

The token descriptions that lex uses are known as regular expressions. As the input is

divided into tokens, the CSPN tool must establish the relationship among tokens. CSPN

needs to find expressions, statements, declarations, blocks, and processes in the specification

57

program. This task is known as parsing and the list of rules that define the relationships that

CSPN understands is the grammar (also called the yacc specification and for the P-CSP

language is found in Appendix B). Yacc takes a concise description of the grammar

(basically in BNF notation and is found in the csp.y file) and produces a C routine that can

parse the grammar, called the parser. The parser detects when a sequence of input tokens

matches one of the rules in the grammar and also detects syntax errors whenever the input

doesn't match any of the rules.

4.9.3 Symbol_cspy.h and symbol_cspy.c description

Symbol_cspy.h is the primary header file included in the csp.y file. This file contains

included C library files, global variable declarations and prototype declarations.

Symbol_cspy.c manages updates to the symbol table as each new symbol token arrives to the

parser from the scanner via a call to the getsym function. Table 6 lists all the functions

associated with managing the symbol table structure.

TABLE 6

SYMBOL TABLE UTILITY FUNCTIONS

Function name Description

look Takes a pointer to a symbol name and returns a pointer to the entry if it
exists (including found=1 => true). Otherwise, it returns a ptr to the
free entry where it could be inserted.

getsym Used in the parser to pick up the symbols and to "insert" and verify
insertion into the symbol table.

insert Takes a pointer to symbol and returns a ptr to the symbol table entry.
The duplicate_sym pointer passes back: -1 is if a duplicate symbol
exists (a failed operation), 0 is if the symbol was inserted successfully.

init_table Initializes the symbol table.

print_table Print_table has 2 loops to print (1) index the table, (2) index the linked
list while traversing the links for collided symbols.

dumptable Dumptable prints the contents of the symbol table in a stylized fashion.

58

4.9.4 Net.c description

This file contains two prime functions: (1) net_main and (2) search_net . Net_main is the

driver function that invokes 12 other utility functions used to build a net hierarchy to capture

the P-CSP specification structure. Once the net hierarchy is completed search_net traverses

the net hierarchy in the process of constructing the process lists and co-matrices for each

individual component (i.e., p-node) in the specification. The sub-functions push, pop, peak

and printStack are used to manage the stack which is used to track the nesting of process

compositions. The other functions are responsible for allocating and linking up new nodes

that are generated for every new term in the process algebra. When search_net has

completed, the specification is decomposed. The utility functions are listed in Table 7.

TABLE 7

NET UTILITY FUNCTIONS

Function name Description

push Puts integers on Stack[STACKSIZE].

pop Returns the integer on top of stack.

peak Non-destructive pop.

printStack Prints the stack contents top to bottom.

linkToSiblings If cur_pnode has sib relation link to the sib.

append Given net[root pointer] append a node to end list.

allocate_net Allocate a NET_NODE for a PROCESS declared symbol.

allocate Allocate a NODE for a symbol w/in a PROCESS definition.

linkup Link a NET_NODE to a net[root pointer].

searchNet Traverse the net[i]'s to build atomic co-matrices.

updateNet Traverses the net[i]'s to transfer any failure annotations in the symbol
table to the net data structure (in the *n_fail field of NODE).

printNet Given a netNodeptr print the contents of a NET_NODE.

net_init Initializes net_main's global variables.

net_main A (large) switch on sym_type to decide structure of the net.

59

Each invocation of the searchNet function requires a pointer to a NODE structure. These

NODE structure pointers are contained in the array sys[] (each i in sys[i] is a PROCESS

declaration). Each PROCESS declaration is represented by a NET_NODE which contains a

net[i] pointing to individual p-nodes (see Figure 36) nested within the process declaration.

The net[i] array contains pointers to related p-nodes (i.e., when they are used in a sys[i]

PROCESS declaration). Each p-node instance is represented by a NODE with a name field

for its name (process information is kept in the symbol table referenced by the n_name field).

4.9.5 Prlist.c description

In the P-CSP specification, process names are identified during translation and included

in a process list according to their contextual relation in the specification. This file contains

numerous utility functions which are defined in terms of a process list structure. The

process list is a string of symbol names contained in the symbol table, each separated by a

comma and terminated by an eos (end-of-string character). These routines can check if a

process name is in the list (and its position), put a name in the list, replace a name with a new

name or new list (called insertion), delete a name, count the occurrences of a name, remove

by replacing a name with "*'s", destroy the list (and deallocate the memory), and display the

list. In essence, the process list defines the transition names of the Petri net which are

ordered row-wise in the co-matrix of each Petri net.8

4.9.6 Scoring.c description

This file contains two major functions: scoring and AddFailures . Scoring updates an

integer array with "-1" indicating an input to the current row[i] (a transition) from the current

column[j] (a place). A "+1" is used to indicate an output from a transition to a place. Given

the number of rows (processes in the process list for this symbol), it returns the number of

columns. Scoring knows what each P-CSP construct should look like in terms of the Petri

net (i.e., it scores coincidence matrix using the canonical translation rules) by marking the n-

8These routines were developed with help from David Sheely (at The University of Texas at Arlington).

60

by-m co-matrix appropriately (i.e., n transitions and m places).

AddFailures is called from the main line code in the parser (csp.y) routine if the "-f"

option was specified on the command line meaning that the ignoreFailures flag is not set.

The routine parses through the process list of the system co-matrix (which is named as

prmatrix), looks up each process in the symbol table and checks if a failure annotation is

stored there. If so it will append a failure transition to the co-matrix and update the process

list for the system symbol.

4.9.7 Expn_cspy.c description

The expn function combines two co-matrices using the following steps: (1) looks up the

symbol name in the symbol table, (2) gets the size (m-by-n) of the co-matrix, (3) recalculates

the mxn for the new (combined) co-matrix, (4) reallocates a new data structure, (5) combines

the two co-matrices into the new one using one of three methods, (6) links up the result back

in the symbol for that particular symbol name. See Appendix C for a complete description of

these expansion algorithms.

Synclink matches transitions in the process list that look like dt!msgX with dt?msgX by

the following algorithm:

(1) Locate dt!msgX and rewrite ! <- :;

(2) Locate dt?msgX and remember its location;

(3) Remove dt?magX transition from a duplicate process list;

(4) Until all messages in the synclist[] array are located;

(5) Now sort the remembered locations in descending order;

(6) Delete the co-matrix row corresponding to the locations starting from the bottom
up (descending order).

4.9.8 Petri_cspy.c description

This file contains the function decodeSys which uses the system (i.e., sys[0]) process list

and co-matrix (these two items are the final product of the composition and clean-up phases

in CSPN) to generate the net() part of the fn_spnp.c file. The net() function gives the CSPL

(i.e., the SPNP language) specification for the stochastic Petri net.

61

4.9.9 Miscellaneous file descriptions

Two additional files are the prmatrix.c, and itoa.c files. Given the number of rows and

columns, prmatrix returns a pointer to an empty (zeroed) n-by-m process relation table (i.e.,

the coincidence matrix) used to specify a component Petri net. There is also a print routine

which is designed to print the matrix in an easy to read format. The itoa function returns the

ASCII (i.e., string representation) value of an integer.

4.9.10 Intermediate output files used for debugging

Numerous intermediate files are created by CSPN. All files are prefixed with the input

file name dot "xxx" where xxx distinguishes the type of file. For example, if the input file (a

P-CSP specification) were named "train" then the output file that contains all of the tokens

generated during the translation of a train specification would be named "train.tok." Table 8

contains a list of the intermediate files and their contents.

TABLE 8

DESCRIPTION OF INTERMEDIATE TRANSLATION FILES

File name Description

fn.tok Lists the tokens passed from the scanner to the parser

fn.dec Output from the searchNet routine (in net.c). Lists the symbols that
were found in searching the net hierarchy, their co-matrix (Petri net
representation) and failure annotation (if any).

fn.dsd1 Snapshot of the symbol table after the decomposition phase completes.

fn.epn Lists all intermediate steps taken during expansion of the component
Petri nets into the one system Petri net (i.e., combining co-matrices).
This includes the steps associated with resolving synchronization links
(a reduction process) and including failure annotations.

fn.net A key file which lists all of the net hierarchy in a staggered format that
shows the nesting and adjacency relationship in 2 dimensions.

fn.dsd2 Snap shot of the symbol table after the expansion process has
completed.

fn_spnp.c This is the CSPL specified Petri net file on which the stochastic

analysis may commence using the SPNP tool.

62

CHAPTER 5

ILLUSTRATION OF THE USEFULNESS OF THE CSPN TOOL

Some men see things the way they are and say, 'Why?'. I dream things that never
were and say, 'Why not?'

--Robert F. Kennedy

5.1 Combining functional and performance analysis

A simple example showing a translation from the CSP specification into the stochastic

Petri nets (SPNs) is provided to illustrate how performance and reliability analyses may be

obtained. In this way, the merits of a powerful modeling technique using SPNs can be

combined with a well defined formal specification language. The railroad crossing example

was first formulated as a benchmark problem used to compare different formal methods for

specifying, designing and analyzing real-time systems. Although it is both simple and easy

to understand, it is complex enough to illustrate a number of aspects of the modeling and

verification of timed systems. Basically, it concerns a point at which road vehicles attempt to

cross over railroad tracks unless prevented by the gate which closes when a train is passing.

The requirements are described in the next section.

5.2 Requirement specification for the railroad crossing

As modeled, the system combines a single train, a draw gate and a communications link.

The system continuously handles one train at a time by closing the gate when the train is

approaching [Heitmeyer94]. There are two basic properties the system must satisfy.9 (1)

Safety property – the gate is down during all occupancy intervals (when the Train is at the

intersection), and (2) Utility property – the gate is open when no train is in the crossing. The

9This model encompasses the environment which includes the train(s) and the gate, as well as the interface
between them. Thus, the gate closes when a train arrives at the intersection and remains closed until the train
completely passes by the intersection.

63

solution in general terms proceeds as follows:

• Train sends an "arrive" message to the Gate as it nears the intersection and proceeds
towards the intersection.

• Gate , upon receiving the message, closes the gate and remains closed until the train
departs.

• Train sends a "depart" signal after leaving the intersection.

• Gate , upon receiving the signal opens the gate and remains open.

In order to simplify this example we represent multiple interactions between these two

processes, instead of multiple trains interacting with the gate.

5.3 The CSP for the railroad crossing

At the intersection, the gate closes for arriving trains and remains closed until the train

has completely passed. The problem can be extended to handle multiple trains (see Appendix

D which incorporates a monitor program), but only one train is specified here in Figure 40.

Train = (InTransit);

 (Togate ! arrive → AtIntersection);

 (Togate ! depart → Train)

Gate = (Togate ? arrive → Close);

 (Togate ? depart → Open → Gate)

TrainXing = Train ||{arrive,depart} Gate

Figure 40. Pure CSP specification of the railroad crossing problem.

Two concurrent processes, the Train and the Gate, communicate by sending and

receiving messages. The Train outputs "arrive" on channel Togate to inform the Gate that it

will soon arrive at the intersection. Upon passing through the intersection, the train sends a

"depart" message to the Gate. The Gate process receives the "arrive" message and closes the

gate. Once closed, the Gate waits for the "depart" message before causing the gate itself to

open. Note how easy it is to identify the sender and receiver connected by the channel.10

10However, there are some drawbacks associated with using CSP. First, CSP as defined by Hoare has no
concept of time. Recent extensions to CSP permit the association of time with actions [see Davies 94 and see 1,
2, 3 TBD and the references therein]. Second, since CSP uses point-to-point communication it is awkward to
describe the case where the Gate process accepts inputs from multiple Train processes.

64

5.4 The P-CSP for the railroad crossing

In Figure 41 the train and gate processes are specified using the CSP-based language P-

CSP along side the CSPN derived Petri net.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt1

dt2

TrainXing =
 --Two processes Train and Gate consist
 --of sequential actions and run
 --concurrently. Two synchronization
 --msgs are required to command the gate.

 PROCESS Train =

 SEQ{
 InTransit(),
 {Togate ! arrive},
 AtIntersection(),
 {Togate ! depart}};

 PROCESS Gate =

 SEQ{
 {Togate ? arrive},
 Closed(),
 {Togate ? depart},
 Open()};

 PAR{
 Train(), Gate() {arrive, depart}}.

Figure 41. P-CSP specification for parallel composition of the railroad crossing.

The original CSP specification in Figure 37 provides that both processes repeat their

internal activities continuously. However, given the P-CSP specification of Figure 38, the

resultant Petri net graphically reveals the absence of iteration to provide for the handling of a

continuous stream of trains. To provide iteration, an additional composition is added: namely

Mu.X{PAR{Train(), Gate() (arrive, depart)} → X}. In this case, X is a recursive process

65

that provides the link between the dummy transitions dt1 and dt2 shown in Figure 41. The

new net which incorporates iteration is shown in Figure 42.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt2

dtX

"Mu.X{}" generatedp1

p2

p15

p14

p13

p12

p11

p3

p4

p5

p6

p7

p9

p8

p10

TrainXing =
 --Two processes Train and Gate consist
 --of sequential actions and run
 --concurrently.

 PROCESS Train =
 --WHILE TRUE
 SEQ{
 InTransit(),
 {Togate ! arrive},
 AtIntersection(),
 {Togate ! depart}};
 --END while

 PROCESS Gate =
 --WHILE TRUE
 SEQ{
 {Togate ? arrive},
 Closed(),
 {Togate ? depart},
 Open()};
 --END while

 Mu.X{
 PAR{
 Train(),
 Gate() {arrive, depart}} → X}.

dtX is generated from the "Mu.X{}"

construct. Actually, the "→X" part
is provided for readability since
in this case the cycling is taken

by default.

Figure 42. P-CSP specification for the (tail type) recursive composition.

5.5 Semantics of the Petri net for the railroad crossing

The train and gate operate concurrently and independently. However, for the system to

meet its functional requirements both components must synchronize. To accomplish their

missions (i.e., passing through the intersection and holding traffic to permit the train to pass

safely) they use the channel "Togate" to synchronize. The synchronization described by the

CSP may not readily reveal the potential race hazard that is more detectable in the Petri net.

66

The Train process could arrive to AtIntersection before the gate closes!11 To avoid this

unsafe state an extra "ok" gate closed synchronization message is used. In Figure 43 the

messages are represented by transitions dt:arrive, dt:ok and dt:depart. The prefix "dt:"

denotes a "dummy transition" that fires with probability one (i.e., an immediate transition).

TrainXing =
 PROCESS Train =
 SEQ{
 InTransit(),
 {Togate ! arrive},
 {Togate ? ok},
 AtIntersection(),
 {Togate ! depart}};
 PROCESS Gate =
 SEQ{
 {Togate ? arrive},
 Close(),
 {Togate ! ok},
 {Togate ? depart},
 Open()};
 Mu.X{
 PAR{Train(),Gate()
 {arrive,ok,depart}}→ X}.

Open

dt2

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dtX (or dt1)

Togate?ok

Togate!ok

dt:ok

p1

p2

p17

p16

p15

p14

p13

p12

p11

p3

p4

p5

p6

p7

p9

p8

p18

p19p10

Train =

 (InTransit);

 (Togate ! arrive → Togate ? ok

 → AtIntersection);

 (Togate ! depart → Train)

Gate =

 (Togate ? arrive → Close

 → Togate ! ok);

 (Togate ? depart → Open → Gate)

TrainXing = Train ||{arrive,ok,depart} Gate

CSP

P-CSP

Figure 43. CSP and P-CSP specifications which address race hazard.

11This is possible because after the synchronization on the "Togate" channel occurs (i.e., the "arrive" signal is
received), the "AtIntersection" transition may fire before the "Close" transition denoting the case where the train
arrived sooner than the time needed for the gate to close.

67

The gate will not begin to close until it receives the "arrive" message. First, the train

must fire the transition "InTransit," and then send the "arrive" message by firing

"Togate!arrive." In turn, the gate must be ready to receive the message by firing the

transition "Togate?arrive." After all these actions have occurred, the gate may receive the

command to close. The close command may occur (i.e., fires at some definite rate) when a

token is on place "p13." This will occur immediately after the synchronizing "dt:arrive"

transition has been enabled (tokens on "p4" and "p12") since this transition is immediate

(consumes no resources). The marking with one token each on places p14 and p12 which

enable the "dt:arrive" transition to fire.

In following the logical flow of feasible markings, we see that it is impossible for the

train to proceed to the "AtIntersection" transition until the gate is closed and has fired off a

message to the train: "ok" its safe to proceed. We can also notice that the same applies for

the gate opening process by virtue of the transition "dt2" which essentially forces the two

processes to synchronize. We could re-label the transition as "Motorist-Proceed" (perhaps).

In review, the semantics of synchronization provided by the revised CSP specification

forces the train to wait until the gate closes to preserve the safety property.12 Moreover, the

"dt:ok" transition is needed because, after firing the "dt:arrive" transition (i.e., which enables

the Togate?ok and Close transitions), the train may reach the intersection faster than the gate

could close (e.g., "AtIntersection" fires sooner than the transition "Close").13 Consequently,

with regard to this approach, we must ask what other possible failures are there that may

cause a violation of the safety property.

5.5.1 Enumerating all possible failure transitions

In the Petri net of Figure 44, all of the possible failures are identified with respect to the

activities described in the CSP specification. Transitions labeled with "ft:process-name" are

12We have studied the case where multiple trains may arrive at the intersection. In such cases, it becomes
necessary to have a monitor arbitrate (see Appendix E for a brief look at the solution to such a case).
13If we assume the gate always opens and closes sooner than the time it takes the train to reach the crossing, the
PN can be viewed as hazard free (except for the possibility of the gate having mechanical failure [unsafe]).

68

failure transitions. Dummy transitions are assigned a probability one and do not have any

associated failure transitions. It is interesting to note, that instead of transitioning to place

"p20" as shown in Figure 44, it would be possible to separate distinct failure types into

different "absorbing" places so that the MTTF values (or the failure rate) associated with

each type of failure mode can be separately denoted and computed.

Open

dt2

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dtX

Togate?ok

Togate!ok

dt:ok

p1

p2

p17

p16

p15

p14

p13

p12

p11

p3

p4

p5

p6

p9

p8

p18

p19p10

ft:InTransit

ft:Togate!arrive

ft:Togate!depart

ft:Togate?ok

ft:Open

ft:Togate?depart

ft:Close

ft:Togate?arrive

ft:Togate?ok

ft:AtIntersection

p20

p7

Communication failure

Communication failure

Communication failure

Mechanical failure

Mechanical failure

Communication failure

Communication failure

Communication failure

Locomotive failure

Locomotive failure

Figure 44. Railroad crossing Petri net showing all possible failure transitions.

69

For example, we could distinguish three types of failures based on the Petri net of Figure

44: (1) mechanical failures where the gate may fail to close or to open properly, (2)

communication failures –the sending or receiving of signals could be lost, and (3) timing

related failures where the train takes less time than the time taken for the gate to close. We

can then distinguish three separate failure places, each to be associated with one of the failure

types. The distribution of tokens in the various places of the Petri net defines the markings of

the Petri net. As described in Section 3.3, we consider a transition enabled if each of its input

places contains at least one token. An enabled transition may fire removing a token from

each of its input places and depositing a token in each of its output places. In stochastic

analysis actions are associated with an exponentially distributed times to indicate the amount

of time needed for that action to complete. This firing time is the time that elapses form the

point at which the transition becomes enabled to the point at which the transition actually

fires. The firing of a transition causes the redistribution of the tokens in the stochastic Petri

net resulting in a new marking.14

The set of all such markings together with the transitions among them is called the

reachability graph. The states in the reachability graph are isomorphic to the states in a

continuous (discrete) time Markov chain. We may identify unique markings that may lead to

a failure and those failure transitions are then associated with an absorbing state in the

Markov state diagram. Different markings potentially lead to different types of failures (e.g.,

a mechanical failure or some other such failure).

5.5.2 Enumerating safety critical failure transitions

We discussed the groupings of failures based on the similarity of their failure

mechanism. Here we are now concerned with the manifestation (or impact) that a given

failure has on the system (i.e., whether the failure may have catastrophic consequences or

not). This categorization is important for determining for instance the cost or the risk that a

14For example, the time to failure of ft:close is known to be exponentially distributed with rate λ1 (lets say).
This is modeled in the stochastic Petri net by associating a firing time with each of the transitions.

70

given failure presents to its users (and/or developers). In this section the discussion will be

based on the railroad crossing that is discussed above which has a race hazard resulting from

a "runaway" train. The states in Figure 45 (which are based on the Petri net pictured at the

right) demonstrate that there are two unique manifestations of failures (i.e., critical and non-

(safety)-critical). In considering the criticality of timing, we see that the slow firing of

transition Close makes it possible for the train to enter the intersection before the gate has

properly (or completely) closed. Similarly transition Open makes it possible for the train to

have departed and still, the gate is not open.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt2

dtX

1

2

15

14

13

12

11

3

4

5

6

7

9

8

10

0 1

2 3

6 7

10 11 12 13 14 15 16 17

98

4 5

Critical condition: Train at
intersection but gate is still
open

Non-critical condition:
Train departed
but gate is still closed

Markings: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 Description of marking:
M0: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0) Train gone (idle state), gate open.
M1: (0 1 0 0 0 0 0 0 1 0 0 0 0 0 0) Train gone non-idle state, gate open.
M2: (0 0 1 0 0 0 0 0 1 0 0 0 0 0 0) Train in transit (approach), gate open.
M3: (0 0 0 1 0 0 0 0 1 0 0 0 0 0 0) Train sends arr msg, gate not rcvng.
M4: (0 1 0 0 0 0 0 0 0 1 0 0 0 0 0) Train gone, gate waits arr msg.
M5: (0 0 1 0 0 0 0 0 0 1 0 0 0 0 0) Train in transit, gate w aits arr msg.
M6: (0 0 0 1 0 0 0 0 0 1 0 0 0 0 0) Train sends arr msg, gate w aits arr msg.
M7: (0 0 0 0 1 0 0 0 0 0 1 0 0 0 0) Msg synchronization complete.
M8*: (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0) Train passing intersect, gate open.
M9*: (0 0 0 0 0 0 1 0 0 0 1 0 0 0 0) Train departing, gate open.
M10: (0 0 0 0 1 0 0 0 0 0 0 1 0 0 0) Train approach, gate closed.
M11: (0 0 0 0 1 0 0 0 0 0 0 0 1 0 0) Train approach, gate waits dprt msg.
M12: (0 0 0 0 0 1 0 0 0 0 0 1 0 0 0) Train at inters ect, gate clos ed.
M13: (0 0 0 0 0 1 0 0 0 0 0 0 1 0 0) Train at inters ect, gate w aits dprt msg.
M14: (0 0 0 0 0 0 1 0 0 0 0 1 0 0 0) Train sends dprt msg, gate not receiving.
M15: (0 0 0 0 0 0 1 0 0 0 0 0 1 0 0) Train sends dprt msg, gate w aits for msg.
M16: (0 0 0 0 0 0 0 1 0 0 0 0 0 1 0) Msg synch complete, gate closed.
M17: (0 0 0 0 0 0 0 1 0 0 0 0 0 0 1) Msg synch complete, gate open.
*Critical condition: Train at intersection but gate is s till open

Figure 45. Markings and requisite Markov state transition diagram.

Missing from the Petri net of Figure 45 are transitions to reflect physical, communication

related or mechanical failures. In our analysis, we do assume the existence of such failure

transitions (and corresponding places) as discussed in the previous section (5.5.1). The CSP

specification (and the corresponding Petri net) can be augmented to show how such failures

should be handled. For example, the communication failures can be handled using time-out

and re-transmit techniques. But still, should the gate fail to close, the question becomes

71

what can be done to possibly avoid a catastrophe. Perhaps an audible and visual alarm would

alert unsuspecting pedestrians and traffic. Such fault-tolerant and fault-handling actions can

be specified both with the CSP and Petri net models. However, they become more obvious by

examining and analyzing the stochastic Petri net. The cost of providing fault-tolerance

should be traded-off with the required level of reliability.

5.6 Parametric Sensitivity Analysis

Using conventional techniques such as those used by stochastic Petri net tools (e.g.,

SPNP), discrete and continuous analyses can be performed.15 For the purpose of this

presentation, we have computed reliability of the train crossing with different failure rates (or

probabilities) and service rates (e.g., speed of the train, rate at which the gate mechanism

operates). The values used in this paper (and hence the results of the analysis) are only for

illustrating the approach. It is not our intention to attach significance to the failure rates,

MTTFs obtained, or the probability of detected and undetected failures. These analyses are

useful in exploring different fault-handling mechanisms and the cost-benefit of providing

fault tolerance. The following subsections outline the discrete and continuous analyses.

5.6.1 Discrete Analysis

Table 9 presents the probability assignments for our test runs of the train crossing

ignoring deadline related failures (i.e., Ptf= 0). Four different trials were run with differing

failure probabilities where Pc= communication failure, Pm= mechanical failure (either in

opening or closing the gate). In all runs Pm > Pc, and in order to reduce the probability of

critical failure in runs 2 - 4, we set Pm(close) < Pm(open) by the factors of 100, 3 and 5

respectively. Using fault-tolerant methods such reliability improvements are possible.

Consequently, the probability of critical failures (Pcf) are reduced by the factors of 17.573,

1.975 and 2.974 respectively. Such analyses showing the magnitude of improvement

15The classic steady-state solution method for stochastic models that maps GSPN models to CTMCs is
compared with a method based on DTMCs in [Ciarsdo89]. The DTMC method is shown to perform better.

72

TABLE 9

DISCRETE ANALYSIS (Ptf = 0)

Desc. Run 1 Run 2 Run 3 Run 4 Desc. Run 1 Run 2 Run 3 Run 4

Pc .0001 .00001 .0001 .00001 Pcf 0.5026 0.0286 0.2544 0.1690

Pm(clo) .01 .00001 .01 .001 Pncf 0.4974 0.9714 0.7456 0.8310

Pm(op) .01 .001 .03 .005 MTTF 490.26 9524.07 248.19 1656.21

associated with a given design improvement can be useful in deciding what level of fault

tolerance is appropriate. Note, Pncf is the non-critical failure probability and the MTTF is

given in the number of discrete steps (or time units).

5.6.2 Continuous Analysis

The results of the continuous analysis are shown in Figure 46. These results are based

on the CTMC shown in Figure 45. The mechanical (λm), communication (λc) and timing

(τ) failure rates are shown associated with their transition arcs. The trade-off between the

rate of train arrivals (µ1), speed of the train (µ3), service rate of the gate mechanism (µ6, µ9)

and the failure rates were investigated.

*Ti me uni ts: ea ch tick on the x -ax is is 10 00 tu s. Ass ume a tu is a seco nd , then
 ther e are ~1 6m ins /tick, an d 10 ,00 0 ticks (fu ll rang e of d at a) ar e ~ 277 8h rs .

**Cons ta nt s: µ1= 0. 0001, µ2- 4,7, 8= 1.0,
 µ9, 10= 1.0, µ5 & µ6 = 0.1 & 0.01. λ=λ3,4, 8,9

Run1

Run2

Run3 Runs 4, 5& 6 (no vi si ble dif ference)

Run7

10,0008,0006,0004,0002,000

0.8

1.0

0.4

0.6

0.2

0.34

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7

Key:

Time unit s (tu)*

Re
lia

bi
lit

y

 Inp ut Para met ers :**

1. τ5=0. 009 08 λ=10 -7 λ5, 10 =10 -4

2. τ5=0. 000 90 8 λ=10 -7 λ5, 10 =10 -4

3. τ5=0. 000 09 08 λ=10 -7 λ5, 10 =10 -4

4. τ5=0. 000 00 90 8 λ=10 -7 λ5, 10 =10 -4

5. τ5=0. 0� λ=10 -7 λ5, 10 =10 -4

6. τ5=0. 0� λ=0. 0 λ5, 10=10-4

7. τ5=0. 0� λ=0. 0 λ5, 10=10-5

 Res ul ts:

Run 1. .Rel =4.58 x1 0-40 Mt tf= 1. 09 x1 05tus

Run 2. .Rel =4.58 x1 0-9 Mt tf= 5. 20 x1 05tus

Run 3. .Rel =1.07 x1 0-5 Mt tf= 8. 73 x1 05tus

Run 4. .Rel =2.34 x1 0-5 Mt tf= 9. 37 x1 05tus

Run 5. .Rel =2.56 x1 0-5 Mt tf= 9. 45 x1 05tus

Run 6. .Rel =2.58 x1 0-5 Mt tf= 9. 46 x1 05tus

Run 7. .Rel =3.44 x1 0-1 Mt tf= 6. 15 x1 06tus

Figure 46. Results of the continuous analysis.

73

The unreliability of communications do not significantly impact the MTTFs because we

have set those failure rates much lower than the rates associated with the gate's open/close

mechanism by a factor of 1,000 (i.e., λm = 0.0001 > λc = 0.0000001). Mechanical failures

and the possibility of the gate not closing (opening) in time (before the train arrives at the

intersection) are assumed to be greater. In Figure 46 an interesting relation is evident. We

observe that, if the train's speed tends to bring it to the intersection sooner than the gate can

close, then an improvement in the gate's mechanical reliability doesn't really help! To

improve the overall system's reliability it is more important to provide the additional

synchronization between the train and gate processes as described in Section 5.5 (and Figure

43), so as to avoid the possibility of having the gate miss its deadline (τ5). Alternatively, the

train may signal "arrive" much sooner, allowing ample time for the gate to close.

In general, it is important to see how much the least reliable entity impacts the overall

system reliability. In Figure 46, there are incremental improvements seen in the reliability of

the system at 10,000 time units from 10-40 to 10-5 for various values of τ5 (which reflects

the probability that the train arrives before the gate closes). The next most significant gain in

system reliability comes when the gate's mechanical failure rate is improved by a factor of

ten (note the difference between run 6 and 7 in the graph). In this case, the MTTF improves

by 6 times while the corresponding system reliability improves significantly from ~2.6x10-5

to ~3.4x10-1.

74

CHAPTER 6

CONCLUSIONS

Things which matter most must never be at the mercy of things which matter least.

--Goethe

6.1 Conclusion

The objective of this work was to show how CSP specifications can be translated into

SPNs for the purpose of reliability and performance analyses. This objective was met with

the construction of the CSPN tool. Such translations can give (1) insight into the feasibility

of meeting non-functional requirements, (2) help to identify the best candidate design, (3)

help to identify failure modes, and (4) to provide a means for describing how fault handling

mechanisms can be incorporated as a part of the CSP specification. This approach enables

the stochastic properties of the system specification to be ascertained while allowing the

parameters used in the analysis to be formally captured in the P-CSP design specification.

Subsequent analyses can then be run without having to rewrite all of the pertinent values.

Only those parameters that are identified as critical in terms of their impact to the integrity of

the overall system (i.e., sensitivity analysis) need be perturbed. The parameters (e.g., timing

delays, probabilities, and rates) which are selected for sensitivity analysis are then considered

in terms of their impact on system reliability and performance. In addition, these same

parameters can be correlated to cost as is show in [Sheldon95]. In general, this approach

provides the designer with an analysis tool that facilitates judicious cost-benefit trade-offs in

terms of the how structural changes in the design specification will satisfy system's

requirements (e.g., providing fault-avoidance and fault-tolerance).

A textual language for CSP specifications was designed. A software tool was

75

implemented for translating the CSP specifications into stochastic Petri nets. The Petri nets

are coded in the form of a coincidence matrix. The graphical representation of the resulting

Petri net can be viewed using the dot tool [a Unix filter for drawing directed graphs].16 The

system coincidence matrix is converted into a file format needed for analysis using SPNP.

The tool has been tested using a diversity of process compositions and nesting of

compositions. Some validation testing has been employed with the goal of determining how

similar the resultant Petri nets are to those which motivated the CSP specification

[Trivedi93]. Thus, some well known example Petri nets were first manually coded into P-

CSP specifications and then translated back into Petri nets using the CSPN tool. The original

Petri net was then compared to the translated Petri net. Except for additional dummy

transitions and places which are the artifacts of the canonical translation rules, the Petri nets

which were generated by the CSPN tool were equivalent to the original Petri nets.

6.2 Future plans

This work can be extended to incorporate a broader scope of translations and the

characterization of properties other than structural that are useful for error avoidance, fault

tolerance, detection of deadlocks and unsafe behaviors, and timeliness. Other issues include

(1) ease of use (e.g., GUI) including mechanisms for detecting characteristics of the Petri net

that can be used in automatically17 parameterizing the SPNP formatted file, (2) relating the

analysis results back to the original specifications in a more rigorous and formal way, (3)

expanding the language to incorporate some of the ideas of real-time CSP and others, (4)

developing some state reduction techniques for the CSPN (e.g., combining dummy

transitions with tangible transitions) and (5) validating our approach by applying the method

to larger examples and/or a real system.

16See Drawing graphs with dot by Eleftherios Koutsofios and Stephen C. North at AT&T Bell Laboratories.
17Currently, CSPN uses a hard coded set of defaults that define the parameters part of the SPNP output file.
Those defaults can be changed interactively using the "-v" verbose mode flag on the command line. For
instance, in nets which generate absorbing states it only makes sense to run a transient analysis.

