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ABSTRACT

SPECIFICATION AND ANALYSIS OF STOCHASTIC PROPERTIES FOR

CONCURRENT SYSTEMS EXPRESSED USING CSP

Publication No. ___________

Frederick T. Sheldon,  Ph.D.

The University of Texas at Arlington, 1995

Supervising Professor:  Krishna M. Kavi

This work offers an innovative approach to predicting system behavior (in terms of

reliability and performance) based primarily on the structural characteristics of a formal

functional specification.  This work extends parts of the work by E-R. Olderog, by

developing a CSP-based grammar and canonical CSP-to-Petri net translation rules for

process composition and decomposition.  The mechanism for process composition is codified

in the CSP-to-Stochastic Petri net (CSPN) tool and consists of expanding the process

description represented as a series of small Petri nets into larger and larger nets while

preserving structural relationships and functional nomenclature.  In the last phase, the tool

reconciles synchronization points (for communicating processes), stochastic annotations and

generates an executable "spnp.c" file used for stochastic analysis.  Numerous command line

options provide a high degree of versatility and control to the user including the ability to

generate and view the Petri net graph.  CSPN supports systematic specification, automatic

translation and subsequent augmentation (e.g., failure rates, service rates, and transition

probabilities) of the resultant Petri nets for assessing stochastic properties of different
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candidate implementations and relating those properties back to the specification level.

The CSPN tool and methodology is based on the sound formalism of CSP.  The

approach abstracts the critical information necessary for performance analysis and translates

it to a Petri net for exploring feasible and critical markings and subsequent analysis of the

Markov state space.  The CSP-based language, P-CSP, is used for system specification.  The

CSPN tool parses the P-CSP specification and, using the set of canonical translation rules,

produces equivalent Petri nets represented as coincidence matrices.

In the design cycle, it is important to systematically and iteratively incorporate

capabilities (enhancements) such as fault-tolerance, and then re-evaluate their impacts to

optimize design parameters in terms of their stochastic properties.  Thus, the approach

advanced in this work (1) takes the results of the stochastic analysis and provides a formal

and automated mechanism for annotating those results (and their parameterization) back into

the original specification and, (2) those results are then automatically incorporated into the

computation of subsequent refinements.
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CHAPTER 1

INTRODUCTION

I have six honest serving men, they taught me all I knew.  Their names are where and
why and when, and how and what and who.

--Rudyard Kipling

1.1 Problem definition and goal

The main interests in this research involve dependability and fault-tolerance of

computing systems in devising techniques to prevent, detect and compensate for anomalies.

An experimental tool and modeling approach has been developed to explore the specification

and analysis of stochastic properties for concurrent systems expressed using CSP.  The idea

is to translate the formal system description into the information needed to predict its

behavior as a function of observable parameters (topology, timeliness, communications and

failure categories).  The modeling approach uses a theory based on proven translations

between CSP (communicating sequential processes) and Petri nets.  In particular, the tool

translates the design specification, written in a CSP dialect called P-CSP, into stochastic Petri

nets for analysis based on the structural and stochastic properties of the specification.  The

grammar and CSP-to-Petri net (CSPN) tool enable service and failure rate annotations to be

related back to the original CSP specification.  The annotations are then incorporated in the

next round of translations and stochastic analysis.  The tool automates the analysis and

iterative refinement of the design specification  process.  Within this setting, we can

investigate whether functional and non-functional requirements have been satisfied.

1.2 Motivation

Today's computing systems are large and complex [Basili91].  Therefore, informal and

intuitive specifications are too vague and imprecise to capture the complete semantics of a
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system's requirements [Gomaa94, Hall90].  A formal specification language is founded on

mathematical principles and is used to describe system properties precisely and to provide a

systematic approach to avoid ambiguity, incompleteness and inconsistency [Collins87,

Abadi93, Alur90, Dahbura90, Delisle90, Deng92, 91, 90, Dillon92, Garlan90, Genrich92,

Gerhart90, Heitmeyer91, Hird91, Hooman90, Van Leeuwen90, Wang93, Wing90, Wood90].

Formal specifications provide good support for designing a functionally correct system,

however they are weak at incorporating non-functional performance requirements (like

reliability) [Enand89, Palumba92].  Current systems must also have high performance and

reliability.  Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the

performance and reliability for a system, but they may be too abstract and cumbersome from

the stand point of specifying and evaluating functional behavior [Balbo95, 94, 92a,b, Ibe89,

Choi93, 92].  Therefore, one major objective of this research is to provide an integrated

approach to assist the user in specifying both functionality (qualitative: mutual exclusion and

synchronization) and performance requirements (quantitative: reliability and execution

deadlines).  In this way, the merits of a powerful modeling technique for performability

analysis (using SPNs) can be combined with a well-defined formal specification language.  In

doing so, we can come closer to providing a formal approach to designing a functionally

correct system that meets reliability and performance goals [Wang94, 95].

1.2.1 Predicting the reliability of formal specifications

Our approach is based on the notion that formal, mathematically precise methods should

be used to design complex, safety critical systems [Butler86, 88a,b 89, 93, Jahanian86, 87,

Ostroff91, 92a,b].  Thus, given a formalized functional specification of a system and its

external constraints (e.g., failure rates, communication delays, synchronization dependencies,

deadlines), what mechanisms are available for avoiding or tolerating faults/errors and how do

they impact the performance and reliability (i.e., performability) of the system [Meyer80a,b,

89a,b, Kavi92a,b, 94a,b, 95, Sheldon94]?  The approach can be visualized from Figure 1.
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External constraints
on the systemTopology

Fault tolerance

Deadline & resource
allocation

Communications

Failure  categories

Convert a Formal System Description into the
Information Needed  to Predict System Failure
Behavior

Formal
Functional

System
Specification

TrainXing =
    PROCESS Train =
         SEQ{InTransit(), {Togate ! Arrive},
                AtIntersection(), {Togate ! Depart}};
    PROCESS Gate =
        SEQ{Closed(), {Togate ? Depart},
                Open(), {Togate ? Arrive}};
  PAR{Train(), Gate() (Arrive,  Depart)}.

3. Automatic translations
(preserving structural and
functional characteristics)

1. Requirements
(functional and non-functional)

2. Design Specifications 4. Stochastic Petri net used to
analyze stochastic properties.

5. Relate stochastic  parameters
back to the original spec.

6. How do the externals impact
the performance and reliability?

Figure 1.  Linking failure behavior to specification characteristics.

As specifications are refined into detailed designs, the reliability and performance

requirements can also be refined to reveal trade-offs in design alternatives such as deciding

–what are the critical system elements; –what features of the system should be changed to

improve the system's reliability; –or validating performance and reliability goals using

stochastic system models.  To address these design issues, in the our approach, the critical

components of the requirements specification are abstracted.  A system is specified using the

P-CSP language providing a design specification.  The CSP-based grammar does not restrict

us from considering correctness properties; however, we are interested only that the structural

properties be preserved.  Once the specification has been translated, we enumerate modeling

assumptions, estimate model parameters, and solve the model for specific values of the

parameters using Markov analysis [Johnson89, Ciardo87, 89, 91, 92b, Sahner95].  At this

point it is easy to introduce timing constraints among feasible markings of the net and to

employ any of the numerous tools developed for stochastic Petri net analysis (e.g., GreatSPN,

SPNP, GSPN) [Chiola93a,b, Ciardo92a, 93b, Marsan84, 90].  Thus, having converted the

design  specification  into  Petri nets  allows the  system model  to  be analyzed  against  non-



4

functional requirements using any of the various Petri net tools available to predict its

behavior [Johnson88, Lloret92, Shatz90, 88].  SPNP was chosen for our purpose [Ciardo93b,

92a, 89, Mainkar93].

1.3 Organization

The following chapters provide a survey of the related work, mapping of the CSP based

language P-CSP to Petri nets, CSPN translation tool overview and its implementation details,

as well as an illustration of the usefulness of the tool and the conclusions.  There are four

brief appendices which cover the complete set of CSP-to-Petri net canonical translation rules,

P-CSP grammar, coincidence matrix expansion algorithms and finally another example

showing a more complex version of the railroad crossing using a monitor to arbitrate multiple

trains arriving in tight succession.
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CHAPTER 2

SURVEY OF RELATED WORK

The longer I live, the more I realize the impact of attitude on life.  Attitude, to me, is
more important than facts.

Charles Swindoll

2.1 In the beginning

Stochastic Petri nets and stochastic process algebras have somewhat of a common

evolution.  Indeed, their original definitions (standard Petri nets and pure process algebra) did

not include any temporal information and thus were only used for qualitative (ordered

sequences of actions/events) analysis of concurrent systems [Ribaudo95, Donatelli95].

Extending these basic formalisms with a notion of time has allowed the study of quantitative

properties of systems.  In this work the notion of time  is studied in relation to the structural

properties of the process algebraic (CSP) specification and is introduced after translating the

system description into Petri nets.  Some of the original ideas used in this work came from a

tutorial by K.M. Kavi and B.P. Buckles, Formal Methods for the Specification and Analysis

of Concurrent Processes , Tutorial Notes, 1993 Int'l Conf. on Parallel Processing, Lake

Charles, IL, August 20, 1993.  This tutorial examined and extended a Petri net semantics for

a subset of CCSP (the union of Milner's CCS and Hoare's CSP) based on [Olderog87].  The

semantics are provided by operationally defining for each process term in the subset, a

labeled place/transition net.  Olderog's definitions uses predicate/transition style translation

rules that are mainly concerned with concurrency, nondeterminism and recursion.  This

dissertation has extended and formalized parts of the work by Olderog, (described in

“Operational Petri Net Semantics for CCSP,” LNCS-266, pp. 196-223, 1987) and that of

Kavi and Buckles.
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2.2 Integrating function, performance and structural modeling

Most research in formal methods has been in the development of theories, methods, and

tools for the design and analysis of functional  and logical (correctness) aspects of computing

systems [Burns91, Carreno93, 92, Camilleri90, Cleveland93, Cook91, Craigen93a,b, Firth87,

Hall90. Harel92, 90, Kavi92, Kemmerer90, Mokkedem95, Reisig92].  On the other hand, the

analysis of performance is concerned with the statistical  aspects of such systems

[Covington89, Molloy82, 87].  Some have investigated simulation based approach to

integrated performance and reliability modeling [Cutright93, 91, Bagrodia91a,b, 90, Geist93,

90, 89, Goyal87, Heidelberger92, 88, Haverkort93, Nicol93, Nicola92, Rubinstein89,

Shahabuddin88].  These two research communities (functional vs. performance) have largely

proceeded independently.1  Stochastic Petri nets are well established in the field of

performance analysis [Ciardo94, 93a,c, 92b, 91a,b, 90, 87, Lindemann93, ICASE93].  More

recently, a growing interest in stochastic and probabilistic process algebraic techniques has

emerged [Gilmore95, 94, Gotz93, Milner92a,b, Nicollin91a,b, Priami95].  Given the

technological means and the financial basis (i.e., cost benefit), there is a clear need to treat

quantitative performance parameters as non-functional requirements in functional

specifications.  This merging of functionality and performance is especially attractive and

calls for the integration of qualitative and quantitative approaches to design and realization

[Pomello92].

2.3 Process algebras provide functional semantics

Typically, process algebraic laws allow the rewriting of a system description into

another, while preserving the notion of correctness that is captured by the equivalence used in

the underlying semantic model [Donatelli95, 94].  Their inherent support of compositional

reasoning enables the construction of complex systems as the combination of conceptually

simpler systems [Buchholz94].

1However, a number of efforts have put forth formal models of system behavior into the world of performance
(and dependability analysis) [Priami and Bernardo articles].
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2.4 Process algebras provide a notion of program equivalence

In the concurrent process algebra CCS, two programs are considered the same if they are

bisimilar [Nielsen86].  Many researchers have demonstrated that the theory of bisimulation is

mathematically appealing and useful in practice [Bloom95].  In CSP, the distinction between

two processes can be understood by observing completed traces (sequences of visible actions

performed by  a process).  The meaning of a process is determined according to a

synchronization tree, which is a rooted unordered tree whose edges are labeled with symbols

that denote basic actions or events (typically specified by a structured operational semantics).

Two trees are trace equivalent iff they have the same set of traces.2    For example, two

processes P and Q are distinguished iff there is some CSP context C[X] and string s   such

that only one of C[P] and C[Q] has s  as a trace.

a

a

b c

a

c d

b b

a a

b b

c d

a a

b c

A. Trace equivalent but
not trace congruent.

B. CSP trace congruent
but not bisimilar.

C. The machines are
different but their transition
behaviour is identical.

a

a

Figure 2.  Trace equivalence versus bisimilarity.

In CCS two processes are different according to an interactive game-like protocol called

bisimulation.  Indistinguishable CCS processes are bisimilar.  An example (assuming atomic

actions a, b, c and d) of this relation are the two trees a(b + c) and (ab + ac) in Figure 2A,

which are trace equivalent but not CSP trace congruent (i.e., in both CSP and CCS they are

distinct processes).  The trees (abc + abd) and a(bc + bd) in part B, are CSP trace congruent

2In contrast, given any set of operations  on trees, trace congruence is defined to be the coarsest congruence with
respect to the operations that refines the trace equivalence.
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but not bisimilar (i.e., equal in CSP but considered distinct in CCS).  Thus, we cannot

simulate the behavior of the first machine with the second and visa versa.  In part C, both

machines are bisimilar because one can simulate the other and visa versa [Olderog86].

Figure 3 shows that a recursive loop allowing action "a" to be repeated indefinitely can

be structured such that it provides CSP trace equivalence.  However, the two Petri nets (PNl

& PNr for left & right) are not bisimilar because the rightmost Petri net produces multiple

instances of the action "b" (i.e., the structural properties of the two graphs are distinct).  Thus,

even though the visible actions are trace equivalent they are not bisimilar because PNr can

distinguish the specific firings of individual "b" transitions while PNl can not.

b

b

b

b

a

a

a

ba

X

µX.(a →X || b)

Canonical translation
codified in CSPN Trace

equivalent

Bisimilar

This net (RHS)
distinguish the
execution of the b's.

Figure 3.  CSP-to-Petri net example of trace equivalence versus bisimilarity.

2.5 Stochastic process algebras  add performance semantics

Stochastic process algebras (SPAs) appeared only recently as a solution to an important

problem of process algebras: their inability to express performance aspects of concurrent

systems [Buchholz94, Brinksma95].  Like classical process algebras, they are abstract

languages used to represent concurrent systems in a compositional way.  Such algebras

provide the specfier with a small set of powerful operators whereby it is possible to construct
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process terms (compositional algebraic formulas) from simpler ones, without the graphical

complexity of nets and making the task of detecting and modifying subsystems easy .3  SPAs

extend the expressiveness of their predecessors by assigning each action a random variable

determining its duration and thus producing algebraic descriptions of concurrent systems

amenable to both functional and performance analysis.

Some early SPAs include PEPA [Hilston93a,b, 94], TIPP [Gotz93], MTIPP

[Hermanns94], and EMPA [Bernardo95a,b,c 94, Herzog94].  Take for example EMPA,

Extended Markovian Process Algebra, which comes equipped with an interleaving semantics,

a Markovian semantics and a net semantics.  The main drawback is related to state space

explosion which is due to the interleaving representation of concurrency.  This problem

manifests itself in both the state space of the LTS (labeled transition system) underlying the

process term and the reachability graph of the net semantics for the term.  One idea that

researchers have used is the notion of equivalence as a rewriting mechanism for reducing the

state space of the LTS.  The rewriting system is useful to analyze terms without generating

the underlying state space and also to obtain equivalent terms whose state space is smaller.

In general, the reductions (at least those that are not a congruence) are based on

simplifying assumptions and thus lead to approximate solutions.  Clearly, the interleaving

semantics of a parallel composition will lead to an exponential set of states since for instance,

if we combine n processes each with m states, we can end up with as many as mn states.

2.6 Petri nets add structural semantics in a distributed setting

Consider modeling and analysis of concurrent systems based on SPAs and SPNs as

presented in Figure 4.  Process algebraic laws enable rewriting one description of a system

into another while preserving the notion of correctness.  The transformation laws can be used

to model the application of actual design principles in a strategy of stepwise refinement to

obtain concrete descriptions of implementations from abstract system specifications.  A key

3Such compositions of stochastic/probabilistic specifications can lead to complex analysis and approximate
solutions.
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feature of SPAs is compositionality.  Compositionality concerns both the syntactical and

semantic level of the language.  Syntactical compositionality is related to system modeling

using a small set of operators that make it possible to construct process terms (formulas) from

simpler ones, without the graphical complexity of nets and making the task of recognizing or

modifying components of the system easier.  On the other hand, semantic compositionality is

related to system analysis which enables the study of separate system components (provided

an appropriate notion of equivalence over process terms is developed).  This is accomplished

by decomposing the system so that a given property of the composition can be recognized.

As an alternative to SPAs (and an approach similar to ours), a two phased approach can

be envisioned.  In the first phase, components of the concurrent system are represented as a

term of the SPA which, in rich environments like EPOCA [Donatelli94] EMPA

[Bernardo95], are equipped with an interleaving semantics accounting for both the qualitative

(i.e.,  functional)  and  quantitative (i.e., performance) part of the system behavior.4  Thus, the
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computing
invariants
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simulative

analysis

by means of
mathematical

analysis

by e.g.,
modeling
checking

Representation of the concurrent
system by means of a term of the
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Petri net

Centralized

Distributed

Qualitative Quantitative

Functional analysis Performance Evaluation

Performance EvaluationFunctional analysis
GreatSPN

Concurrency
Workbench

GreatSPN
or SPNP

SHARPE

Figure 4.  An integrated approach of stochastic analysis [Bernardo95].

4An interleaving semantics for a concurrent language maps programs to interleaving models.  In these models,
every parallel execution is simulated by means of the set of the alternative sequential executions obtained by
just interleaving the activities occurring in the parallel execution itself.  For example, consider terms a || b and
a.b + b.a.  From the interleaving point of view, these two terms are equivalent because each of them can perform
action a followed by action b, or action b followed by action a.  Classical interleaving models are labeled
transition systems.  Classical non-interleaving models are Petri nets, because the net semantics of the two terms
above are quite different [Bernardo95].
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interleaving model of the process algebraic representation can be projected onto both a

functional and performance model (top half of Figure 4).

Phase 2 consists of automatically obtaining from the algebraic representation of the

system an equivalent distributed representation (i.e., Petri nets or labeled transition systems).

A suitable distributed model would be stochastic Petri nets (naturally, numerous tools are

available to support performance evaluation within such a context GSPN, SPNP, SHARPE,

ASSIST) [Johnson91, 88, Sahner95].  The net representation of the concurrent system is

derived from the algebraic one without intervention of the designer and is useful when a less

abstract form is needed to highlight dependencies and conflicts among activities, or to

support establishing some properties (e.g., partial deadlock, race hazards).  These cases can

be easily checked only in a distributed setting.  Yet, there are limitations to this approach

because of the need to make simplifying assumptions which lead to approximate solutions.

2.7 Other related work

Wang presents a procedure (which could be automated) for transforming an Estelle

specification into a Stochastic Reward Net (SRN) formalism.5  The objective of transforming

Estelle into an SRN is to have a system designer specify a system using Estelle and then the

specification is automatically transformed into an SRN to carry out the performance and

reliability analysis [Wang94].

Davies and Schneider ['94] describe the language of real-time CSP used to specify

reactive systems in terms of their communicating behavior (also see Reed91).  Each system

component is represented as a process that shows where communication takes place.  By

combining processes, a description of the system in terms of its components is produced.

Moore ['90] shows the specification and verified decomposition of system requirements using

CSP for an abstract voice transmitter.  Peleska [‘91] gives a formal method based on CSP to

design fault tolerant systems combining algebraic and assertional techniques to formally

5Estelle is an ISO standard formal specification language and SRN is a well-developed modeling technique that
is used to carry out performance and reliability analysis.
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verify correctness properties.  Liu and Joseph ['92] give a method for transformation of

programs constructed for a fault-free system into fault-tolerant programs suitable for

execution on a system susceptible to failures.  Lee ['94a,b] gives a formal language GCSR

(Graphical Communicating Shared Resources) for the specification, refinement, and analysis

of (resource-bound) real-time systems.  The semantics are defined through a precise

translation to ACSR, a timed process algebra.  Execution of a GCSR specification is

supported through a precise correspondence between GCSR and ACSR and the operational

semantics of ACSR (e.g., requirements and design) [Gerber90, 88, Ben-Abdallah95, 94,

Choi95].  Priami [‘95] gives a technique for integrating behavioral and performance analysis

with topology information using Stochastic pi-calculus.  Van Glabbeek [‘90] gives a

structural operational semantics of PCCS as a set of inference rules which constitute a

semantic mapping from the set of process expressions to a particular domain of probabilistic

labeled transition systems.  Moller ['90] gives a temporal calculus of communicating systems.

2.8 Communicating Sequential Processes

CSP is a classic process algebra (like CCS [Milner80], and ACP [Bergstra84]).  The CSP

model was developed by Hoare in the late 70's  to early 80's and later, in 1986 extended by

Olderog [Olderog86, 87].  Table 1 gives five of the theoretical foundations that are supported

by CSP.6  The basic idea is that systems can readily be decomposed into subsystems common

6The theoretical foundations of CSP can be found in [Hoare85].  There, processes are presented as certain
mathematical elements (or structures) that can be manipulated algebraically, combined by various operators to
fork other processes, and proved or disproved to satisfy formally stated specifications.  Fridge ['88] has
implemented a working version of the CSP model in LISP.  Kourie ['87] has written a working version of the
CSP model in Prolog (without CSP's input/output notation for data transfer between processes).  Delisle and
Schwartz ['87] have created a CSP programming environment where programs can be subjected to experiments
and animated on the screen.  This model of CSP is written in Scheme. Finally, Olszewski ['93] has developed a
CSP laboratory for students of parallel programming which provides tools and facilities to experiment with, test
and analyze CSP descriptions/prototypes of parallel systems.  The analysis includes automatic detection of
deadlocks and unsafe behaviors of CSP processes.  Visualization facilities are planned with regard to
components of parallel systems and the communication between them.
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TABLE 1

THEORETICAL FOUNDATIONS OF CSP [Hoare85]

(1) Mathematical abstraction of process interactions (communication, concurrency, recursion, etc.).

(2) Rules to help in the implementation of processes (laws used to prove a specification is satisfied).

(3) How processes can be composed together into systems where components interact internally and
with their environment.

(4) Definition of a mathematical theory for deterministic and nondeterministic processes.

(5) Algebraic laws which describe the essential properties of the various operations that are useful
in expressing new problems, solutions and proofs.

environment (e.g., typical real-time).  Parallel composition of such systems is as simple as

sequential composition using traditional languages (e.g., Pascal).  Major benefits from using

CSP include its simplicity, generic nature of the algebraic operations, and the mathematical

foundation on which it is based [Sanders90].

A CSP program consists of n > 1 communicating processes; this is normally represented

using the parallel composition operator (||), which is associative: P = {P1 || P2  || .....|| Pn}.

Processes are assumed to have a disjoint set of variables (visible actions, trace alphabet).

Processes communicate synchronously by sending and receiving messages: the sending and

receiving actions (or events) are indicated using the input (?) and output (!) actions.  Pi ? x is

the action of receiving a value sent by process Pi (or received on a channel Pi based on the

notation of occam) into variable x.  Pj ! <expression> describes the action of sending the

value of the expression to Pj (or sending on a channel Pj).  Synchronization uses

complementary input and output commands by two communicating processes (i.e., using the

same channel).  Communication can be made selective by providing guards, where one of the

alternative communication actions with a satisfied  guard is selected.  A guarded command

has the general syntax of the form <guard> →  <command list>.  A command list is a set of

commands defining a sequence of actions, alternative actions based on either deterministic or

non-deterministic choice, recursive actions, or a STOP action.  STOP terminates (or
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deadlocks) a process.  The following summarizes CSP syntax (| means 'choice'):

P ::= STOP | (a → P) | (P\b) | (P  Q) | (P  Q) | ( P ||b Q) | (P; Q) | (µX• P).

Notationally, in CSP, capitalized names are process names, and lower case characters

denote visible actions.  Here, (a →  P) means, action 'a' followed by process  P, (P\b) is the

same as P except action b is hidden7, (P Q) represents a non-deterministic choice between P

and Q, (P Q) represents a deterministic choice between P and Q, ( P||bQ) shows concurrent

processes P and Q that synchronize on action b, (P; Q) a sequence between P and Q, (µX• P)

is used for recursion.

2.8 The CSP-based language (P-CSP) primitives

Systems are built from processes.  The simplest process is an action (an assignment,

input or output).  SKIP and STOP are two special processes: they both perform no action

(i.e., engage in no event), but SKIP terminates while STOP does not terminate (engages in

infinite internal actions) causing a deadlock.  Larger processes are built by combining smaller

processes.  PAR (or ||), SEQ (or ;), NDC (or ), DC (or ), and Mu.X{} (or µX• P) are the

constructors that can be used for this purpose.  The CSP-based grammar is provided formally

as a yacc specification in Appendix B [Barrett90, Roscoe86, Jones87, INMOS88].8

An example construction would be: PROCESS My_example = SEQ{P, Q, R}; where

each process is performed in succession.  In our language, a process need not be declared,

but declared processes must subsequently be used as a "process call."  In this way, larger

processes are formed from the composition of smaller processes.  A statement list is a

sequential list of n ≥ 1 statement(s).  A statement can be an event (or trigger) which causes a

7In describing the internal behavior of a mechanism, we often need to consider events representing internal
transitions of that mechanism (interactions and communications internal to that mechanism).  After construction
of the mechanism, we may conceal the structure of its components; and also wish to conceal all occurrences of
actions internal to the mechanism.  Such actions can occur automatically and instantaneously without being
observed or controlled by the environment of the process.  Thus, if b is a finite set of events to be concealed in
this way, then P\b is a process that behaves like P, except that each occurrence of any event in b is hidden and
not visible to be observed.
8In P-CSP, process and channel names are capitalized (at least the first letter) while other elements (i.e., actions
or messages) use only lower case.  These are style guidelines and are not inforced by the CSPN tool.
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process to engage in an action (e.g., a → P).  This process is defined as an implication.  Input

and output require a channel.  Channels provide unbuffered, unidirectional point-to-point

communication of values between two concurrent processes (similar to Ada rendezvous).  A

guarded process combines one or more processes, each of which is conditional on an input, a

boolean expression or both.  An expression can be integer, boolean or relational (boolean

expressions must consist of boolean variables prefixed with "@").  Operands can be integers,

variables, integer expressions or relational expressions (distinct from boolean).

The first symbol encountered is the start symbol which is always be taken as the system

symbol.  The general structure of a P-CSP specification is similar to that of Ada except that

package specifications are process declarations composed of internal activities.  Process

declarations must come before the main body of the system specification.9  As shown below,

the main body begins after the last semicolon. The system specification ends with a period

(or dot "."):

System =

Global declarations would be located here.

PROCESS = declaration;

PROCESS = declaration;

PROCESS = declaration;

Process constructor {main body of system}.

The use of indentation helps to show subordinate relationships (i.e., activities or

processes that are contained within a given constructor like SEQ are indented).  An important

syntactic rule is enforced for messages during the translation.  Each message variable

specified in a synchronized PAR must have matching input and output (i.e.,

channel!messageX-x must match channel?messageX-x).  See Paragraph 4.7 - 8 for the syntax

and usage of failure and service rate annotations.

9C allows this if you ignore the "=" signs and consider the system symbol as the "main" part of a C program.
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2.9 Stochastic Petri nets

The Petri net in its simplest form is a directed bipartite graph, where the two types of

nodes are known as places  (circles) and transitions (bars) [Peterson81].  In our approach,

places represent events   while transitions represent actions.10  Other researchers have based

their system models on conditions and events (where their events are similar to our actions /

processes).11  However, in our approach, modeling is based on the notion in CSP of event-

action pairings.  The conditions are the events that cause actions (transitions) to take place.

For example, a coin inserted in a vending machine causes a candy to be dispensed, the event

is the coin insertion (token on an input-place) while dispensing a candy is an action which

causes a one-input-place transition firing as a result of the coin insertion (token on an output-

place).

A transition is enabled if all its inputs contain at least one token .  When a transition is

enabled, it can fire (asynchronously), leading the Petri net into a different arrangement of

tokens.  A marking represents a configuration of tokens in the places of the Petri net, and

denotes the state  of the Petri net.  A marking is reachable  if, starting in an initial marking, it

is obtained by a sequence of firings.  The reachability graph  is the set of all reachable

markings connected by arcs representing the transition firings.  In a stochastic Petri net, each

transition has an associated firing time, which can be zero (immediate shown as dark bars) or

exponentially distributed random variable (timed shown as light bars).

Completion of the action defined by a transition causes a token to be assigned to each of

its output places.  When a place is the input to several transitions, only one of the transitions

is enabled non-deterministically.12  As transitions are enabled, the state of the Petri net moves

10CSP processes perform the systems actions, while the events that trigger such actions are characterized by the
completion of an action (i.e., process) or the occurrence of conditions that enable the actions (or processes).
11Murata, describes a slightly different abstraction that defines conditions and events.  Murata uses places to
represent conditions, and transitions to represent events.  A transition has a certain number of input places and
output places representing the preconditions and post-conditions of an event (see [Murata89] page 542).
12Coincidentally, if several conflicting immediate transitions are enabled in a marking, a firing probability must
be defined.  If at least one immediate transition is enabled, the marking is said to be a vanishing  marking
(otherwise, if only timed transitions are enabled [or no transitions are enabled] it is a tangible  marking).
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from marking to marking.  An inhibitor  arc prevents a transition's firing when its

corresponding input place contains tokens.

A Stochastic Petri net (SPN) is simply a Petri net which has been extended in several

ways.  These extensions embed the model into a stochastic environment by associating a

random time with each of the transitions in the net.  The most general extensions allow the

usage of random variables for times (rates) and probabilities.13 The underlying stochastic

process is captured by the "extended reachability graph" (ERG), a reachability graph with

additional stochastic information on the arcs.  The ERG has been shown to be reducible to a

Continuous Time Markov Chain (CTMC) [Marsan84] provided that exponential distributions

are used for transition firing rates.  Since a SPN permits a probability distribution to be

associated with arcs (or transitions) they are very suitable for modeling system performance

and reliability.  Thus, each transition is associated with a random variable that expresses the

delay from the enabling to the firing of the transition.  When multiple transitions are enabled,

the transition with a minimum delay fires first.  The transition rate from state Mi to Mj = qij

is given by qij = λ i1 + λ i2 + . . .+λim  where λik is the delay in firing a transition tk which

takes the Petri net from marking Mi to Mj (when several transitions enable the firing from Mi

to Mj).  See an especially clear discussion of SPN models in chapter 7 of [Sahner95].

Markov and performability models are covered in the same book (chapters 4, and 6

respectively).  Examples of these types of models are available in part two (chapters 9, 10

and 12).  Also refer to [Ciardo89, Murata89, Kavi93, Balbo95, Laprie95, Levenson87,

Lewis88, Sahner93] for more details on Petri nets and SPNs, as well as Markov processes

and Markov Reward processes (an extension of Markov processes).

Traditional performance analysis, which assumes a fault free system, is separate from

dependability analysis which is carried out to study system behavior in the presence of faults.

Dependability analysis generally disregards the different performance levels that may be

13When there are multiple transitions enabled by one token, a probability is associated with each of the
involved transitions.  Such a transition is immediate and its firing is instantaneous (no time is consumed).
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associated with differing configurations [Arlat90, 93, Clark92, 93, 94, Dahlberg93,

Goswami92, Goyal92, Iyer89, 95, Yount95].  By combining performance and dependability,

the different types of interactions and their corresponding trade-offs can be assessed (this is

called performability analysis) [Sanders87, 88, 89, 91, 93, Muppala91, 94a,b].  Most of the

work on this combined evaluation is based on Markov reward processes (known as SRNs)

where a reward (or weight) is attached to each state of the Markov process (usually by

defining a C function).  Markov reward processes can potentially reflect concurrency,

contention, fault-tolerance, and degradable performance [Anderson85, Beli91, 90, Clark93,

Dugan94, 93a,b, 89, 87, Eckhardt85, 91, Elks91, Geist90, 83, Kim92].  They are used to

obtain not only program and system performance and system reliability (or availability)

measures, but also the combined measure of performability.  Though Markov reward models

posses the power to solve dependability, performance and performability problems, there is

still one major drawback which is the largeness of their state space [Aupperle91, 89,

Bobbio86, 90, Smotherman86, Sorensen93].  SPNP was designed to address this problem.

The SRN model is used to generate the underlying Markov reward model automatically

starting from a concise description written using the language for SPNP.

2.10 Introducing SPNP's C-based Stochastic Petri net Language (CSPL)

The SPNP package allows the user to perform steady state, transient, cumulative

transient, and sensitivity analysis of SRNs.  The language used for describing stochastic Petri

nets for the Stochastic Petri Net Package (SPNP) is CSPL.  CSPL is a super set of the C

language and thus provides the full expressive power of C.  Predefined functions are

available to define SPNP objects.  A single CSPL file is sufficient to describe any legal SRN

because the SPNP user can input (at run-time) the number of places and transitions, the arcs

among them, and any other required parameter.  The numerical parameters used in the

specification of rates and probabilities are incorporated in the same single CSPL file.

The function parameters  allows the user to customize how the package will perform the
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parameters(){
 iopt(IOP_PR_MARK_ORDER, VAL_CANONIC);
 iopt(IOP_PR_MERG_MARK, VAL_YES);
 iopt(IOP_PR_FULL_MARK, VAL_NO);
 iopt(IOP_PR_RSET, VAL_NO);
 iopt(IOP_PR_RGRAPH, VAL_NO);
 iopt(IOP_PR_MC, VAL_NO);
 iopt(IOP_PR_MC_ORDER, VAL_FROMTO);
 iopt(IOP_PR_PROB, VAL_NO);
 iopt(IOP_MC, VAL_CTMC);
 iopt(IOP_OK_ABSMARK, VAL_NO);
 iopt(IOP_OK_VANLOOP, VAL_NO);
 iopt(IOP_OK_TRANS_M0, VAL_YES);
 iopt(IOP_METHOD, VAL_SSSOR);
 iopt(IOP_CUMULATIVE, VAL_YES);
 iopt(IOP_SENSITIVITY, VAL_NO);
 iopt(IOP_ITERATIONS, 2000);
 iopt(IOP_DEBUG, VAL_NO);
 iopt(IOP_USENAME, VAL_NO);
 fopt(FOP_ABS_RET_M0, 0.000000);
 fopt(FOP_PRECISION, 0.000001);
}
net(){
 /* Definition of places */
 place("p0");   init ("p0",1);
 place("p1");   place("p2");   place("p3");
 place("p4");   place("p5");   place("p6");
  place("p7");   place("p8");   place("p9");
 place("p10");  place("p11");  place("p12");
 place("p13");  place("p14");  place("p15");
 place("p15");  place("p16");  place("p17");
 place("p18");  place("p19");  place("p20");
 place("p21");  place("p22");  place("p23");

 /* Definition of transitions */
 trans("dt_MuX");
 trans("sdt1");
 trans("Slot_i_a2p");
 trans("dt_i_a2p");
 trans("sdt2");
 trans("Tray_o_large");
 trans("dt_o_large");
 trans("sdt3");
 trans("Tray_o_small");
 trans("dt_o_small");
 trans("Tray_o_a1p");
 trans("dt_o_a1p");
 trans("dt1");
 trans("sdt4");
 trans("Slot_i_a1p");
 trans("dt_i_a1p");
 trans("sdt5");
 trans("Tray_o_small");
 trans("dt_o_small");
 trans("sdt6");
 trans("Slot_i_a1p");
 trans("dt_i_a1p");
 trans("Tray_o_large");
 trans("dt_o_large");
 trans("dt2");
 trans("dt3");
 trans("ft_Slot_i_a2p");
 trans("ft_Slot_i_a1p");

 /* Definition of rates */
 probval("dt_MuX",1.0);
 rateval("sdt1",0.50000000);
 rateval("Slot_i_a2p",0.1);
 probval("dt_i_a2p",1.0);
 rateval("sdt2",0.50000000);
 rateval("Tray_o_large",0.1);
 probval("dt_o_large",1.0);
 rateval("sdt3",0.50000000);
 rateval("Tray_o_small",0.1);
 probval("dt_o_small",1.0);
 rateval("Tray_o_a1p",0.1);
 probval("dt_o_a1p",1.0);
 probval("dt1",1.0);
 rateval("sdt4",0.50000000);
 rateval("Slot_i_a1p",0.1);
 probval("dt_i_a1p",1.0);
 rateval("sdt5",0.50000000);
 rateval("Tray_o_small",0.1);
 probval("dt_o_small",1.0);
 rateval("sdt6",0.50000000);
 rateval("Slot_i_a1p",0.1);
 probval("dt_i_a1p",1.0);
 rateval("Tray_o_large",0.1);
 probval("dt_o_large",1.0);
 probval("dt2",1.0);
 probval("dt3",1.0);
 rateval("ft_Slot_i_a2p",0.0055);
 rateval("ft_Slot_i_a1p",0.0045);

 /* Definition of input arcs */
 iarc("dt_MuX", "p0");
 iarc("sdt1", "p1");
 iarc("Slot_i_a2p", "p2");
 iarc("dt_i_a2p", "p3");
 iarc("sdt2", "p4");
 iarc("Tray_o_large", "p5");
 iarc("dt_o_large", "p6");
 iarc("sdt3", "p4");
 iarc("Tray_o_small", "p7");
 iarc("dt_o_small", "p8");
 iarc("Tray_o_a1p", "p9");
 iarc("dt_o_a1p", "p10");
 iarc("dt1", "p11");
 iarc("sdt4", "p1");
 iarc("Slot_i_a1p", "p12");
 iarc("dt_i_a1p", "p13");
 iarc("sdt5", "p14");
 iarc("Tray_o_small", "p15");
 iarc("dt_o_small", "p16");
 iarc("sdt6", "p14");
 iarc("Slot_i_a1p", "p17");
 iarc("dt_i_a1p", "p18");
 iarc("Tray_o_large", "p19");
 iarc("dt_o_large", "p20");
 iarc("dt2", "p21");
 iarc("dt3", "p22");
 iarc("ft_Slot_i_a2p", "p2");
 iarc("ft_Slot_i_a1p", "p12");
 /* Definition of output arcs */
 oarc("dt_MuX", "p1");
 oarc("sdt1", "p2");
 oarc("Slot_i_a2p", "p3");
 oarc("dt_i_a2p", "p4");
 oarc("sdt2", "p5");
 oarc("Tray_o_large", "p6");
 oarc("dt_o_large", "p11");
 oarc("sdt3", "p7");
 oarc("Tray_o_small", "p8");
 oarc("dt_o_small", "p9");
 oarc("Tray_o_a1p", "p10");
 oarc("dt_o_a1p", "p11");
 oarc("dt1", "p22");
 oarc("sdt4", "p12");
 oarc("Slot_i_a1p", "p13");
 oarc("dt_i_a1p", "p14");
 oarc("sdt5", "p15");
 oarc("Tray_o_small", "p16");
 oarc("dt_o_small", "p21");
 oarc("sdt6", "p17");
 oarc("Slot_i_a1p", "p18");
 oarc("dt_i_a1p", "p19");
 oarc("Tray_o_large", "p20");
 oarc("dt_o_large", "p21");
 oarc("dt2", "p22");
 oarc("dt3", "p0");
 oarc("ft_Slot_i_a2p", "p23");
 oarc("ft_Slot_i_a1p", "p23");
}

assert() {
  return(RES_NOERR);
}
ac_init() {
  fprintf(stderr,"\n<<<Run title goes here>>>");
  fprintf(stderr,"\nGenerating SRN data ...\n\n");
  pr_net_info();
}
ac_reach() {
  fprintf(stderr,"\nThe reachability graph is being ");
  fprintf(stderr,"generated ...\n\n");
  pr_rg_info();
}
/* - reward_type definitions go here ----------------*/
ac_final(){
 int i;
 time value( 0.1 );
 pr_mc_info();
 pr_std_average();
 pr_std_cum_average();
}

/********************************************************
 * SPNP File Name: vmc4_spnp.c
 * Run this file as follows: SPNP vmc4_spnp.c
 *
 * Mon Feb 12 12:59:41 1996
 ********************************************************/

Figure 5. SPNP input file structure.
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analysis.  Several parameters establishing a specific behavior can be selected (a complete

description of parameters are available in [Ciardo94]). The function net  permits the user to

completely define the structure and parameters of an SRN model.  The basic functions that

can be used inside the net include place(), trans(), iarc(), oarc(), and init() which defines the

initial marking.  The CSPL input file has the basic structure shown in Figure 5.

More advanced functions include harc() for making inhibitor arcs while the functions

miarc(), moarc(), and mharc() define multiple input, output and inhibitor arcs (these more

advanced functions are not synthesized during the translation process).  Guards which are

logical conditioning functions associated with a transition(s) and priorities can be specified

using guard() and priority().  Probabilistic behavior may be specified using probval(), the

timing of events can be specified by assigning rates to the transitions in rateval() and variable

cardinality arc can also be specified for input, output and inhibitor arcs.  Marking dependence

is specifiable using the mark() and enabled() functions.

2.11 The original contribution of this work

Our approach predicts system behavior (in terms of reliability and performance) based

primarily on the structural characteristics of a formal functional specification.  The core

augmentation to existing approaches is provided by our CSP-based grammar and canonical

CSP-to-Petri net translation rules for process composition/decomposition.  The mechanism

for process composition is codified in the CSPN tool and consists of expanding the process

description represented as sub-Petri nets into larger and larger nets.  In the last phase the tool

reconciles synchronization points, failure annotations and generates an executable spnp.c file

(at various levels of user controllable interaction).  In essence the contribution provides for

systematic and automatic translation and subsequent augmentation (e.g., failure rates, service

rates, and deadlines) of the resultant Petri nets for assessing different candidate

implementations; relating stochastic parameters back to the specification level; and analyzing

the stochastic Petri nets using the SPNP tool  [Ciardo87, 89, 90, 91, 92, 93a, b,  Trivedi93].
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2.12 Where does this work fit

The CSPN tool and methodology is based on a sound formalization of CSP which

provides process constructors, including primitives for parallel and sequential composition,

nondeterministic choice, and recursion.  To support top-down development, the grammar and

CSPN tool provide a notion of refinement (see Figure 6 below) that allows a designer to

describe a system at an appropriate abstract level.  At this level, a designer may estimate the

values of non-functional requirements (so called budgeting).  Later, the designer may add

more details by showing the internal structure of a component, explicitly presenting local

communications, and modifying the budget.  It is important to facilitate systematic

refinements and then re-evaluate their impacts to optimize design parameters.  Figure 6

shows that the approach involves abstraction from the requirements specification into a

design specification and subsequent evaluation based on the stochastic analysis of the system

models.  Automatic translation of the design specification into a stochastic Petri net

representation enables the use of a good number of sophisticated design and analysis tools.

Evaluate

Model 0.0

Evaluate

Model n.0

Best Design

Model
Development

Evaluate

Model 1.0

Validate Validate Validate

Prototyping

Implementation
n

Implementation
1

User
Needs

Refinement

Simulation
Mathematical (closed form stochastic analysis)

Testbed

Iteratively add capabilities and
enhancements with concomitant evaluation

Requirements
Specification

Design
Specification

Figure 6.  Refinement of system models.
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CHAPTER 3

MAPPING CSP TO PETRI NETS

The heart has its reasons which reason knows not of.
--Pascal

3.1 Mapping CSP to Petri nets

An initial set of rules for translating CSP specifications into Petri nets (Petri nets) is

defined in [Kavi93].  The translations  between  CSP  and  Petri  nets  are  based  on  the CSP

premise that processes execute actions which in turn enable other actions (in this way, CSP

processes move from one action to another).  Activities that enable a process can be viewed

as conditions (or events) which are represented by places, while the actions themselves are

viewed as transitions.  Some example translations are given in Figure 7.  Note that the P-CSP

b

c e

a d

F. Parallel actions
synchronize on b

(a→b→c) ||{b}  (d→b→e)

E. Non- and deterministic
choices run in parallel

(a   b) ||{a,b} (a  b)

a b

From environment

a b

From environment

D. Deterministic
choice

(a  b)

cba b

µX.(b    c→X)

B. Nondeterministic
choice w/ recursion

a    b

A. Nondeterministic
choice to  proc a or b

a b

a   b

C. Parallel actions
are transitions

NDC{ a, b}

DC{
   a AND
     {ch1 ? msg1},
   b AND
     {ch2 ? msg2 }
}

PAR{
   NDC{a, b},
   DC{a AND
             {ch1 ? msg1},
           b AND
             {ch2 ? msg2 }
   }
    (a,b)
}

PAR{

    {a→b→c},

    {d→b→e}(b)
}

Mu.X{
  NDC{

      b, c→X
  }
}

PAR{ a, b}

Figure 7.  Example CSP to Petri net translation rules (P-CSP shown in lower portion).
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(our textual language for CSP) equivalents constructions are shown below the graphs.  the P-

CSP grammar is described in Appendix B.

The CSP to Petri net translations were designed to facilitate automatic decomposition of

the CSP constructs into Petri net sub-components and subsequent composition of the subnet

components into a complete system  Petri net.  The Petri net translation from a given CSP

construction (i.e., specification) need not be unique because ultimately, the composition of

subnets requires that we introduce dummy places and transitions to maintain the Petri net's

bipartite nature.14   Thus, the CSP to Petri net translations are not isomorphic because of the

introduction of dummy transitions and places which are necessary to facilitate the automatic

composition of the subnets.  However, for our purpose, we do not require isomorphism.

Once the complete system  net is obtained, the structure itself may be reduced (e.g., by

combining adjacent dummy transitions or collapsing such places and transitions into their

predecessor/successor transitions) to a smaller model that is trace equivalent to the CSP

specification.  This in itself is all that is necessary to define a complete set of markings and

hence an equivalent Markov process.15

3.2 CSP translation incongruencies

Petri nets are inherently non-deterministic and asynchronous while CSP is inherently

deterministic and synchronous (though an explicit definition of non-deterministic choice

exists for CSP).  Since our purpose is stochastic analysis, we depend on the non-deterministic

nature of the Petri nets.  This may appear that the determinism of CSP (and the

nondeterministic construct) are translated to the same PN representation.  The translation of

the CSP structural properties is standardized (i.e., based on canonical rules of translation).16

14Intuitively, it is possible to reduce different Petri net equivalents into a canonical form.  A set of canonical
translation rules are applied to derive each component's Petri net equivalent.  Refer to Appendix A for the
complete set of canonical translation rules.
15A task which is left to the Petri net tool (i.e., SPNP).
16However, the nondeterministic choice composition operator of CSP (i.e., NDC in P-CSP) is treated as a
selection between two or more transitions which is made on the basis of assigning a (discrete) probability to
each.
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The goal is to demonstrate the feasibility of translating from CSP and Petri nets by

decomposing a CSP specification into its component parts (processes, actions, and

synchronizing actions etc.). This is done by choosing one standard (canonical) translation

path from among potentially numerous equivalents.

3.3 CSP translation mechanism and commentary

This section provides the conventions and mechanisms that have been defined for the

canonical translations [see Olderog87].  All CSP composition constructs (e.g., PAR, SEQ,

NDC, etc.) have an input place and this input maybe connected to the output of a different

process.  All processes have an initial marking.  Synchronization actions (a transition

common to communicating processes) do not consume time or resources.17  The solid  black

bar represents such a case.  The open light bar does consume resources (so called timed

transition) [Muppala94, Sahner95].  Solid bar transitions are used (primarily) to represent

dummy transitions (transitions added to maintain the bipartite structure of Petri nets).  This

type of transition is known as immediate .  In addition, some transitions are needed to indicate

synchronization with the environment (Figure 7D and E).  Such transitions are represented

with solid bars even though there may be delays associated with this type of synchronization.

STOP STOP

SKIP

p1

SKIP

p1

SKIP is
based on
occam and
performs no
action and
terminates.

a

p1

An action
with one
input and
one output
place.

Stop
action
has no
output. oror

outputoutputoutput

p0
input p0

input
p0
input

p0
input

p0
input

Figure 8.  CSP to Petri net rules for Actions and the STOP and SKIP processes.

An action is represented with one (or more) input places, a transition and one (or more)

output places as illustrated in Figure 8.  However, the STOP action has no output place

17Synchronization is represented by a synchronized action and is shown as a transition between two processes
(i.e., Channel-X ? message-X [for input] and Channel-X ! message-X [for output]).
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because it never terminates.  Actions comprising a process must be composed to form the

process.  In order to achieve this, input places and output places must be overlapped (is

combined) whenever an action follows another as illustrated in Figure 9B.  The same rule is

observed when one process "P" is followed by another process Q as shown in Figure 9C.  In

general, the process "P," as shown in Figure 9A, has an input place and an output place on

the boarder of a box.  The box symbolizes a complete process.  The box encompasses the

process transition(s) and any of the requisite places which may be necessary to compose

other transitions.  A box can contain other boxes just as a process can be made up of other

processes.  It should be clear that, within this framework, all Petri nets start with an input

place which is used to represent an initial marking (or initial state).  During the compositions,

these input places are combined with output places of other processes.  The complete

specification has exactly one input place, and hence one initial marking.

P

Q

p1

p0

output

input

p0
input

p1
output

C. Combining two processes P and Q.

a

P

p1

p0

output

input

pa
input

output
pa

B. Combining action "a" with the process P.

P

p1

p0
input

output

Process with one input
and one output place.

A.

New "combined process" are represented by a dashed box.

Figure 9. CSP to Petri net rules for Combining actions and processes.

In Figure 10, the action "a" triggers the nondeterministic composition of actions b and c.

Part A of this figure sufficiently represents the meaning of the composition:  a → NDC{b, c}.

When transition "a" fires, this enables a choice between  [dt1 → b]  and  [dt2 →  c].  The

whole composition consumes one token and produces one token on either place "pb" or place
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"pc."  Thus, part A has a certain compact and sufficient semantics, but lacks in its ability to

combine cleanly with other constructs.  For example, consider [a →  NDC{b, c}] combined

using "→" with [PAR{P, Q}].  The composition rewritten is:  a → NDC{b, c} →  PAR{P,

Q}.  This construction represents an action "a" that triggers the choice between b and c which

in turn triggers both processes "P" and "Q" to proceed in parallel.  However, there is no

single (unambiguous) place for connecting the succeeding PAR construct to the NDC

predecessor.  In Figure 10A, would the PAR be connected to place "pb" or place "pc"? The

answer is both.  The solution however, is shown in Figure 10B as the place "pdt3."  The

connection is made as described for figure 9B and C, by overlapping (or snapping together)

the output place of one with the input place of the other.

a

pa
output

dt1 dt2

pa
input

b

pb
output

pc
output

c

pc
input

pb
input

One input place.

One output
place.

dt3

a

b c

pa
output

pc
input

pb
input

dt1 dt2

pa
input

Dummy transtion "dt3" and place "pdt3" are added
to enable future compostions.

B.

Combining action "a" with the process NDC ( that contains
two actions "b" and "c"). If another construction was to be
combined (attached as a successor) then this structure
would need a way to attach to both the pb and p c places.

A.

a → NDC{b, c}

pdt3

pbc
output

Figure 10.  CSP to Petri net example of combining actions to form one process.

It is necessary to create additional places (and transitions) when the choice of an

action(s) is made in a deterministic sense (conditionally) or in a non-deterministic sense as

illustrated in Figure 11A and B respectively.  The same rule is observed for processes.  In

Figure 11A the additional darkened places and dummy transitions represent the possible

states or values of guards.  When these guards are combined with the initial place of the
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given process, this represents the deterministic enabling (or choosing) of one action (or

process) over another.  Thus, if msg1 occurs prior to msg2 the dummy transition dt1 is

enabled  and thus fires to enable the process "P" to become active.

dt3

P Q

initial

p2p1

dt1 dt2

p4

p0
guard guard

channel ? msg2

p3

channel ? msg1

DC{
   channel ? msg1 P(),
   channel ? msg2 Q()
};

Deterministic choice requires an external condition /
event occur to select a path (P or Q).

A.

NDC{P(), Q()};

An action "a" combined with a  process "P"
causes an overlapping of input and output places.

B.

dt1

p4

p3

P Q

initial

p2p1

sdt1 sdt2

p0

Figure 11.  CSP to Petri net rules for Deterministic and nondeterministic choice.

In Figure 11B, there are no environmental conditions that provide for the enabling of one

path versus the other.  Instead the choice is random (i.e., arbitrary): a path is chosen on the

basis of probability and the sum of the probabilities across all choices is one.  The special

nature of the Non-Deterministic Choice (NDC) construct requires that the initial dummy

transitions be distinguished form other normal dummy transitions.  Thus, normal dummy

transitions can be assigned a firing probability of one (e.g., dt3 in Figure 10B), whereas the

"sdtx" (x = 1, 2, ...) or special dummy transitions are assigned a probability.

In accordance with the 1-input place rule, the parallel composition of Figure 12A shows

an additional input place (and the transition "dt1" is added to keep the bipartite structure).

The immediate firing of "dt1" enables both processes P and Q to proceed independently.

However, before a token can be deposited in the "p5" place to conclude the complete

sequence of feasible markings, both P and Q must finish.  This subsequent joining is an
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artifact for observing the one input place one output place per process composition rule (or

the combining rule) described above.  This rule implements the combining of sub-Petri nets.

PAR{P(), Q()};

Two processes "P" and "Q" are combined in a parallel
composition.  There are two dummy transitions the
first forks the composed processes and the second
joins them

A. The synchronized parallel composition here has two
processes sending (Ch!msg) and receiving (Ch?msg)
the "msg." Both prcesses are blocked until "dt:msg"
transition fires. Each of the solid black transtions is
immediate and fires with probability one.

B.

P Q

dt2

p4p2

p5

p1 p3

dt1

p0 dt1

dt2

p7

p4

dt:msgp3 p6

PAR{
   {Ch?msg},
   {Ch!msg}
    (msg)
};

Ch?msg

p2

p1

p5

p0

Ch!msg

Figure 12.  CSP to Petri net rules for Parallel and synchronized parallel composition.

In Figure 12B, two CSP processes synchronize using a channel.  The channel and

message by necessity, are common to both processes.  The two processes that are

participating in the synchronization are without names.  As shown, they are simply the input

and output statements composed using a synchronized parallel composition.  Both processes

must first complete their part of the synchronizing action.  Once complete, they cooperate in

a joint synchronization transition (shown as a solid "immediate" transition since it is an

artifact of the translation).  This representation is more appropriate since the individual

processes must execute their respective actions and these actions consume time (and other

resources), while the rendezvous action is an event that consumes no time (or resources).

This type of synchronization causes both the sender (Ch ! msg) and the receiver (Ch ? msg)

to be blocked until the transition labeled "dt:msg" has fired.
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QP

dummy

µX.((P   Q)→ X) Mu.X{NDC{P(),Q()}}

QP

Classic CSP: P-CSP:

µX.(P  Q→X) Mu.X{NDC{P(),{Q()->X}}}
P-CSP:Classic CSP:

OR OR

First step

X

dt1

sdt1 sdt2

P {Q()->X}
QP

X

sdt1 sdt2

Second step

QP

X

sdt1 sdt2

dt1

QP

Figure 13.  Comparing CSP and P-CSP to Petri net rules for recursion.

In Figure 13, a number of recursive compositions are shown.  In the top half on the left

are two equivalent nets that represent a recursive non-deterministic choice.  The use of the

"dummy" provides a way to combine µX.((P  Q) →  X) with another composition.  The

adjacent (top middle) Petri net shows an equivalent solution (without the dummy transition).

Since dummy transitions are immediate (consume no time or resource) and fire with

probability one, they can be eliminated without a loss of generality.  The rightmost Petri net

was created by the CSPN tool.  The four dummy transitions can be reduced to either of the
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other two Petri nets in the top half of Figure 13.  This Petri net exemplifies tail recursion.

In the lower half of Figure 13 there is an example which is not  a tail recursion.  The first

Petri net on the left is the smallest possible translation (most reduced).  The other two Petri

nets on the right (bottom half) illustrate a two step process where the tail recursion is cut and

the result is thus equivalent to the small one on the left.  Actually, CSPN, in structuring a

recursive composition assumes tail recursion.  Thus, CSPN begins the translation by

attaching a recursive link back to the initial place.  After doing so, CSPN checks all of the

elements within the scope of the link to see if there is any cause (such as Q()→X) to cut the

tail recursive link and re-attach it in some other fashion, as shown in the example of Figure

13 (bottom half).  Figure 14 shows how these process compositions are viewed when

combining (or nesting) a non-deterministic choice inside a recursive construction.  The larger

clear shaded box defines the recursive process.  The smaller shaded boxes define the

component processes.  See the Appendix for further examples.

QP

X

sdt1 sdt2

QP

X

Mu.X{NDC{P(),Q()}} Mu.X{NDC{P(),{Q()->X}}}

dt1

sdt1 sdt2

Figure 14.  CSP to Petri net rules for recursion.

3.4 Specification of failures and failure handling in CSP

A failure can be specified for any action in CSP (or any process).  For example, consider
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the term "a→P" which can be extended to include failure specification as "(a → P)   (a →

Failure → Repair)."  The translation into a Petri net from this composition would look like

that of Figure 11B except the (a → P) term would replace P and the (a → Failure → Repair)

term would replace Q.  The Q transition is the failure (and repair) transition which could be

further expanded to account for the repair action.  This type of non-deterministic construction

can be extended to other types of CSP constructions.

Consider the vending machine (VMC) example specified in Figure 15.  This figure

shows how a failure annotation can cause a structural change in the Petri net.  A simple VMC

may include only two kinds events:  (1) insertion of a coin in the VMC slot(s), and (2)

dispensing of a candy.  A more complex VMC may offer a choice of slots for inserting a 2p

(i.e., two penny coin) or a 1p coin (thus, the customer may make the choice external to the

machine which slot).  Also, in the complex VMC case, there can be the possibility of

receiving a small or large candy.  In Figure 15 the particular choice of a 2p or a 1p is made

non-deterministically.  Examine the body of the VMC specification which begins with

construct "Mu.X{ ... " and concludes with  "}." which includes the ending period.  This is a

recursive construction because once a VMC transaction is complete the system can return to

a state which allows it to engage in another transaction.  Inside of the recursion, we see that

the choice is either one of two SEQ constructs that represent the 2p or the 1p input actions.

When the 2p path is chosen, the VMC will either dispense a small candy (and 1p change) or a

large candy.  If the 1p path is chosen then either another 1p will cause a large candy to be

produced or, with out the additional 1p coin, only a small candy can be dispensed.

The failure annotations are attached to the OnePenny and TwoPenny process

descriptions.  CSPN thus includes three additional failure transitions that all deposit their

tokens into place "p23."  Assume the transition "Slot ? a2p" may fail with a failure rate of

0.0055 while, transition "Slot ? a1p" fails with a failure rate of 0.0045 (of which there are two

actual transitions).  Only tangible (light colored) markings can fail.



32

VMC=

   PROCESS DispLg =
    {Tray ! large};

   PROCESS DispSm =
    {Tray ! small};

   PROCESS DispSm1p =
    SEQ{
       DispSm(),
       {Tray ! a1p}
    };

   PROCESS OnePenny =
    {Slot ? a1p}:FAIL(r= 0.0045);

   PROCESS TwoPenny =
    {Slot ? a2p}:FAIL(r= 0.0055);

Mu.X{
   NDC{
      SEQ{
         TwoPenny(),
         NDC{
            DispLg(),
            DispSm1p()
         }
      },
      SEQ{
         OnePenny(),
         NDC{
            DispSm(),
            SEQ{
               OnePenny(),
               DispLg()
            }
         }
      }
   }
}.

dt:MuX

sdt1

Slot?a2p

dt?a2p

sdt2

Tray!large

dt!large

sdt3

Tray!small

dt!small

Tray!a1p

dt!a1p

dt1

sdt4

Slot?a1p

dt?a1p

sdt5

Tray!small

dt!small

sdt6

Slot?a1p

dt?a1p

Tray!large

dt!large

dt2

dt3

ft:Slot?a2p

ft:Slot?a1p ft:Slot?a1p

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23

Figure 15.  VMC specification for CSP to Petri net with failure annotations.

Notice that in the Figure 15 Petri net there are three (light colored) transitions of which

two are labeled "ft:slot?a2p" and one is labeled as "ft:slot?a1p."  These three transitions are
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generated by CSPN automatically when the failure annotations are encountered and represent

the structural changes mentioned above (in this section).

3.5 Preserving the trace behavior of CSP specifications

Lets consider a sequence from the set of possible traces given by a particular CSP

composition structure (refer to Section 3.1.2 on program equivalence).  A CSP action takes

place when an enabling predicate is true.  The enabling predicate is defined either by some

external system events or by the completion of some other actions (remember, the completion

of an action may be viewed as an event).  A trace specification of a CSP process is the set of

all possible traces.  A trace is a sequence of events drawn from the process alphabet (which

defines the set of all visible events).

Now, consider the structure of a Petri net in relation to a trace specification.  The Petri

net that results from a CSP specification can be viewed as follows.  An action is represented

by a transition, and the completion of the action is represented by token(s) in its output

place(s).  A sequence of enabling transitions can easily be mapped to a feasible trace.  The

sequence of transitions produce a sequence of Petri net markings.  Accordingly, for each

trace, it is possible to find a sequence of Petri net markings.  It is necessary to prefix all

sequences of Petri net markings with an initial marking based on the definition of a Petri net.

Also, the asynchronous nature of a Petri net may lead to more markings in the sequence than

a CSP trace (unless time is associated with the CSP actions and Petri net transitions).  If time

is used as a criterion to constrain the set of feasible markings, then it may be possible to show

that the traces and the feasible markings coincide.

Using the translation / composition rules that are codified in CSPN, the Petri net of

Figure 16 was created.  This Petri net is the same net as the one shown in Figure 15 except

the failure annotations have been removed and thus it has three fewer transitions.  Let us

examine, the various characteristics of the translations in greater detail so as to understand

how is it possible to preserve the  trace  behavior  of  CSP  specifications.   The solid  colored
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dt:MuX

sdt1

Slot?a2p

dt?a2p

sdt2

Tray!large

dt!large

sdt3

Tray!small

dt!small

Tray!a1p

dt!a1p

dt1

sdt4

Slot?a1p

dt?a1p

sdt5

Tray!small

dt!small

sdt6

Slot?a1p

dt?a1p

Tray!large

dt!large

dt2

dt3

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

VMC =

  PROCESS DispLg = {Tray ! large};

  PROCESS DispSm = {Tray ! small};

  PROCESS DispSm1p = SEQ{
                        DispSm(),
                        {Tray ! a1p}
                     };

  PROCESS OnePenny = {Slot ? a1p};

  PROCESS TwoPenny = {Slot ? a2p};

Mu.X{
   NDC{
      SEQ{
         TwoPenny(),
         NDC{
            DispLg(),
            DispSm1p()
         }
      },
      SEQ{
         OnePenny(),
         NDC{
            DispSm(),
            SEQ{
               OnePenny(),
               DispLg()
            }
         }
      }
   }
}.

VMC = (Slt?2p→(Tr!Lrg→VMC)
      (Tr!Sm→Tr!1p→VMC))

      (Slt?1p→((Tr!Sm→VMC)
      (Slt?1p→(Tr!Lrg→VMC)))

Figure 16.  CSPN translation of the VMC example.

bars are of three types (1) dtx, (2) sdtx or (3) dt<:Mu/?/!>, where x is an integer.  A label

prefixed with "dt" is a dummy transition.  Dummy transitions are further broken into those

associated with the composition constructs (e.g., PAR, SEQ, etc.), and those associated with
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synchronization.  Dummy transitions with "?" or "!" and an identifier (e.g., large, small, etc.)

are manufactured for the purpose of creating a synchronization (or rendezvous) point.18  A

label prefixed with "sdtx" is a special dummy transition which has a probability associated

with its firing.  Also shown in Figure 16 is the specification (top one uses CSP bottom uses

P-CSP) used by CSPN to generate the associated Petri net.

TABLE 2

MARKINGS FOR VMC PETRI NET

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
M0 1
M1 1
M2 1
M3 1
M4 1
M5 1
M6 1
M7 1
M8 1
M9 1
M10 1
M11 1
M12 1
M13 1
M14 1
M15 1
M16 1
M17 1
M18 1
M19 1
M20 1
M21 1
M22 1

18When processes rendezvous, CSPN matches an input with an output (i.e., same message and channel
identifiers).  The result is to combining the two synchronizing transitions into one.  The one is re-labeled
"dt:msg_name."  In the VMC construction there are no rendezvous as such (just input of change and output of
candy).  See more details on the notion of rendezvous (that cause a combining of two into one) in the Appendix.
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M1

M22

M21

M20

M19

M18

M17
M14

M15

M16

M13

M12

M11

M10

M0

M2

M3

M4
M5

M6

M7

M8

M9

Markings  related to
synchronizatoin

Dummy Markings  due to
Petri net translations

Dummy Markings   M11, M21 and
M22 are due to Petri net translations

Figure 17.  Structure of the feasible sequences of VMC Marking transitions.

In the VMC construction of Figure 16, there are no rendezvous (just input of change and

output of candy).  The path choice is made nondeterministically.  The complete deterministic

dt1

dt:Mu.X

dt4

Slot?a2p Slot?a1p

p00

p02 p12

p01
Deposit in 2
penny slot

Deposit in 1
penny slotpe1 pe2

Deterministic choice

An additional place and transition
may be visualized when the choice
of an action is made in a
deterministic sense (conditionally).
In the case of the VMC the
selection is made by the customer.

pe0

pe1

Cutomer
(external)
Action

Figure 18.  Partial VMC translation showing deterministic choice.
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construction is envisioned based on Figure 18.  Each dummy transition (e.g., dt1 and dt4) has

two different places which must contain a token before a choice (firing) can be possible.  If

the customer chooses to deposit a 2-penny coin in the 2penny slot the place labeled pe1 gains

a token (or pe2 for the 1penny slot).  This is an external action.

The place "p01" has a token while the VMC is in an idle (waiting state) until inputs from

the environment (customer selections) cause a choice to be made.  The environmental input

in the case of the VMC example represents user selections.  If the NDC compositions are

replaced with DC compositions, then the complete solution would use six additional places.

Table 2 shows the markings of the VMC Petri net.  Figure 17 gives the marking

transitions.  The dummy markings   (in shaded ovals) can be combined into a single marking.

Likewise, the markings that are due to synchronization (in the clear rounded rectangles) can

be combined if the synchronization action is instantaneous.  The CSP specification in Figure

16 has the following possible traces:

1. ? a2p,  ! large
2. ? a2p,  ! small,  ! a1p
3. ? a1p,  ! small
4. ? a1p,  ? a1p,    ! large

The corresponding transitions of Markings that are possible from the Petri net are:

1. M0 M1 M2 M3 M4 M5 M6  M11 M22
2. M0 M1 M2 M3 M4 M7 M8  M9 M10 M11 M22
3. M0 M1 M12 M13 M14 M15 M16  M21 M22
4. M0 M1 M12 M13 M14 M17 M18  M19 M20 M21 M22

The bold face markings are the essential markings while the others are an artifact of the

translation rules.  Note that there is a one to one correspondence between the set of CSP

traces and the bold face marking (assume that the M0 marking is removed).


