

SPECIFICATION AND ANALYSIS OF STOCHASTIC PROPERTIES FOR

CONCURRENT SYSTEMS EXPRESSED USING CSP

The members of the Committee approve the doctoral
dissertation of Frederick T. Sheldon

Krishna M. Kavi ______________________________________
Supervising Professor

Bill D. Carroll ______________________________________

Roger S. Walker ______________________________________

Bob P. Weems ______________________________________

Hee Yong Youn ______________________________________

Kishor S. Trivedi ______________________________________

Dean of the Graduate School ______________________________________

DEDICATION

To my parents Donald and Monica and youngest brother Bruce whom we miss very much

and dearly love. Also, to my sister Mary and her three daughters Josie, Danny and Alicia.

Finally, to my brother Larry who I love and ask that God have mercy on us both.

SPECIFICATION AND ANALYSIS OF STOCHASTIC PROPERTIES FOR

CONCURRENT SYSTEMS EXPRESSED USING CSP

by

FREDERICK T. SHELDON

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 1996

iv

ACKNOWLEDGEMENTS

In 1992, I received a fellowship from the Systems Integration Branch of NASA Langley

Research Center (supervised by Steve D. Young, Carl Elks, Dave E. Eckhardt, and Wayne

Bryant et al.). I am very thankful for the opportunities and experiences NASA thus provided

and for the help that Seung-Min Yang provided in winning the contract. Bill D. Carroll

maintained the fellowship and contributed remarkably to my experiences in both research and

teaching as did Bob P. Weems. I greatly respect them both and appreciate their attention.

Roger S. Walker inspired this work into the realm of stochastic analysis. Hee-Yong Youn

provided insight into the significance of performability as a stochastic property.

Krishna M. Kavi is my major professor and who from I have received extraordinarily

precious insights throughout my doctoral program. I am very thankful for his dedicated

teaching. We also received assistance from Professor Kishor S. Trivedi, who kindly

extended his time, laboratory facilities, tools and the help of his graduate students.

I am grateful to my friends at Lockheed Martin, my former employer, and the USAF

whom, in the early years, provided research assignments, letters of support, financial support,

flexible hours and encouragement. Trina Bornejko of the USAF helped me compete for the

NASA GSRP Fellowship. I would also like to thank Chris Turbeville, David Sheely, Farhad.

Kamangar, Terry Sergeant, Sherman Reed and Marco Bernardo (Universita` di Bologna)

whom helped with analysis techniques, C-code and tools. The conscientious support from L.

Peterson, P. Hsia, R. Elmasri, J. Fitzer, K. Ecker, S. Greiner, and K.H. Kim (UC Irvine) was

very much appreciated. Finally, my most sincere thanks goes to Bill and Patty Howell and

their son Thomas. They opened their home and let me be a part of their family while I was

TDY at NASA Langley.

December 1, 1995

v

ABSTRACT

SPECIFICATION AND ANALYSIS OF STOCHASTIC PROPERTIES FOR

CONCURRENT SYSTEMS EXPRESSED USING CSP

Publication No. ___________

Frederick T. Sheldon, Ph.D.

The University of Texas at Arlington, 1995

Supervising Professor: Krishna M. Kavi

This work offers an innovative approach to predicting system behavior (in terms of

reliability and performance) based primarily on the structural characteristics of a formal

functional specification. This work extends parts of the work by E-R. Olderog, by

developing a CSP-based grammar and canonical CSP-to-Petri net translation rules for

process composition and decomposition. The mechanism for process composition is codified

in the CSP-to-Stochastic Petri net (CSPN) tool and consists of expanding the process

description represented as a series of small Petri nets into larger and larger nets while

preserving structural relationships and functional nomenclature. In the last phase, the tool

reconciles synchronization points (for communicating processes), stochastic annotations and

generates an executable "spnp.c" file used for stochastic analysis. Numerous command line

options provide a high degree of versatility and control to the user including the ability to

generate and view the Petri net graph. CSPN supports systematic specification, automatic

translation and subsequent augmentation (e.g., failure rates, service rates, and transition

probabilities) of the resultant Petri nets for assessing stochastic properties of different

vi

candidate implementations and relating those properties back to the specification level.

The CSPN tool and methodology is based on the sound formalism of CSP. The

approach abstracts the critical information necessary for performance analysis and translates

it to a Petri net for exploring feasible and critical markings and subsequent analysis of the

Markov state space. The CSP-based language, P-CSP, is used for system specification. The

CSPN tool parses the P-CSP specification and, using the set of canonical translation rules,

produces equivalent Petri nets represented as coincidence matrices.

In the design cycle, it is important to systematically and iteratively incorporate

capabilities (enhancements) such as fault-tolerance, and then re-evaluate their impacts to

optimize design parameters in terms of their stochastic properties. Thus, the approach

advanced in this work (1) takes the results of the stochastic analysis and provides a formal

and automated mechanism for annotating those results (and their parameterization) back into

the original specification and, (2) those results are then automatically incorporated into the

computation of subsequent refinements.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

CHAPTER 1

INTRODUCTION .. 1

1.1 Problem definition and goal ... 1

1.2 Motivation .. 1

1.2.1 Predicting the reliability of formal specifications 2

1.3 Organization .. 4

CHAPTER 2

SURVEY OF RELATED WORK .. 5

2.1 In the beginning ... 5

2.2 Integrating function, performance and structural modeling 6

2.3 Process algebras provide functional semantics .. 6

2.4 Process algebras provide a notion of program equivalence 7

2.5 Stochastic process algebras add performance semantics 8

2.6 Petri nets add structural semantics in a distributed setting 9

2.7 Other related work ... 11

2.8 Communicating Sequential Processes ... 12

2.8 The CSP-based language (P-CSP) primitives .. 14

2.9 Stochastic Petri nets ... 16

viii

2.10 Introducing SPNP's C-based Stochastic Petri net Language (CSPL) 18

2.11 The original contribution of this work ... 20

2.12 Where does this work fit .. 21

CHAPTER 3

MAPPING CSP TO PETRI NETS ... 22

3.1 Mapping CSP to Petri nets ... 22

3.2 CSP translation incongruencies ... 23

3.3 CSP translation mechanism and commentary ... 24

3.4 Specification of failures and failure Handling in CSP ... 30

3.5 Preserving the trace behavior of CSP specifications ... 33

CHAPTER 4

CSPN TOOL OVERVIEW AND IMPLEMENTATION DETAILS 38

4.1 CSPN tool overview .. 38

4.2 Translation phases of the CSPN tool ... 39

4.3 Running the CSPN tool ... 42

4.4 CSPN data structures ... 43

4.5 Petri net compositions .. 45

4.6 P-CSP semantics as it relates to the data structures ... 52

4.7 P-CSP’s usage of failure and service rate annotations .. 54

4.8 Linking synchronization primitives ... 55

4.9 CSPN file descriptions ... 56

4.9.1 Cmd_line.c description .. 56

4.9.2 The csp.l and csp.y descriptions ... 56

4.9.3 Symbol_cspy.h and symbol_cspy.c description 57

4.9.4 Net.c description .. 58

4.9.5 Prlist.c description .. 59

ix

4.9.6 Scoring.c description .. 59

4.9.7 Expn_cspy.c description .. 60

4.9.8 Petri_cspy.c description ... 60

4.9.9 Miscellaneous file descriptions .. 60

4.9.10 Intermediate output files used for debugging .. 61

CHAPTER 5

ILLUSTRATION OF THE USEFULNESS OF THE CSPN TOOL 62

5.1 Combining functional and performance analysis .. 62

5.2 Requirement specification for the railroad crossing .. 62

5.3 The CSP for the railroad crossing .. 63

5.4 The P-CSP for the railroad crossing .. 64

5.5 Semantics of the Petri net for the railroad crossing ... 65

5.5.1 Enumerating all possible failure transitions ... 67

5.5.2 Enumerating safety critical failure transitions 69

5.6 Parametric Sensitivity Analysis ... 71

5.6.1 Discrete Analysis ... 71

5.6.2 Continuous Analysis .. 72

CHAPTER 6

CONCLUSIONS .. 74

6.1 Conclusion ... 74

6.2 Future plans ... 75

APPENDIX A

CSP-TO-PETRI NET CANONICAL TRANSLATION DIAGRAMS 76

APPENDIX B

THE LEX AND YACC SPECIFICATION OF THE PARSEABLE CSP 84

APPENDIX C

x

CO-MATRIX EXPANSION ALGORITHMS .. 89

APPENDIX D

RAILROAD CROSSING USING A MONITOR ... 101

BIBLIOGRAPHY .. 110

xi

LIST OF FIGURES

Figure Page

1. Linking failure behavior to specification characteristics .. 3

2. Trace equivalence versus bisimilarity .. 7

3. CSP-to-Petri net example of trace equivalence versus bisimilarity 8

4. An integrated approach of stochastic analysis [Bernardo95] 10

5. SPNP input file structure .. 19

6. Refinement of system models ... 21

7. Example CSP to Petri net translation rules (P-CSP shown in lower portion) 22

8. CSP to Petri net rules for Actions and the STOP and SKIP processes 24

9. CSP to Petri net rules for Combining actions and processes 25

10. CSP to Petri net example of combining actions to form one process 26

11. CSP to Petri net rules for Deterministic and nondeterministic choice 27

12. CSP to Petri net rules for Parallel and synchronized parallel composition 28

13. Comparing CSP and P-CSP to Petri net rules for recursion 29

14. CSP to Petri net rules for recursion .. 30

15. VMC specification for CSP to Petri net with failure annotations 32

16. CSPN translation of the VMC example .. 34

17. Structure of the feasible sequences of VMC Marking transitions 36

18. Partial VMC translation showing deterministic choice .. 36

26. Activities associated with the translation phases of the CSPN tool 39

27. Context diagram and translation phases of the CSPN tool 40

28. P-CSP constructions with co-matrix and Petri net representations 44

29. Choosing a combining method for expansion that depends on locality 45

xii

30. Diagram of expansion method one ... 46

31. Diagram of expansion method two ... 46

32. Diagram of expansion method three (shows Petri nets and co-matrices) 47

33. CSPN run shows before and after combining coincidence matrices 48

34. Data structure for nesting and adjacency detected in the specification 49

35. Process hierarchy for system "SysSimpleEx" with exaggerated nesting 51

36. Relational diagram for the network (or process hierarchy) data structures 52

37. Definitions of the symbol table and process hierarchy data 53

38. Specifying failure annotations in P-CSP and the resulting Petri net 54

39. Resolving synchronization links ... 55

40. Pure CSP specification of the railroad crossing problem 63

41. P-CSP specification for parallel composition of the railroad crossing 64

42. P-CSP specification for the (tail type) recursive composition 65

43. CSP and P-CSP specifications which address race hazard 66

44. Railroad crossing Petri net showing all possible failure transitions 68

45. Markings and requisite Markov state transition diagrams 70

46. Results of the continuous analysis .. 72

xiii

LIST OF TABLES

Table Page

1. THEORETICAL FOUNDATIONS OF CSP .. 13

2. MARKINGS FOR VMC PETRI NET .. 35

3. GENERAL STEPS FOR USING THE CSPN TOOL ... 41

4. LISTING OF THE CSPN COMMAND LINE OPTIONS...................................... 42

5. CONSTRUCTS USED IN P-CSP AND THEIR TYPE VALUES 53

6. SYMBOL TABLE UTILITY FUNCTIONS... 57

7. NET UTILITY FUNCTIONS ... 58

8. DESCRIPTION OF INTERMEDIATE TRANSLATION FILES 61

9. DISCRETE ANALYSIS (Ptf = 0) ... 72

1

CHAPTER 1

INTRODUCTION

I have six honest serving men, they taught me all I knew. Their names are where and
why and when, and how and what and who.

--Rudyard Kipling

1.1 Problem definition and goal

The main interests in this research involve dependability and fault-tolerance of

computing systems in devising techniques to prevent, detect and compensate for anomalies.

An experimental tool and modeling approach has been developed to explore the specification

and analysis of stochastic properties for concurrent systems expressed using CSP. The idea

is to translate the formal system description into the information needed to predict its

behavior as a function of observable parameters (topology, timeliness, communications and

failure categories). The modeling approach uses a theory based on proven translations

between CSP (communicating sequential processes) and Petri nets. In particular, the tool

translates the design specification, written in a CSP dialect called P-CSP, into stochastic Petri

nets for analysis based on the structural and stochastic properties of the specification. The

grammar and CSP-to-Petri net (CSPN) tool enable service and failure rate annotations to be

related back to the original CSP specification. The annotations are then incorporated in the

next round of translations and stochastic analysis. The tool automates the analysis and

iterative refinement of the design specification process. Within this setting, we can

investigate whether functional and non-functional requirements have been satisfied.

1.2 Motivation

Today's computing systems are large and complex [Basili91]. Therefore, informal and

intuitive specifications are too vague and imprecise to capture the complete semantics of a

2

system's requirements [Gomaa94, Hall90]. A formal specification language is founded on

mathematical principles and is used to describe system properties precisely and to provide a

systematic approach to avoid ambiguity, incompleteness and inconsistency [Collins87,

Abadi93, Alur90, Dahbura90, Delisle90, Deng92, 91, 90, Dillon92, Garlan90, Genrich92,

Gerhart90, Heitmeyer91, Hird91, Hooman90, Van Leeuwen90, Wang93, Wing90, Wood90].

Formal specifications provide good support for designing a functionally correct system,

however they are weak at incorporating non-functional performance requirements (like

reliability) [Enand89, Palumba92]. Current systems must also have high performance and

reliability. Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the

performance and reliability for a system, but they may be too abstract and cumbersome from

the stand point of specifying and evaluating functional behavior [Balbo95, 94, 92a,b, Ibe89,

Choi93, 92]. Therefore, one major objective of this research is to provide an integrated

approach to assist the user in specifying both functionality (qualitative: mutual exclusion and

synchronization) and performance requirements (quantitative: reliability and execution

deadlines). In this way, the merits of a powerful modeling technique for performability

analysis (using SPNs) can be combined with a well-defined formal specification language. In

doing so, we can come closer to providing a formal approach to designing a functionally

correct system that meets reliability and performance goals [Wang94, 95].

1.2.1 Predicting the reliability of formal specifications

Our approach is based on the notion that formal, mathematically precise methods should

be used to design complex, safety critical systems [Butler86, 88a,b 89, 93, Jahanian86, 87,

Ostroff91, 92a,b]. Thus, given a formalized functional specification of a system and its

external constraints (e.g., failure rates, communication delays, synchronization dependencies,

deadlines), what mechanisms are available for avoiding or tolerating faults/errors and how do

they impact the performance and reliability (i.e., performability) of the system [Meyer80a,b,

89a,b, Kavi92a,b, 94a,b, 95, Sheldon94]? The approach can be visualized from Figure 1.

3

External constraints
on the systemTopology

Fault tolerance

Deadline & resource
allocation

Communications

Failure categories

Convert a Formal System Description into the
Information Needed to Predict System Failure
Behavior

Formal
Functional

System
Specification

TrainXing =
 PROCESS Train =
 SEQ{InTransit(), {Togate ! Arrive},
 AtIntersection(), {Togate ! Depart}};
 PROCESS Gate =
 SEQ{Closed(), {Togate ? Depart},
 Open(), {Togate ? Arrive}};
 PAR{Train(), Gate() (Arrive, Depart)}.

3. Automatic translations
(preserving structural and
functional characteristics)

1. Requirements
(functional and non-functional)

2. Design Specifications 4. Stochastic Petri net used to
analyze stochastic properties.

5. Relate stochastic parameters
back to the original spec.

6. How do the externals impact
the performance and reliability?

Figure 1. Linking failure behavior to specification characteristics.

As specifications are refined into detailed designs, the reliability and performance

requirements can also be refined to reveal trade-offs in design alternatives such as deciding

–what are the critical system elements; –what features of the system should be changed to

improve the system's reliability; –or validating performance and reliability goals using

stochastic system models. To address these design issues, in the our approach, the critical

components of the requirements specification are abstracted. A system is specified using the

P-CSP language providing a design specification. The CSP-based grammar does not restrict

us from considering correctness properties; however, we are interested only that the structural

properties be preserved. Once the specification has been translated, we enumerate modeling

assumptions, estimate model parameters, and solve the model for specific values of the

parameters using Markov analysis [Johnson89, Ciardo87, 89, 91, 92b, Sahner95]. At this

point it is easy to introduce timing constraints among feasible markings of the net and to

employ any of the numerous tools developed for stochastic Petri net analysis (e.g., GreatSPN,

SPNP, GSPN) [Chiola93a,b, Ciardo92a, 93b, Marsan84, 90]. Thus, having converted the

design specification into Petri nets allows the system model to be analyzed against non-

4

functional requirements using any of the various Petri net tools available to predict its

behavior [Johnson88, Lloret92, Shatz90, 88]. SPNP was chosen for our purpose [Ciardo93b,

92a, 89, Mainkar93].

1.3 Organization

The following chapters provide a survey of the related work, mapping of the CSP based

language P-CSP to Petri nets, CSPN translation tool overview and its implementation details,

as well as an illustration of the usefulness of the tool and the conclusions. There are four

brief appendices which cover the complete set of CSP-to-Petri net canonical translation rules,

P-CSP grammar, coincidence matrix expansion algorithms and finally another example

showing a more complex version of the railroad crossing using a monitor to arbitrate multiple

trains arriving in tight succession.

5

CHAPTER 2

SURVEY OF RELATED WORK

The longer I live, the more I realize the impact of attitude on life. Attitude, to me, is
more important than facts.

Charles Swindoll

2.1 In the beginning

Stochastic Petri nets and stochastic process algebras have somewhat of a common

evolution. Indeed, their original definitions (standard Petri nets and pure process algebra) did

not include any temporal information and thus were only used for qualitative (ordered

sequences of actions/events) analysis of concurrent systems [Ribaudo95, Donatelli95].

Extending these basic formalisms with a notion of time has allowed the study of quantitative

properties of systems. In this work the notion of time is studied in relation to the structural

properties of the process algebraic (CSP) specification and is introduced after translating the

system description into Petri nets. Some of the original ideas used in this work came from a

tutorial by K.M. Kavi and B.P. Buckles, Formal Methods for the Specification and Analysis

of Concurrent Processes , Tutorial Notes, 1993 Int'l Conf. on Parallel Processing, Lake

Charles, IL, August 20, 1993. This tutorial examined and extended a Petri net semantics for

a subset of CCSP (the union of Milner's CCS and Hoare's CSP) based on [Olderog87]. The

semantics are provided by operationally defining for each process term in the subset, a

labeled place/transition net. Olderog's definitions uses predicate/transition style translation

rules that are mainly concerned with concurrency, nondeterminism and recursion. This

dissertation has extended and formalized parts of the work by Olderog, (described in

“Operational Petri Net Semantics for CCSP,” LNCS-266, pp. 196-223, 1987) and that of

Kavi and Buckles.

6

2.2 Integrating function, performance and structural modeling

Most research in formal methods has been in the development of theories, methods, and

tools for the design and analysis of functional and logical (correctness) aspects of computing

systems [Burns91, Carreno93, 92, Camilleri90, Cleveland93, Cook91, Craigen93a,b, Firth87,

Hall90. Harel92, 90, Kavi92, Kemmerer90, Mokkedem95, Reisig92]. On the other hand, the

analysis of performance is concerned with the statistical aspects of such systems

[Covington89, Molloy82, 87]. Some have investigated simulation based approach to

integrated performance and reliability modeling [Cutright93, 91, Bagrodia91a,b, 90, Geist93,

90, 89, Goyal87, Heidelberger92, 88, Haverkort93, Nicol93, Nicola92, Rubinstein89,

Shahabuddin88]. These two research communities (functional vs. performance) have largely

proceeded independently.1 Stochastic Petri nets are well established in the field of

performance analysis [Ciardo94, 93a,c, 92b, 91a,b, 90, 87, Lindemann93, ICASE93]. More

recently, a growing interest in stochastic and probabilistic process algebraic techniques has

emerged [Gilmore95, 94, Gotz93, Milner92a,b, Nicollin91a,b, Priami95]. Given the

technological means and the financial basis (i.e., cost benefit), there is a clear need to treat

quantitative performance parameters as non-functional requirements in functional

specifications. This merging of functionality and performance is especially attractive and

calls for the integration of qualitative and quantitative approaches to design and realization

[Pomello92].

2.3 Process algebras provide functional semantics

Typically, process algebraic laws allow the rewriting of a system description into

another, while preserving the notion of correctness that is captured by the equivalence used in

the underlying semantic model [Donatelli95, 94]. Their inherent support of compositional

reasoning enables the construction of complex systems as the combination of conceptually

simpler systems [Buchholz94].

1However, a number of efforts have put forth formal models of system behavior into the world of performance
(and dependability analysis) [Priami and Bernardo articles].

7

2.4 Process algebras provide a notion of program equivalence

In the concurrent process algebra CCS, two programs are considered the same if they are

bisimilar [Nielsen86]. Many researchers have demonstrated that the theory of bisimulation is

mathematically appealing and useful in practice [Bloom95]. In CSP, the distinction between

two processes can be understood by observing completed traces (sequences of visible actions

performed by a process). The meaning of a process is determined according to a

synchronization tree, which is a rooted unordered tree whose edges are labeled with symbols

that denote basic actions or events (typically specified by a structured operational semantics).

Two trees are trace equivalent iff they have the same set of traces.2 For example, two

processes P and Q are distinguished iff there is some CSP context C[X] and string s such

that only one of C[P] and C[Q] has s as a trace.

a

a

b c

a

c d

b b

a a

b b

c d

a a

b c

A. Trace equivalent but
not trace congruent.

B. CSP trace congruent
but not bisimilar.

C. The machines are
different but their transition
behaviour is identical.

a

a

Figure 2. Trace equivalence versus bisimilarity.

In CCS two processes are different according to an interactive game-like protocol called

bisimulation. Indistinguishable CCS processes are bisimilar. An example (assuming atomic

actions a, b, c and d) of this relation are the two trees a(b + c) and (ab + ac) in Figure 2A,

which are trace equivalent but not CSP trace congruent (i.e., in both CSP and CCS they are

distinct processes). The trees (abc + abd) and a(bc + bd) in part B, are CSP trace congruent

2In contrast, given any set of operations on trees, trace congruence is defined to be the coarsest congruence with
respect to the operations that refines the trace equivalence.

8

but not bisimilar (i.e., equal in CSP but considered distinct in CCS). Thus, we cannot

simulate the behavior of the first machine with the second and visa versa. In part C, both

machines are bisimilar because one can simulate the other and visa versa [Olderog86].

Figure 3 shows that a recursive loop allowing action "a" to be repeated indefinitely can

be structured such that it provides CSP trace equivalence. However, the two Petri nets (PNl

& PNr for left & right) are not bisimilar because the rightmost Petri net produces multiple

instances of the action "b" (i.e., the structural properties of the two graphs are distinct). Thus,

even though the visible actions are trace equivalent they are not bisimilar because PNr can

distinguish the specific firings of individual "b" transitions while PNl can not.

b

b

b

b

a

a

a

ba

X

µX.(a →X || b)

Canonical translation
codified in CSPN Trace

equivalent

Bisimilar

This net (RHS)
distinguish the
execution of the b's.

Figure 3. CSP-to-Petri net example of trace equivalence versus bisimilarity.

2.5 Stochastic process algebras add performance semantics

Stochastic process algebras (SPAs) appeared only recently as a solution to an important

problem of process algebras: their inability to express performance aspects of concurrent

systems [Buchholz94, Brinksma95]. Like classical process algebras, they are abstract

languages used to represent concurrent systems in a compositional way. Such algebras

provide the specfier with a small set of powerful operators whereby it is possible to construct

9

process terms (compositional algebraic formulas) from simpler ones, without the graphical

complexity of nets and making the task of detecting and modifying subsystems easy .3 SPAs

extend the expressiveness of their predecessors by assigning each action a random variable

determining its duration and thus producing algebraic descriptions of concurrent systems

amenable to both functional and performance analysis.

Some early SPAs include PEPA [Hilston93a,b, 94], TIPP [Gotz93], MTIPP

[Hermanns94], and EMPA [Bernardo95a,b,c 94, Herzog94]. Take for example EMPA,

Extended Markovian Process Algebra, which comes equipped with an interleaving semantics,

a Markovian semantics and a net semantics. The main drawback is related to state space

explosion which is due to the interleaving representation of concurrency. This problem

manifests itself in both the state space of the LTS (labeled transition system) underlying the

process term and the reachability graph of the net semantics for the term. One idea that

researchers have used is the notion of equivalence as a rewriting mechanism for reducing the

state space of the LTS. The rewriting system is useful to analyze terms without generating

the underlying state space and also to obtain equivalent terms whose state space is smaller.

In general, the reductions (at least those that are not a congruence) are based on

simplifying assumptions and thus lead to approximate solutions. Clearly, the interleaving

semantics of a parallel composition will lead to an exponential set of states since for instance,

if we combine n processes each with m states, we can end up with as many as mn states.

2.6 Petri nets add structural semantics in a distributed setting

Consider modeling and analysis of concurrent systems based on SPAs and SPNs as

presented in Figure 4. Process algebraic laws enable rewriting one description of a system

into another while preserving the notion of correctness. The transformation laws can be used

to model the application of actual design principles in a strategy of stepwise refinement to

obtain concrete descriptions of implementations from abstract system specifications. A key

3Such compositions of stochastic/probabilistic specifications can lead to complex analysis and approximate
solutions.

10

feature of SPAs is compositionality. Compositionality concerns both the syntactical and

semantic level of the language. Syntactical compositionality is related to system modeling

using a small set of operators that make it possible to construct process terms (formulas) from

simpler ones, without the graphical complexity of nets and making the task of recognizing or

modifying components of the system easier. On the other hand, semantic compositionality is

related to system analysis which enables the study of separate system components (provided

an appropriate notion of equivalence over process terms is developed). This is accomplished

by decomposing the system so that a given property of the composition can be recognized.

As an alternative to SPAs (and an approach similar to ours), a two phased approach can

be envisioned. In the first phase, components of the concurrent system are represented as a

term of the SPA which, in rich environments like EPOCA [Donatelli94] EMPA

[Bernardo95], are equipped with an interleaving semantics accounting for both the qualitative

(i.e., functional) and quantitative (i.e., performance) part of the system behavior.4 Thus, the

by e.g.,
computing
invariants

by e.g.,
simulative

analysis

by means of
mathematical

analysis

by e.g.,
modeling
checking

Representation of the concurrent
system by means of a term of the

stochastic process algebra

Representation of the concurrent
system by means of a stochastic

Petri net

Centralized

Distributed

Qualitative Quantitative

Functional analysis Performance Evaluation

Performance EvaluationFunctional analysis
GreatSPN

Concurrency
Workbench

GreatSPN
or SPNP

SHARPE

Figure 4. An integrated approach of stochastic analysis [Bernardo95].

4An interleaving semantics for a concurrent language maps programs to interleaving models. In these models,
every parallel execution is simulated by means of the set of the alternative sequential executions obtained by
just interleaving the activities occurring in the parallel execution itself. For example, consider terms a || b and
a.b + b.a. From the interleaving point of view, these two terms are equivalent because each of them can perform
action a followed by action b, or action b followed by action a. Classical interleaving models are labeled
transition systems. Classical non-interleaving models are Petri nets, because the net semantics of the two terms
above are quite different [Bernardo95].

11

interleaving model of the process algebraic representation can be projected onto both a

functional and performance model (top half of Figure 4).

Phase 2 consists of automatically obtaining from the algebraic representation of the

system an equivalent distributed representation (i.e., Petri nets or labeled transition systems).

A suitable distributed model would be stochastic Petri nets (naturally, numerous tools are

available to support performance evaluation within such a context GSPN, SPNP, SHARPE,

ASSIST) [Johnson91, 88, Sahner95]. The net representation of the concurrent system is

derived from the algebraic one without intervention of the designer and is useful when a less

abstract form is needed to highlight dependencies and conflicts among activities, or to

support establishing some properties (e.g., partial deadlock, race hazards). These cases can

be easily checked only in a distributed setting. Yet, there are limitations to this approach

because of the need to make simplifying assumptions which lead to approximate solutions.

2.7 Other related work

Wang presents a procedure (which could be automated) for transforming an Estelle

specification into a Stochastic Reward Net (SRN) formalism.5 The objective of transforming

Estelle into an SRN is to have a system designer specify a system using Estelle and then the

specification is automatically transformed into an SRN to carry out the performance and

reliability analysis [Wang94].

Davies and Schneider ['94] describe the language of real-time CSP used to specify

reactive systems in terms of their communicating behavior (also see Reed91). Each system

component is represented as a process that shows where communication takes place. By

combining processes, a description of the system in terms of its components is produced.

Moore ['90] shows the specification and verified decomposition of system requirements using

CSP for an abstract voice transmitter. Peleska [‘91] gives a formal method based on CSP to

design fault tolerant systems combining algebraic and assertional techniques to formally

5Estelle is an ISO standard formal specification language and SRN is a well-developed modeling technique that
is used to carry out performance and reliability analysis.

12

verify correctness properties. Liu and Joseph ['92] give a method for transformation of

programs constructed for a fault-free system into fault-tolerant programs suitable for

execution on a system susceptible to failures. Lee ['94a,b] gives a formal language GCSR

(Graphical Communicating Shared Resources) for the specification, refinement, and analysis

of (resource-bound) real-time systems. The semantics are defined through a precise

translation to ACSR, a timed process algebra. Execution of a GCSR specification is

supported through a precise correspondence between GCSR and ACSR and the operational

semantics of ACSR (e.g., requirements and design) [Gerber90, 88, Ben-Abdallah95, 94,

Choi95]. Priami [‘95] gives a technique for integrating behavioral and performance analysis

with topology information using Stochastic pi-calculus. Van Glabbeek [‘90] gives a

structural operational semantics of PCCS as a set of inference rules which constitute a

semantic mapping from the set of process expressions to a particular domain of probabilistic

labeled transition systems. Moller ['90] gives a temporal calculus of communicating systems.

2.8 Communicating Sequential Processes

CSP is a classic process algebra (like CCS [Milner80], and ACP [Bergstra84]). The CSP

model was developed by Hoare in the late 70's to early 80's and later, in 1986 extended by

Olderog [Olderog86, 87]. Table 1 gives five of the theoretical foundations that are supported

by CSP.6 The basic idea is that systems can readily be decomposed into subsystems common

6The theoretical foundations of CSP can be found in [Hoare85]. There, processes are presented as certain
mathematical elements (or structures) that can be manipulated algebraically, combined by various operators to
fork other processes, and proved or disproved to satisfy formally stated specifications. Fridge ['88] has
implemented a working version of the CSP model in LISP. Kourie ['87] has written a working version of the
CSP model in Prolog (without CSP's input/output notation for data transfer between processes). Delisle and
Schwartz ['87] have created a CSP programming environment where programs can be subjected to experiments
and animated on the screen. This model of CSP is written in Scheme. Finally, Olszewski ['93] has developed a
CSP laboratory for students of parallel programming which provides tools and facilities to experiment with, test
and analyze CSP descriptions/prototypes of parallel systems. The analysis includes automatic detection of
deadlocks and unsafe behaviors of CSP processes. Visualization facilities are planned with regard to
components of parallel systems and the communication between them.

13

TABLE 1

THEORETICAL FOUNDATIONS OF CSP [Hoare85]

(1) Mathematical abstraction of process interactions (communication, concurrency, recursion, etc.).

(2) Rules to help in the implementation of processes (laws used to prove a specification is satisfied).

(3) How processes can be composed together into systems where components interact internally and
with their environment.

(4) Definition of a mathematical theory for deterministic and nondeterministic processes.

(5) Algebraic laws which describe the essential properties of the various operations that are useful
in expressing new problems, solutions and proofs.

environment (e.g., typical real-time). Parallel composition of such systems is as simple as

sequential composition using traditional languages (e.g., Pascal). Major benefits from using

CSP include its simplicity, generic nature of the algebraic operations, and the mathematical

foundation on which it is based [Sanders90].

A CSP program consists of n > 1 communicating processes; this is normally represented

using the parallel composition operator (||), which is associative: P = {P1 || P2 |||| Pn}.

Processes are assumed to have a disjoint set of variables (visible actions, trace alphabet).

Processes communicate synchronously by sending and receiving messages: the sending and

receiving actions (or events) are indicated using the input (?) and output (!) actions. Pi ? x is

the action of receiving a value sent by process Pi (or received on a channel Pi based on the

notation of occam) into variable x. Pj ! <expression> describes the action of sending the

value of the expression to Pj (or sending on a channel Pj). Synchronization uses

complementary input and output commands by two communicating processes (i.e., using the

same channel). Communication can be made selective by providing guards, where one of the

alternative communication actions with a satisfied guard is selected. A guarded command

has the general syntax of the form <guard> → <command list>. A command list is a set of

commands defining a sequence of actions, alternative actions based on either deterministic or

non-deterministic choice, recursive actions, or a STOP action. STOP terminates (or

14

deadlocks) a process. The following summarizes CSP syntax (| means 'choice'):

P ::= STOP | (a → P) | (P\b) | (P Q) | (P Q) | (P ||b Q) | (P; Q) | (µX• P).

Notationally, in CSP, capitalized names are process names, and lower case characters

denote visible actions. Here, (a → P) means, action 'a' followed by process P, (P\b) is the

same as P except action b is hidden7, (P Q) represents a non-deterministic choice between P

and Q, (P Q) represents a deterministic choice between P and Q, (P||bQ) shows concurrent

processes P and Q that synchronize on action b, (P; Q) a sequence between P and Q, (µX• P)

is used for recursion.

2.8 The CSP-based language (P-CSP) primitives

Systems are built from processes. The simplest process is an action (an assignment,

input or output). SKIP and STOP are two special processes: they both perform no action

(i.e., engage in no event), but SKIP terminates while STOP does not terminate (engages in

infinite internal actions) causing a deadlock. Larger processes are built by combining smaller

processes. PAR (or ||), SEQ (or ;), NDC (or), DC (or), and Mu.X{} (or µX• P) are the

constructors that can be used for this purpose. The CSP-based grammar is provided formally

as a yacc specification in Appendix B [Barrett90, Roscoe86, Jones87, INMOS88].8

An example construction would be: PROCESS My_example = SEQ{P, Q, R}; where

each process is performed in succession. In our language, a process need not be declared,

but declared processes must subsequently be used as a "process call." In this way, larger

processes are formed from the composition of smaller processes. A statement list is a

sequential list of n ≥ 1 statement(s). A statement can be an event (or trigger) which causes a

7In describing the internal behavior of a mechanism, we often need to consider events representing internal
transitions of that mechanism (interactions and communications internal to that mechanism). After construction
of the mechanism, we may conceal the structure of its components; and also wish to conceal all occurrences of
actions internal to the mechanism. Such actions can occur automatically and instantaneously without being
observed or controlled by the environment of the process. Thus, if b is a finite set of events to be concealed in
this way, then P\b is a process that behaves like P, except that each occurrence of any event in b is hidden and
not visible to be observed.
8In P-CSP, process and channel names are capitalized (at least the first letter) while other elements (i.e., actions
or messages) use only lower case. These are style guidelines and are not inforced by the CSPN tool.

15

process to engage in an action (e.g., a → P). This process is defined as an implication. Input

and output require a channel. Channels provide unbuffered, unidirectional point-to-point

communication of values between two concurrent processes (similar to Ada rendezvous). A

guarded process combines one or more processes, each of which is conditional on an input, a

boolean expression or both. An expression can be integer, boolean or relational (boolean

expressions must consist of boolean variables prefixed with "@"). Operands can be integers,

variables, integer expressions or relational expressions (distinct from boolean).

The first symbol encountered is the start symbol which is always be taken as the system

symbol. The general structure of a P-CSP specification is similar to that of Ada except that

package specifications are process declarations composed of internal activities. Process

declarations must come before the main body of the system specification.9 As shown below,

the main body begins after the last semicolon. The system specification ends with a period

(or dot "."):

System =

Global declarations would be located here.

PROCESS = declaration;

PROCESS = declaration;

PROCESS = declaration;

Process constructor {main body of system}.

The use of indentation helps to show subordinate relationships (i.e., activities or

processes that are contained within a given constructor like SEQ are indented). An important

syntactic rule is enforced for messages during the translation. Each message variable

specified in a synchronized PAR must have matching input and output (i.e.,

channel!messageX-x must match channel?messageX-x). See Paragraph 4.7 - 8 for the syntax

and usage of failure and service rate annotations.

9C allows this if you ignore the "=" signs and consider the system symbol as the "main" part of a C program.

16

2.9 Stochastic Petri nets

The Petri net in its simplest form is a directed bipartite graph, where the two types of

nodes are known as places (circles) and transitions (bars) [Peterson81]. In our approach,

places represent events while transitions represent actions.10 Other researchers have based

their system models on conditions and events (where their events are similar to our actions /

processes).11 However, in our approach, modeling is based on the notion in CSP of event-

action pairings. The conditions are the events that cause actions (transitions) to take place.

For example, a coin inserted in a vending machine causes a candy to be dispensed, the event

is the coin insertion (token on an input-place) while dispensing a candy is an action which

causes a one-input-place transition firing as a result of the coin insertion (token on an output-

place).

A transition is enabled if all its inputs contain at least one token . When a transition is

enabled, it can fire (asynchronously), leading the Petri net into a different arrangement of

tokens. A marking represents a configuration of tokens in the places of the Petri net, and

denotes the state of the Petri net. A marking is reachable if, starting in an initial marking, it

is obtained by a sequence of firings. The reachability graph is the set of all reachable

markings connected by arcs representing the transition firings. In a stochastic Petri net, each

transition has an associated firing time, which can be zero (immediate shown as dark bars) or

exponentially distributed random variable (timed shown as light bars).

Completion of the action defined by a transition causes a token to be assigned to each of

its output places. When a place is the input to several transitions, only one of the transitions

is enabled non-deterministically.12 As transitions are enabled, the state of the Petri net moves

10CSP processes perform the systems actions, while the events that trigger such actions are characterized by the
completion of an action (i.e., process) or the occurrence of conditions that enable the actions (or processes).
11Murata, describes a slightly different abstraction that defines conditions and events. Murata uses places to
represent conditions, and transitions to represent events. A transition has a certain number of input places and
output places representing the preconditions and post-conditions of an event (see [Murata89] page 542).
12Coincidentally, if several conflicting immediate transitions are enabled in a marking, a firing probability must
be defined. If at least one immediate transition is enabled, the marking is said to be a vanishing marking
(otherwise, if only timed transitions are enabled [or no transitions are enabled] it is a tangible marking).

17

from marking to marking. An inhibitor arc prevents a transition's firing when its

corresponding input place contains tokens.

A Stochastic Petri net (SPN) is simply a Petri net which has been extended in several

ways. These extensions embed the model into a stochastic environment by associating a

random time with each of the transitions in the net. The most general extensions allow the

usage of random variables for times (rates) and probabilities.13 The underlying stochastic

process is captured by the "extended reachability graph" (ERG), a reachability graph with

additional stochastic information on the arcs. The ERG has been shown to be reducible to a

Continuous Time Markov Chain (CTMC) [Marsan84] provided that exponential distributions

are used for transition firing rates. Since a SPN permits a probability distribution to be

associated with arcs (or transitions) they are very suitable for modeling system performance

and reliability. Thus, each transition is associated with a random variable that expresses the

delay from the enabling to the firing of the transition. When multiple transitions are enabled,

the transition with a minimum delay fires first. The transition rate from state Mi to Mj = qij

is given by qij = λ i1 + λ i2 + . . .+λim where λik is the delay in firing a transition tk which

takes the Petri net from marking Mi to Mj (when several transitions enable the firing from Mi

to Mj). See an especially clear discussion of SPN models in chapter 7 of [Sahner95].

Markov and performability models are covered in the same book (chapters 4, and 6

respectively). Examples of these types of models are available in part two (chapters 9, 10

and 12). Also refer to [Ciardo89, Murata89, Kavi93, Balbo95, Laprie95, Levenson87,

Lewis88, Sahner93] for more details on Petri nets and SPNs, as well as Markov processes

and Markov Reward processes (an extension of Markov processes).

Traditional performance analysis, which assumes a fault free system, is separate from

dependability analysis which is carried out to study system behavior in the presence of faults.

Dependability analysis generally disregards the different performance levels that may be

13When there are multiple transitions enabled by one token, a probability is associated with each of the
involved transitions. Such a transition is immediate and its firing is instantaneous (no time is consumed).

18

associated with differing configurations [Arlat90, 93, Clark92, 93, 94, Dahlberg93,

Goswami92, Goyal92, Iyer89, 95, Yount95]. By combining performance and dependability,

the different types of interactions and their corresponding trade-offs can be assessed (this is

called performability analysis) [Sanders87, 88, 89, 91, 93, Muppala91, 94a,b]. Most of the

work on this combined evaluation is based on Markov reward processes (known as SRNs)

where a reward (or weight) is attached to each state of the Markov process (usually by

defining a C function). Markov reward processes can potentially reflect concurrency,

contention, fault-tolerance, and degradable performance [Anderson85, Beli91, 90, Clark93,

Dugan94, 93a,b, 89, 87, Eckhardt85, 91, Elks91, Geist90, 83, Kim92]. They are used to

obtain not only program and system performance and system reliability (or availability)

measures, but also the combined measure of performability. Though Markov reward models

posses the power to solve dependability, performance and performability problems, there is

still one major drawback which is the largeness of their state space [Aupperle91, 89,

Bobbio86, 90, Smotherman86, Sorensen93]. SPNP was designed to address this problem.

The SRN model is used to generate the underlying Markov reward model automatically

starting from a concise description written using the language for SPNP.

2.10 Introducing SPNP's C-based Stochastic Petri net Language (CSPL)

The SPNP package allows the user to perform steady state, transient, cumulative

transient, and sensitivity analysis of SRNs. The language used for describing stochastic Petri

nets for the Stochastic Petri Net Package (SPNP) is CSPL. CSPL is a super set of the C

language and thus provides the full expressive power of C. Predefined functions are

available to define SPNP objects. A single CSPL file is sufficient to describe any legal SRN

because the SPNP user can input (at run-time) the number of places and transitions, the arcs

among them, and any other required parameter. The numerical parameters used in the

specification of rates and probabilities are incorporated in the same single CSPL file.

The function parameters allows the user to customize how the package will perform the

19

parameters(){
 iopt(IOP_PR_MARK_ORDER, VAL_CANONIC);
 iopt(IOP_PR_MERG_MARK, VAL_YES);
 iopt(IOP_PR_FULL_MARK, VAL_NO);
 iopt(IOP_PR_RSET, VAL_NO);
 iopt(IOP_PR_RGRAPH, VAL_NO);
 iopt(IOP_PR_MC, VAL_NO);
 iopt(IOP_PR_MC_ORDER, VAL_FROMTO);
 iopt(IOP_PR_PROB, VAL_NO);
 iopt(IOP_MC, VAL_CTMC);
 iopt(IOP_OK_ABSMARK, VAL_NO);
 iopt(IOP_OK_VANLOOP, VAL_NO);
 iopt(IOP_OK_TRANS_M0, VAL_YES);
 iopt(IOP_METHOD, VAL_SSSOR);
 iopt(IOP_CUMULATIVE, VAL_YES);
 iopt(IOP_SENSITIVITY, VAL_NO);
 iopt(IOP_ITERATIONS, 2000);
 iopt(IOP_DEBUG, VAL_NO);
 iopt(IOP_USENAME, VAL_NO);
 fopt(FOP_ABS_RET_M0, 0.000000);
 fopt(FOP_PRECISION, 0.000001);
}
net(){
 /* Definition of places */
 place("p0"); init ("p0",1);
 place("p1"); place("p2"); place("p3");
 place("p4"); place("p5"); place("p6");
 place("p7"); place("p8"); place("p9");
 place("p10"); place("p11"); place("p12");
 place("p13"); place("p14"); place("p15");
 place("p15"); place("p16"); place("p17");
 place("p18"); place("p19"); place("p20");
 place("p21"); place("p22"); place("p23");

 /* Definition of transitions */
 trans("dt_MuX");
 trans("sdt1");
 trans("Slot_i_a2p");
 trans("dt_i_a2p");
 trans("sdt2");
 trans("Tray_o_large");
 trans("dt_o_large");
 trans("sdt3");
 trans("Tray_o_small");
 trans("dt_o_small");
 trans("Tray_o_a1p");
 trans("dt_o_a1p");
 trans("dt1");
 trans("sdt4");
 trans("Slot_i_a1p");
 trans("dt_i_a1p");
 trans("sdt5");
 trans("Tray_o_small");
 trans("dt_o_small");
 trans("sdt6");
 trans("Slot_i_a1p");
 trans("dt_i_a1p");
 trans("Tray_o_large");
 trans("dt_o_large");
 trans("dt2");
 trans("dt3");
 trans("ft_Slot_i_a2p");
 trans("ft_Slot_i_a1p");

 /* Definition of rates */
 probval("dt_MuX",1.0);
 rateval("sdt1",0.50000000);
 rateval("Slot_i_a2p",0.1);
 probval("dt_i_a2p",1.0);
 rateval("sdt2",0.50000000);
 rateval("Tray_o_large",0.1);
 probval("dt_o_large",1.0);
 rateval("sdt3",0.50000000);
 rateval("Tray_o_small",0.1);
 probval("dt_o_small",1.0);
 rateval("Tray_o_a1p",0.1);
 probval("dt_o_a1p",1.0);
 probval("dt1",1.0);
 rateval("sdt4",0.50000000);
 rateval("Slot_i_a1p",0.1);
 probval("dt_i_a1p",1.0);
 rateval("sdt5",0.50000000);
 rateval("Tray_o_small",0.1);
 probval("dt_o_small",1.0);
 rateval("sdt6",0.50000000);
 rateval("Slot_i_a1p",0.1);
 probval("dt_i_a1p",1.0);
 rateval("Tray_o_large",0.1);
 probval("dt_o_large",1.0);
 probval("dt2",1.0);
 probval("dt3",1.0);
 rateval("ft_Slot_i_a2p",0.0055);
 rateval("ft_Slot_i_a1p",0.0045);

 /* Definition of input arcs */
 iarc("dt_MuX", "p0");
 iarc("sdt1", "p1");
 iarc("Slot_i_a2p", "p2");
 iarc("dt_i_a2p", "p3");
 iarc("sdt2", "p4");
 iarc("Tray_o_large", "p5");
 iarc("dt_o_large", "p6");
 iarc("sdt3", "p4");
 iarc("Tray_o_small", "p7");
 iarc("dt_o_small", "p8");
 iarc("Tray_o_a1p", "p9");
 iarc("dt_o_a1p", "p10");
 iarc("dt1", "p11");
 iarc("sdt4", "p1");
 iarc("Slot_i_a1p", "p12");
 iarc("dt_i_a1p", "p13");
 iarc("sdt5", "p14");
 iarc("Tray_o_small", "p15");
 iarc("dt_o_small", "p16");
 iarc("sdt6", "p14");
 iarc("Slot_i_a1p", "p17");
 iarc("dt_i_a1p", "p18");
 iarc("Tray_o_large", "p19");
 iarc("dt_o_large", "p20");
 iarc("dt2", "p21");
 iarc("dt3", "p22");
 iarc("ft_Slot_i_a2p", "p2");
 iarc("ft_Slot_i_a1p", "p12");
 /* Definition of output arcs */
 oarc("dt_MuX", "p1");
 oarc("sdt1", "p2");
 oarc("Slot_i_a2p", "p3");
 oarc("dt_i_a2p", "p4");
 oarc("sdt2", "p5");
 oarc("Tray_o_large", "p6");
 oarc("dt_o_large", "p11");
 oarc("sdt3", "p7");
 oarc("Tray_o_small", "p8");
 oarc("dt_o_small", "p9");
 oarc("Tray_o_a1p", "p10");
 oarc("dt_o_a1p", "p11");
 oarc("dt1", "p22");
 oarc("sdt4", "p12");
 oarc("Slot_i_a1p", "p13");
 oarc("dt_i_a1p", "p14");
 oarc("sdt5", "p15");
 oarc("Tray_o_small", "p16");
 oarc("dt_o_small", "p21");
 oarc("sdt6", "p17");
 oarc("Slot_i_a1p", "p18");
 oarc("dt_i_a1p", "p19");
 oarc("Tray_o_large", "p20");
 oarc("dt_o_large", "p21");
 oarc("dt2", "p22");
 oarc("dt3", "p0");
 oarc("ft_Slot_i_a2p", "p23");
 oarc("ft_Slot_i_a1p", "p23");
}

assert() {
 return(RES_NOERR);
}
ac_init() {
 fprintf(stderr,"\n<<<Run title goes here>>>");
 fprintf(stderr,"\nGenerating SRN data ...\n\n");
 pr_net_info();
}
ac_reach() {
 fprintf(stderr,"\nThe reachability graph is being ");
 fprintf(stderr,"generated ...\n\n");
 pr_rg_info();
}
/* - reward_type definitions go here ----------------*/
ac_final(){
 int i;
 time value(0.1);
 pr_mc_info();
 pr_std_average();
 pr_std_cum_average();
}

/**
 * SPNP File Name: vmc4_spnp.c
 * Run this file as follows: SPNP vmc4_spnp.c
 *
 * Mon Feb 12 12:59:41 1996
 **/

Figure 5. SPNP input file structure.

20

analysis. Several parameters establishing a specific behavior can be selected (a complete

description of parameters are available in [Ciardo94]). The function net permits the user to

completely define the structure and parameters of an SRN model. The basic functions that

can be used inside the net include place(), trans(), iarc(), oarc(), and init() which defines the

initial marking. The CSPL input file has the basic structure shown in Figure 5.

More advanced functions include harc() for making inhibitor arcs while the functions

miarc(), moarc(), and mharc() define multiple input, output and inhibitor arcs (these more

advanced functions are not synthesized during the translation process). Guards which are

logical conditioning functions associated with a transition(s) and priorities can be specified

using guard() and priority(). Probabilistic behavior may be specified using probval(), the

timing of events can be specified by assigning rates to the transitions in rateval() and variable

cardinality arc can also be specified for input, output and inhibitor arcs. Marking dependence

is specifiable using the mark() and enabled() functions.

2.11 The original contribution of this work

Our approach predicts system behavior (in terms of reliability and performance) based

primarily on the structural characteristics of a formal functional specification. The core

augmentation to existing approaches is provided by our CSP-based grammar and canonical

CSP-to-Petri net translation rules for process composition/decomposition. The mechanism

for process composition is codified in the CSPN tool and consists of expanding the process

description represented as sub-Petri nets into larger and larger nets. In the last phase the tool

reconciles synchronization points, failure annotations and generates an executable spnp.c file

(at various levels of user controllable interaction). In essence the contribution provides for

systematic and automatic translation and subsequent augmentation (e.g., failure rates, service

rates, and deadlines) of the resultant Petri nets for assessing different candidate

implementations; relating stochastic parameters back to the specification level; and analyzing

the stochastic Petri nets using the SPNP tool [Ciardo87, 89, 90, 91, 92, 93a, b, Trivedi93].

21

2.12 Where does this work fit

The CSPN tool and methodology is based on a sound formalization of CSP which

provides process constructors, including primitives for parallel and sequential composition,

nondeterministic choice, and recursion. To support top-down development, the grammar and

CSPN tool provide a notion of refinement (see Figure 6 below) that allows a designer to

describe a system at an appropriate abstract level. At this level, a designer may estimate the

values of non-functional requirements (so called budgeting). Later, the designer may add

more details by showing the internal structure of a component, explicitly presenting local

communications, and modifying the budget. It is important to facilitate systematic

refinements and then re-evaluate their impacts to optimize design parameters. Figure 6

shows that the approach involves abstraction from the requirements specification into a

design specification and subsequent evaluation based on the stochastic analysis of the system

models. Automatic translation of the design specification into a stochastic Petri net

representation enables the use of a good number of sophisticated design and analysis tools.

Evaluate

Model 0.0

Evaluate

Model n.0

Best Design

Model
Development

Evaluate

Model 1.0

Validate Validate Validate

Prototyping

Implementation
n

Implementation
1

User
Needs

Refinement

Simulation
Mathematical (closed form stochastic analysis)

Testbed

Iteratively add capabilities and
enhancements with concomitant evaluation

Requirements
Specification

Design
Specification

Figure 6. Refinement of system models.

22

CHAPTER 3

MAPPING CSP TO PETRI NETS

The heart has its reasons which reason knows not of.
--Pascal

3.1 Mapping CSP to Petri nets

An initial set of rules for translating CSP specifications into Petri nets (Petri nets) is

defined in [Kavi93]. The translations between CSP and Petri nets are based on the CSP

premise that processes execute actions which in turn enable other actions (in this way, CSP

processes move from one action to another). Activities that enable a process can be viewed

as conditions (or events) which are represented by places, while the actions themselves are

viewed as transitions. Some example translations are given in Figure 7. Note that the P-CSP

b

c e

a d

F. Parallel actions
synchronize on b

(a→b→c) ||{b} (d→b→e)

E. Non- and deterministic
choices run in parallel

(a b) ||{a,b} (a b)

a b

From environment

a b

From environment

D. Deterministic
choice

(a b)

cba b

µX.(b c→X)

B. Nondeterministic
choice w/ recursion

a b

A. Nondeterministic
choice to proc a or b

a b

a b

C. Parallel actions
are transitions

NDC{ a, b}

DC{
 a AND
 {ch1 ? msg1},
 b AND
 {ch2 ? msg2 }
}

PAR{
 NDC{a, b},
 DC{a AND
 {ch1 ? msg1},
 b AND
 {ch2 ? msg2 }
 }
 (a,b)
}

PAR{

 {a→b→c},

 {d→b→e}(b)
}

Mu.X{
 NDC{

 b, c→X
 }
}

PAR{ a, b}

Figure 7. Example CSP to Petri net translation rules (P-CSP shown in lower portion).

23

(our textual language for CSP) equivalents constructions are shown below the graphs. the P-

CSP grammar is described in Appendix B.

The CSP to Petri net translations were designed to facilitate automatic decomposition of

the CSP constructs into Petri net sub-components and subsequent composition of the subnet

components into a complete system Petri net. The Petri net translation from a given CSP

construction (i.e., specification) need not be unique because ultimately, the composition of

subnets requires that we introduce dummy places and transitions to maintain the Petri net's

bipartite nature.14 Thus, the CSP to Petri net translations are not isomorphic because of the

introduction of dummy transitions and places which are necessary to facilitate the automatic

composition of the subnets. However, for our purpose, we do not require isomorphism.

Once the complete system net is obtained, the structure itself may be reduced (e.g., by

combining adjacent dummy transitions or collapsing such places and transitions into their

predecessor/successor transitions) to a smaller model that is trace equivalent to the CSP

specification. This in itself is all that is necessary to define a complete set of markings and

hence an equivalent Markov process.15

3.2 CSP translation incongruencies

Petri nets are inherently non-deterministic and asynchronous while CSP is inherently

deterministic and synchronous (though an explicit definition of non-deterministic choice

exists for CSP). Since our purpose is stochastic analysis, we depend on the non-deterministic

nature of the Petri nets. This may appear that the determinism of CSP (and the

nondeterministic construct) are translated to the same PN representation. The translation of

the CSP structural properties is standardized (i.e., based on canonical rules of translation).16

14Intuitively, it is possible to reduce different Petri net equivalents into a canonical form. A set of canonical
translation rules are applied to derive each component's Petri net equivalent. Refer to Appendix A for the
complete set of canonical translation rules.
15A task which is left to the Petri net tool (i.e., SPNP).
16However, the nondeterministic choice composition operator of CSP (i.e., NDC in P-CSP) is treated as a
selection between two or more transitions which is made on the basis of assigning a (discrete) probability to
each.

24

The goal is to demonstrate the feasibility of translating from CSP and Petri nets by

decomposing a CSP specification into its component parts (processes, actions, and

synchronizing actions etc.). This is done by choosing one standard (canonical) translation

path from among potentially numerous equivalents.

3.3 CSP translation mechanism and commentary

This section provides the conventions and mechanisms that have been defined for the

canonical translations [see Olderog87]. All CSP composition constructs (e.g., PAR, SEQ,

NDC, etc.) have an input place and this input maybe connected to the output of a different

process. All processes have an initial marking. Synchronization actions (a transition

common to communicating processes) do not consume time or resources.17 The solid black

bar represents such a case. The open light bar does consume resources (so called timed

transition) [Muppala94, Sahner95]. Solid bar transitions are used (primarily) to represent

dummy transitions (transitions added to maintain the bipartite structure of Petri nets). This

type of transition is known as immediate . In addition, some transitions are needed to indicate

synchronization with the environment (Figure 7D and E). Such transitions are represented

with solid bars even though there may be delays associated with this type of synchronization.

STOP STOP

SKIP

p1

SKIP

p1

SKIP is
based on
occam and
performs no
action and
terminates.

a

p1

An action
with one
input and
one output
place.

Stop
action
has no
output. oror

outputoutputoutput

p0
input p0

input
p0
input

p0
input

p0
input

Figure 8. CSP to Petri net rules for Actions and the STOP and SKIP processes.

An action is represented with one (or more) input places, a transition and one (or more)

output places as illustrated in Figure 8. However, the STOP action has no output place

17Synchronization is represented by a synchronized action and is shown as a transition between two processes
(i.e., Channel-X ? message-X [for input] and Channel-X ! message-X [for output]).

25

because it never terminates. Actions comprising a process must be composed to form the

process. In order to achieve this, input places and output places must be overlapped (is

combined) whenever an action follows another as illustrated in Figure 9B. The same rule is

observed when one process "P" is followed by another process Q as shown in Figure 9C. In

general, the process "P," as shown in Figure 9A, has an input place and an output place on

the boarder of a box. The box symbolizes a complete process. The box encompasses the

process transition(s) and any of the requisite places which may be necessary to compose

other transitions. A box can contain other boxes just as a process can be made up of other

processes. It should be clear that, within this framework, all Petri nets start with an input

place which is used to represent an initial marking (or initial state). During the compositions,

these input places are combined with output places of other processes. The complete

specification has exactly one input place, and hence one initial marking.

P

Q

p1

p0

output

input

p0
input

p1
output

C. Combining two processes P and Q.

a

P

p1

p0

output

input

pa
input

output
pa

B. Combining action "a" with the process P.

P

p1

p0
input

output

Process with one input
and one output place.

A.

New "combined process" are represented by a dashed box.

Figure 9. CSP to Petri net rules for Combining actions and processes.

In Figure 10, the action "a" triggers the nondeterministic composition of actions b and c.

Part A of this figure sufficiently represents the meaning of the composition: a → NDC{b, c}.

When transition "a" fires, this enables a choice between [dt1 → b] and [dt2 → c]. The

whole composition consumes one token and produces one token on either place "pb" or place

26

"pc." Thus, part A has a certain compact and sufficient semantics, but lacks in its ability to

combine cleanly with other constructs. For example, consider [a → NDC{b, c}] combined

using "→" with [PAR{P, Q}]. The composition rewritten is: a → NDC{b, c} → PAR{P,

Q}. This construction represents an action "a" that triggers the choice between b and c which

in turn triggers both processes "P" and "Q" to proceed in parallel. However, there is no

single (unambiguous) place for connecting the succeeding PAR construct to the NDC

predecessor. In Figure 10A, would the PAR be connected to place "pb" or place "pc"? The

answer is both. The solution however, is shown in Figure 10B as the place "pdt3." The

connection is made as described for figure 9B and C, by overlapping (or snapping together)

the output place of one with the input place of the other.

a

pa
output

dt1 dt2

pa
input

b

pb
output

pc
output

c

pc
input

pb
input

One input place.

One output
place.

dt3

a

b c

pa
output

pc
input

pb
input

dt1 dt2

pa
input

Dummy transtion "dt3" and place "pdt3" are added
to enable future compostions.

B.

Combining action "a" with the process NDC (that contains
two actions "b" and "c"). If another construction was to be
combined (attached as a successor) then this structure
would need a way to attach to both the pb and p c places.

A.

a → NDC{b, c}

pdt3

pbc
output

Figure 10. CSP to Petri net example of combining actions to form one process.

It is necessary to create additional places (and transitions) when the choice of an

action(s) is made in a deterministic sense (conditionally) or in a non-deterministic sense as

illustrated in Figure 11A and B respectively. The same rule is observed for processes. In

Figure 11A the additional darkened places and dummy transitions represent the possible

states or values of guards. When these guards are combined with the initial place of the

27

given process, this represents the deterministic enabling (or choosing) of one action (or

process) over another. Thus, if msg1 occurs prior to msg2 the dummy transition dt1 is

enabled and thus fires to enable the process "P" to become active.

dt3

P Q

initial

p2p1

dt1 dt2

p4

p0
guard guard

channel ? msg2

p3

channel ? msg1

DC{
 channel ? msg1 P(),
 channel ? msg2 Q()
};

Deterministic choice requires an external condition /
event occur to select a path (P or Q).

A.

NDC{P(), Q()};

An action "a" combined with a process "P"
causes an overlapping of input and output places.

B.

dt1

p4

p3

P Q

initial

p2p1

sdt1 sdt2

p0

Figure 11. CSP to Petri net rules for Deterministic and nondeterministic choice.

In Figure 11B, there are no environmental conditions that provide for the enabling of one

path versus the other. Instead the choice is random (i.e., arbitrary): a path is chosen on the

basis of probability and the sum of the probabilities across all choices is one. The special

nature of the Non-Deterministic Choice (NDC) construct requires that the initial dummy

transitions be distinguished form other normal dummy transitions. Thus, normal dummy

transitions can be assigned a firing probability of one (e.g., dt3 in Figure 10B), whereas the

"sdtx" (x = 1, 2, ...) or special dummy transitions are assigned a probability.

In accordance with the 1-input place rule, the parallel composition of Figure 12A shows

an additional input place (and the transition "dt1" is added to keep the bipartite structure).

The immediate firing of "dt1" enables both processes P and Q to proceed independently.

However, before a token can be deposited in the "p5" place to conclude the complete

sequence of feasible markings, both P and Q must finish. This subsequent joining is an

28

artifact for observing the one input place one output place per process composition rule (or

the combining rule) described above. This rule implements the combining of sub-Petri nets.

PAR{P(), Q()};

Two processes "P" and "Q" are combined in a parallel
composition. There are two dummy transitions the
first forks the composed processes and the second
joins them

A. The synchronized parallel composition here has two
processes sending (Ch!msg) and receiving (Ch?msg)
the "msg." Both prcesses are blocked until "dt:msg"
transition fires. Each of the solid black transtions is
immediate and fires with probability one.

B.

P Q

dt2

p4p2

p5

p1 p3

dt1

p0 dt1

dt2

p7

p4

dt:msgp3 p6

PAR{
 {Ch?msg},
 {Ch!msg}
 (msg)
};

Ch?msg

p2

p1

p5

p0

Ch!msg

Figure 12. CSP to Petri net rules for Parallel and synchronized parallel composition.

In Figure 12B, two CSP processes synchronize using a channel. The channel and

message by necessity, are common to both processes. The two processes that are

participating in the synchronization are without names. As shown, they are simply the input

and output statements composed using a synchronized parallel composition. Both processes

must first complete their part of the synchronizing action. Once complete, they cooperate in

a joint synchronization transition (shown as a solid "immediate" transition since it is an

artifact of the translation). This representation is more appropriate since the individual

processes must execute their respective actions and these actions consume time (and other

resources), while the rendezvous action is an event that consumes no time (or resources).

This type of synchronization causes both the sender (Ch ! msg) and the receiver (Ch ? msg)

to be blocked until the transition labeled "dt:msg" has fired.

29

QP

dummy

µX.((P Q)→ X) Mu.X{NDC{P(),Q()}}

QP

Classic CSP: P-CSP:

µX.(P Q→X) Mu.X{NDC{P(),{Q()->X}}}
P-CSP:Classic CSP:

OR OR

First step

X

dt1

sdt1 sdt2

P {Q()->X}
QP

X

sdt1 sdt2

Second step

QP

X

sdt1 sdt2

dt1

QP

Figure 13. Comparing CSP and P-CSP to Petri net rules for recursion.

In Figure 13, a number of recursive compositions are shown. In the top half on the left

are two equivalent nets that represent a recursive non-deterministic choice. The use of the

"dummy" provides a way to combine µX.((P Q) → X) with another composition. The

adjacent (top middle) Petri net shows an equivalent solution (without the dummy transition).

Since dummy transitions are immediate (consume no time or resource) and fire with

probability one, they can be eliminated without a loss of generality. The rightmost Petri net

was created by the CSPN tool. The four dummy transitions can be reduced to either of the

30

other two Petri nets in the top half of Figure 13. This Petri net exemplifies tail recursion.

In the lower half of Figure 13 there is an example which is not a tail recursion. The first

Petri net on the left is the smallest possible translation (most reduced). The other two Petri

nets on the right (bottom half) illustrate a two step process where the tail recursion is cut and

the result is thus equivalent to the small one on the left. Actually, CSPN, in structuring a

recursive composition assumes tail recursion. Thus, CSPN begins the translation by

attaching a recursive link back to the initial place. After doing so, CSPN checks all of the

elements within the scope of the link to see if there is any cause (such as Q()→X) to cut the

tail recursive link and re-attach it in some other fashion, as shown in the example of Figure

13 (bottom half). Figure 14 shows how these process compositions are viewed when

combining (or nesting) a non-deterministic choice inside a recursive construction. The larger

clear shaded box defines the recursive process. The smaller shaded boxes define the

component processes. See the Appendix for further examples.

QP

X

sdt1 sdt2

QP

X

Mu.X{NDC{P(),Q()}} Mu.X{NDC{P(),{Q()->X}}}

dt1

sdt1 sdt2

Figure 14. CSP to Petri net rules for recursion.

3.4 Specification of failures and failure handling in CSP

A failure can be specified for any action in CSP (or any process). For example, consider

31

the term "a→P" which can be extended to include failure specification as "(a → P) (a →

Failure → Repair)." The translation into a Petri net from this composition would look like

that of Figure 11B except the (a → P) term would replace P and the (a → Failure → Repair)

term would replace Q. The Q transition is the failure (and repair) transition which could be

further expanded to account for the repair action. This type of non-deterministic construction

can be extended to other types of CSP constructions.

Consider the vending machine (VMC) example specified in Figure 15. This figure

shows how a failure annotation can cause a structural change in the Petri net. A simple VMC

may include only two kinds events: (1) insertion of a coin in the VMC slot(s), and (2)

dispensing of a candy. A more complex VMC may offer a choice of slots for inserting a 2p

(i.e., two penny coin) or a 1p coin (thus, the customer may make the choice external to the

machine which slot). Also, in the complex VMC case, there can be the possibility of

receiving a small or large candy. In Figure 15 the particular choice of a 2p or a 1p is made

non-deterministically. Examine the body of the VMC specification which begins with

construct "Mu.X{ ... " and concludes with "}." which includes the ending period. This is a

recursive construction because once a VMC transaction is complete the system can return to

a state which allows it to engage in another transaction. Inside of the recursion, we see that

the choice is either one of two SEQ constructs that represent the 2p or the 1p input actions.

When the 2p path is chosen, the VMC will either dispense a small candy (and 1p change) or a

large candy. If the 1p path is chosen then either another 1p will cause a large candy to be

produced or, with out the additional 1p coin, only a small candy can be dispensed.

The failure annotations are attached to the OnePenny and TwoPenny process

descriptions. CSPN thus includes three additional failure transitions that all deposit their

tokens into place "p23." Assume the transition "Slot ? a2p" may fail with a failure rate of

0.0055 while, transition "Slot ? a1p" fails with a failure rate of 0.0045 (of which there are two

actual transitions). Only tangible (light colored) markings can fail.

32

VMC=

 PROCESS DispLg =
 {Tray ! large};

 PROCESS DispSm =
 {Tray ! small};

 PROCESS DispSm1p =
 SEQ{
 DispSm(),
 {Tray ! a1p}
 };

 PROCESS OnePenny =
 {Slot ? a1p}:FAIL(r= 0.0045);

 PROCESS TwoPenny =
 {Slot ? a2p}:FAIL(r= 0.0055);

Mu.X{
 NDC{
 SEQ{
 TwoPenny(),
 NDC{
 DispLg(),
 DispSm1p()
 }
 },
 SEQ{
 OnePenny(),
 NDC{
 DispSm(),
 SEQ{
 OnePenny(),
 DispLg()
 }
 }
 }
 }
}.

dt:MuX

sdt1

Slot?a2p

dt?a2p

sdt2

Tray!large

dt!large

sdt3

Tray!small

dt!small

Tray!a1p

dt!a1p

dt1

sdt4

Slot?a1p

dt?a1p

sdt5

Tray!small

dt!small

sdt6

Slot?a1p

dt?a1p

Tray!large

dt!large

dt2

dt3

ft:Slot?a2p

ft:Slot?a1p ft:Slot?a1p

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23

Figure 15. VMC specification for CSP to Petri net with failure annotations.

Notice that in the Figure 15 Petri net there are three (light colored) transitions of which

two are labeled "ft:slot?a2p" and one is labeled as "ft:slot?a1p." These three transitions are

33

generated by CSPN automatically when the failure annotations are encountered and represent

the structural changes mentioned above (in this section).

3.5 Preserving the trace behavior of CSP specifications

Lets consider a sequence from the set of possible traces given by a particular CSP

composition structure (refer to Section 3.1.2 on program equivalence). A CSP action takes

place when an enabling predicate is true. The enabling predicate is defined either by some

external system events or by the completion of some other actions (remember, the completion

of an action may be viewed as an event). A trace specification of a CSP process is the set of

all possible traces. A trace is a sequence of events drawn from the process alphabet (which

defines the set of all visible events).

Now, consider the structure of a Petri net in relation to a trace specification. The Petri

net that results from a CSP specification can be viewed as follows. An action is represented

by a transition, and the completion of the action is represented by token(s) in its output

place(s). A sequence of enabling transitions can easily be mapped to a feasible trace. The

sequence of transitions produce a sequence of Petri net markings. Accordingly, for each

trace, it is possible to find a sequence of Petri net markings. It is necessary to prefix all

sequences of Petri net markings with an initial marking based on the definition of a Petri net.

Also, the asynchronous nature of a Petri net may lead to more markings in the sequence than

a CSP trace (unless time is associated with the CSP actions and Petri net transitions). If time

is used as a criterion to constrain the set of feasible markings, then it may be possible to show

that the traces and the feasible markings coincide.

Using the translation / composition rules that are codified in CSPN, the Petri net of

Figure 16 was created. This Petri net is the same net as the one shown in Figure 15 except

the failure annotations have been removed and thus it has three fewer transitions. Let us

examine, the various characteristics of the translations in greater detail so as to understand

how is it possible to preserve the trace behavior of CSP specifications. The solid colored

34

dt:MuX

sdt1

Slot?a2p

dt?a2p

sdt2

Tray!large

dt!large

sdt3

Tray!small

dt!small

Tray!a1p

dt!a1p

dt1

sdt4

Slot?a1p

dt?a1p

sdt5

Tray!small

dt!small

sdt6

Slot?a1p

dt?a1p

Tray!large

dt!large

dt2

dt3

p00

p01

p02

p03

p04

p05

p06

p07

p08

p09

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

VMC =

 PROCESS DispLg = {Tray ! large};

 PROCESS DispSm = {Tray ! small};

 PROCESS DispSm1p = SEQ{
 DispSm(),
 {Tray ! a1p}
 };

 PROCESS OnePenny = {Slot ? a1p};

 PROCESS TwoPenny = {Slot ? a2p};

Mu.X{
 NDC{
 SEQ{
 TwoPenny(),
 NDC{
 DispLg(),
 DispSm1p()
 }
 },
 SEQ{
 OnePenny(),
 NDC{
 DispSm(),
 SEQ{
 OnePenny(),
 DispLg()
 }
 }
 }
 }
}.

VMC = (Slt?2p→(Tr!Lrg→VMC)
 (Tr!Sm→Tr!1p→VMC))

 (Slt?1p→((Tr!Sm→VMC)
 (Slt?1p→(Tr!Lrg→VMC)))

Figure 16. CSPN translation of the VMC example.

bars are of three types (1) dtx, (2) sdtx or (3) dt<:Mu/?/!>, where x is an integer. A label

prefixed with "dt" is a dummy transition. Dummy transitions are further broken into those

associated with the composition constructs (e.g., PAR, SEQ, etc.), and those associated with

35

synchronization. Dummy transitions with "?" or "!" and an identifier (e.g., large, small, etc.)

are manufactured for the purpose of creating a synchronization (or rendezvous) point.18 A

label prefixed with "sdtx" is a special dummy transition which has a probability associated

with its firing. Also shown in Figure 16 is the specification (top one uses CSP bottom uses

P-CSP) used by CSPN to generate the associated Petri net.

TABLE 2

MARKINGS FOR VMC PETRI NET

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
M0 1
M1 1
M2 1
M3 1
M4 1
M5 1
M6 1
M7 1
M8 1
M9 1
M10 1
M11 1
M12 1
M13 1
M14 1
M15 1
M16 1
M17 1
M18 1
M19 1
M20 1
M21 1
M22 1

18When processes rendezvous, CSPN matches an input with an output (i.e., same message and channel
identifiers). The result is to combining the two synchronizing transitions into one. The one is re-labeled
"dt:msg_name." In the VMC construction there are no rendezvous as such (just input of change and output of
candy). See more details on the notion of rendezvous (that cause a combining of two into one) in the Appendix.

36

M1

M22

M21

M20

M19

M18

M17
M14

M15

M16

M13

M12

M11

M10

M0

M2

M3

M4
M5

M6

M7

M8

M9

Markings related to
synchronizatoin

Dummy Markings due to
Petri net translations

Dummy Markings M11, M21 and
M22 are due to Petri net translations

Figure 17. Structure of the feasible sequences of VMC Marking transitions.

In the VMC construction of Figure 16, there are no rendezvous (just input of change and

output of candy). The path choice is made nondeterministically. The complete deterministic

dt1

dt:Mu.X

dt4

Slot?a2p Slot?a1p

p00

p02 p12

p01
Deposit in 2
penny slot

Deposit in 1
penny slotpe1 pe2

Deterministic choice

An additional place and transition
may be visualized when the choice
of an action is made in a
deterministic sense (conditionally).
In the case of the VMC the
selection is made by the customer.

pe0

pe1

Cutomer
(external)
Action

Figure 18. Partial VMC translation showing deterministic choice.

37

construction is envisioned based on Figure 18. Each dummy transition (e.g., dt1 and dt4) has

two different places which must contain a token before a choice (firing) can be possible. If

the customer chooses to deposit a 2-penny coin in the 2penny slot the place labeled pe1 gains

a token (or pe2 for the 1penny slot). This is an external action.

The place "p01" has a token while the VMC is in an idle (waiting state) until inputs from

the environment (customer selections) cause a choice to be made. The environmental input

in the case of the VMC example represents user selections. If the NDC compositions are

replaced with DC compositions, then the complete solution would use six additional places.

Table 2 shows the markings of the VMC Petri net. Figure 17 gives the marking

transitions. The dummy markings (in shaded ovals) can be combined into a single marking.

Likewise, the markings that are due to synchronization (in the clear rounded rectangles) can

be combined if the synchronization action is instantaneous. The CSP specification in Figure

16 has the following possible traces:

1. ? a2p, ! large
2. ? a2p, ! small, ! a1p
3. ? a1p, ! small
4. ? a1p, ? a1p, ! large

The corresponding transitions of Markings that are possible from the Petri net are:

1. M0 M1 M2 M3 M4 M5 M6 M11 M22
2. M0 M1 M2 M3 M4 M7 M8 M9 M10 M11 M22
3. M0 M1 M12 M13 M14 M15 M16 M21 M22
4. M0 M1 M12 M13 M14 M17 M18 M19 M20 M21 M22

The bold face markings are the essential markings while the others are an artifact of the

translation rules. Note that there is a one to one correspondence between the set of CSP

traces and the bold face marking (assume that the M0 marking is removed).

38

CHAPTER 4

CSPN TOOL OVERVIEW AND IMPLEMENTATION DETAILS

And if you don't give up and you don't give in you may just be OK. from "In the
living years."

--Mike Rutheford

4.1 CSPN tool overview

The CSP-to-Petri net (CSPN) tool is textual based. The initial specification and

parameterization work must be completed using a text editor (see Figures 15, 16, 38, 42, and

43) for examples of P-CSP specifications). Viewing the Petri net's distribution of places and

transitions as a graph after a translation is accomplished by setting the "-d" (for dot) on the

command line.1 Other command line options are described in Table 4.

The translation rules described in Chapter 3 and enumerated in the Appendix A are

codified in the CSPN tool (CSP-to-Stochastic Petri Net). In brief, the mechanism consists of

decomposing individual CSP constructions into canonical Petri net structures. The elemental

Petri net structures are linked together in a hierarchical fashion according to their adjacency

and nesting within the CSP specification. Once CSPN has created this network of linked

structures it traverses the net and expands the process descriptions which are represented as

sub-Petri nets into larger and larger nets. Also, as CSPN decomposes the CSP constructions,

it identifies and records service and failure rate annotations which are embedded in the P-

CSP specification. When CSPN encounters failure annotations (and the "-f" command line

option is set), it creates supplemental failure transitions with a failure rate as designated in the

annotation. When CSPN encounters service rate annotations it will assign those values to the

1Version 1.0 of CSPN does not automatically invoke the dot program to create the postscript graphic file. To
do so use the command: >> dot -Tps filename.dot > filename.ps . Dot is a available from AT&T Bell
Laboratories.

39

appropriate (timed) transition in the resultant SPNP specification. All of the values assigned

from annotations are subject to change if the user so chooses during an interactive CSPN run.

Once the preliminary structure of the Petri net is complete, CSPN must reconcile

synchronization points because all CSP input/output actions rendezvous at a particular point.

This point is a transition that is named by the message being sent and received. Finally,

CSPN generates the Petri net graphic specification and the SPNP Petri net specification file

"<file>_spnp.c." All of these activities occur at various levels of user controllable interaction

as will be described.

4.2 Translation phases of the CSPN tool

There are four basic activities (parts) involved in the context of Figure 26. The first part

(1) involves specification. The second part (2-7) involves running CSPN which invokes any

of the available command line options (see Table 3). See Appendix C for the Composition

Phase 4 algorithms. The third part (8-10) is interacting with CSPN to direct how the SPNP

analysis is run (setting the SPNP run parameters) and to parameterize the elements of the

translation (e.g., assign rates and probabilities to the resultant transitions). The fourth and

last phase (11-12) concerns the structural and stochastic analysis of the Petri net.

Stochastic
Results

Resolve
Recursion

Phase

Synthesis
Phase

Filter and
Graphics

Phase

Output file:
fn.dot

Output file:
fn_spnp.c

Analysis Phase

Failure
Annotation

Phase

Synchronization
Phase

Composition
Phase

Decomposition
Phase

Scan/Parse
Phase

Specification
Phase

1 2 3 4 5 6

121110987

Figure 26. Activities associated with the translation phases of the CSPN tool.

Structural analysis involves viewing the distribution of places and transitions of the

40

graphical representation of the Petri net.2 The stochastic analysis involves running SPNP to

derive dependability and performance results based on the work from phase three (i.e.,

parameterizing the model) and relating the results to the graph and back to the original

specification. The SPNP specification file may be edited to finely tune specific values of the

parameters or other characteristics of the SPNP specification prior to running the analysis.3

Once SPNP is run, the results can be considered in the process of conducting further analysis.

P-CSP S pecif ication
base d on system
requirements lex

scanner
yacc
parser

Tokens

Hash table
stores
symbols and
their
attributes

(csp.y)(csp.l)

(getsym)

(net_main)

Scan/Parse
Phase

Specification
Phase

Decomposition
Phase

Composition
Phase

Synchronization
Phase

--File name is sy1
SysSimpleEx =
 PROCESS Eg1 =
 SEQ{SEQ{SEQ{
 P1(),
 P2(),
 NDC{
 P11(),
 P12()}},
 P3(),
 P4()},
 P5(),
 P6()},
 SEQ{P7(),P8()};
 PROCESS Eg2 =
 SEQ{P9(),P10()};
NDC{Eg1(),Eg2()}.

Run CSPN u si ng. ..
$> c sp -osy1 -f Sy1

(scoring)

Combine
component Petri

nets into a
"system" Petri net.

(procPosition)

(replProc)

(RegisterProcess)

(deleteProc)

(expn)

Resolve
synchronization
links (messages).

(syncLink)(netSearch)

Individual
CSP constructions

→ into atomic
canonical Petri
net structures.

Synthesis Phase

(decodeSys)

System
coincidence

matrix is decoded
to produce the
output files.

(gen)

(choose)

(usage)
(cmd_main)

Resolve Recursion
Phase

(rResolve)

This phase uses reachability as
a criteria with in the context of
a recursive construction to
decide whether to break a tail
recursive link.

Failure Annotation
Phase

(addFailures)
Tail
recursive
loop

Failure rate
annotations cause
failure transitions

to be created.

Process of
reconciling

recursive links
(create/break).

User interaction:
 -set SPNP parameters,
 -set prioities/rates/probs.

(solve)
(checkType)

(isDummy)

Relate the stochastic
parameters back to the
P-CSP specification

SPNP input file uses the
CSPL language. This file
describes the Petri net,
including failure annotations,
and other discrete and
stochastic parameters.

Output file: fn_spnp.c

Analysis Phase
Output file: fn.dot

 Run dot using...
> dot -Tps fn.dot > fn.ps

Generate graphics to view
distribution of places and

transitions.

This file describes the
Petri net as a net list,
including labels of each
place and transition.

A net list containing
transition labels and
draw control parameters.

Decodes the
system co-matrix

to produce the
graphical

representation.

Filter and Graphics
Phase

Run SPNP using...
> spnp fn_spnp

Manually revise specific SPNP
characterizations of the Petri

net Spec. such as reward
functions.

Directed graph used
to verify structural

characteristics (e.g.,
correctness and race

hazzards)

(filter)

(genDotFile)

Special characters
inherited from the CSP
specification are removed
for SPNP compliance.

Stochastic Results
Relia bi lity
and MTTF

Data structure hierarchy
captures specification
structure

Coincidence matrix

Figure 27. Context diagram and translation phases of the CSPN tool.

2This option causes CSPN to generate a fn.dot file which is processed to provide the graphical representation
of the Petri net (embedded postscript). Dot is a tool used to create the Petri net graphic. The CSPN version 1.0
does not automatically invoke the dot program to create the postscript file. To do so, the user must manually
run dot using the following command: >> dot -Tps filename.dot > filename.ps.
3The SPNP specification file can be run for a simple analysis without manual intervention.

41

In viewing Figure 27, note that the following eight steps occur during the translation

process: (1) Scanning and Parsing –action rules embedded in the parser enable CSPN to

capture the structural semantics of the specification, (2) Decomposition –allocating or scoring

a coincidence matrix for each CSP element and the recording of any annotated service rates

and probabilities, (3) Composition –combining elemental coincidence matrices and building

their requisite process lists, (4) Synchronization –resolution or combining of message links,

(5) Failure annotations –if active, an appropriately annotated process is augmented with a

failure transition, (6) Resolving recursion, (7) Synthesis phase –takes the system coincidence

matrix and creates the SPNP Petri net specification file during an interactive session with the

user, and (8) Filter –removes special characters inherited from the CSP specification that are

not valid in an SPNP specification and graphics –creates a digraph specification net list that

is later compiled using “dot” to produce an embedded postscript graphic. In general, Figure

27 shows the various translation phases and the use of SPNP as it applies to this approach.

The names in parenthesis are the C-function name(s) and are associated with a given phase.

The CSPN tool is used in the context of the seven steps listed in Table 3.

TABLE 3

GENERAL STEPS FOR USING THE CSPN TOOL

Step Description of steps in the approach

1. Abstract the critical elements of the requirement specification and formulate a CSP specification
for the system under study.

2. Translate between CSP and Stochastic Petri nets.

3. Assign performance and reliability parameters among subsystem components.

4. Analyze the Petri nets for stochastic properties [using SPNP] (validate performance and
reliability goals using stochastic system models).

5. Decide what features of the system should be 1changed to improve the system's reliability (and/or
other stochastic properties, e.g., performance).

6. Augmentation: relate stochastic properties back to top level (CSP) specifications (e.g., failure
rates, service rates, error handling).

7. Understand the effect these non-functional requirements have on cost..

42

4.3 Running the CSPN tool

Running CSPN (i.e., $> csp <options> specification-file) and using the various

command line options described in Table 4 enables the numerous features and functionalities.

For example, if the user is in the process of correcting the syntax of the CSP specification

then it would not be necessary to specify any of these options, only the input file. Also, if the

user just wants to understand how the CSP specification looks in terms of the structural

characteristics (i.e., investigating inherent weaknesses in communications, race hazards etc.)

TABLE 4

LISTING OF THE CSPN COMMAND LINE OPTIONS.

 Option Description

 -h Used to generate a help screen which displays the contents of the table below: “csp -h”

 -v Used to set the verbose mode and is only valid when the "-o" option is specified. An
interactive menu is invoked which allows the user to set SPNP run parameters.

 -f Used to generate failure transitions into the filename_spnp.c file. This option enables
detection of failure annotations and causes interactive inputs with the "-o" option
specified.

 -F Set to invoke the filter which will replace the 3 special characters (?,!,:) in the
filename_spnp.c with SPNP compliant characters (_i_, _o_, and _ respectively).
Otherwise, SPNP will not compile the input file. Valid only when the "-o" option is
used.

 -s Use the default service rates for timed transitions. If no service rate is specified as an
annotation then CSPN will use 0.1.

 -o<name> To generate the SPNP input specification file (filename_spnp.c) this option must be
specified ("name" is optional and the default used is the tool name "cspn").

 -i<number> Number of iterations used by SPNP (default is 2000).

 -a<number> Rate for return to initial marking from absorbing markings (default is 0.0).

 -p<number> Set floating point precision used by SPNP (default is 0.000001).

 -P Set to enable selection of priorities for individual transitions (the default is none).

 -d Set to generate a "dot" graphics file. Dot uses this digraph specification file to generate
the graphical representation of the Petri net.

 -n Set to enable a network list file. This file shows how CSPN has interpreted the
structural aspects of the CSP specification.

 -t Set to generate a symbol table file containing all the data recorded for each element
(process names, constructions, variables, channels, ...) of the process specification.

43

then adding the "-d" option would enable only the production of the graph. The "-F" option

invokes a filter and is necessary only when the user plans to run an SPNP analysis. The "-f"

option is a nice feature because it enables the analyst to assume a failure free environment by

simply ignoring any embedded fail annotations that may exist in the CSP specification

(without "-f" CSPN ignores failure annotations). Omitting failure annotations from the P-

CSP specification has the same affect. The option "-s" streamlines the process of generating

the SPNP input specification by assigning default service rates to timed transitions without

querying the user to provide such. As mentioned above, the "-o" option generates a file for

SPNP analysis. It is best if a file name be given with this option (i.e., "-ofilename"). This

settles the problem of overwriting previous files generated using the default name that is

assigned by CSPN if no name is provided. The "-i", "-a" and "-p" options are used to

parameterize the SPNP run by setting the iteration number, absorbing rate (for recycling back

to the initial marking), and precision for floating point operations respectively. The "-P"

option is only valid when "-o" is used and enables the user to assign priorities to any of the

transitions. The "-d", "-n" and "-t" options are useful when something unexpected happens

after running CSPN such as a run time error. The user may wish to rerun the translation and

view the internal data structures that are generated during the translation process.

4.4 CSPN data structures

Internally, there are four basic data structures employed by CSPN: (1) Symbol table

which maintains attributes assigned to all system elements (actions, processes,

communications and constructions), (2) Process lists which consist of all the names of the

associated actions/processes involved in a particular construction, (3) A network of linked

lists which capture the structure of the specification (adjacency and nesting), and (4) The

bipartite digraph which defines the structural character of the Petri net is represented as a

coincidence matrix . The coincidence matrix (or co-matrix) maintains the distributions of

places, transitions and their connectivity.

44

P-CSP:... PAR{{Ch?msg}, {Ch!msg} (msg)};

 p1 p2 p3 p4 p5 p6 p7 p8
T dt1 - + +
R Ch?msg - +
A dt:msg - + - +
N dt2 - - +
S Ch!msg - +

P

Q

R

p1

p2

p3

p4

p7

P

Q

R

dt2

p1

p2

p3

p4

dt1

p5

p6

CSP:... P;Q||R

P-CSP:... PAR{SEQ{P, Q}, R};

 p1 p2 p3 p4 p5 p6 p7
T dt1 - + +
R P - +
A Q - +
N R - +
S dt2 - - +

Note: each box in the Petri net (excluding transitions) represents a process.

CSP:... P;Q;R

P-CSP:... SEQ{P,Q,R};

T p1 p2 p3 p4
R P - +
A Q - +
N R - +
S

+ indicates an arc output from
transition R to place p4.

- indicates an arc from p3 is input
to transition R.

The coincidence matrix provides a uniform data structure that
can be used to manipulate (combine and reduce the Petri nets).

dt1

dt2

p8

p5

dt:msgp4 p7

Ch?msg

p3

p2

p6

p1

Ch!msg

Note: each box in the Petri net (excluding transitions) represents a process.

Note: each box in the Petri net (excluding transitions) represents a process.

Figure 28. P-CSP constructions with co-matrix and Petri net representations.

The construction of the n-by-m co-matrix is defined in terms of the transitions (CSP-process

names become transition names). Transitions are associated with rows (from top to bottom).

45

Places are associated with columns (numbered from left to right starting from zero). A non-

zero element in the matrix A represents an arc which links a transition to a place or a place to

a transition. Elements (aij) can have one of three values (zero, +1 or -1): aij = +1 indicates an

arc from the transition of row i to the place of column j; aij = -1 indicates an arc to the

transition of row i from the place of column j. The process list stores the transition names in

the order of their appearance in the CSP specification. The naming of places is ordered (e.g.,

p1, p2, ... pn), and the meaning associated with each is defined in terms of the transitions

with which they are connected. Each element and each expanded composition from the CSP

specification has a coincidence matrix (or co-matrix) maintained in the symbol table.

Figure 28 gives examples of P-CSP compositions. During the parsing phase, each

construct (e.g., PAR, SEQ, etc.) is separated into its component elements (process names,

channels, variables) and represented as a sub-Petri net. The sequential (i.e., SEQ) construct,

shown in the top portion of Figure 28, illustrates scoring of the co-matrix (marked with "-" or

"+") to denote input to and output from the given transition (e.g., P, Q, R). The middle part

of Figure 28 shows a similar translation for the parallel (i.e., PAR) construct and the last part

shows a synchronized parallel construction.

4.5 Petri net compositions

{use Method 3
 expansion}

else

A

A

{use Method 2 expansion}else if

A

{use Method 1 expansion}if

Expand Co-matrix A using B
B

B

B

Figure 29. Choosing a combining method for expansion that depends on locality.

The Petri net compositions, based on the P-CSP specification structure, are achieved by

46

combining the co-matrices of the component Petri nets to obtain a new co-matrix for the

combined Petri net. Combining all of the sub-component co-matrices produces a complete

system Petri net. The combining process expands one co-matrix by another. Figure 29

highlights the basics that involve expanding a co-matrix A by another co-matrix B. Thus,

depending on the locality of co-matrix B one of three possible expansion methods is used.

Expand A (3x4) with B (5x6) into C (7x8).

 0 1 2 3 4 5 6 7 0 1 2 3
 C: 0 - b b b b b 0 0 A: 0 -|+ a a a's put in C, begin at C[4,6].
 1 b b b b b b 0 0 1 y|g g g
 2 b b b b b b 0 0 2 y|g g g
 3 b b b b b b 0 0
 4 b b b b b + a a
 5 y 0 0 0 0 g g g
 6 y 0 0 0 0 g g g

Rows 1 and 2:put g's in C,start at C[5,5].

Rows 1 and 2: put y's in C start at C[5,0].

Figure 30. Diagram of expansion method one.

The Method 1 algorithm is pictured in Figure 30. The C matrix dimensions C[x,y] are

determined as follows: x = xa + xb - 1 and y = ya + yb - 2 (where [xa,ya], and [xb,yb] are the

dimensions of the A and B matrices). In the C matrix diagram, 0's are constant (i.e., not

assigned from A or from B to C). Also, the "-" and "+" shown in A are now separated

diagonally as shown in C.

Case 1: Expand A (5x5) with B (4x4) into C (8x7).

 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7
A 1 a a a a z + B 1 - + b b --> C 1 a a a a 0 0 z
 2 a a a a z 2 b b b b 2 a a a a 0 0 z
 3 a a a a z 3 b b b b 3 a a a a 0 0 z
 4 a a a a z 4 b b b b 4 a a a a 0 0 z
 5 y y y - + 5 0 0 0 - + b b
 6 0 0 0 b b b b
 7 0 0 0 b b b b
 8 y y y b b b b
Case 2: If A[5,5]="-" => C(8x6).

Figure 31. Diagram of expansion method two.

Method 2 is described in Figure 31. In case 1, the resultant C matrix is 8x7. Case 2 is a

variation which occurs when "-" is discovered in the last column and row. This will occur

47

1 2 3 4 5 6 7

P1

P2

P3

P5

P6

- +

- +

- +

- +

- +

- +

SEQ0

P4 6x7

5x6

2x3

The expansion methods provides
a means to combine two co-matricies.

Using expansion method 3

p7

P4

P1

P2

P3

P5

P6

p3

p2

p1

p4

p6

p5

SEQ{P1,P2,P3,SEQ{P5,P6},P4}

Combined

1 2 3 4 5 6SEQ0

P1

P2

P3

SEQ1

P4

- +

- +

- +

- +

- +

1 2 3SEQ1

- +

- +

P5

P6Combine

SEQ0 SEQ0

SEQ1
p3

p2

p1

p4

P1

P2

P3

SEQ1

p6

P4

p5
p3

p2

p1

P5

P6Combine p3
and p5

Combine p1
and p4

Figure 32. Diagram of expansion method three (shows Petri nets and co-matrices).

when a recursive construct is used in the P-CSP specification. In such a case the last column

is dropped and the C matrix is 8x6. Also, for case 1 (where A[m,n] = C[5,5] = "+"), if a "z"

in A is "+" then it will be moved to the last column (same row).4 Similarly, in either case 1

or 2, a "y" in A is "+" then it is moved to the last row in C (same column). The Method 3

expansion is too detailed to describe in the same terms as was done for Method 1 and 2 (refer

to the Appendix C for the code on Method 3). The basic idea is given in Figure 32 which

shows how the SEQ1 co-matrix (analogous to co-matrix B in Figure 29) is inserted into the

4Method 2a exception: catch all the +'s in last column which are to be moved to the new last column. These +'s
are outputs from transitions to the last place in A so now they must be connected to the new last place in C.
Only consider rows above rowMark which is the row being expanded (with the "- +" pair in the diagram).

48

SEQ0 co-matrix (analogous to co-matrix A in Figure 29). The expansion replaces the

transition SEQ1 by the two process names P5 and P6. The final combined result retains the

SEQ0 name. Note, the term SEQ is a key word (for sequential composition of processes), it

may itself be considered a process. CSPN treats each occurrence of this type as a unique

process by appending a unique number to the name (0 is appended to the first occurrence of

SEQ to give SEQ0 and the next occurrence of SEQ will have "1" appended). This strategy

allows the program to track each occurrence of a given keyword type. The keywords

subjected to numbering include SEQ, PAR, NDC, DC, STOP and SKIP.5

Expanding Sys[0], Net: TrainXing
Searching links of net[1], symbol: PAR1
ProcList0: 1-dt1 2-Train 3-Gate 4-dt2
1. Symbol: dt1, Type: 21
2. Symbol: Train, Type: 10

Merge processes PAR1 <- Train
Expansion includes the following:
A: PAR1
ProcL1: 1-dt1 2-Train 3-Gate 4-dt2
PR Mtr: 1 2 3 4 5 6
 [1]: - + 0 + 0 0
 [2]: 0 - + 0 0 0
 [3]: 0 0 0 - + 0
 [4]: 0 0 - 0 - +

B: Train
ProcL2: 1-InTransit 2-Togate!Arrive
 3-dt!Arrive 4-AtIntersection
 5-Togate!Depart 6-dt!Depart

PR Mtr: 1 2 3 4 5 6 7
 [1]: - + 0 0 0 0 0
 [2]: 0 - + 0 0 0 0
 [3]: 0 0 - + 0 0 0
 [4]: 0 0 0 - + 0 0
 [5]: 0 0 0 0 - + 0
 [6]: 0 0 0 0 0 - +

C: A<-B is a new (9x11) Matrix
Running Method 3:

ProcL3: 1-dt1 2-InTransit 3-Togate!Arrive
 4-dt!Arrive 5-AtIntersection
 6-Togate!Depart 7-dt!Depart
 8-Gate 9-dt2

PR Mtr: 1 2 3 4 5 6 7 8 9 0 1
 [1]: - + 0 0 0 0 0 0 + 0 0
 [2]: 0 - + 0 0 0 0 0 0 0 0
 [3]: 0 0 - + 0 0 0 0 0 0 0
 [4]: 0 0 0 - + 0 0 0 0 0 0
 [5]: 0 0 0 0 - + 0 0 0 0 0
 [6]: 0 0 0 0 0 - + 0 0 0 0
 [7]: 0 0 0 0 0 0 - + 0 0 0
 [8]: 0 0 0 0 0 0 0 0 - + 0
 [9]: 0 0 0 0 0 0 0 - 0 - +

 •

 •

 •

 Completed expansion!

Replace with Train symbol.

Train inserted
in the PAR1

Figure 33. CSPN run shows before and after combining coincidence matrices.

In Figure 33 a more complex expansion is depicted where the "Train" symbol is located

within the process list of the PAR1 symbol. CSPN expands PAR1's coincidence matrix

(matrix A) by inserting the coincidence matrix of the Train (matrix B) into matrix A at the aij

location (at i=2 and j=2). Because the Train symbol is of type 10 (indicating a compound

5Incidentally, the first four words listed give rise to P-nodes which constitute composition constructs which can
themselves contain other P-nodes or L-nodes. Lnodes are nodes which can be 'listed' inside of a P-nodes (e.g., a
channel!output or channel?input) which themselves are atomic. Not mentioned are stmtlist, MU.identifier, and
SystemID which are other possible Pnodes. These distinctions are made for the purpose of capturing structural
characteristics of the specification.

49

sub-Petri net that can be embedded into other Petri nets), it can be replaced by its expanded

coincidence matrix (including the replacement of the Train symbol in the PAR1 process list

with the Train's process list). The resultant C matrix has 9 rows and 11 columns.

The combining of the sub-Petri net co-matrices is constrained to preserve the process

algebraic structure in three dimensions (1) adjacency of terms within a process, (2) adjacency

among declarations of processes and (3) nesting. Figure 34 shows an instance of the data

structure which is used to capture all three structural dimensions. Adjacency refers to the

sequential ordering of terms in the algebra while the word nesting is used in the normal

algebraic sense. The first type of adjacency is illustrated by the sequence of process

components: PAR1, dt1, Train, Gate, Arrive, Depart, dt2. In the case of nested structures,

each new level of nesting requires a new NET[i+1] be appended to the tail of the declared

process pointed to by SYS[i]. Each of the two lists is anchored by a pointer contained in an

array of pointers. The two arrays SYS[] and NET[] are shown in Figure 34 as anchoring the

lists of either adjacent or nested structures. The second type of adjacency (among declared

PAR1

Trai nX in g

dt1

Trai n

Gat e

Ar riv e

De pa rt

dt2

SYS [0]

NE T[0]

PAR1

NE T[1]

SEQ1

Trai n

In Tran sit
Tog at e!A rri ve

dt! Ar riv e

At In t erse ct io n

Tog at e!D ep art

dt! De pa rt

SEQ1

SYS [1]

NE T[0]

NE T[1]

SEQ2

Gat e

Clo sed

Tog at e?De pa rt

dt? Dep ar t

Op en

Tog at e?Ar riv e

dt? Arr ive

SEQ2

SYS [2]

NE T[0]

NE T[1]

Nesting

Adjacency
within a
process

TrainXing =
 PROCESS Train =
 SEQ{InTransit(),{Togate!arrive},AtIntersection(),{Togate!depart}};
 PROCESS Gate =
 SEQ{{Togate?arrive},Closed(),{Togate?depart},Open()};
 PAR{
 Train(), Gate() {arrive, depart}}.

Adjacency among declared processes

Three Dimension Process Hierarchy

Figure 34. Data structure for nesting and adjacency detected in the specification.

50

processes) is recorded sequentially as follows SYS[0], SYS[1], ... SYS[n]. The SYS[0]

pointer always gives the system identifier (the actual symbol itself is pointed-to by NET[0]

[see Figure 37 to verify this example]) and the body (or main part) of the system

composition. Each new SYS[i] pointer is a new "PROCESS" declaration. Each new

NET[i+1] is a new level of nesting. The list attached to a given NET[i] contains the

components within a given process constructor (so-called a p-node using the nomenclature of

Figure 36).

Figure 35 gives another example of the linking associated with the process hierarchy for

the specification named "SysSimpleEx." In this example, the nesting is overstated. Thus, the

leg of SYS[1] runs from NET[0] to NET[5]. The first element of each list is the name of the

process node (p-node for short, which caused a new NET[i] pointer to be generated).6 The p-

nodes of the SYS[1] leg are as follows: Eg1, SEQ1, SEQ2, SEQ3, PAR1 and SEQ4. The

depth is 6 but the level of nesting is not depth 6 (the deepest level of nesting is actually 4).

To translate the nesting and the adjacency out of this leg into a Petri net, we must traverse the

tree as shown in Figure 35 from left to right and from the bottom up. Actually, we start from

the bottom of SYS[1] and move right to the end and then finish with SYS[0]. Let us consider

the SYS[1] leg starting at NET[5]. Moving up the leg past NET[4] to NET[3] we encounter a

p-node "PAR1" which must be expanded. By virtue of the syntactical correctness, we are

guaranteed that the this p-node has been fully expanded. Thus, by accessing the symbol table

entry for "PAR1" we find the list of sub-components (which includes dt1, P11, P12, dt2), and

simply replace PAR1 in SEQ3’s list (i.e., at position NET[3]) with the PAR1 list of sub-

components. Actually the list is known as a process list (i.e., contains the sub-component

symbols, each separated by a comma) and individual elements of the list are known as p-

nodes. The new process list for SEQ3 that results is the following P1, P2, dt1, P11, P12, dt2.

This same kind of replacement (expansion) mechanism continues until the top of the leg is

6See Figure 36 for a definition of P-nodes and L-nodes.

51

SysSimpleEx =
 PROCESS Eg1 =
 SEQ{SEQ{SEQ{P1(),P2(),PAR{P11(),P12()}},P3(),P4()},P5(),P6()},SEQ{P7(),P8()};
 PROCESS Eg2 =
 SEQ{ P9(), P10() };
 PAR{ Eg1(), Eg2() }.

Nesting

PAR2

SysS im pl eEx

dt3

Eg 1

Eg 2

dt4

SYS [0]

NE T[0]

PAR2

NE T[1]

SEQ1

Eg 1

SEQ2

P5

P6

SEQ1

SYS [1]

NE T[0]

NE T[1]

SEQ5

Eg 2

P9

P10

SEQ5

SYS [2]

NE T[0]

NE T[1]

SEQ4

SEQ2

SEQ3

P3

P4

NE T[2]

SEQ3

P1

P2

PAR1

NE T[3]

PAR1

dt1

P11

P12

NE T[4]

SEQ4

P7

P8

P4

NE T[5] dt2

Adjacency
within a
process

Nesting

Adjacency among
declared processes

Nest-
ing

Process Hierarchy for SysSimpleEx

Figure 35. Process hierarchy for system "SysSimpleEx" with exaggerated nesting.

visited (i.e., at NET[0] = "Eg1"). The process is then repeated for both SEQ1 and for SEQ4.

Thus, to recompose the whole process algebraic system in terms of a Petri net from the

combined "SYS[] x NET[]" structure CSPN expands each of the p-node component and

records the results in the symbol table entry recursively. Refer to Figure 36 for a relational

diagram of the network (or process hierarchy) data structures and to Figure 37 for an exact

definition of the (1) symbol table entry, (2) the net_node and (3) the node data structures used

in recording the process hierarchical structure.

52

4.6 P-CSP semantics as it relates to the data structures

The structural characteristics of a P-CSP specification necessitate the framework of P-

nodes and L-nodes defined in Figure 36. Table 5 enumerates the various symbol names

assigned to the P-CSP components during the translation (parsing). The P-nodes are

anchored by the "SYS[]" array. This is an array of NET_NODE pointers. The L-nodes are

anchored by an array of NODE pointers called "NET[]." Each NET_NODE contains a

NET[] array to capture both the nesting and adjacency defined within a P-node.

System

Process
declaration

Process
instances

L-node

Process
nodes

P-node

Each process declaration causes a net_node
structure to be allocated and linked to the sys[i]
which is a pointer to a NET_NODE. Therefore
sys[i] contains as many non-null pointers as there
are PROCESS declarations.

Each L-node (list node) is linked
to its sibling as a NODE within a
P-node.

The system body or "main"
part of the specification is
linked from sys[0].

Sys[0..n] where n+1 is the
number of net_nodes
allocated.

Sys[0]

NET[1..m]

Sys[1..n]

There are two levels of data
used in this framework (P-
nodes and L-nodes). The
first is sys[], an array of
"net_node" pointers. The
net_node is a structure that
is allocated for each P-node
declaration. The second is
net[], an array of "nodes"
pointers to all of the L-
nodes for this P-node.

System
main body

Each P-node (process node) is
linked from sys[1..n] array.

Figure 36. Relational diagram for the network (or process hierarchy) data structures.

The P-CSP grammar distinguishes 3 categories of primitive elements. The P-nodes are

the composition statements used to express the semantics of the system description. The list

elements (or L-nodes) are instances of pre-declared processes, variables or channels. The

final category is other elements which consist of all other elements not included by the

previous two categories (e.g., connectives, grouping symbols or punctuation). Each element

is assigned a type number according to Table 5.

53

typedef struct nodedef {
{ char *n_name; Pointer to the node/symbol name

 char *n_fail; NULL if no fail rate/prob specified
 short israte; Boolean: legal values are (-1, 0, 1)

 short n_type; Node type consistent w/ symbols
 short uid; System level unique identifier

 struct nodedef *link; Pointer to next node, if any
 } NODE;

typedef NODE *nodeptr; Pointer to a NODE strucutre

NODE structure (pnode or lnode instance)

typedef struct entrydef { Symbol Table entry definition
 char *name; Symbol name pointer
 short type; Symbol type (values 0 through 23)
 short uid; Unique identification number (pid)
 char *frate; Failure Rate in ASCII pointer
 char *fprob; Failure Probability in ASCII pointer
 char *p_pl; Process list pointer
 short rsize; Number of rows in PR Matrix
 short csize; Number of cols in PR Matrix
 p_matrix p_prm; Process Relation (PR) Matrix pointer
 struct entrydef *next; Link to next ENTRY
} ENTRY;

typedef ENTRY *entryptr;

ENTRY structure (symbol table entry)

NET_NODE structure (pnodes declaration instance)
typedef struct netdef
{ char *net_name; Pointer to the node/symbol name

 short numNodes; Number of pnodes in this linked list
 short numSibs[NETSIZE]; Number of siblings within each pnode

 nodeptr net[NETSIZE]; Rootptr's to Process Nodes
 } NET_NODE;

typedef NET_NODE *netNodeptr; Pointer to net_node structure

netNodeptr sys[SYSSIZE]; Rootptr's to "PROCESS_DEC" net nodes

NDC

SEQ2 SEQ3 P1SEQ1

SEQ3 P3 P4SEQ2

P5 P6SEQ3

P7 P8NDC

EX1

P2

EX1 16

EX2 4

Sy1 3

EX1

P9 P10PAR1

Sys[0..2]

Net[0..1]

Net[0..4]

Net[0..1]

NDC EX1 EX2

NET_NODE NODE's

NET_NODE

...array of pointers to nodes

NET_NODE

Sy1 =
 PROCESS EX1 =
 SEQ{SEQ{SEQ{P1(),P2()},P(),P4()},P5(),P6()},
 NDC{P7(),P8()};
 PROCESS EX2 =
 PAR{P9(),P10};

NDC{EX1(),EX3()}.

Figure 37. Definitions of the symbol table and process hierarchy data.

TABLE 5

CONSTRUCTS USED IN P-CSP AND THEIR TYPE VALUES

Process nodes and artifacts Channels and variables
NULL_TYPE 0
SYSTEM_ID 1 p-node
STMT_LIST 2 p-node
STOP_PROC 3 l-node
SKIP_PROC 4 l-node
PAR_PROC 5 p-node
SEQ_PROC 6 p-node
NDC_PROC 7 p-node
DC_PROC 8 p-node
MU_PROC 9 p-node
PROC_CALL 10 l-node
PROCESS_DEC 11 special
CHAN_PROC 12 l-node (contains 13-14)
INPUT 13 l-node
OUTPUT 14 l-node

There are twenty three different types.

BOOL_VAR 15 l-node
VAR 16 l-node
EXPRESSION 17 l-node
RIGHTBRACE 18 not defined
LEFTBRACE 18 not defined
BRACE 18 not defined
SEMICOLON 19 not defined
SEMIC 19 not defined
DOT 20 not defined
DUMMY 21 not defined
SYNCH_MSG 22 l-node
GUARD1 23 not defined
GUARD2 24 not defined
RECURSE 25 not defined
RECUR_TOP 26 not defined
SDT 27 not defined
TYPES 28 not defined

54

The symbol table contains all of the identifiers used in the specification (i.e., names of

declared processes, channel variables, simple variables and system defined names) and is the

primary source of information about the system. A hash function enables an efficient means

of accessing the associated data shown in Figure 37. Any symbol used or defined within the

specification is accessible.

4.7 P-CSP’s usage of failure and service rate annotations

When the "-f" option flag is set on the command line, CSPN will incorporate any legal

failure annotations into the SPNP file. Naturally, the "-o<fn>" option must also be

specified, otherwise CSPN will not produce the fn_spnp.c file. Legal annotations are

specified as either a probability ":FAIL(p=x.xx)" or rate ":FAIL(r=x.xx)" of failure.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt1

dt2

ft:InTransit

ft:Togate!arrive

ft:Togate!depart

Fail place
(absorbing)

17

17

2

3

4

5

6

7

14

13

12

11

10

9

158

16

TrainXing =
 -- Two processes Train and Gate consist of
 -- sequential actions and run concurrently.
 -- Two synchronization messages are required
 -- to command the Gate.

 PROCESS Train =
 SEQ{
 InTransit():FAIL(p= 0.01),
 {ToGate ! Arrive}:FAIL(r= 0.02),
 AtIntersection(),
 {ToGate ! Depart}:FAIL(r= 0.03)};

 PROCESS Gate =
 SEQ{
 {ToGate ? Arrive},
 Closed(),
 {ToGate ? Depart},
 Open()};

 PAR{Train(), Gate() {Arrive, Depart}}.

Figure 38. Specifying failure annotations in P-CSP and the resulting Petri net.

This is illustrated in Figure 38. A failure annotation can be related into the specification at

any level. However, only the values that are associated with a non-expandable element (one

55

which may not be further decomposed) will actually be translated into the SPNP file. Thus,

if a rate were attached to the process call: "Train():FAIL(r=x.xx)" in Figure 38

(composed inside a PAR construction) then the value would not be translated into the SPNP

file. Thus, annotations associated with composite processes are not incorporated into the

fn_spnp.c file but can be maintained as a record of the results of any current or subsequent

runs (e.g., failure probability of a group of components).7 Note, that service rates can also be

annotated in a similar fashion with the same caveat that in order to be utilized in the SPNP

file it must be attached to an non-expandable element. The notation is ":SERV(r=x.xx)".

4.8 Linking synchronization primitives

In synclink for symbol: TrainXing ...

ProcL0: 1-dt1 2-InTransit 3-Togate!Arrive
 4-dt!Arrive 5-AtIntersection
 6-Togate!Depart 7-dt!Depart
 8-Togate?Arrive 9-dt?Arrive
 10-Closed 11-Togate?Depart
 12-dt?Depart 13-Open 14-dt2

Sync message: Arrive,
Find transition: dt!Arrive, at pos: 4.
Matching trans: dt?Arrive, with pos: 9

Sync message: Depart,
Find transition: dt!Depart, at pos: 7.
Matching trans is: dt?Depart, with pos: 11

PR Mtr: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 [1]: - + 0 0 0 0 0 0 + 0 0 0 0 0 0 0
 [2]: 0 - + 0 0 0 0 0 0 0 0 0 0 0 0 0
 [3]: 0 0 - + 0 0 0 0 0 0 0 0 0 0 0 0
 [4]: 0 0 0 - + 0 0 0 0 - + 0 0 0 0 0
 [5]: 0 0 0 0 - + 0 0 0 0 0 0 0 0 0 0
 [6]: 0 0 0 0 0 - + 0 0 0 0 0 0 0 0 0
 [7]: 0 0 0 0 0 0 - + 0 0 0 - + 0 0 0
 [8]: 0 0 0 0 0 0 0 0 - + 0 0 0 0 0 0
 [9]: 0 0 0 0 0 0 0 0 0 - + 0 0 0 0 0
 [10]: 0 0 0 0 0 0 0 0 0 0 - + 0 0 0 0
 [11]: 0 0 0 0 0 0 0 0 0 0 0 - + 0 0 0
 [12]: 0 0 0 0 0 0 0 0 0 0 0 0 - + 0 0
 [13]: 0 0 0 0 0 0 0 0 0 0 0 0 0 - + 0
 [14]: 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - +

Release: Row: 9
 Row: 11

ProcL0: 1-dt1 2-InTransit 3-Togate!Arrive
 4-dt:Arrive 5-AtIntersection
 6-Togate!Depart 7-dt:Depart
 8-Togate?Arrive 9-Closed
 10-Togate?Depart 11-Open 12-dt2

PR Mtr: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 [1]: - + 0 0 0 0 0 0 + 0 0 0 0 0 0 0
 [2]: 0 - + 0 0 0 0 0 0 0 0 0 0 0 0 0
 [3]: 0 0 - + 0 0 0 0 0 0 0 0 0 0 0 0
 [4]: 0 0 0 - + 0 0 0 0 - + 0 0 0 0 0
 [5]: 0 0 0 0 - + 0 0 0 0 0 0 0 0 0 0
 [6]: 0 0 0 0 0 - + 0 0 0 0 0 0 0 0 0
 [7]: 0 0 0 0 0 0 - + 0 0 0 - + 0 0 0
 [8]: 0 0 0 0 0 0 0 0 - + 0 0 0 0 0 0
 [9]: 0 0 0 0 0 0 0 0 0 0 - + 0 0 0 0
 [10]: 0 0 0 0 0 0 0 0 0 0 0 - + 0 0 0
 [11]: 0 0 0 0 0 0 0 0 0 0 0 0 0 - + 0
 [12]: 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - +

Remove

Remove

Figure 39. Resolving synchronization links.

The process of linking the synchronization primitives occurs after all expansions have

completed (except adding failure annotations). In Figure 39 rows 9 and 11 are removed in

merging the output message transition with the matching input message transition.

7Sensitivity analysis is an examination of the effect of small variations in system parameters on the output
measures can be studied by computing the derivatives of the output measures with respect to the parameter
[Mainkar93]. Sensitivity analysis is useful to estimate how the output measures of a system model are affected
by variations of its input parameters (as well as for system optimization and bottleneck analysis).

56

4.9 CSPN file descriptions

There are twelve files that make up the CSPN tool (not including the C files generated by

lex and yacc and two small header files used in the lex and yacc specification files). These

files are named here and are briefly described with respect to their contents (and in some

cases multiple function capabilities): (1) cmd_line.c, (2) csp.l, (3) csp.y, (4) expn_cspy.c, (5)

itoa.c, (6) net.c, (7) petri_cspy.c, (8) prlist.c, (9) prmatrix.c, (10) scoring.c, (11)

symbol_cspy.c, (12) symbol_cspy.h.

4.9.1 Cmd_line.c description

Command line checks for command line arguments. If there are none it uses the

defaults. Otherwise it allows the user to change certain options available from SPNP (SPNP

Reference). There are three other noteworthy functions. The do_file is a function that

displays the command line defaults for each run, usage displays the help screen, gen sets the

defaults for the parameters part of the SPNP.c file, and choose is an interactive routine that is

invoked by the command line verbose mode option flag "-v." This routine allows the user to

choose from any of the available options in the parameters part of the SPNP.c file. Pic1 and

Pic2 are functions associated with choose.

4.9.2 The csp.l and csp.y descriptions

Lex and yacc are tools designed for writers of compilers and interpreters (i.e., any

application that looks for patterns in its input, or has an input or command language). They

help one write programs that transform structured input. Lex takes a set of descriptions of

possible tokens and produces a C routine (called the lexical analyzer or lexer or scanner).

The set of descriptions given to lex is called a lex specification . The lex specification for the

P-CSP language is found in Appendix B and is found in the csp.l file.

The token descriptions that lex uses are known as regular expressions. As the input is

divided into tokens, the CSPN tool must establish the relationship among tokens. CSPN

needs to find expressions, statements, declarations, blocks, and processes in the specification

57

program. This task is known as parsing and the list of rules that define the relationships that

CSPN understands is the grammar (also called the yacc specification and for the P-CSP

language is found in Appendix B). Yacc takes a concise description of the grammar

(basically in BNF notation and is found in the csp.y file) and produces a C routine that can

parse the grammar, called the parser. The parser detects when a sequence of input tokens

matches one of the rules in the grammar and also detects syntax errors whenever the input

doesn't match any of the rules.

4.9.3 Symbol_cspy.h and symbol_cspy.c description

Symbol_cspy.h is the primary header file included in the csp.y file. This file contains

included C library files, global variable declarations and prototype declarations.

Symbol_cspy.c manages updates to the symbol table as each new symbol token arrives to the

parser from the scanner via a call to the getsym function. Table 6 lists all the functions

associated with managing the symbol table structure.

TABLE 6

SYMBOL TABLE UTILITY FUNCTIONS

Function name Description

look Takes a pointer to a symbol name and returns a pointer to the entry if it
exists (including found=1 => true). Otherwise, it returns a ptr to the
free entry where it could be inserted.

getsym Used in the parser to pick up the symbols and to "insert" and verify
insertion into the symbol table.

insert Takes a pointer to symbol and returns a ptr to the symbol table entry.
The duplicate_sym pointer passes back: -1 is if a duplicate symbol
exists (a failed operation), 0 is if the symbol was inserted successfully.

init_table Initializes the symbol table.

print_table Print_table has 2 loops to print (1) index the table, (2) index the linked
list while traversing the links for collided symbols.

dumptable Dumptable prints the contents of the symbol table in a stylized fashion.

58

4.9.4 Net.c description

This file contains two prime functions: (1) net_main and (2) search_net . Net_main is the

driver function that invokes 12 other utility functions used to build a net hierarchy to capture

the P-CSP specification structure. Once the net hierarchy is completed search_net traverses

the net hierarchy in the process of constructing the process lists and co-matrices for each

individual component (i.e., p-node) in the specification. The sub-functions push, pop, peak

and printStack are used to manage the stack which is used to track the nesting of process

compositions. The other functions are responsible for allocating and linking up new nodes

that are generated for every new term in the process algebra. When search_net has

completed, the specification is decomposed. The utility functions are listed in Table 7.

TABLE 7

NET UTILITY FUNCTIONS

Function name Description

push Puts integers on Stack[STACKSIZE].

pop Returns the integer on top of stack.

peak Non-destructive pop.

printStack Prints the stack contents top to bottom.

linkToSiblings If cur_pnode has sib relation link to the sib.

append Given net[root pointer] append a node to end list.

allocate_net Allocate a NET_NODE for a PROCESS declared symbol.

allocate Allocate a NODE for a symbol w/in a PROCESS definition.

linkup Link a NET_NODE to a net[root pointer].

searchNet Traverse the net[i]'s to build atomic co-matrices.

updateNet Traverses the net[i]'s to transfer any failure annotations in the symbol
table to the net data structure (in the *n_fail field of NODE).

printNet Given a netNodeptr print the contents of a NET_NODE.

net_init Initializes net_main's global variables.

net_main A (large) switch on sym_type to decide structure of the net.

59

Each invocation of the searchNet function requires a pointer to a NODE structure. These

NODE structure pointers are contained in the array sys[] (each i in sys[i] is a PROCESS

declaration). Each PROCESS declaration is represented by a NET_NODE which contains a

net[i] pointing to individual p-nodes (see Figure 36) nested within the process declaration.

The net[i] array contains pointers to related p-nodes (i.e., when they are used in a sys[i]

PROCESS declaration). Each p-node instance is represented by a NODE with a name field

for its name (process information is kept in the symbol table referenced by the n_name field).

4.9.5 Prlist.c description

In the P-CSP specification, process names are identified during translation and included

in a process list according to their contextual relation in the specification. This file contains

numerous utility functions which are defined in terms of a process list structure. The

process list is a string of symbol names contained in the symbol table, each separated by a

comma and terminated by an eos (end-of-string character). These routines can check if a

process name is in the list (and its position), put a name in the list, replace a name with a new

name or new list (called insertion), delete a name, count the occurrences of a name, remove

by replacing a name with "*'s", destroy the list (and deallocate the memory), and display the

list. In essence, the process list defines the transition names of the Petri net which are

ordered row-wise in the co-matrix of each Petri net.8

4.9.6 Scoring.c description

This file contains two major functions: scoring and AddFailures . Scoring updates an

integer array with "-1" indicating an input to the current row[i] (a transition) from the current

column[j] (a place). A "+1" is used to indicate an output from a transition to a place. Given

the number of rows (processes in the process list for this symbol), it returns the number of

columns. Scoring knows what each P-CSP construct should look like in terms of the Petri

net (i.e., it scores coincidence matrix using the canonical translation rules) by marking the n-

8These routines were developed with help from David Sheely (at The University of Texas at Arlington).

60

by-m co-matrix appropriately (i.e., n transitions and m places).

AddFailures is called from the main line code in the parser (csp.y) routine if the "-f"

option was specified on the command line meaning that the ignoreFailures flag is not set.

The routine parses through the process list of the system co-matrix (which is named as

prmatrix), looks up each process in the symbol table and checks if a failure annotation is

stored there. If so it will append a failure transition to the co-matrix and update the process

list for the system symbol.

4.9.7 Expn_cspy.c description

The expn function combines two co-matrices using the following steps: (1) looks up the

symbol name in the symbol table, (2) gets the size (m-by-n) of the co-matrix, (3) recalculates

the mxn for the new (combined) co-matrix, (4) reallocates a new data structure, (5) combines

the two co-matrices into the new one using one of three methods, (6) links up the result back

in the symbol for that particular symbol name. See Appendix C for a complete description of

these expansion algorithms.

Synclink matches transitions in the process list that look like dt!msgX with dt?msgX by

the following algorithm:

(1) Locate dt!msgX and rewrite ! <- :;

(2) Locate dt?msgX and remember its location;

(3) Remove dt?magX transition from a duplicate process list;

(4) Until all messages in the synclist[] array are located;

(5) Now sort the remembered locations in descending order;

(6) Delete the co-matrix row corresponding to the locations starting from the bottom
up (descending order).

4.9.8 Petri_cspy.c description

This file contains the function decodeSys which uses the system (i.e., sys[0]) process list

and co-matrix (these two items are the final product of the composition and clean-up phases

in CSPN) to generate the net() part of the fn_spnp.c file. The net() function gives the CSPL

(i.e., the SPNP language) specification for the stochastic Petri net.

61

4.9.9 Miscellaneous file descriptions

Two additional files are the prmatrix.c, and itoa.c files. Given the number of rows and

columns, prmatrix returns a pointer to an empty (zeroed) n-by-m process relation table (i.e.,

the coincidence matrix) used to specify a component Petri net. There is also a print routine

which is designed to print the matrix in an easy to read format. The itoa function returns the

ASCII (i.e., string representation) value of an integer.

4.9.10 Intermediate output files used for debugging

Numerous intermediate files are created by CSPN. All files are prefixed with the input

file name dot "xxx" where xxx distinguishes the type of file. For example, if the input file (a

P-CSP specification) were named "train" then the output file that contains all of the tokens

generated during the translation of a train specification would be named "train.tok." Table 8

contains a list of the intermediate files and their contents.

TABLE 8

DESCRIPTION OF INTERMEDIATE TRANSLATION FILES

File name Description

fn.tok Lists the tokens passed from the scanner to the parser

fn.dec Output from the searchNet routine (in net.c). Lists the symbols that
were found in searching the net hierarchy, their co-matrix (Petri net
representation) and failure annotation (if any).

fn.dsd1 Snapshot of the symbol table after the decomposition phase completes.

fn.epn Lists all intermediate steps taken during expansion of the component
Petri nets into the one system Petri net (i.e., combining co-matrices).
This includes the steps associated with resolving synchronization links
(a reduction process) and including failure annotations.

fn.net A key file which lists all of the net hierarchy in a staggered format that
shows the nesting and adjacency relationship in 2 dimensions.

fn.dsd2 Snap shot of the symbol table after the expansion process has
completed.

fn_spnp.c This is the CSPL specified Petri net file on which the stochastic

analysis may commence using the SPNP tool.

62

CHAPTER 5

ILLUSTRATION OF THE USEFULNESS OF THE CSPN TOOL

Some men see things the way they are and say, 'Why?'. I dream things that never
were and say, 'Why not?'

--Robert F. Kennedy

5.1 Combining functional and performance analysis

A simple example showing a translation from the CSP specification into the stochastic

Petri nets (SPNs) is provided to illustrate how performance and reliability analyses may be

obtained. In this way, the merits of a powerful modeling technique using SPNs can be

combined with a well defined formal specification language. The railroad crossing example

was first formulated as a benchmark problem used to compare different formal methods for

specifying, designing and analyzing real-time systems. Although it is both simple and easy

to understand, it is complex enough to illustrate a number of aspects of the modeling and

verification of timed systems. Basically, it concerns a point at which road vehicles attempt to

cross over railroad tracks unless prevented by the gate which closes when a train is passing.

The requirements are described in the next section.

5.2 Requirement specification for the railroad crossing

As modeled, the system combines a single train, a draw gate and a communications link.

The system continuously handles one train at a time by closing the gate when the train is

approaching [Heitmeyer94]. There are two basic properties the system must satisfy.9 (1)

Safety property – the gate is down during all occupancy intervals (when the Train is at the

intersection), and (2) Utility property – the gate is open when no train is in the crossing. The

9This model encompasses the environment which includes the train(s) and the gate, as well as the interface
between them. Thus, the gate closes when a train arrives at the intersection and remains closed until the train
completely passes by the intersection.

63

solution in general terms proceeds as follows:

• Train sends an "arrive" message to the Gate as it nears the intersection and proceeds
towards the intersection.

• Gate , upon receiving the message, closes the gate and remains closed until the train
departs.

• Train sends a "depart" signal after leaving the intersection.

• Gate , upon receiving the signal opens the gate and remains open.

In order to simplify this example we represent multiple interactions between these two

processes, instead of multiple trains interacting with the gate.

5.3 The CSP for the railroad crossing

At the intersection, the gate closes for arriving trains and remains closed until the train

has completely passed. The problem can be extended to handle multiple trains (see Appendix

D which incorporates a monitor program), but only one train is specified here in Figure 40.

Train = (InTransit);

 (Togate ! arrive → AtIntersection);

 (Togate ! depart → Train)

Gate = (Togate ? arrive → Close);

 (Togate ? depart → Open → Gate)

TrainXing = Train ||{arrive,depart} Gate

Figure 40. Pure CSP specification of the railroad crossing problem.

Two concurrent processes, the Train and the Gate, communicate by sending and

receiving messages. The Train outputs "arrive" on channel Togate to inform the Gate that it

will soon arrive at the intersection. Upon passing through the intersection, the train sends a

"depart" message to the Gate. The Gate process receives the "arrive" message and closes the

gate. Once closed, the Gate waits for the "depart" message before causing the gate itself to

open. Note how easy it is to identify the sender and receiver connected by the channel.10

10However, there are some drawbacks associated with using CSP. First, CSP as defined by Hoare has no
concept of time. Recent extensions to CSP permit the association of time with actions [see Davies 94 and see 1,
2, 3 TBD and the references therein]. Second, since CSP uses point-to-point communication it is awkward to
describe the case where the Gate process accepts inputs from multiple Train processes.

64

5.4 The P-CSP for the railroad crossing

In Figure 41 the train and gate processes are specified using the CSP-based language P-

CSP along side the CSPN derived Petri net.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt1

dt2

TrainXing =
 --Two processes Train and Gate consist
 --of sequential actions and run
 --concurrently. Two synchronization
 --msgs are required to command the gate.

 PROCESS Train =

 SEQ{
 InTransit(),
 {Togate ! arrive},
 AtIntersection(),
 {Togate ! depart}};

 PROCESS Gate =

 SEQ{
 {Togate ? arrive},
 Closed(),
 {Togate ? depart},
 Open()};

 PAR{
 Train(), Gate() {arrive, depart}}.

Figure 41. P-CSP specification for parallel composition of the railroad crossing.

The original CSP specification in Figure 37 provides that both processes repeat their

internal activities continuously. However, given the P-CSP specification of Figure 38, the

resultant Petri net graphically reveals the absence of iteration to provide for the handling of a

continuous stream of trains. To provide iteration, an additional composition is added: namely

Mu.X{PAR{Train(), Gate() (arrive, depart)} → X}. In this case, X is a recursive process

65

that provides the link between the dummy transitions dt1 and dt2 shown in Figure 41. The

new net which incorporates iteration is shown in Figure 42.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt2

dtX

"Mu.X{}" generatedp1

p2

p15

p14

p13

p12

p11

p3

p4

p5

p6

p7

p9

p8

p10

TrainXing =
 --Two processes Train and Gate consist
 --of sequential actions and run
 --concurrently.

 PROCESS Train =
 --WHILE TRUE
 SEQ{
 InTransit(),
 {Togate ! arrive},
 AtIntersection(),
 {Togate ! depart}};
 --END while

 PROCESS Gate =
 --WHILE TRUE
 SEQ{
 {Togate ? arrive},
 Closed(),
 {Togate ? depart},
 Open()};
 --END while

 Mu.X{
 PAR{
 Train(),
 Gate() {arrive, depart}} → X}.

dtX is generated from the "Mu.X{}"

construct. Actually, the "→X" part
is provided for readability since
in this case the cycling is taken

by default.

Figure 42. P-CSP specification for the (tail type) recursive composition.

5.5 Semantics of the Petri net for the railroad crossing

The train and gate operate concurrently and independently. However, for the system to

meet its functional requirements both components must synchronize. To accomplish their

missions (i.e., passing through the intersection and holding traffic to permit the train to pass

safely) they use the channel "Togate" to synchronize. The synchronization described by the

CSP may not readily reveal the potential race hazard that is more detectable in the Petri net.

66

The Train process could arrive to AtIntersection before the gate closes!11 To avoid this

unsafe state an extra "ok" gate closed synchronization message is used. In Figure 43 the

messages are represented by transitions dt:arrive, dt:ok and dt:depart. The prefix "dt:"

denotes a "dummy transition" that fires with probability one (i.e., an immediate transition).

TrainXing =
 PROCESS Train =
 SEQ{
 InTransit(),
 {Togate ! arrive},
 {Togate ? ok},
 AtIntersection(),
 {Togate ! depart}};
 PROCESS Gate =
 SEQ{
 {Togate ? arrive},
 Close(),
 {Togate ! ok},
 {Togate ? depart},
 Open()};
 Mu.X{
 PAR{Train(),Gate()
 {arrive,ok,depart}}→ X}.

Open

dt2

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dtX (or dt1)

Togate?ok

Togate!ok

dt:ok

p1

p2

p17

p16

p15

p14

p13

p12

p11

p3

p4

p5

p6

p7

p9

p8

p18

p19p10

Train =

 (InTransit);

 (Togate ! arrive → Togate ? ok

 → AtIntersection);

 (Togate ! depart → Train)

Gate =

 (Togate ? arrive → Close

 → Togate ! ok);

 (Togate ? depart → Open → Gate)

TrainXing = Train ||{arrive,ok,depart} Gate

CSP

P-CSP

Figure 43. CSP and P-CSP specifications which address race hazard.

11This is possible because after the synchronization on the "Togate" channel occurs (i.e., the "arrive" signal is
received), the "AtIntersection" transition may fire before the "Close" transition denoting the case where the train
arrived sooner than the time needed for the gate to close.

67

The gate will not begin to close until it receives the "arrive" message. First, the train

must fire the transition "InTransit," and then send the "arrive" message by firing

"Togate!arrive." In turn, the gate must be ready to receive the message by firing the

transition "Togate?arrive." After all these actions have occurred, the gate may receive the

command to close. The close command may occur (i.e., fires at some definite rate) when a

token is on place "p13." This will occur immediately after the synchronizing "dt:arrive"

transition has been enabled (tokens on "p4" and "p12") since this transition is immediate

(consumes no resources). The marking with one token each on places p14 and p12 which

enable the "dt:arrive" transition to fire.

In following the logical flow of feasible markings, we see that it is impossible for the

train to proceed to the "AtIntersection" transition until the gate is closed and has fired off a

message to the train: "ok" its safe to proceed. We can also notice that the same applies for

the gate opening process by virtue of the transition "dt2" which essentially forces the two

processes to synchronize. We could re-label the transition as "Motorist-Proceed" (perhaps).

In review, the semantics of synchronization provided by the revised CSP specification

forces the train to wait until the gate closes to preserve the safety property.12 Moreover, the

"dt:ok" transition is needed because, after firing the "dt:arrive" transition (i.e., which enables

the Togate?ok and Close transitions), the train may reach the intersection faster than the gate

could close (e.g., "AtIntersection" fires sooner than the transition "Close").13 Consequently,

with regard to this approach, we must ask what other possible failures are there that may

cause a violation of the safety property.

5.5.1 Enumerating all possible failure transitions

In the Petri net of Figure 44, all of the possible failures are identified with respect to the

activities described in the CSP specification. Transitions labeled with "ft:process-name" are

12We have studied the case where multiple trains may arrive at the intersection. In such cases, it becomes
necessary to have a monitor arbitrate (see Appendix E for a brief look at the solution to such a case).
13If we assume the gate always opens and closes sooner than the time it takes the train to reach the crossing, the
PN can be viewed as hazard free (except for the possibility of the gate having mechanical failure [unsafe]).

68

failure transitions. Dummy transitions are assigned a probability one and do not have any

associated failure transitions. It is interesting to note, that instead of transitioning to place

"p20" as shown in Figure 44, it would be possible to separate distinct failure types into

different "absorbing" places so that the MTTF values (or the failure rate) associated with

each type of failure mode can be separately denoted and computed.

Open

dt2

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dtX

Togate?ok

Togate!ok

dt:ok

p1

p2

p17

p16

p15

p14

p13

p12

p11

p3

p4

p5

p6

p9

p8

p18

p19p10

ft:InTransit

ft:Togate!arrive

ft:Togate!depart

ft:Togate?ok

ft:Open

ft:Togate?depart

ft:Close

ft:Togate?arrive

ft:Togate?ok

ft:AtIntersection

p20

p7

Communication failure

Communication failure

Communication failure

Mechanical failure

Mechanical failure

Communication failure

Communication failure

Communication failure

Locomotive failure

Locomotive failure

Figure 44. Railroad crossing Petri net showing all possible failure transitions.

69

For example, we could distinguish three types of failures based on the Petri net of Figure

44: (1) mechanical failures where the gate may fail to close or to open properly, (2)

communication failures –the sending or receiving of signals could be lost, and (3) timing

related failures where the train takes less time than the time taken for the gate to close. We

can then distinguish three separate failure places, each to be associated with one of the failure

types. The distribution of tokens in the various places of the Petri net defines the markings of

the Petri net. As described in Section 3.3, we consider a transition enabled if each of its input

places contains at least one token. An enabled transition may fire removing a token from

each of its input places and depositing a token in each of its output places. In stochastic

analysis actions are associated with an exponentially distributed times to indicate the amount

of time needed for that action to complete. This firing time is the time that elapses form the

point at which the transition becomes enabled to the point at which the transition actually

fires. The firing of a transition causes the redistribution of the tokens in the stochastic Petri

net resulting in a new marking.14

The set of all such markings together with the transitions among them is called the

reachability graph. The states in the reachability graph are isomorphic to the states in a

continuous (discrete) time Markov chain. We may identify unique markings that may lead to

a failure and those failure transitions are then associated with an absorbing state in the

Markov state diagram. Different markings potentially lead to different types of failures (e.g.,

a mechanical failure or some other such failure).

5.5.2 Enumerating safety critical failure transitions

We discussed the groupings of failures based on the similarity of their failure

mechanism. Here we are now concerned with the manifestation (or impact) that a given

failure has on the system (i.e., whether the failure may have catastrophic consequences or

not). This categorization is important for determining for instance the cost or the risk that a

14For example, the time to failure of ft:close is known to be exponentially distributed with rate λ1 (lets say).
This is modeled in the stochastic Petri net by associating a firing time with each of the transitions.

70

given failure presents to its users (and/or developers). In this section the discussion will be

based on the railroad crossing that is discussed above which has a race hazard resulting from

a "runaway" train. The states in Figure 45 (which are based on the Petri net pictured at the

right) demonstrate that there are two unique manifestations of failures (i.e., critical and non-

(safety)-critical). In considering the criticality of timing, we see that the slow firing of

transition Close makes it possible for the train to enter the intersection before the gate has

properly (or completely) closed. Similarly transition Open makes it possible for the train to

have departed and still, the gate is not open.

Open

dt:depart

Togate?depart

Close

Togate!depart

AtIntersection

dt:arrive

Togate!arrive

InTransit

Togate?arrive

dt2

dtX

1

2

15

14

13

12

11

3

4

5

6

7

9

8

10

0 1

2 3

6 7

10 11 12 13 14 15 16 17

98

4 5

Critical condition: Train at
intersection but gate is still
open

Non-critical condition:
Train departed
but gate is still closed

Markings: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 Description of marking:
M0: (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0) Train gone (idle state), gate open.
M1: (0 1 0 0 0 0 0 0 1 0 0 0 0 0 0) Train gone non-idle state, gate open.
M2: (0 0 1 0 0 0 0 0 1 0 0 0 0 0 0) Train in transit (approach), gate open.
M3: (0 0 0 1 0 0 0 0 1 0 0 0 0 0 0) Train sends arr msg, gate not rcvng.
M4: (0 1 0 0 0 0 0 0 0 1 0 0 0 0 0) Train gone, gate waits arr msg.
M5: (0 0 1 0 0 0 0 0 0 1 0 0 0 0 0) Train in transit, gate w aits arr msg.
M6: (0 0 0 1 0 0 0 0 0 1 0 0 0 0 0) Train sends arr msg, gate w aits arr msg.
M7: (0 0 0 0 1 0 0 0 0 0 1 0 0 0 0) Msg synchronization complete.
M8*: (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0) Train passing intersect, gate open.
M9*: (0 0 0 0 0 0 1 0 0 0 1 0 0 0 0) Train departing, gate open.
M10: (0 0 0 0 1 0 0 0 0 0 0 1 0 0 0) Train approach, gate closed.
M11: (0 0 0 0 1 0 0 0 0 0 0 0 1 0 0) Train approach, gate waits dprt msg.
M12: (0 0 0 0 0 1 0 0 0 0 0 1 0 0 0) Train at inters ect, gate clos ed.
M13: (0 0 0 0 0 1 0 0 0 0 0 0 1 0 0) Train at inters ect, gate w aits dprt msg.
M14: (0 0 0 0 0 0 1 0 0 0 0 1 0 0 0) Train sends dprt msg, gate not receiving.
M15: (0 0 0 0 0 0 1 0 0 0 0 0 1 0 0) Train sends dprt msg, gate w aits for msg.
M16: (0 0 0 0 0 0 0 1 0 0 0 0 0 1 0) Msg synch complete, gate closed.
M17: (0 0 0 0 0 0 0 1 0 0 0 0 0 0 1) Msg synch complete, gate open.
*Critical condition: Train at intersection but gate is s till open

Figure 45. Markings and requisite Markov state transition diagram.

Missing from the Petri net of Figure 45 are transitions to reflect physical, communication

related or mechanical failures. In our analysis, we do assume the existence of such failure

transitions (and corresponding places) as discussed in the previous section (5.5.1). The CSP

specification (and the corresponding Petri net) can be augmented to show how such failures

should be handled. For example, the communication failures can be handled using time-out

and re-transmit techniques. But still, should the gate fail to close, the question becomes

71

what can be done to possibly avoid a catastrophe. Perhaps an audible and visual alarm would

alert unsuspecting pedestrians and traffic. Such fault-tolerant and fault-handling actions can

be specified both with the CSP and Petri net models. However, they become more obvious by

examining and analyzing the stochastic Petri net. The cost of providing fault-tolerance

should be traded-off with the required level of reliability.

5.6 Parametric Sensitivity Analysis

Using conventional techniques such as those used by stochastic Petri net tools (e.g.,

SPNP), discrete and continuous analyses can be performed.15 For the purpose of this

presentation, we have computed reliability of the train crossing with different failure rates (or

probabilities) and service rates (e.g., speed of the train, rate at which the gate mechanism

operates). The values used in this paper (and hence the results of the analysis) are only for

illustrating the approach. It is not our intention to attach significance to the failure rates,

MTTFs obtained, or the probability of detected and undetected failures. These analyses are

useful in exploring different fault-handling mechanisms and the cost-benefit of providing

fault tolerance. The following subsections outline the discrete and continuous analyses.

5.6.1 Discrete Analysis

Table 9 presents the probability assignments for our test runs of the train crossing

ignoring deadline related failures (i.e., Ptf= 0). Four different trials were run with differing

failure probabilities where Pc= communication failure, Pm= mechanical failure (either in

opening or closing the gate). In all runs Pm > Pc, and in order to reduce the probability of

critical failure in runs 2 - 4, we set Pm(close) < Pm(open) by the factors of 100, 3 and 5

respectively. Using fault-tolerant methods such reliability improvements are possible.

Consequently, the probability of critical failures (Pcf) are reduced by the factors of 17.573,

1.975 and 2.974 respectively. Such analyses showing the magnitude of improvement

15The classic steady-state solution method for stochastic models that maps GSPN models to CTMCs is
compared with a method based on DTMCs in [Ciarsdo89]. The DTMC method is shown to perform better.

72

TABLE 9

DISCRETE ANALYSIS (Ptf = 0)

Desc. Run 1 Run 2 Run 3 Run 4 Desc. Run 1 Run 2 Run 3 Run 4

Pc .0001 .00001 .0001 .00001 Pcf 0.5026 0.0286 0.2544 0.1690

Pm(clo) .01 .00001 .01 .001 Pncf 0.4974 0.9714 0.7456 0.8310

Pm(op) .01 .001 .03 .005 MTTF 490.26 9524.07 248.19 1656.21

associated with a given design improvement can be useful in deciding what level of fault

tolerance is appropriate. Note, Pncf is the non-critical failure probability and the MTTF is

given in the number of discrete steps (or time units).

5.6.2 Continuous Analysis

The results of the continuous analysis are shown in Figure 46. These results are based

on the CTMC shown in Figure 45. The mechanical (λm), communication (λc) and timing

(τ) failure rates are shown associated with their transition arcs. The trade-off between the

rate of train arrivals (µ1), speed of the train (µ3), service rate of the gate mechanism (µ6, µ9)

and the failure rates were investigated.

*Ti me uni ts: ea ch tick on the x -ax is is 10 00 tu s. Ass ume a tu is a seco nd , then
 ther e are ~1 6m ins /tick, an d 10 ,00 0 ticks (fu ll rang e of d at a) ar e ~ 277 8h rs .

**Cons ta nt s: µ1= 0. 0001, µ2- 4,7, 8= 1.0,
 µ9, 10= 1.0, µ5 & µ6 = 0.1 & 0.01. λ=λ3,4, 8,9

Run1

Run2

Run3 Runs 4, 5& 6 (no vi si ble dif ference)

Run7

10,0008,0006,0004,0002,000

0.8

1.0

0.4

0.6

0.2

0.34

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7

Key:

Time unit s (tu)*

Re
lia

bi
lit

y

 Inp ut Para met ers :**

1. τ5=0. 009 08 λ=10 -7 λ5, 10 =10 -4

2. τ5=0. 000 90 8 λ=10 -7 λ5, 10 =10 -4

3. τ5=0. 000 09 08 λ=10 -7 λ5, 10 =10 -4

4. τ5=0. 000 00 90 8 λ=10 -7 λ5, 10 =10 -4

5. τ5=0. 0� λ=10 -7 λ5, 10 =10 -4

6. τ5=0. 0� λ=0. 0 λ5, 10=10-4

7. τ5=0. 0� λ=0. 0 λ5, 10=10-5

 Res ul ts:

Run 1. .Rel =4.58 x1 0-40 Mt tf= 1. 09 x1 05tus

Run 2. .Rel =4.58 x1 0-9 Mt tf= 5. 20 x1 05tus

Run 3. .Rel =1.07 x1 0-5 Mt tf= 8. 73 x1 05tus

Run 4. .Rel =2.34 x1 0-5 Mt tf= 9. 37 x1 05tus

Run 5. .Rel =2.56 x1 0-5 Mt tf= 9. 45 x1 05tus

Run 6. .Rel =2.58 x1 0-5 Mt tf= 9. 46 x1 05tus

Run 7. .Rel =3.44 x1 0-1 Mt tf= 6. 15 x1 06tus

Figure 46. Results of the continuous analysis.

73

The unreliability of communications do not significantly impact the MTTFs because we

have set those failure rates much lower than the rates associated with the gate's open/close

mechanism by a factor of 1,000 (i.e., λm = 0.0001 > λc = 0.0000001). Mechanical failures

and the possibility of the gate not closing (opening) in time (before the train arrives at the

intersection) are assumed to be greater. In Figure 46 an interesting relation is evident. We

observe that, if the train's speed tends to bring it to the intersection sooner than the gate can

close, then an improvement in the gate's mechanical reliability doesn't really help! To

improve the overall system's reliability it is more important to provide the additional

synchronization between the train and gate processes as described in Section 5.5 (and Figure

43), so as to avoid the possibility of having the gate miss its deadline (τ5). Alternatively, the

train may signal "arrive" much sooner, allowing ample time for the gate to close.

In general, it is important to see how much the least reliable entity impacts the overall

system reliability. In Figure 46, there are incremental improvements seen in the reliability of

the system at 10,000 time units from 10-40 to 10-5 for various values of τ5 (which reflects

the probability that the train arrives before the gate closes). The next most significant gain in

system reliability comes when the gate's mechanical failure rate is improved by a factor of

ten (note the difference between run 6 and 7 in the graph). In this case, the MTTF improves

by 6 times while the corresponding system reliability improves significantly from ~2.6x10-5

to ~3.4x10-1.

74

CHAPTER 6

CONCLUSIONS

Things which matter most must never be at the mercy of things which matter least.

--Goethe

6.1 Conclusion

The objective of this work was to show how CSP specifications can be translated into

SPNs for the purpose of reliability and performance analyses. This objective was met with

the construction of the CSPN tool. Such translations can give (1) insight into the feasibility

of meeting non-functional requirements, (2) help to identify the best candidate design, (3)

help to identify failure modes, and (4) to provide a means for describing how fault handling

mechanisms can be incorporated as a part of the CSP specification. This approach enables

the stochastic properties of the system specification to be ascertained while allowing the

parameters used in the analysis to be formally captured in the P-CSP design specification.

Subsequent analyses can then be run without having to rewrite all of the pertinent values.

Only those parameters that are identified as critical in terms of their impact to the integrity of

the overall system (i.e., sensitivity analysis) need be perturbed. The parameters (e.g., timing

delays, probabilities, and rates) which are selected for sensitivity analysis are then considered

in terms of their impact on system reliability and performance. In addition, these same

parameters can be correlated to cost as is show in [Sheldon95]. In general, this approach

provides the designer with an analysis tool that facilitates judicious cost-benefit trade-offs in

terms of the how structural changes in the design specification will satisfy system's

requirements (e.g., providing fault-avoidance and fault-tolerance).

A textual language for CSP specifications was designed. A software tool was

75

implemented for translating the CSP specifications into stochastic Petri nets. The Petri nets

are coded in the form of a coincidence matrix. The graphical representation of the resulting

Petri net can be viewed using the dot tool [a Unix filter for drawing directed graphs].16 The

system coincidence matrix is converted into a file format needed for analysis using SPNP.

The tool has been tested using a diversity of process compositions and nesting of

compositions. Some validation testing has been employed with the goal of determining how

similar the resultant Petri nets are to those which motivated the CSP specification

[Trivedi93]. Thus, some well known example Petri nets were first manually coded into P-

CSP specifications and then translated back into Petri nets using the CSPN tool. The original

Petri net was then compared to the translated Petri net. Except for additional dummy

transitions and places which are the artifacts of the canonical translation rules, the Petri nets

which were generated by the CSPN tool were equivalent to the original Petri nets.

6.2 Future plans

This work can be extended to incorporate a broader scope of translations and the

characterization of properties other than structural that are useful for error avoidance, fault

tolerance, detection of deadlocks and unsafe behaviors, and timeliness. Other issues include

(1) ease of use (e.g., GUI) including mechanisms for detecting characteristics of the Petri net

that can be used in automatically17 parameterizing the SPNP formatted file, (2) relating the

analysis results back to the original specifications in a more rigorous and formal way, (3)

expanding the language to incorporate some of the ideas of real-time CSP and others, (4)

developing some state reduction techniques for the CSPN (e.g., combining dummy

transitions with tangible transitions) and (5) validating our approach by applying the method

to larger examples and/or a real system.

16See Drawing graphs with dot by Eleftherios Koutsofios and Stephen C. North at AT&T Bell Laboratories.
17Currently, CSPN uses a hard coded set of defaults that define the parameters part of the SPNP output file.
Those defaults can be changed interactively using the "-v" verbose mode flag on the command line. For
instance, in nets which generate absorbing states it only makes sense to run a transient analysis.

76

APPENDIX A

CSP-TO-PETRI NET CANONICAL TRANSLATION DIAGRAMS

77

In this appendix a complete collection of standard translations from classic CSP and P-

CSP to Petri nets is provided. The CSP primitives include STOP, SKIP (not included in

CSP), recursion, parallel, deterministic and nondeterministic choice, hiding and sequential

compositions. The arrow (→) is also shown in various compositions.

Figure A-1 shows STOP which performs no action and never terminates (like deadlock)

and SKIP which performs no action and terminates are shown at the top. In the center of

Figure A-1 simple recursion is presented (note that P-CSP incurs an extra dummy transition

which is an immediate non-timed transition). In the bottom, a parallel composition is shown

and P-CSP uses two dummy transitions.

Figure A-2 shows DC (deterministic choice) where P-CSP employs three dummy

transitions. In the center NDC (nondeterministic choice) is shown which also uses three

dummy transitions. Note that the sdt1 and sdt2 dummy transitions are given as such because

associated with each is a (by definition) probability. In the bottom of this figure, a sequential

composition using the arrow is shown. The CSP translation for hiding is also shown (there is

no P-CSP equivalent at this time).

Figure A-3 shows Mu.X (recursion where "X" can be any character). Compare the

various configurations and notice that the translations are comparable to those of Figure 13

which defines the way CSPN translates P-CSP. Figure A-3 provides equivalent but reduced

translations. The top half shows tail recursion and the bottom show a variation of such which

cuts the tail recursion. Recursion using the CSP prefix notation is desirable because it

describes the entire behavior of a process that eventually stops. For example, it would be

tedious to write the full behavior of some systems which cycle over and over (e.g., a train

crossing or vending machine). Recursion is useful for describing repetitive behavior patterns

using much shorter notations. Such systems should not require a prior decision on the length

of life of an object in order to permit the description of objects that continue to act and

interact with their environment indefinitely.

78

Figure A.4 shows two varieties of synchronization. The first (top half) is blocking send

and receive. This forces synchronization to occur while preventing either participant from

moving forward until the other catches up. The CSPN tool has adopted this method because

the interpretation of chnl!msg combined with chnl?msg was more natural (i.e., closer to the

dt2

a b

dt1

a b

a b PAR{a(),b()}

Parallel Composition

Classic CSP: P-CSP:

STOP

Performs no
action and never
terminates!

STOP

STOP STOP

or

SKIP

SKIP (not defined in CSP)

SKIPPerforms
no action
and
terminates.

Classic CSP: P-CSP: P-CSP:

or

µX.(b → X) Mu.X{b()}

b

Recursion

Classic CSP: P-CSP:

X

Figure A.1 Translations for (top) STOP / SKIP, (center) recursion and (bottom) PAR.

79

from environment

dt2

a b

dt1

from environment

from environmentfrom environment

a b

DC{a(),b()}a b

Deterministic choice composition

Classic CSP: P-CSP:

dt2

a

b

a→b

Same in P-CSP

a

c

τ

(a→b→c)\b)

Sequential composition and hiding

Classic CSP: P-CSP:

Not implemented in P-CSP

Classic CSP:a→b

a

b

a b

sdt1 sdt2

dt1

a b NDC{a(),b()}

a b

Nondeterministic choice composition

Classic CSP: P-CSP:

Figure A.2 Translations for (top) DC, (center) NDC and (bottom) arrow and hiding.

80

cb

X

Second step

b

X

dt2

{c()->X}

First stepµX.(b c→X)

cb

Mu.X{NDC{b(),{c()->X}}P-CSP:

Recursive composition (with reduction)

Classic CSP:

cb

dummy

µX.((b c)→ X)

cb

X

dt1

Mu.X{NDC{b(),c()}}

cb

Recursive composition

Classic CSP: P-CSP:

The two recursive translations shown here (top and bottom) are the same translations as
those shown in Figure 13 except those shown here are reduced. In the top figure, there
are two fewer transtions and one less place. In the bottom figure, there are also two
fewer transitions and two fewer places.

Figure A.3 Translation of recursive compositions in a reduced format.

81

Train Gate

Synchronization
Event

Chnl ! arrive Chnl ? arrive

dt:arrive

pi

pi+1

pj

pj+1

Classic CSP:
Train=
(InTransit);
(Chnl!arrive →AtIntersect);
(Chnl!depart →Train);

Gate=
(Chnl?arrive →Close);
(Chnl?depart →Open →Gate);

Synchronization using input and output actions

Pictured at right

Synchronization is syntactically the same for both CSP and P-CSP. There are 2 possible
translations that could be used. In the Petri net fragments shown, the train sends and the
gate is receives. The actual synchronizing action (dt:arrive) is an immediate transition
and its firing is necessary before either process can proceed. In the bottom of the figure
the sending process (Train) is not blocked and can proceed (this 2nd type of
synchronization is not used by the CSPN tool).

Train Gate

Asynchronous
Communication

Event

Chnl ! arrive Open

Classic CSP:
Train=
(InTransit);
(Chnl!arrive →AtIntersect);
(Chnl!depart →Train);

Gate=
(Chnl?arrive →Close);
(Chnl?depart →Open →Gate);

Pictured at right

Nonblocking Synchronization using input and output actions

Chnl ? arrive

pk

AtIntersection

pi

pi+1

pj

pj+1

Figure A.4 Translations showing blocked and non-blocked send synchronization.

82

b

a d

c e

(a→b→c)||{b}(d→b→e)

dt2

dt1

a d

c e

dt:b

PAR{SEQ{a(),c()},
 SEQ{d(),e()}{b}};

Parallel and sequential composition

Classic CSP: P-CSP:

dt6

dt3

b c

dt2

a dt5

b c

dt4

a

dt1

b c

ab c

a

a→(b c)||(b c)→a

PAR{{a→NDC{b(),c()}},
 {NDC{b(),c()}→a}};

Parallel and Nondeterministic choice composition

Classic CSP: P-CSP:

Above: a() must ac tually
be ch!b, and d() must
ac tually be ch?b to be
cor rect using CSPN

Figure A.5 Combined translations for parallel, sequential and nondeterministic choice.

83

inherently synchronous semantics of CSP) and more readable. Also, using the notion of

hiding in CSP, both actions (input and output) can be replaced by tau (like "\b" in Figure A.2

bottom). In the bottom half (of Figure A-4) a message is output (on channel "Chnl") while

processing continues (a token is distributed to place pk) for the sending process independent

of whether the message is received. On the receiving end, the transition that models the

activity of message input (on the channel "Chnl" is this case) fires only after both places pk

and pj have tokens. The interpretation of this type of communication is that the receiver must

wait for the message from the sending process (the Train in this case). This is known as a

blocking receive.

Finally, in Figure A-5 a number of larger compositions are collected to illustrate a

combined parallel and sequential composition that has synchronization (blocking send and

receive). The CSP translation uses 5 transitions and 8 places while the P-CSP translation

uses 7 transitions and 10 places. In the bottom half of Figure A-5 two nondeterministic

choice constructs are composed in parallel with an action "a" prefixed to the one and an

action "a" suffixed to the other. Notice that the direct CSP translation only uses 6 transitions

and seven places while the P-CSP translation uses 12 transitions and 12 places!

84

APPENDIX B

THE LEX AND YACC SPECIFICATION OF THE PARSEABLE CSP

(GRAMMAR GIVEN IN BACKUS NORMAL FORM)

85

B.1 Lex regular expressions

delimiter [\t\n]
white_space {delimiter}+
letter [A-Za-z_+\-%@]
digit [0-9]
identifier {letter}({letter}|{digit})*
integer {digit}+
comment "--".*$

B.2 Yacc grammar specification

1. System production (start symbol = "system").
system: Identifier Equals processdeclist processlist1 Dot;

2. Processdec used to declare process names.
processdec: PROCESS Identifier Equals processlist1 Semicolon;

3. Processdeclist for listing multiple declarations under system.
processdeclist: EmptyList | processdeclist processdec;

4. Process definitions
process:
 STOP
| LeftBrace stmtlist RightBrace
| PAR LeftBrace processlist2 synclist RightBrace
| SEQ LeftBrace processlist1 RightBrace
| NDC LeftBrace processlist3 RightBrace
| DC LeftBrace guardedproclst RightBrace
| Mu Dot Identifier LeftBrace processlist1 RightBrace
| processcall;

5. Failable describes the format of an annotation (rate or probability).
failable:
 FAIL LeftParen rEquals Real RightParen
| FAIL LeftParen pEquals Real RightParen;

6. Probable describes the format of a probability annotation.
probable:
PROB LeftParen pEquals Real RightParen

7. Servable describes the format of a service rate annotation.
servable:
SERV LeftParen rEquals Real RightParen

8. Biprocess distinguishes an annotated process and permit such on any process.
biprocess:
 process | process Colon failable
| process Colon probable
| process Colon servable

9. Processlist1 permits one or more processes in a list.
processlist1: biprocess | processlist1 Comma biprocess;

86

10. Processlist2 permits no less than two processes in a list.
processlist2:
biprocess Comma biprocess | processlist2 Comma biprocess;

11. Processlist3 permits no less than two processes in a list and specialized for NDC.
processlist3:
biprocess Comma biprocess | processlist3 Comma biprocess;

12. Synclist used with PAR to indicate synchronization messages.
synclist: EmptyList | LeftParen anyvarlist RightParen;

13. Anyvar used to permit concise grammar of the rule for lists.
anyvar: booleanvar | variable;

14. Anyvarlist specifies an arbitrary number of anyvar in a list.
anyvarlist: anyvar | anyvarlist Comma anyvar;

15. Statement list allows an arbitrary number of statements to be listed.
stmtlist: stmt | stmtlist Comma stmt;

16. Statements can compose a process.
stmt:
implication
| expression
| input
| output
| SKIP;

17. Implication (a statment event -> action [for P->Q use SEQ{P(),Q()}].
implication:
stmt Arrow consequent | variable Arrow consequent | biprocess;

18. Consequent belongs to the right hand side of an arrow.
consequent: variable | biprocess;

19. Processcall is an instance of a declared PROCESS and is simply set to Identifier().
processcall: Identifier LeftParen RightParen;

20. Assignment is covered by expression in integer

21. Input
input: channel InSym variable;

22. Output (note an operand is an integer or boolean expression).
output: channel OutSym operand;

23. Guarded process is defined for use in the guarded process list.
guardedprocess: guard biprocess;

24. Guarded process list
guardedproclst:
guardedprocess | guardedproclst Comma guardedprocess;

87

25. Guard us used to provide for choosing an alternate in a determinstic choice (DC).
guard: input
| booleanexpr AND input
| booleanexpr AND SKIP;

26. Recursive definition is defined in the definition of processes (see Mu).

27. Channel is matched by paring a input message with an output message.
channel: Identifier;

28. Variable
variable: Identifier;

29. Boolean variable (AtSym to distinguish a variable from a boolean variable).
booleanvar: AtSym Identifier;

30. Expression
expression: integerexpr | booleanexpr | relationalexpr;

31. Boolean expression.
booleanexpr:
booleanvar
| TRUE
| FALSE
| booleanexpr AND booleanexpr
| booleanexpr OR booleanexpr
| NOT booleanexpr
| booleanvar VarAsgn booleanexpr;

32. Relational expression.
relationalexpr:
operand LESym operand
| operand LTSym operand
| operand EQSym operand
| operand NESym operand
| operand GESym operand
| operand GTSym operand;

33. Integer expression.
integerexpr:
operand Plus operand
| operand Minus operand
| operand Star operand
| operand Slash operand
| operand VarAsgn operand
| Minus operand;

34. Operand.
operand:
Integer
| variable
| integerexpr
| relationalexpr;

88

35. Monadic operand (never used).
36. Dyadic operand (never used).
37. Integer is defined in lexer.
38. Digits are defined in lexer.
39. Digit is defined in lexer.
40. Declaration (never used).
41. Type (never used).
42. Selection (never used).
43. Conditional (never used).
44. Option (never used).
45. Loop (never used).
46. Relational operator (never used).
47. Timer (never used).
48. Hide (never used).

89

APPENDIX C

CO-MATRIX EXPANSION ALGORITHMS

90

This appendix presents five algorithms. The first chooses one of three methods of expansion

(Section C.1), the 3 expansion methods (Section C.2-4), and 'expand' which combines two

matrices into one (Section C.5),. First, the variable definitions are presented immediately

below: Note, the user defined types are found at the end of Appendix C.

 /* *
 * Three matrices are involved: C = A <- B where "<-" means
 * "is inserted into by." So A is the original matrix, B is
 * the matrix which is poured and C is the new matrix that
 * holds both combined.
 */
int orA, rA, /* orA x ocA is size of A (original)*/
 ocA, cA, /* rA x cA is size of C (new) */
 rB, cB, /* rB x cB is size of B (pored) */
 rlb, rub, /* B row lower and upper bounds in C*/
 clb, cub, /* B column lower and upper bounds in C*/
 rlbA, rubA, /* A row lower and upper bounds in C*/
 clbA, cubA; /* A column lower and upper bounds in C*/
 curLnkIndx = 0, /* Current link index */
 rowMark = 0,
 colMarkRht = 0,
 colMarkLft = 0,
 Bflag = FALSE_,
 Aflag = FALSE_,

p_matrix A = NULL,
 B = NULL,
 C = NULL;

FILE *epn;
void prtExpn(FILE *epn); /* Prototype */
void expand(FILE *epn, int rm); /* Prototype */
char *synclink(FILE *epn, entryptr s); /* Prototype */

void expn(FILE *epn, int cpi, netNodeptr nnptr)
{
int e,f,i,j,row,col,link,
 k, /* k number of nodes in this list */
 typ =0,
 thinA =FALSE_,
 symthere =0; /* Boolean: Is symbol there? */
nodeptr p =NULL,
 cur_p =NULL,
 q =NULL;
entryptr s0 =NULL,
 s1 =NULL;
char *call =NULL;

91

C.1 Algorithm for choosing the correct expansion method

k = (nnptr ->numNodes); /* k is now 1 more than needed */
while (((p=(nnptr ->net[--k])) != NULL) && (k > -1)) {
 s0 = look (p ->n_name, &symthere);
 if (symthere < 1) {
 fprintf(epn,"\nExpn: Symbol %s not found!",p->n_name); exit(1);
 }
 fprintf(epn,"\n\nSearching links of net[%d], symbol: %s", k, s0 ->name);
 DisplayProcessList(epn, 0, s0->p_pl);
 cur_p = p; /* Skip over the head node (a pnode) */

 if ((p=p->link) == NULL) fprintf(epn,"\nExpn: No sibs for this pnode!");
 else {
 curLnkIndx=0;
 for (q = p; q != NULL; q = q -> link) {
 curLnkIndx++;
 typ = q->n_type;
 fprintf(epn,"\n%d. Symbol: %s, Type: %d",curLnkIndx, q->n_name,typ);

 /* There are three cases where an expansion is appropriate:
 * (1) Node type is 5-9 (PAR, SEQ, NDC, DC, MU)
 * (2) Node type is 10 and cpi=0 (cpi is current process index)
 * Node type 10 indicates an instance of a previously defined
 * process known as a process call.
 * (3) Node type 11 is really type 10 except it was 1st encountered
 * in "PROCESS symbol =", thus was marked as type 11.
 */
 if (((typ > SKIP_PROC) && (typ < PROC_CALL)) || (typ == STMT_LIST) ||
 ((typ == PROC_CALL) && (cpi == 0)) || (typ == PROCESS_DEC)) {

 s1 = look (q ->n_name, &symthere);
 if (symthere < 1) {
 fprintf(epn,"\nSymb %s not found in symbol table!",q ->n_name);
 }
 else {
 /* *
 * This logic determines the size of the matrices involved.
 */
 rA = s0 ->rsize; /* Row size of A */
 cA = s0 ->csize; /* Col size of A */
 orA= rA; /* Save the original Rsize of A */
 ocA= cA; /* Save the original Csize of A */
 rB = s1 ->rsize; /* Row size of B */
 cB = s1 ->csize; /* Col size or B */
 /* *
 * Check if the B Matrix is null and if so abort the expansion.
 */
 if ((rB == 0) || (cB == 0) || (s1->p_prm == NULL)) {
 fprintf(stderr,"\nIn expn[B]: %s has null matrix!",q->n_name);
 fprintf(stderr,"\n%s may have not been declared!",q->n_name);
 fprintf(stderr," Expansion must be aborted ...\n\n");
 exit(1);
 }
 /* *
 * Rem: B is inserted into A (A<-B (or A is expanded by B)
 * Thus the following logic sets the stage for an expansion:
 */

92

 fprintf(epn,"\n\nExpansion includes the following:");

 A = s0 ->p_prm;
 fprintf(epn,"\n\nA: %s",s0->name);
 DisplayProcessList(epn, 0, s0->p_pl);
 print_prm(epn,A,s0->rsize,s0->csize);

 B = s1 ->p_prm;
 fprintf(epn,"\n\nB: %s",q->n_name);
 DisplayProcessList(epn, 0, s1->p_pl);
 print_prm(epn,B,s1->rsize,s1->csize);

 /* *
 * Calc size of the new C matrix (unless B matrix is null)
 */
 thinA = FALSE_;
 rA = rA+(rB-1);
 if (A[orA-1].p_row[ocA-1] > 0)
 cA = cA+(cB-2);
 else
 if (A[orA-1].p_row[ocA-1] < 0) {
 cA = cA+(cB-2);
 thinA = TRUE_;
 }
 else
 fprintf(stderr,"\nA[orA][ocA] = 0! Aborting expansion ...");

 /* *
 * Create the new matrix C that A and B will be combined into.
 * ---
 */
 C = prmatrix(rA,cA);
 fprintf(epn,"\n\nC: A<-B is a new (%dx%d) Matrix",rA,cA);

 /* *
 * Determine the rowMark where expansion begins. The rowMark
 * tracks the place in A that will be replaced. s0->p_pl is the
 * process list of A, q->name is the process who will be replaced.
 * Determine where that is in the co-matrix (0 =1st position).
 */
 rowMark=procPosition(s0->p_pl, q->n_name);
 if (rowMark == -1) {
 fprintf(stderr,"\nrowMark undetermined!");
 exit(1);
 }
 /* - - - - - - - - - - - - - -<<1>>- - - - - - - - - - - - - */
 /* *
 * Use Method I if B goes into Upper Left corner of C.
 */
 if (rowMark == 0) {
 fprintf(epn,"\n\nRunning Method 1:\n-----------------");

 SEE SECTION C.2 FOR METHOD 1 LOGIC

 } /*fi use Method 1 */

93

 else {
 /* - - - - - - - - - - - - - -<<2>>- - - - - - - - - - - - */
 /* *
 * Use Method II if B goes into Lower Right corner of C.
 * A goes into Upper left corner of C.
 */
 if (rowMark == (orA-1)) {
 fprintf(epn,"\n\nRunning Method 2:\n-----------------");

 SEE SECTION C.3 FOR METHOD 2 LOGIC

 } /*fi use Method II */
 else {
 /* - - - - - - - - - - - - - -<<3>>- - - - - - - - - - - - -
 *
 * Method III: all other cases B goes in center of C.
 */
 fprintf(epn,"\n\nRunning Method 3:\n-----------------");

 SEE SECTION C.4 FOR METHOD 3 LOGIC

 }/* esle in all other cases */
 }/* esle */
 /* *
 * CLEAN UP: Free the old prmatrix to conserve memory.
 */
 for (i = 0; i < s0 ->rsize; i++) {
 free(A[i].p_row);
 free(A);
 }
 /* *
 * Update the symbol table entry for this pnode
 */
 s0 ->rsize = rA; s0 ->csize = cA; s0 ->p_prm = C;
 /* *
 * replProc takes a process list and replaces a process name
 * known to exist in the list by another process list of
 * one or more process names.
 */
 call= replProc (&(s0 ->p_pl), s1 ->name , &(s1 ->p_pl));
 if (call == NULL) {
 fprintf(stderr,"\nExpn: ReplProc failed update %s",s0 ->name);
 exit(1);
 }
 /* *
 * Adjust the link index to comply with the prior expansion
 */
 curLnkIndx=curLnkIndx+rB-1;
 } /*esle*/
 } /*fi (typ...*/
 } /*rof*/
 } /*esle*/
} /*elihw*/
 fprintf(epn,"\nCompleted expansion!");
}/*npxe*/

94

C.2 Algorithm for expansion method 1 (upper LH corner)

 /* *
 * Determine indexes for B whose size is rB x cB (C <- B).
 * rlb = row lower bound, rub = row upper bound
 * clb = col lower bound, cub = col upper bound
 */
 rlb = curLnkIndx - 1; rub = rlb + rB - 1;
 clb = 0; cub = clb + cB - 1;
 /*-*
 * Expand A (3x4) with B (5x6) into C (7x8).
 *
 * 0 1 2 3 4 5 6 7 0 1 2 3
 * C: 0 - b b b b b 0 0 A: 0 -|+ a a <-a's put in C,
 * 1 b b b b b b 0 0 1 y|g g g begin at C[4,6].
 * 2 b b b b b b 0 0 2 y|g g g
 * 3 b b b b b b 0 0 / \
 * 4 b b b b b + a a / Rows 1 and 2:
 * 5 y 0 0 0 0 g g g / put g's in C,
 * 6 y 0 0 0 0 g g g / start at C[5,5].
 * /
 * Rows 1 and 2: put y's
 * in C start at C[5,0].
 * ---
 * In C above, 0's are constant (i.e., not x-fered from A or
 * B into C). Also note that the "-" and "+" paired in A are
 * now seperated as shown in C.
 * ---
 * Determine indexes for A whose size is orA x ocA (C <- A).
 */
 rlbA = rA - (orA -1); rubA = rA - rlb - 1;
 clbA = cA - (ocA -1); cubA = cA - clb - 1;
 (void)expand(epn, ZERO);

 /* *
 * In Method I, finish copying the y's (if any) from A to C.
 */
 if (orA > 1) {
 fprintf(epn,"\nMethod I exception!");
 i = rB;
 for (j = 1; j < orA; j++) {
 C[i].p_row[0] = A[j].p_row[0];
 i++;
 }
 }

C.3 Algorithm for expansion method 2 (lower RH corner)

 /* *
 * Determine indexes for B whose size is rB x cB (C <- B).
 * rlb = row lower bound, rub = row upper bound
 * clb = col lower bound, cub = col upper bound
 */
 rlb = rowMark;
 rub = rlb + rB - 1;

95

 if (!thinA) clb = cA - cB;
 else clb = cA - cB + 1;
 cub = cA - 1;
 /* *
 * Determine indexes for A whose size is orA x ocA (C <- A).
 * ---
 */
 rlbA = 0;
 rubA = orA - 2;
 clbA = 0;
 cubA = ocA - 1;

 /*-
 * Case: 1
 * (orA x ocA) (rB x cB) (rA x cA)
 *
 * 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7
 *A: 1 a a a a z + B: 1 - + b b --> C: 1 a a a a 0 0 z
 * 2 a a a a z 2 b b b b 2 a a a a 0 0 z
 * 3 a a a a z 3 b b b b 3 a a a a 0 0 z
 * 4 a a a a z 4 b b b b 4 a a a a 0 0 z
 * 5 y y y - + 5 0 0 0 - + b b
 * / 6 0 0 0 b b b b
 * Case 2: 7 0 0 0 b b b b
 * If A[5,5]="-" => C(8x6). 8 y y y b b b b
 *
 * Here (in case 1), A(5x5) + B(4x4) -> C(8x7).
 * There is one variation (Case 2) occurs when the "-" is
 * in the last column (e.g., occurs with Mu recursion). In
 * this case, A(5x5) + B(4x4) -> C(8x6).
 *
 * For e.g.., (remember rowMark=row to replace [exactly]):
 *
 * Case 1: C(8x7) Case 2: C(8x8)
 *
 * rlb = 4 (counting from 0) 4
 * rub = 7 = 4 + 4 - 1 7
 * clb = 3 = 7 - 4 3 = 6 - 4 + 1 (test)
 * cub = 6 = 7 - 1 5 = 6 - 1
 *
 * rlbA= 0 0
 * rubA= 3 = 5 - 2 3
 * clbA= 0 0
 * cubA= 4 = 5 - 1 4
 *
 * For case 1 (where C[5,5] = "+") the z's in A are moved
 * to the last col of C ONLY if "+" otherwise, they stay
 * put (this is handled in the method 2a exceptions below).
 * Similarly, in either case 1 or case 2, the y's in A are
 * moved to the last row in C ONLY if "+" otherwise they
 * stay put (this is handled in the method IIb exceptions).
 *
 * If a "z" or a "y" is moved it must be replaced by a "0".
 * --
 */
 (void)expand(epn,ZERO);

96

 /* * * * <<< Method IIa Exception >>> * * * * * * * * * * *
 * Catch all the ones (+'s) in last column which are to be
 * moved to the new last column. These +'s are outputs
 * from transitions to the last place in A so now they
 * must be connected to the new last place (test cases are
 * t2, t10 and wgood). Only consider rows above rowMark.
 * --
 */
 if (!thinA) {
 i = rowMark;
 for (i=rowMark-1; i>=0; i--) {
 if (A[i].p_row[cubA] > 0) {
 C[i].p_row[cub] = A[i].p_row[cubA];
 C[i].p_row[cubA] = 0;
 fprintf(epn,"\nMethod IIa expn (linked last place)!");
 }
 }
 }
 /* * * * <<< Method IIb Exception >>> * * * * * * * * * * *
 * Moving the y's form the marked row if they are "+".
 * --
 */
 for (j=clbA; j < clb; j++) {
 if (A[rlb].p_row[j] > 0) {
 C[rub].p_row[j] = A[rlb].p_row[j];
 C[rlb].p_row[j] = 0;
 fprintf(epn,"\nMethod IIb expn (linked recursive loop)!");
 }
 }

C.4 Algorithm for expansion method 3 (centrally located)

 /* Determine indexes for B whose size is rB x cB.
 * rlb = row lower bound, rub = row upper bound
 * clb = col lower bound, cub = col upper bound
 * Remember: A<- expanded by <-B
 */
 rlbA = 0;
 rubA = rowMark -1;
 clbA = 0;
 rlb = rowMark;
 rub = rlb + rB -1;
 /* *
 * Find point in A for expanding B (1st '-' in marked row)
 */
 j = 0;
 while (A[rowMark].p_row[j] >= 0) j++;
 clb = j;
 cubA = clb + ONE;
 cub = clb + cB -1;
 /* *
 * Mark the RHS of A to be pushed right past B
 * Mark the LHS of A to be replacement starting point.
 */
 colMarkRht = cubA;
 colMarkLft = clb;

97

 /*-*
 * Finish all columns in marked row up to clb (x's in comment
 * below).
 */
 for (j = 0; j < clb; j++) C[rowMark].p_row[j] = A[rowMark].p_row[j];

 /*-*
 /* Finish the middle box...
 *
 * C: a a a a g g g g g g
 * a a a a g g g g g g
 * x x b b b b b b a a
 * a a b b b b b b a a
 * a a b b b b b b a a
 * a a b b b b b b a a
 * a a b b b b b b a a
 * a a a a a a a a a a
 * a a a a a a a a a a
 *
 * At this point, a's come from A and b's are put from
 * the B matrix (x's have been put but a's have not).
 * g's are then added in the next segment of code.
 */
 (void)expand(epn, ZERO);

 /*-*
 * Finish update for the upper part of A which (g's in
 * the above comment) goes in the URH corner of C.
 */
 clbA = colMarkRht +1;
 cubA = ocA -1;
 rlbA = 0;
 rubA = rowMark -1;
 clb = cA - (cubA - clbA) -1;
 cub = cA - 1;
 rlb = 0;
 rub = rowMark -1;

 e = rlb;
 for (i = rlbA; i <= rubA; i++) {
 f = clb;
 for (j = clbA; j <= cubA; j++) {
 C[e].p_row[f] = A[i].p_row[j];
 if (!(f>cub)){f++;}
 else {
 fprintf(stderr,"\n1-Method III error(clb)!\n");
 exit(1);
 }
 }
 if (!(e>rub)){e++;}
 else {
 fprintf(stderr,"\n2-Method III error(rlb)!\n");
 exit(1);
 }
 }

98

 /*-*
 * colMarkRht is the clb + 1 replacement point
 * Finish update for the lower part of A (LHS or x's)
 *
 * A: d d d d d "-" is replaced by B
 * d - d d d
 * x y y y y Put x's ---> C
 * x y y y y
 */
 e = rowMark + rB;
 for (i = rowMark + 1; i < orA; i++) {
 for (j = 0; j < colMarkLft; j++)
 C[e].p_row[j] = A[i].p_row[j];
 e++;
 }
 /*-
 * colMarkRht is the clb+1 replacement point (delta =cA-ocA)
 * Finish update for the lower part of A (RHS or y's)
 * colMarkLft is the col 2 in fig below where the minus is
 * (which is the same as the clb).
 *
 * 1 2 3 4 5
 * A: 1 t t t t t t's & e's are put using above code
 * 2 e - d d d "-" is replaced by B (d's are handled
 * 3 x y y y y as exceptions below).
 * 4 x y y y y Put y's ---> C
 */
 e = rowMark + rB;
 for (i = rowMark + 1; i < orA; i++) {
 f = cA - 1;
 for (j = ocA - 1; j >= colMarkLft; j--)
 C[e].p_row[f--] = A[i].p_row[j];
 e++;
 }
 /*-*-*-*-*- <<< Method III Exceptions >>> -*--*-*-*-*-*-*-*
 * --
 * The output from the transition being expanded must go to
 * the same place it was before. Check the rest of the row
 * right of the intersection of A[rowMark][colLftMark] for
 * pluses (+1). Place them in the last row of the B matrix
 * inside of C. The same distance from the last col in C
 * as they are in from the last col in A.
 *
 * 1 2 3 4 5
 * A: 1 t t t t t t's, e's, x's are put using above code
 * 2 e - d d d "-" is replaced by B (d's are handled
 * 3 x y y y y as exceptions below).
 * 4 x y y y y Put d's ---> C
 *
 * The idea is to connect the output from the transition being expanded
 * to the same place as it originally was connected to in A (a place
 * basically). Note the following code assumes that the last row of B has
 * a plus (i.e., that its actually connected as it was in the higher
 * level abstraction to another place.
 *

99

 * A case where this is not true: SEQ{P1(), P2(), STOP}. Until you know
 * exactly what's in the transition being expanded you cannot decide to
 * eliminate the connection. Here the STOP doesn't have an O/P place!
 * This case is assumed not to occur. First print some diagnostics:
 */
 if (s0->type == NDC_PROC){
 fprintf(epn,"\nMethod III exception!");
 prtExpn(epn);
 print_prm(epn, C, rA, cA); fprintf(epn,"\n");
 zeroGapEnds = colMarkRht + (cA - ocA);

 /* Zero out the columns starting with the column ColMarkRht
 * making sure to stay above the rowMark
 */
 for (i = 0; i < rowMark; i++)
 for (j = colMarkRht; j < zeroGapEnds; j++)
 C[i].p_row[j] = 0;

 /* C <- A for the values on the right of the zeroGap
 * column(s) and above the rowMark. Rem... the colMarkRht
 * defines the boundary in A (not C) where the expansion
 * occurs (just one col to the left of the colMarkRht column).
 */
 zeroGap = cA - ocA;
 for (i = 0; i < rowMark; i++)
 for (j = colMarkRht; j < ocA; j++)
 C[i].p_row[zeroGap + j] = A[i].p_row[j];
 for (j=colMarkRht; j< ocA; j++)
 C[rowMark+rB-1].p_row[cA-(ocA-j)] = A[rowMark].p_row[j];
 }

C.5 Expand algorithm for combining co-matrices

/* Expand copies the old matrices (A, B) to the new one (C). */
void expand(FILE *epn, int rm) {
 int i, j, e, f, m, n; /* Miscellaneous indices */
 e = rm; m = 0;
 for (i = 0; i < rA; i++) {
 f = 0; n = 0;
 for (j = 0; j < cA; j++) {
 if ((i>=rlb) && (i<=rub) && (j>=clb) && (j<=cub)) {
 C[i].p_row[j] = B[m].p_row[n++];
 Bflag=TRUE_;
 }
 else {
 if ((i>=rlbA) && (i<=rubA) && (j>=clbA) && (j<=cubA)) {
 C[i].p_row[j] = A[e].p_row[f++];
 Aflag=TRUE_;
 }
 }
 } /*rof*/
 if (Bflag) {Bflag=FALSE_; m++;}
 else
 if (Aflag) {Aflag=FALSE_; e++;}
 } /*rof*/
}

100

C.6 User defined data types

/* Integer array of pointers to the rows in the matrix called the Process
 * Relation Table (prm) which is dynamically allocated (2-D array matrix).
 */
typedef struct int_array
 {
 int *p_row;
} IArray;
typedef IArray *p_matrix;

typedef struct entrydef /* Symbol Table entry definition */
 {
 char *name; /* Symbol name */
 short type; /* Sym type (assume < 32,767 impl dpndt) */
 short uid; /* Unique id number (process id or pid) */
 char *frate; /* Failure Rate in ASCII */
 char *fprob; /* Failure probability in ASCII */
 char *sprob; /* Service Probability in ASCII */
 char *srate; /* Service Rate in ASCII */
 char *p_pl; /* Process list ptr (can be diff types) */
 short rsize; /* Number of rows in PR Matrix */
 short csize; /* Number of cols in PR Matrix */
 p_matrix p_prm; /* Process Relation (PR) Matrix */
 struct entrydef *next; /* Link to next ENTRY */
} ENTRY;
typedef ENTRY *entryptr;

typedef struct nodedef
{ char *n_name; /* Ptr to the node/symbol name */
 char *n_fail; /* NULL if no fail rate/prob spec'd */
 short israte; /* Boolean: legal vals (-1, 0, 1) */
 short n_type; /* Node type consistent w/ symbols */
 short uid; /* System level unique identifier */
 struct nodedef *link; /* Ptr to next node, if any */
 } NODE;
typedef NODE *nodeptr; /* Ptr to a NODE structure */

101

APPENDIX D

RAILROAD CROSSING USING A MONITOR

102

D.1 Overview of the multiple train / monitor problem

This appendix describes a solution to: (1) the race (safety) hazard (described in ¶5.5)

and, (2) controlling passage of multiple trains using a monitor to arbitrate the trains and the

gate. Figure E.1 shows the monitor's finite state machine. We assume that trains cannot

arrive simultaneously but that they do arrive in close enough succession that it would be

dangerous for the gate to be opened if another train is pending. The Petri net of Figure E.2 is

a translation of the CSP in Figure E.2. Table E.1 describes the markings and failure states.

Monitor =
((T1 ? a T2 ? a) & GateClosed → Monitor);

((T1 ? a T2 ? a) & GateOpen → (GateCh !
 Close) → Monitor);

(((T1 ? d) & (T2 ? a) (T2 ? d) & (T1 ? a))
 → Monitor);

(((T1 ? d) & (T2 ? a) (T2 ? d) & (T1 ? a))
 → (GateCh ! Close) → Monitor).

CSP for Monitor:

If not(T2? a).

If not(T1? a).

If Gate is open.

If G
ate

 is
 op

en
.

After Gate is finshed closing.

After Gate is finshed opening.

(1)

(1)

(2)

(3)

Gate
Closed

Gate
Open

MONITOR

IDLE

T1? d
ToG!Open

T1? a
ToG!Close

T2? d
ToG!Open

T2? a
ToG!Close

(1) If Gate is closed.

(2) If t1 is approaching.

(3) if t2 is approaching.

FSM for Monitor:

Figure D.1 Finite sate machine and CSP for the monitor.

T
2!

 d

Train passing
intersection

T
1!

 d

Train in
transit

Open

TG? Close

Msg rcv'd
gate open

Msg rcv'd
gate
closed

TG? Open

Gate
closed

Closed

TG! StayC

Gate
open

Depart Msg
rcv'd

Tx?d

Two trains T1 and T2

Gate
closed

TG! Open

TG! StayC TG! Close

Tx? a

Gate
closed

= Inhibitor Arc (Token in P13 prevents t14 firing)

In
_T

ra
ns

it

T
1!

 a
T

2!
 a

In
_T

ra
ns

it

At_Intersection

1 2 3 4

5 6 7 8

18

19

20

21

14

15

12 1311

109

17

116

At_Intersection

Train passing
intersection

Train
approaching

Train
approaching

Train in
transit

Monitor Gate

Figure D.2 Petri Net for the monitor (controller) to handle multiples trains.

103

Improving the system's performability is accomplished using more "slack" time for the

Gate process to finish its task. Requiring the Train to send the arriving "a" signal sooner

effectively increases the slack. Thus we have analyzed the Performability of the system by

changing the slack time. The Stochastic Petri net of Figure D.2 is analyzed for reliability of

the system under various failure modes. In this case, the Petri net elucidated the need for

additional synchronization (so as to avoid a safety-critical failure). Accordingly, this is

facilitated by translating CSP specifications into Stochastic Petri nets.

TABLE D.1

FAILURE MODES AND MARKINGS FOR THE RR-MONITOR

Mrkng Monitor Trains Gate Possible Failure Type

M1 Status = open Both in transit Open Assume failure is not possible

M2 Status = open TxCh ! a Open Critical communication failure

M3 TxCh ? a Tx approaching Open Critical communication failure

M4 Status=pendng train
& GateCh!close

Tx approaching Open Critical communication failure

M5 Status = wait Tx approaching GateCh?close Critical communication failure

M6 Status = wait Tx approaching Closing Critical mechanical failure

M7 Status = closed Tx at crossing Closed Assume failure not possible

M8 Tx ? a Tx at crossing Closed Critical communication failure

M9 Status = closed TxCh ! d Closed Non-critical communication failure

M10 Status= pending
train and TxCh ? d

Tx approaching
+ one in transit

Closed Non-critical communication or
critical system failure (of monitor)
possible.

M11 Status= not pending
train and closed

One at crossing,
one in transit

Closed Assume failure is not possible

M12 TxCh ? d Both in transit Closed Non-critical communication failure

M13 GateCh ! open Both in transit Closed Non-critical communication failure

M14 Status = wait Both in transit GateCh?open Non-critical communication failure

M15 Status = wait Both in transit Opening Non-critical mechanical failure

FM16 Mcf and Mncf Communication failures

FM17 Mcf and Mnfc Mechanical failure (of gate)

FM18 Mcsf System failure (of monitor)

FM19 Mtf Timing failure (of train/gate)

Communication failures possible (Key: a → approaching, d → departing):
1) Failure when train sends message. 3) Failure when monitor sends message.
2) Failure when monitor receives message. 4) Failure when gate receives message.

104

In the Petri net of Figure D.2, we assume that all transitions can fail. The failure modes

associated with transitions can be translated into failure modes of their corresponding CSP

actions. When interpreting the failures of these actions, the user should identify critical

failures. Improbable failures are easily identified in the Petri net (i.e., some transitions may

not realistically fail or can be reasonably tolerated). Such evaluations can lead to an

augmentation of the system model such as that of the multi-train/monitor system shown in

Figure D.2. The markings in Table D.1 are based on the feasible states that trace the natural

(and familiar) process: (M1) an idle state, (M2-5) communication transactions between the

train, monitor, gate and status = pending train , (M6) gate begins to close, (Mtf) timing

failure if train arrives before the gate is closed, (M7-9) process of a new train arriving while

the current train is passing, (M10) monitor has to decide not to open the gate when the

current train departs since there is a pending train, (Mcsf) safety critical failure of the

monitor, (M11) the current train starts the departing process and no trains are pending, and

(M12-15) involve the actions necessary to restore the system to the idle state.

G
at

e
is

op
en

 a
nd

bo
th

 tr
ai

ns
 in

tra
ns

it.

Tr
ai

nX
 s

en
ds

 'a
' m

sg
.

M
nt

r r
cv

's
'a'

 m
sg

.
St

at
us

=
pe

nd
in

g

tra
in

 a
nd

 m
nt

r

se
nd

s
clo

se
 c

m
d

to
 g

at
e.

G
at

e
rc

v'd
 c

lo
se

 c
m

d.

St
ar

t g
at

e
clo

sin
g.

G
at

e
clo

se
d

an
d

Tr
ai

nX
 a

t

cr
os

sin
g.

M
nt

r r
cv

'd
 'a

' m
sg

whi
le

 T
ra

in
X

at

cr
os

sin
g.

Start gate opening.

Gate rcv'd open cm
d.

Both trains are

in transit and

m
ntr sends open

cm
d to gate.

M
onitor rcv'd 'd'

m
sg from

 second

train and gate is

closed.

One train at

crossing sent

'd' m
sg and one

in transit (none

pending).

M
ntr rcv's 'd'

m
sg, but other

train is pending

(departed train

now in transit).

Pending train and

TrainX sends

departing 'd' m
sg.

µ1 µ2 µ6µ4µ3 µ5 µ7 µ8M1 M2 M3 M4 M5 M7 M8

µ14 µ10µ12µ13 µ11 µ9µ15

Non-Critical Failure
Critical
Failure

Mcf
Critical Timing
FailureMtf

Critical
System
Failure
(of monitor)

Mcsf

M6

τ6

σ9

λ1
c λ2

c λ3
c λ4

c λ5
m

λ8
cλ10

cλ11
cλ13

cλ14
m

λ7
c

M15 M14 M13 M12 M10 M9M11

Mncf

Safe states

λ12
c

= communication failure rateλ
c

λ
m = mechanical failure rate

Figure D.3 State transitions [CTMC] for the trains-monitor-gate.

105

Figure D.3 shows the formalized flow of events and actions (i.e., CTMC) which include

two failure states: (Mcf) safety critical failures involving gate closure, and (Mncf) non-

critical failures involving gate opening. Markings FM16-19 enumerate all failure categories.

Realistically, one should account for the transitions which take the system from anywhere

trains are being received (or are passing by) to new arrivals without having to visit the idle

state. Admittedly this diagram is simplified, yet it incorporates all states necessary for

receiving subsequent trains (assuming arrivals are not simultaneous).

Markings M6 and M7 are (safety) critical markings because the slow firing transitions

(TG?close [t5]) and (Closed [t6]) make it possible for the train to enter the intersection before

the gate has properly (or completely) closed. Similarly, non-critical conditions occur when

the train departs the intersection but the gate stays closed resulting from the slow firing of

transitions (TG?open [t7]) and (Open [t8]).1

The CSP specification (and the corresponding Petri net) can be refined or augmented to

state how such hazards could be avoided or handled. For example, communication failures

can be handled using time-out and re-transmit techniques. Gate closing failures can be

handled by sounding an alarm. Tolerance to time-related failures can be improved by

requiring more slack time. In Figure D.3 the only critical deadline, is the one that requires

the gate to close before the train arrives (i.e., gate closure must complete in a time less than:

(distance to the gate when "arriving" signal was sent)
(the speed of the train)

A failure mode resulting from incorrect (both logical and timing) operation of the

monitor is modeled. The monitor must track all approaching trains, and command the safe

operation of the gate. In controlling the gate, the monitor prevents the gate from opening

when a train departs if another is too close down the line that opening the gate would

endanger other traffic since the next train could arrive before the gate could again be closed.

1Note: Waiting in M7 is assumed so that the gate has time to close (the end of the delay is the event that allows
the next state transition to occur. Considering M11 we see that no waiting is necessary since the gate is already
closed (i.e., a pervious train just passed trough).

106

D.2 Stochastic analysis

Using conventional techniques (i.e., SPNP's Markov solvers), discrete and/or continuous

analyses can be performed. Mathematica was used to compute the reliability of the

railroad crossing system with different failure rates (or probabilities) and service rates (e.g.,

speed of the train, gate closing/opening rates etc.). The sensitivity of the system to variations

in train speed (µ7) and the gate closure rates (µ 6) were evaluated. The system's

performability was studies to determine how reliably the gate closes before the train arrives

with and without hardware and communication failures (i.e., mechanical gate failures [λ5, λ13

superscript 'm'] and communication failures [λ1,2,3,4,7, and λ8,10,11,12,13 superscript 'c']) . The

values used (and hence the results of the analysis) are only for illustrating the approach (i.e.,

do not attach empirical significance to the failure rates or MTTFs obtained. This type

analysis is useful in exploring different fault-handling mechanisms and the cost of providing

fault-tolerance.2 The discrete analysis was not performed.

D.2.1 Continuous analysis

The results shown in Figures D.4 through D.7 predict reliability over the same

operational life: up to 10,000 time units (tus) on the x-axis (each unit is further divided into

1000 sub-tus). The sensitivity of the a system to different transition rates (i.e., µ6 and µ7 for

the various train speeds and the speed of the gate closing) are presented in Figure D.4. Note,

the "rel" stands for reliability and is the instantaneous reliability of the data point at 10,000

tus. However, since the reliability was so close to zero the plotter stopped at the position

indicated by the arrow head. The predicted mean time to failure is also provided (MTTF). In

Figure D.5 the effect of varying the timing failure rate, in the presence of timing failures

[including σ9 failures caused by software or hardware or timing problems]) is shown.

2More elaborate fault-handling and fault-recovery mechanisms should be used to tolerate or prevent safety
critical failures, while less attention may be paid to non-safety critical failures. Failure to open the gate may
anger people waiting at the crossing but such failures can be handled inexpensively by providing a mechanism
to manually open the gate. On the other hand, failure to close the gate is more severe, so traffic at the crossing
should be alerted reliably and automatically.

107

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

1/µ7 = 90% of the time the train takes at most 500tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 10, 20 or 50tus to close.

λ1= 0.0000001

λ2= 0.0000001

λ3= 0.0000001

λ4= 0.0000001

λ5= 0.0001

τ6= 0.0000908

λ7= 0.0000001

λ8= 0.0000001

σ9= 0.001

λ10= 0.0000001

λ11= 0.0000001

λ12= 0.0000001

λ13= 0.0000001

λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=* 0.002
µ7=** 0.0002
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*µ6 = this rate was varied from .002, .05, to .1.
∗∗µ7 = this rate was varied from .0002, .005, to .01.

Rel= 2.66424 x10-28
Mttf=156255tus Rel= 7.78592 x10-7 and Mttf=710722tus

Rel= 4.14431 x10-6 and Mttf=806585tus

Medium µ's(train & gate deadline 200 & 20tus respectively)

Small µ's (train & gate deadline 500 & 50tus respectively)

Large µ's (train & gate deadline 100 & 10tus respectively)

Figure D.4 Performability for different train and gate speeds (based on CTMC).

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

λ1= 0.0000001
λ2= 0.0000001
λ3= 0.0000001
λ4= 0.0000001
λ5= 0.0001
τ6=* 0.0000908
λ7= 0.0000001
λ8= 0.0000001
σ9=*** 0.001
λ10= 0.0000001
λ11= 0.0000001
λ12= 0.0000001
λ13= 0.0000001
λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=** 0.1
µ7=** 0.01
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*τ6 = this rate was varied from 0.0 to .0000908.
∗∗µ6 and µ7 = held constant at 0.1 and 0.01.
∗∗∗σ9 = held constant at 0.001 (zeroed in 3rd run).

Rel= 0.157822 and Mttf=4.56108 x106tus

Rel= 9.87701 x10-6 and Mttf=867394tus

Rel= 0.415168 and Mttf=6.65255 x106tus

1/µ7 = 90% of the time the train takes at most 100tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 10tus to close.

Run2: All λ failure rates (comm. and mech. failures) zeroed.

Run3: Same as run2 plus monitor failure rate (σ9) also zeroed.

Run1: Timing failure rate (τ6) zeroed.

Run1 Run2 Run3

Figure D.5 Performability for different timing failure and monitor failure rates.

108

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

λ1= 0.0000001
λ2= 0.0000001
λ3= 0.0000001
λ4= 0.0000001
λ5= 0.0001
τ6=* 0.00000908
λ7= 0.0000001
λ8= 0.0000001
σ9= 0.001
λ10= 0.0000001
λ11= 0.0000001
λ12= 0.0000001
λ13= 0.0000001
λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=** 0.01
µ7=*** 0.001
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*τ6 = rate was varied from .00000908,
 .00001816 to .0000454.
∗∗µ6 = varied from .01, .005 to .002.
∗∗∗µ 7 = held constant at .001.

1/µ7 = 90% of the time the train takes at most 1000tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 100, 200 and 500tus to close.

Run2: γ = 5 and Timing failure rate = 2*τ6.
Run3: γ = 5 and Timing failure rate = 5*τ6.

Run1: γ = 10 and Timing failure rate = τ6.

Run1

Run2

Run3

Rel= 4.96663 x10-9 and Mttf=523045tus

Rel= 1.66653 x10-25 and Mttf=175260tus

Rel= 5.18987 x10-30 and Mttf=148256tus

Timing ratio γ = train approach time/gate close time.
Timing failure rate τ6 = .00000908 as the basis.

Figure D.6 Performability for different train speeds and gate closing speeds.

*Time units: each tick on the x-axis is 1000tus. If a tu is a second then there are
 ~16mins/tic, and 10,000 ticks is ~2778hrs (full range of data).

Pe
rf

or
m

ab
ili

ty
 /

R
el

ia
bi

lit
y

Time units*

λ1= 0.0000001
λ2= 0.0000001
λ3= 0.0000001
λ4= 0.0000001
λ5= 0.0001
τ6=* 0.0000908
λ7= 0.0000001
λ8= 0.0000001
σ9=*** 0.001
λ10= 0.0000001
λ11= 0.0000001
λ12= 0.0000001
λ13= 0.0000001
λ14= 0.0001

µ1= 0.0001
µ2= 1.0
µ3= 1.0
µ4= 1.0
µ5= 1.0
µ6=** 0.002
µ7=** 0.0002
µ8= 1.0
µ9= 1.0
µ10= 1.0
µ11= 1.0
µ12= 1.0
µ13= 1.0
µ14= 0.01
µ15= 0.01

Transition Rates Failure Rates

*τ6 = this rate was varied from 0.0 to .0000908.
∗∗µ6 and µ7 = held constant at 0.002 and 0.0002.
∗∗∗σ9 = held constant at 0.001 (except zeroed in
 third run).

Rel= 7.00537 x10-13 and Mttf=355539tus

1/µ7 = 90% of the time the train takes at most 500tus to reach the gate crossing.
1/µ6 = 80% of the time the gate takes at most 50tus to close.

Run1

Run2

Run3

Run2: All λ failure rates (comm. and mech. failures) zeroed.

Run3: Same as run2 plus monitor failure rate (σ9) also zeroed.

Run1: Timing failure rate (τ6) zeroed.

Rel= 3.75932 x10-13 and Mttf=347869tus

Rel= 5.0716 x10-17 and Mttf=265654tus

Figure D.7 Performability for different train speeds and gate closing speeds.

109

Figure D.6 shows the relation between the time needed for the train to reach the

intersection (1/µ7), the time needed for the gate to close (1/ µ6) , and the timing failure rate

(τ6). These parameters are negatively correlated (i.e., as the slack time [1/µ7 - 1/ µ6] gets

smaller τ6 increases). The differences between rates associated with the train and the gate

transitions were taken as a factor of 10, 5 and 2 for runs 1 - 3 while the τ6 timing failure rate

varied from 0.00000908 by a factor of 2 and 5 for runs 1 - 3 respectively. As can be seen

from the graphs, the performability of the system decreases dramatically as the slack time

decreases.

In order to study the effect of the timing critical transition rates on the predefined failure

rates Figure D.7 is included. Compared this figure to Figure D.5. All of the parameters are

the same except that instead of assuming large transition rates for µ6 and µ7 (i.e., 0.1 and 0.01

respectively) smaller rates were assumed (i.e., 0.002 and 0.0002).

D.3 Summary

The results show that the model is fairly sensitive to small changes in the rate

assignments. There is less of an impact to the performability caused by the inherent failure

rates of the subsystems when the transition rates are small. For example, comparing the

difference between the best and the worst MTTF in each of the three runs of Figure D.5, we

find a difference of a factor of 10, whereas that same comparison in Figure D.7 yields only a

difference factor of 0.5 (approximately). Once again, do not attach any significance to the

actual numbers. These numbers only illustrate the usefulness of these analyses in designing

real-time systems with sufficient slack times and fault-tolerance to achieve a desired level of

performability.

110

BIBLIOGRAPHY

Abadi, Martin and Lamport, Leslie, “Composing Specifications,” ACM Transactions on
Programming Languages and Systems, Vol. 15, No. 1, 45 refs., pp. 73-132, Jan. 1993.

Alur, R. and Henzinger, T., “Real-Time Logics: Complexity and Expressiveness,”
Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science, 24
refs., pp. 390-401, June 1990.

Anderson, Tom, Barrett, Peter A., Halliwell, Dave N. and Moulding, Michael R., “Software
Fault Tolerance: An Evaluation,” IEEE Transactions on Software Engineering, Vol.
SE-11, No 12, 27 refs., pp. 1502-1510, December 1985.

Arlat, Jean, Costes, A., Crouzet, Y., Laprie, J. and Powell, D., “Fault Injection and
Dependability Evaluation of Fault-Tolerant Systems,” IEEE Transactions on
Computers, Vol. 42, No. 8, 38 refs., pp. 913-923, August 1993.

Arlat, Jean, Kanoun, Karama, and Laprie, Jean-Claude, “Dependability Modeling and
Evaluation of Software Fault-Tolerant Systems,” IEEE Transactions on Computers,
Vol. 39, No. 4, 29 refs., pp. 504-513, April 1990.

Aupperle, B.E. and Meyer, J.F., “State Space Generation for Degradable Multiprocessor
Systems,” IEEE Fault-Tolerant Computing Systems -21 Digest of Papers, 21 refs., pp.
308-315, 1991.

Aupperle, B.E., Meyer, J.F. and Wei, L., “Evaluation of Fault-Tolerant Systems with
Nonhomogeneous Workloads,” IEEE Fault-Tolerant Computing Systems -19 Digest of
Papers, 24 refs., pp. 159-166, 1989.

Bagrodia, Rajive L. and Shen, Chien-Chung, “Integrated Design, Simulation, and
Verification of Real-Time Systems,” 11th Annual International Conference on
Distributed Computing Systems, 15 refs., pp. 164-171, May 1991a.

Bagrodia, Rajive L. and Shen, Chien-Chung, “MIDAS: Integrated Design and Simulation of
Distributed Systems,” IEEE Transactions on S/E, 22 refs., 33 pages, October 1991b.

Bagrodia, Rajive L., and Liao, Wen-Toh, “Maisie: A Language and Optimizing Environment
for Distributed Simulation,” 1990 Simulation Multiconference: Distributed Simulation,
San Diego, 14 refs., pp. 205-210, January 1990.

Balbo, Gianfranco, “On the Success of Stochastic Petri Nets,” IEEE Proceedings Petri Nets
and Performance Modeling 95, Durham, NC, 64 refs., pp. 2-9, October 3-6, 1995.

Balbo, Gianfranco, “Performance Issues in Parallel Programming,” 13th International
Conference on Application and Theory of Petri Nets, 34 refs., pp. 1-23, June 1992a.

111

Balbo, Gianfranco, Donatelli, S., Granceschinis, G., Mazzeo, A., Mazzocca, N. and Ribaudo,
M., “On the Computation of Performance Characteristics of Concurrent Programs
Using GSPNs,” Performance Evaluation, Vol. 19, 18 refs., pp. 195-222, 1994.

Balbo, Gianfranco, Donatelli, Susanna and Franceschinis, Giuliana, “Understanding Parallel
Program Behavior through Petri Net Models,” Journal of Parallel and Distributed
Computing, Vol. 15, No. 3, 17 refs., pp. 171-187, 1992b.

Barrett, Geoff, “The Development of Occam®: Types, Classes and Sharing,” Proceedings of
the 13th Occam User Group Technical Meeting, York, England, Real-Time Systems
with Transputers, H. Zedon (Ed.), IOS Press, 1 ref., pp. 119-147, September 1990.

Basili, Victor R. and Musa, John D., “The Future Engineering of Software: A Management
Perspective,” Computer, 11 refs., pp. 90-96, September 1991.

Belli, Fevzi and Jedrzejowicz, Piotr, “An Approach to the Reliability Optimization of
Software with Redundancy,” IEEE Transactions on Software Engineering, Vol. 17, No.
3, 11 refs., pp. 310-312, March 1991.

Belli, Fevzi and Jedrzejowicz, Piotr, “Fault-Tolerant Programs and Their Reliability,” IEEE
Transactions on Reliability, Vol. 39, No. 2, 5 refs., pp. 184-192, June 1990.

Ben-Abdallah, Hanene, Choi, Jin-Young and Lee, Insup, “GCSR: A Formal Graphical
Language for Integrated Specification of Real-Time Systems,” Technical Report,
Department of Computer and Information Science, The University of Pennsylvania,
Philadelphia, PA 19104, 14 refs., 18 pages, 1994.

Ben-Abdallah, Hanene, Lee, Insup and Choi, Jin-Young, “A Graphical Language with
Formal Semantics for the Specification and Analysis of Real-time Systems,” IEEE
Proceedings Real-Time Systems Symposium, Pisa, Italy, 10 refs., Dec. 5-7, 1995.

Bergstra, J.A., and Klop, J.W., “Process algebra for synchronous communication,”
Information and Computation, 60, pp. 109-137, 1984.

Bernardo, Marco, Busi, Nadia and Gorrieri, Roberto, “A Distributed Semantics for EMPA
Based on Stochastic Contextual Nets,” The Computer Journal, 38:3, 21 refs., 17 pages,
1995a.

Bernardo, Marco, Donatiello, Lorenzo and Gorrieri, Roberto, “Giving a Net Semantics to
Markovian Process Algebra,” IEEE Proceedings of the 5th International Workshop on
Petri Nets and Performance Modeling, Durham, 20 refs., pp. 169-178, Oct. 3-6, 1995b.

Bernardo, Marco, Donatiello, Lorenzo and Gorrieri, Roberto, “Integrating Performance and
Functional Analysis of Concurrent Systems with EMPA,” Technical Report UBLCS-
95-14, Universita di Bologna, Diparimento di Scienze dell’Informazion, Bologna, Italy,
44 refs., 57 pages, September 1995c.

Bernardo, Marco, Donatiello, Lorenzo and Gorrieri, Roberto, “Modelling and Analyzing
Concurrent Systems with MPA,” Proceedings PAPM, Erlangen, July 1994

Bloom, B., Istrail, S., and Meyer, A.R., “Bisimulation Can't be Traced,” Journal of the ACM,
42:1, 47 refs., pp. 232-268, January 1995.

112

Bobbio, Andrea and Trivedi, Kishor, “An Aggregation Technique for the Transient Analysis
of Stiff Markov Chains,” IEEE Transactions on Computers, C-35:9, 29 refs., pp. 803-
814, September 1986.

Bobbio, Andrea and Trivedi, Kishor, “Computing Cumulative Measures of Stiff Markov
Chains Using Aggregation,” IEEE Transactions on Computers, Vol. 39, No. 10, 34
refs., pp. 1291-1298, October 1990.

Brinksma, Ed, “Performance and Formal Design: A Process Algebra Perspective,”
Proceedings PNPM’95, Durham, NC, October 1995

Buchholz, P., “Compositional Analysis of a Markovian Process Algebra,” Proceedings
PAPM, Erlangen, July 1994

Burns, Carla, “Parallel Proto - A Software Requirements Specification, Analysis &
Validation Tool,” Proceedings of the AIAA Computing In Aerospace 8, 4 refs., pp. 270-
276, October 21-24, 1991.

Butler, Ricky and Johnson, Sally C., “Formal Methods for Life-Critical Software,” Proc. of
the AIAA Computing in Aerospace 9 , 15 refs., pp. 319-329, Oct. 19-21, 1993.

Butler, Ricky W. and Finelli, George B., “The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software,” IEEE Transactions on Software Engineering, Vol.
19, No. 1, 16 refs., pp. 3-12, January 1993.

Butler, Ricky W. and Johnson, Sally C., “The Art of Fault-tolerant System Reliability
Modeling,” NASA TM-102623, 20 refs., 131 pages, March 1990.

Butler, Ricky W. and Martensen, Anna L., “The Fault-Tree Compiler (FTC): Program and
Mathematics,” NASA TP-2915, 4 refs., 38 pages, July, 1989.

Butler, Ricky W. and Stevenson, Philip H., “The PAWS and STEM Reliability Analysis
Programs,” NASA TM-100572, 14 refs., 43 pages, March 1988a.

Butler, Ricky W. and White, Allan L., “SURE Reliability Analysis - Program and
Mathematics,” NASA TP-2764, 13 refs., 74 pages, March 1988b.

Butler, Ricky W., “An Abstract Language for Specifying Markov Reliability Models,” IEEE
Transactions on Reliability, Vol. R-35, No. 5, 5 refs., pp. 595-601, December 1986.

Camilleri, Albert John, “Mechanizing CSP Trace Theory in Higher Order Logic,” IEEE
Transactions on S/E, Vol. 16, No. 9, 19 refs., pp. 993-1004, September 1990.

Carreno, Victor, “The Transition Assertions Specification Method,” University of Cambridge
Technical Report No. 279, 11 refs., 18 pages, December 1992.

Carreno, Victor, “Verification in Higher Order Logic of Mutual Exclusion Algorithm,”
Higher Order Logic Theorem Proving and its Applications, 6th International Workshop,
HUG’93, Vancouver, B.C., Canada, LNCS 780, Jeffrey J. Joyce and Carl-Johan H.
Seger (Eds.), Springer-Verlag, NY, 7 refs., pp. 501-513, August 11-13, 1993.

113

Chiola, Giovanni, Dutheillet, Claude, Franceschinis, Giuliana and Haddad, Serge,
“Stochastic Well-Formed Colored Nets and symmetric Modeling Applications,” IEEE
Transactions on Computers, Vol. 42, No. 11, 26 refs., pp. 1343-1360, November 1993a.

Chiola, Giovanni, Marsan, Marco Ajmone, Balbo, Gianfranco and Conte, Gianni,
“Generalized Stochastic Petri Nets: A Definition at the Net Level and Its Implications,”
IEEE Transactions on S/E, Vol. 19, No. 2, 46 refs., pp. 89-107, February 1993b.

Choi, Hoon and Trivedi, Kishor S., “Approximate Performance Models of Polling Systems
Using Stochastic Petri Nets,” Proceedings of the IEEE INFOCOM ’92, 17 refs., pp.
2306-2314, May 6-8, 1992.

Choi, Hoon, Mainkar, Varsha and Trivedi, Kishor S., “Sensitivity Analysis of Deterministic
and Stochastic Petri Nets,” MASCOTS'93, Simulation Series, Vol. 25, No. 1, 7 refs.,
pp. 271-276, January 1993.

Choi, Jin-Young, Lee, Insup and Xie, Hong-Liang, “The Specification and Schedulability
Analysis of Real-Time systems using ACSR,” IEEE Proceedings Real-Time Systems
Symposium, Pisa, Italy, 27 refs., Dec. 5-7, 1995.

Ciardo, Gianfranco and Lindemann, Christoph, “Analysis of Deterministic and Stochastic
Petri Nets,” IEEE Proceedings of the 5th International Workshop on Petri Nets and
Performance Modeling, Toulouse, France, 14 refs., pp. 160-169, October 19-22, 1993a.

Ciardo, Gianfranco and Muppala, Jogesh K., “Manual for the SPNP Package Version 3.1,”
EE Department, Duke University, Durham, NC, 5 refs., 34 pages, October 18, 1992a.

Ciardo, Gianfranco and Trivedi, Kishor S., “A Decomposition Approach for Stochastic Petri
Net Models,” Proceedings of the Fourth Int'l Workshop of Petri Nets and Performance
Models, IEEE CS Press, Los Alamitos, CA, 13 refs., pp. 74-83, December 1991a.

Ciardo, Gianfranco and Trivedi, Kishor S., “SPNP: The Stochastic Petri Net Package
(Version 3.1),” MASCOTS'93 Simulation Series, Vol. 25, No. 1, 0 refs., pp. 390-391,
January 17-20, 1993b.

Ciardo, Gianfranco, “Petri Nets with Marking-Dependent Arc Cardinality: Properties and
Analysis,” Proceedings of the 15th Int'l Conference on Applications and Theory of Petri
Nets, Zaragoza, Spain, Springer-Verlag, 25 refs., pp. 179-198, June 20-24, 1994.

Ciardo, Gianfranco, “Toward a Definition of Modeling Power for Stochastic Petri Net
Models,” International Workshop on Petri Nets and Performance Models, Madison,
Wisconsin, 12 refs., pp. 54-62, August 24-26, 1987.

Ciardo, Gianfranco, German, Reinhard and Lindemann, Christoph, “A Characterization of
the Stochastic Process Underlying a Stochastic Petri Net,” IEEE Proceedings of the 5th
International Workshop on Petri Nets and Performance Modeling, Toulouse, France, 20
refs., pp. 170-179, October 19-22, 1993c.

Ciardo, Gianfranco, Marie, Raymond A., Sericola, Bruno and Trivedi, Kishor S.,
“Performability Analysis Using Semi-Markov Reward Processes,” IEEE Transactions
on Computers, Vol. 39, No. 10, 23 refs., pp. 1251-1264, October 1990.

114

Ciardo, Gianfranco, Muppala, Jogesh and Trivedi, Kishor S., “Analyzing Concurrent and
Fault-Tolerant Software Using Stochastic Reward Nets,” Journal of Parallel and
Distributed Computing, Vol. 15, No. 3, 31 refs., pp. 255-269, 1992b.

Ciardo, Gianfranco, Muppala, Jogesh and Trivedi, Kishor S., “On the Solution of GSPN
Reward Models,” Performance Evaluation, Vol. 12, 18 refs., pp. 237-253, Dec. 1991b.

Ciardo, Gianfranco, Muppala, Jogesh K. and Trivedi, Kishor, “SPNP: Stochastic Petri Net
Package,” International Workshop on Petri Nets and Performance Models, Kyoto,
Japan, 45 refs., pp. 142-151, December 11-13, 1989.

Clark, Jeffrey A. and Pradhan, Dhiraj K., “REACT: A Synthesis and Evaluation Tool for
Fault-Tolerant Multiprocessor Architectures,” IEEE Annual Reliability and
Maintainability Symposium, 29 refs., 7 pages, January 1993.

Clark, Jeffrey A. and Pradhan, Dhiraj K., “Reliability Analysis of Unidirectional Voting
TMR Systems through Simulated Fault-Injection,” IEEE Workshop on Fault-Tolerant
Parallel and Distributed Systems, 0 refs., 9 pages, July 1992.

Clark, Jeffrey A., “Dependability Analysis of Fault-tolerant Multiprocessor Architectures
through Simulated Fault-Injection,” 3rd International Workshop on Integrating Error
Models with Fault-Injection, Annapolis, Maryland, 0 refs., 21 pages, April 25-26, 1994.

Cleaveland, R., Parrow, J. and Steffen, B., “The Concurrency Workbench: A Semantics-
Based Tool for the Verification of Concurrent Systems,” ACM Transactions on
Programming Languages and Systems, Vol. 15, No. 1, 56 refs., pp. 36-72, Jan. 1993.

Collins, B. P., Nichols, J. E., and Sorensen, I. H., “Introducing Formal Methods: The CICS
Experience with Z,” Technical Report TR 12.260, IBM, UK Labs, 11 refs., 10 pages,
1987.

Cook, Jeffrey, Filippenko, Ivan V., Levy, B.H., Marcus, L.G., and Menas, T.K., “Formal
Computer Verification in the State Delta Verification System (SDVS),” Proceedings of
the AIAA Computing in Aerospace 8, 36 refs., pp. 77-87, Oct. 21-24, 1991.

Covington, R.G., Ingels, S.C., Jump, J.R., Sinclair, J.B. and Mehta, V., “Performance
Validation of the Simulation of Parallel Computer Systems,” Proceedings of the 21st
Annual Summer Computer Simulation Conference, 12 refs., pp. 160-165, July 1989.

Craigen, Dan H., Gerhart, Susan L. and Ralston, Theodore J., “An International Survey of
Industrial Applications of Formal Methods, Volume 1 -- Purpose, Approach, Analysis,
and Conclusions,” Naval Research Laboratory Report, NRL/FR/5546--93-9581, 46
refs., 106 pages, September 30, 1993a.

Craigen, Dan H., Gerhart, Susan L. and Ralston, Theodore J., “An International Survey of
Industrial Applications of Formal Methods, Volume 2 -- Case Studies,” Naval Research
Laboratory Report, NRL/FR/5546--93-9582, 59 refs., 152 pages, September 30, 1993b.

Cutright, D.E., “A Simulation-Based Approach to Integrated Performance and Reliability
Modelling,” Ph.D. Research Proposal, Center for Semi-custom Integrated Circuits, The
University of Virginia, Charlottesville, VA, 31 refs., 34 pages, May 1993.

115

Cutright, D.E., Rao, R., Johnson, W.B. and Aylor, H.J., “Modeling an ATAMM-Based
Multiprocessor System Using VHDL,” Technical Report #910111.0, Center for Semi-
custom Integrated Circuits, The University of Virginia, Charlottesville, 25 refs., 39
pages, January 1991.

Dahbura, Anton T., Sabnani, Krishan K., and Uyar, M. Umit, “Formal Methods for
Generating Protocol Conformance Test Sequences,” Proceedings of the IEEE, Vol. 78,
No. 8, 44 refs., pp. 1317-1326, Aug. 1990.

Dahlberg, Teresa A. and Agrawal, Dharma P., “Dependability Analysis for Large Systems:
A Hierarchical Modeling Approach,” 5th Symposium on Parallel and Distributed
Processing, 6 refs., pp. 456-459, 1993.

Davies, Jim and Schneider, Steve, “Real-Time CSP,” Theories and Experiences for Real-
Time System Development, AMAST Series in Computing: Vol. 2, Teodor Rus and
Charles Rattray Eds., World Scientific, New Jersey, 267 refs., pp. 31-82, 1994.

Davis, Alan B., Software Requirements Analysis and Specification, Prentice Hall,
Englewood Cliffs, N.J., 598 annotated refs., 516 pages, 1990.

Delisle, Norman, and Garlan, David, “A Formal Specification of an Oscilloscope,” IEEE
Software, 6 refs., pp. 29-36, Sept. 1990.

Delisle, N., and Swartz, M., “A Programming Environment for CSP,” ACM SIGPLAN
Notices 22, No. 1, pp. 34-41, January 1987.

Deng, Yi and Chang, Shi-Kuo, “A Framework for the Modeling and Prototyping of
Distributed Information Systems,” International Journal of Software Engineering and
Knowledge Engineering, Vol. 1 No. 3, 39 refs., pp. 203-226, 1991.

Deng, Yi and Chang, Shi-Kuo, “A G-Net Model for Knowledge Representation and
Reasoning,” IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, 18
refs., pp. 295-310, September 1990.

Deng, Yi and Chang, Shi-Kuo, “Unifying Multi-Paradigms in Software System Design,”
Fourth International Conference on Software Engineering and Knowledge Engineering,
13 refs., pp. 386-393, 1992.

Dillon, L.K., Kutty, G., Moser, L.E., Melliar-Smith, P.M. and Ramakrishna, Y.S., “Graphical
Specifications for Concurrent Software Systems,” International Conference on Software
Engineering, Melbourne Australia, 23 refs., 11 pages, May 1992.

Donatelli, S., Ribaudo, M. and Hillston, J., “A Comparison of Performance Evaluation
Process Algebra and Generalized Stochastic Petri Nets,” IEEE Proc Petri Net and
Performance Modeling (PNPM), Durham, NC, 20 refs., pp. 158-168, October 3-6,
1995.

Donatelli, Susanna, Franceschinis, Giuliana, Mazzocca, Nicola and Russo, Stefano,
“Software Architecture of the EPOCA Integrated Environment,” Proceedings of the 7th
International Conference on Computer Performance Evaluation Modelling Techniques
and Tools, LNCS 794, G. Goos and J. Hartmanis Eds., Springer-Verlag, Vienna,
Austria, 14 refs., pp. 335-352, May 1994.

116

Dugan, Joanne Bechta and Ciardo, Gianfranco, “Stochastic Petri Net Analysis of a
Replicated File System,” International Workshop on Petri Nets and Performance
Models, Madison, Wisconsin, 17 refs., pp. 84-92, August 24-26, 1987.

Dugan, Joanne Bechta and Lyu, Michael R., “Reliability Analysis of Hardware- and
Software-Fault Tolerant Systems,” Technical Report, Department of Electrical
Engineering, The University of Virginia, 17 refs., 21 pages, June 15, 1993a.

Dugan, Joanne Bechta and Trivedi, Kishor S., “Coverage Modeling for Dependability
Analysis of Fault-Tolerant Systems,” IEEE Transactions on Computers, Vol. 38, No. 6,
30 refs., pp. 775-787, June 1989.

Dugan, Joanne Bechta and Van Buren, Randy, “Reliability Evaluation of Fly-by-Wire
Computer Systems,” Journal of Systems Software, Vol. 25, 23 refs., pp. 109-120, 1994.

Dugan, Joanne Bechta, Bavuso, Slavatore J. and Boyd, Mark A., “Fault Trees and Markov
Models for Reliability Analysis of Fault-Tolerant Digital Systems,” Reliability
Engineering and System Safety, Vol. 39, 13 refs., pp. 291-307, 1993b.

Eckhardt, Dave E., and Lee, Larry D., “A Theoretical Basis for the Analysis of Multiversion
Software Subject to Coincident Errors,” IEEE Transactions on Software Engineering,
Vol. SE-11, No. 12, 14 refs., pp. 1511-1517, December 1985.

Eckhardt, Dave E., Caglayan, Alper K., Knight, John C., Lee, Larry D., McAllister, David F.,
Vouk, Mladen A., and Kelly, John P.J., “An Experimental Evaluation of Software
Redundancy as a Strategy for Improving Reliability,” IEEE Transactions on Software
Engineering, Vol. 17, No. 7, 27 refs., pp. 692-702, July 1991.

Elks, Carl R., Young, Steven D. and Baker, B., “Design and Assessment of High
Performance Fault-Tolerant Digital Systems,” AIAA Computing in Aerospace 8,
AIAA-91-3736-CP, Vol. 1, 11 refs., pp. 205-216, October 21-24, 1991.

Enand, Sonia, and Scarl, Ethan A., “Building Functional Models for Fault Location and
Control,” Proceedings of the 1989 Summer Computer Simulation Conference, 8 refs.,
pp. 569-574, July 24-27, 1989.

Firth, Robert, Wood, Bill, Pethia, Rich, Roberts, Lauren, Mosley, Vicky and Dolce, Tom, “A
Classification Scheme for Software Development Methods,” Defense Technical
Information Center Technical Report CMU/SEI-87-TR-41, 69 refs., 49 pages,
November 1987.

Fridge, C.J., “A LISP Implementation of the Model for Communicating Sequential
Processes,” Software Practice & Experience, 18:10, refs. 6, pp. 923-943, October 1988.

Garlan, David, and Delisle, Norman, “Formal Specifications as Reusable Frameworks,”
Proceedings - Formal Methods in Software Development, Lecture Notes in Computer
Science 428, Springer-Verlag, NY, 6 refs., pp. 150-163, April 1990.

Geist, R.M. and Smotherman, M.K., “Ultrahigh Reliability Estimates Through Simulation,”
1989 Proceedings of the Annual Reliability and Maintainability Symposium, 19 refs.,
pp. 350-355, 1989.

117

Geist, Robert and Trivedi, Kishor, “An Analytic Treatment of the Reliability and
Performance of Mirrored Disk Subsystems,” IEEE Fault-Tolerant Computing Systems -
23 Digest of Papers, 13 refs., pp. 442-450, June 22-24, 1993.

Geist, Robert M. and Trivedi, K., “Reliability Estimation of Fault Tolerant Systems: Tools
and Techniques,” Computer, 12 refs., pp. 52-61, 1990a.

Geist, Robert M. and Trivedi, Kishor S., “Ultrahigh Reliability Prediction for Fault-Tolerant
Computer Systems,” IEEE Transactions on Computers, Vol. C-32, No. 12, 19 refs., pp.
1118-1127, December 1983.

Geist, Robert M., Smotherman, Mark and Talley, Ronald, “Modeling Recovery Time
Distributions in Ultrareliable Fault-Tolerant Systems,” IEEE Fault-Tolerant Computing
Systems-20 Digest of Papers, 26 refs., pp. 499-504, June 26-28, 1990b.

Genrich, Hartmann J. and Shapiro, Robert M., “Formal Verification of an Arbiter Cascade,”
13th International Conference on Application and Theory of Petri Nets, 5 refs., pp. 205-
223, June 1992.

Gerber, R. and Lee, I., “A Proof System for Communicating Shared Resources,” Proc. of the
11th Annual IEEE Real-Time Systems Symposium, 17 refs., pp.288-299, 1990.

Gerber, R., Zwarico, A. and Lee, I., “A Complete Axiomatization of Real-Time Processes,”
Technical Report MS-CIS-88-88 GRASP LAB 162, Department of Computer and
Information Science, School of Engineering and Applied Science, The University of
Pennsylvania, 13 refs., 16 pages, November 1988.

Gerhart, Susan L., “Applications of Formal Methods: Developing Virtuoso Software,” IEEE
Software, 9 refs., pp. 7-10, September 1990.

Gilmore, S. and Hillston, J., Proceedings of the 1st Workshop on Process Algebras and
Performance Modelling (PAPM’95), Edinburgh (UK), J. Hillston and F. Moller editors,
The Computer Journal 38(7), July 1995.

Gilmore, Stephen and Hillston, Jane, “The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling,” Proceedings of the 7th
International Conference on Computer Performance Evaluation Modelling Techniques
and Tools, LNCS 794, G. Goos and J. Hartmanis Eds., Springer-Verlag, Vienna,
Austria, 20 refs., pp. 353-368, May 1994.

Gomaa, Hassan, “Software Design Methods for the Design of Large-Scale Real-Time
Systems,” Journal of Systems Software, Vol. 25, 27 refs., pp. 127-146, 1994.

Goswami, Kumar and Iyer, Ravishankar K., “DEPEND: A Simulation-Based Environment
for System Level Dependability Analysis,” Center for Reliable and High-Performance
Computing, Coordinated Science Lab, College of Engr, Univ. of IL at Urbana-
Champaign, Tech. Rpt. UILU-ENG-92-2217, CRHC-92-11, 49 refs., 41 pgs, June 1992.

Gotz, N., Herzog, U. and Rettelbach, M., “Multiprocessor and Distributed System Design:
the Integration of Functional Specification and Performance Analysis Using Stochastic
Process Algebras,” in Proc. of PERFORMANCE’93, Rome (Italy), LNCS 729:121-146,
Sept. 1993.

118

Goyal, Ambuj, Heidelberger, Philip and Shahabuddin, Perwez, “Measure Specific Dynamic
Importance Sampling For Availability Simulations,” Proceedings of the 1987 Winter
Simulation Conference, 10 refs., pp. 351-357, 1987.

Goyal, Ambuj, Shahabuddin, P., Heidelberger, P., Nicola, V.F. and Glynn, P.W., “A Unified
Framework for Simulating Markovian Models of Highly Dependable Systems,” IEEE
Transactions on Computers, Vol. 41, No. 1, 47 refs., pp. 36-51, January, 1992.

Hall, Anthony, “Seven Myths of Formal Methods,” IEEE Software, 10 refs., pp. 11-19,
September 1990.

Harel, David, “Biting the Silver Bullet: Toward a Brighter Future for System Development,”
IEEE Computer, 12 refs., pp. 8-20, Jan. 1992.

Harel, David, Lachover, Hagi, Naamad, Amnon, Phueli, Amir, et al, “STATEMATE: A
Working Environment for the Development of Complex Reactive Systems,” IEEE
Trans on Software Engineering, Vol. 16, No. 4, 22 refs., pp. 403-414, April, 1990.

Haverkort, Boudewijn R. and Trivedi, Kishor S., “Specification Techniques for Markov
Reward Models,” Discrete Event Dynamic Systems: Theory and Applications 3,
Kluwer Academic Publishers, Boston, 88 refs., pp. 219-247, 1993.

Heidelberger, P., Nicola, V.F. and Shahabuddin, P., “Simultaneous and Efficient Simulation
of Highly Dependable Systems with Different Underlying Distributions,” Proceedings
of the 1992 Winter Simulation Conference, 17 refs., pp. 458-465, 1992.

Heidelberger, Philip and Goyal, Ambuj, “Sensitivity Analysis of Continuous Time Markov
Chains Using Uniformization,” Computer Performance and Reliability, 12 refs., pp. 93-
104, 1988.

Heitmeyer, Constance and Labow, Bruce, “Requirements Specification of Hard Real-Time
Systems: Experience with a Language and a Verifier,” Chapter 11 of Foundations of
Real-Time Computing: Formal Specifications and Methods, Andre M. van Tilborg and
Gary M. Koob, Eds., Kluwer Academic Publishers, Boston, 28 refs., pp. 291-313, 1991.

Heitmeyer, Constance and Lynch, Nancy, “The Generalized Railroad Crossing: A Case
Study in Formal Verification of Real -Time Systems,” Technical Report Massachusetts
Institute of Technology, Cambridge, MA, and IEEE Proceedings Real-Time Systems
Symposium, San Juan, Puerto Rico, 19 refs., 42 pages, December 1994.

Hermanns, H. and Rettelbach, M. “Syntax, Semantics, Equivalence and Axioms for MTIPP,”
Proceedings of PAPM’94, Erlangen, pp. 71-87, July 1994.

Herzog, U. and Rettelbach, M., Proceedings of the 1st Workshop on Process Algebras and
Performance Modelling (PAPM’94), Erlangen (Germany), U. Herzog and M.
Rettelbach, editors, July 1994.

Hillston, J. and Moller, F., Proceedings of the 1st Workshop on Process Algebras and
Performance Modelling (PAPM’93), Edinburgh (UK), J. Hillston and F. Moller editors,
May 1993a.

119

Hillston, J., “A Compositional Approach to Performance Modelling,” Ph.D. Thesis,
University of Edinburgh (UK), March 1994.

Hillston, J., “PEPA: A Performance Evaluation Process Algebra,” Proceedings of PAPM’93,
Edinburgh, pp. 21-29, May 1993b.

Hird, Geoffrey R., “Formal Specification and Verification of Ada Software,” AIAA
Computing in Aerospace 8, Vol. 1, AIAA-91-3713- CP, 14 refs., pp. 62-68, October 21-
24, 1991.

Hoare, C.A.R., Communicating Sequential Processes, Prentice- Hall International Series in
Computer Science, 12 refs., 256 pages, 1985.

Hooman, J. and de Roever, W.P., “Design and Verification in Real-Time Distributed
Computing: An Introduction to Compositional Methods,” Protocol Specification,
Testing and Verification, IX, 30 refs., pp. 37-36, North-Holland, 1990.

Ibe, Oliver C., Sathaye, Archana, Howe, Richard C. and Trivedi, Kishor S., “Stochastic Petri
Net Modeling of VAXcluster System Availability,” Proc. of the Third Int’l Workshop
on Petri Nets and Performance Models, Kyoto, Japan, 16 refs., pp. 112-121, Dec. 1989.

ICASE/NASA LaRC, "Collection of Abstracts from the: ICASE/NASA LaRC Workshop on
Software Tools and Techniques for Performance and Reliability Estimation," varied
refs., 50 pages, June 17-18, 1993.

INMOS Limited, Occam Programming Manual, Prentice-Hall International Series in
Computer Science, C.A.R. Hoare Series Editor, New Jersey, 0 refs., 92 pages, 1988.

Iyer, R.K. and Bryant, W.H., Co-Chairs, “Computer-Aided Design of Dependable Mission
Critical Systems,” Proc. of the 19th FTCS, 0 refs., pp. 416-420, 1989.

Iyer, Ravishankar K. and Tang, Dong, “Measurement-Based Dependability Evaluation of
Operational Computer Systems,” Foundations of Dependable Computing-Models and
Frameworks for Dependable Systems, Edited by Gary M. Koob and Clifford G. Lau,
Kluwer Academic Publishers, Boston, 53 refs., pp. 195-234, 1995.

Jahanian, Farnam and Mok, Aloysius K., “A Graph-Theoretic Approach for Timing Analysis
and its Implementation,” IEEE Transactions on Computers, Vol. C-36, No. 8, 10 refs.,
pp. 961-975, August 1987.

Jahanian, Farnam and Mok, Aloysius K., “Safety Analysis of Timing Properties in Real-
Time Systems,” IEEE Transactions on Software Engineering, Vol. SE-12, No. 9, 14
refs., pp. 890-904, September 1986.

Johnson, Allen M. Jr., and Malek, Miroslaw, “Survey of Software Tools for Evaluating
Reliability, Availability, and Serviceability,” ACM Computing Surveys, Vol. 20, No. 4,
84 refs., pp. 227-269, December 1988.

Johnson, Barry W., Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley
Publishing Company, 175 refs., 584 pages, 1989.

120

Johnson, Sally C. and Boerschlein, David P., “ASSIST User Manual,” NASA Langley
Research Center, 20 refs., 150 pages, October 28, 1991.

Jones, Geraint, Programming in occam, Prentice-Hall Int’l, 0 refs., 182 pages, 1987.

Kavi, K.M. and Buckles, B.P., “Formal Methods for the Specification and Analysis of
Concurrent Systems" Tutorial Notes, 1993 International Conference on Parallel
Processing, Lake Charles, IL., 24 refs., 75 pages, Aug. 20, 1993.

Kavi, Krishna and Yang, Seung-Min, “Real-Time Systems Design Methodologies: An
Introduction and a Survey,” J. of Systems Software, 65 refs., pp. 85-99, April, 1992a.

Kavi, Krishna M. and Sheldon, Frederick T., “Reliability Analysis of CSP Specifications
Using Petri Net and Markov Models,” HICSS-28, 24 refs., 10 pages, January 1995.

Kavi, K.M., and Sheldon, F.T., "Specification of Stochastic Properties with CSP," IEEE
Proceedings Int'l Conference on Parallel and Distributed Systems, Taiwan, ROC, pp.
288 - 293, 12 refs., December 1994a.

Kavi, Krishna M. Ed., “Real-Time Systems: Abstractions, Languages, and Design
Methodologies,” Tutorial published by IEEE CS Press, 41 papers, 672 pgs., Dec.
1992b.

Kavi, Krishna M., Youn, H.Y. and Shirazi, B., “A Performability Model for Soft Real-Time
Systems,” IEEE Proceedings of the 27th Annual Hawaii International Conference on
Systems Sciences, Vol. II, 11 refs., pp. 571-579, 1994b.

Kemmerer, Richard A., “Integrating Formal Methods into the Development Process,” IEEE
Software, 7 refs., pp. 37-50, September, 1990.

Kim, K.H., “Design of Real-Time Fault-Tolerant Computing Stations,” Presented as a lecture
in the NATO Advanced Science Institute on Real-Time Computing, St. Maarten, to
appear as a chapter in a volume of the Lecture Note series to be published by Springer-
Verlag, 60 refs., 28 pages, October 1992.

Kourie, D.G., “The Design and Use of a PROLOG Trace Generator for CSP,” Software
Practice & Experience, 17:7, refs. 9, pp. 423-438, July 1987.

Laprie, J.C., Kaaniche, M. and Kanoun, K., “Modeling Computer Systems Evolutions: Non-
Stationary Processes and Stochastic Petri Nets - Application to Dependability Growth,“
IEEE Proc. PNPM’95, Durham, NC, 19 refs., pp. 221-230, October 3-6, 1995.

Lee, Insup and Gerber, Richard, “A Process Algebraic Approach to the Specification and
Analysis of Resource-Bound Real-Time Systems,” Proceedings of the IEEE, Vol. 82,
No. 1, 38 refs., pp. 158-171, January 1994.

Lee, Insup, Davidson, Susan and Gerber, Richard, “Communicating Shared Resources: A
Paradigm for Integrating Real-Time Specification and Implementation,” Chapter 4 of
Foundations of Real-Time Computing: Formal Specifications and Methods, Andre M.
van Tilborg and Gary M. Koob, Eds., Kluwer, 14 refs., pp.87-109, 1991.

121

Lee, Sunggu and Shin, Kang Geun, “Probabilistic Diagnosis of Multiprocessor Systems,”
ACM Computing Surveys, Vol. 26, No.1, 44 refs., pp. 121-139, March 1994.

Levenson, N.G. and Stolzy, J.L., “Safety Analysis Using Petri Nets,” IEEE Transactions on
Software Engineering, Vol. SE-13, No. 3, 19 refs., pp. 386-397, March 1987.

Lewis, Alan D., “Petri Net Modeling and Software Safety Analysis: Methodology for an
Embedded Military Application,” Masters Thesis, Naval Postgraduate School,
Monterey, CA 93943-5000, 19 refs., 98 pages, June 1988.

Lindemann, Christoph, “DSPNexpress: A Software Package for the Efficient Solution of
Deterministic and Stochastic Petri Nets,” MASCOTS'93, Simulation Series, Vol. 25,
No. 1, 2 refs., pp. 373-374, January 17-20, 1993.

Liu, Zhiming and Joseph, Mathai, “Transformation of Programs for Fault-Tolerance,”
Formal Aspects of Computing, Vol. 4, No. 5, 31 refs., pp. 442-469, 1992.

Lloret, J.C., Roux, J.L., Algayres, B. and Chamontin, M., “Modelling and Evaluation of a
Satellite System Using EVAL, a Petri Net Based Industrial Tool,” Proceedings of the
13th International Conference on Applications and Theory of Petri Nets, 7 refs., pp.
379-383, June 1992.

Lui, John C.S. and Muntz, Richard R., “Computing Bounds on Steady State Availability of
Repairable Computer Systems,” Journal of the Association for Computing Machinery,
Vol. 41, No. 4, 32 refs., pp. 676-707, July 1994.

Mainkar, Varsha, Choi, Hoon and Trivedi, Kishor, “Sensitivity Analysis of Markov
Regenerative Stochastic Petri Nets,” IEEE Proceedings of the 5th International
Workshop on Petri Nets and Performance Modeling, Toulouse, France, 18 refs., pp.
180-189, October 19-22, 1993.

Marsan, M. Ajmone, “Stochastic Petri Nets: An Elementary Introduction,” LNCS 424:1-29,
1990

Marsan, Marco Ajmone, Conte, Gianni and Balbo, Gianfranco, “A Class of Generalized
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems,” ACM
Transactions on Computer Systems, Vol. 2, No. 2, 15 refs., pp. 93-122, May 1984.

Meyer, J.F., Muralidhar, K.H. and Sanders, W.H., “Performability of a Token Bus network
under Transient Fault Conditions,” IEEE Fault-Tolerant Computing Systems -19
Digest of Papers, 33 refs., pp. 175-182, 1989a.

Meyer, John F., “Hardware and Software Dependability Evaluation: Future Trends,”
Information Processing 89, G.X. Ritter (ed.), 1 ref., pp. 117-117, 1989b.

Meyer, John F., “On Evaluating the Performability of Degradable Computing Systems,”
IEEE Transactions on Computers, Vol. C-29, No. 8, 28 refs., pp. 720-731, Aug. 1980a.

Meyer, John F., Furchtgott, David G. and Wu, Liang T., “Performability Evaluation of the
SIFT Computer,” IEEE Transactions on Computers, Vol. C-29, No. 6, 19 refs., pp. 501-
509, June 1980b.

122

Milner, Robin, A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980

Milner, Robin, Parrow, Joachim and Walker, David, “A Calculus of Mobile Processes, I,”
Information and Computation, Vol. 100, No. 1, 16 refs., pp. 1-40, September 1992.

Milner, Robin, Parrow, Joachim and Walker, David, “A Calculus of Mobile Processes, II,”
Information and Computation, Vol. 100, No. 1, 3 refs., pp. 41-77, September 1992.

Mokkedem, Abdelillah and Mery, Dominique, “On Using Temporal Logic for Refinement
and Compositional Verification of Concurrent Systems,” Journal of Theoretical
Computer Science, Vol. 140, 27 refs., pp. 95-138, 1995.

Moller, F. and Tofts, C., “A Temporal Calculus of Communicating Systems,” CONCUR
'90, LNCS 458, Springer-Verlag, 15 refs., pp. 401-415, 1990.

Molloy, Michael K., “Performance Analysis Using Stochastic Petri Nets,” IEEE Transactions
on Computers, Vol. C-31, No. 9, 21 refs., pp. 913-917, September 1982.

Molloy, Michael K., “Structurally Bounded Stochastic Petri Nets,” Int’l Workshop on Petri
Nets and Performance Models, Madison, Wisconsin, 26 refs., pp. 156-163, Aug. 1987.

Moore, Andrew P., “The Specification and Verified Decomposition of System Requirements
Using CSP,” IEEE Trans on S/E, 16:9, 50 refs., pp. 932-948, Sept. 1990.

Muppala, Jogesh K., Ciardo, Gianfranco and Trivedi, Kishor S., “Stochastic Reward Nets for
Reliability Prediction,” Technical Report: Duke University, 20 refs., 21 pages, 1994a.

Muppala, Jogesh K., Woolet, Steven P. and Trivedi, Kishor S., “Real-Time Systems
Performance in the Presence of Failures,” Computer, 8 refs., pp. 37-47, May 1991.

Muppala, Jogesh, Wang, Wei and Trivedi, Kishor, “Dependability Evaluation Through
Measurements and Models,” Tech. Rpt: EE Dept., Duke Univ., 22 refs., 25 pgs, 1994b.

Murata, Tadao, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE,
Vol. 77, No. 4, 315 refs., pp. 541-580, April 1989.

Nicol, David M. and Heidelberger, Philip, “Optimistic Parallel Simulation of Continuous
Time Markov Chains Using Uniformization,” Journal of Parallel and Distributed
Computing, Vol. 18, 25 refs., pp. 395-410, 1993.

Nicola, Victor F., Heidelberger, Philip and Shahabuddin, Perwez, “Uniformization and
Exponential Transformation: Techniques for Fast Simulation of Highly Dependable
Non-Markovian Systems,” IEEE Fault-Tolerant Computing Systems -22 Digest of
Papers, 31 refs., pp. 130-139, 1992.

Nicollin, X. and Sifakis, J., “An Overview and Synthesis on Timed Process Algebras,”
Proceedings of the REX Workshop "Real-Time: Theory in Practice,” Lecture Notes in
Computer Science 600, Springer-Verlag, 22 refs., pp. 526-548, 1991a.

Nicollin, Xavier, Sifakis, Joseph and Yovine, Sergio, “From ATP to Timed Graphs and
Hybrid Systems,” Proceedings of the REX Workshop "Real-Time: Theory in Practice,”
LNCS 600, Springer-Verlag, 10 refs., pp. 549-572, 1991b.

123

Nielsen, Mogens, “CCS - And its Relationship to Net Theory,” Lecture Notes in Computer
Science, Springer-Verlag, Vol. 255, 13 refs., pp. 393- 415, 1986.

Olszewski, Jacek, “CSP Laboratory,” SIGCSE Bulletin., 25:1, 17 refs., pp. 91-95, Mar. 1993.

Olderog, Ernst-Rudiger, “Operational Petri Net Semantics for CCSP,” Lecture Notes in
Computer Science, Springer-Verlag, Vol. 266, 33 refs., pp. 196-223, 1987.

Olderog, Ernst-Rudiger, “TCSP: Theory of Communicating Sequential Processes,” Lecture
Notes in Computer Science, Springer-Verlag, Vol. 255, 42 refs., pp. 441-465, 1986.

Ostroff, Jonathan S., “Formal Methods for the Specification and Design of Real-Time Safety
Critical Systems,” Journal of Systems Software, 125 refs., Vol. 18, pp. 33-60, 1992a.

Ostroff, Jonathan S., “Survey of Formal Methods for the Specification and Design of Real-
Time Systems,” Tutorial on Specification of Time, IEEE Computer Society Press, 112
refs., 51 pages, 1992b.

Ostroff, Jonathan S., “Verification of Safety Critical Systems using TTM/RTTL,”
Proceedings of the REX Workshop "Real-Time: Theory in Practice", Lecture Notes in
Computer Science 600, Springer-Verlag, 0 refs., pp. 573-602, 1991.

Palumbo, Daniel L. and Nicol, David M., “Advanced Techniques in Reliability Model
Representation and Solution,” NASA TP-3242, 10 refs., 17 pages, October 1992.

Peleska, Jan, “Design and Verification of Fault Tolerant systems with CSP,” Distributed
Computing, Vol. 5, No. 2, Springer-Verlag, 13 refs., pp. 95-106, 1991.

Peterson, James Lyle, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 241
pages, 1981.

Pomello, L., Rozenberg, G. and Somone, C., “A Survey of Equivalence Notions for Net
Based Systems,” Lecture Notes in Computer Science: Advances in Petri Nets, G.
Rozenberg (Ed.), Springer-Verlag, New York, 109 refs., pp. 411-472, 1992.

Priami, Corrado, “Integrating Behavioral and Performance Analysis with Topology
Information,” Proceedings of the PAPM 95, (also to be published in The Computer
Journal, December 1995), 19 refs., 18 pages, 1995.

Reed, G.M., Roscoe, A.W. and the Oxford University Timed CSP Group., “Timed CSP:
Theory and Practice,” Proceedings of the REX Workshop "Real-Time: Theory in
Practice,” Lecture Notes in Computer Science 600, Springer-Verlag, 35 refs., pp. 640-
675, 1991.

Reisig, W., “Combining Petri Nets and Other Formal Methods,” 13th International
Conference on Application and Theory of Petri Nets, 91 refs., pp. 24-44, June 1992.

Ribaudo, Marina, “Stochastic Petri Net Semantics for Stochastic Process Algebras,” IEEE
Proceedings PNPM’95, Durham, NC, 25 refs., pp. 148-157, October 1995.

124

Roscoe, A.W. and Hoare, C.A.R., The Laws of Occam Programming, Oxford University
Computing Laboratory, Programming Research Group, Oxford, England, 9 refs., 86
pages, February 1986.

Rubinstein, Reuven Y., “Sensitivity Analysis and Performance Extrapolation for Computer
Simulation Models,” Operations Research, Vol. 37, No. 1, 32 refs., pp. 72-81, January-
February 1989.

Sahner, Robin A. and Trivedi, Kishor S., “A Software Tool for Learning About Stochastic
Models,” IEEE Trans on Education, Vol. 36, No. 1, 14 refs., pp. 56-61, Feb. 1993.

Sahner, Robin, Trivedi, Kishor, Puliafito, Antonio, Performance and Reliability of Computer
Systems: An Example-Based Approach Using the SHARPE Software Package, Kluwer
Academic Publishers, Boston, 420 pages, 1995.

Sanders, J.W., “Reasoning about Distributed Algorithms in CSP: Application to Remote
Sensing,” Proceedings of the 3rd Transputer/Occam International Conference, T.L.
Kunii and D. May (Ed.), IOS Press, Wash., 17 refs., pp. 225-227, May 17-18, 1990.

Sanders, W.H. and Meyer, J.F., “Performability Evaluation of Distributed Systems Using
Stochastic Activity Networks,” International Workshop on Petri Nets and Performance
Models, Madison, Wisconsin, 24 refs., pp. 111-120, August 24-26, 1987.

Sanders, W.H. and Meyer, J.F., “Performance Variable Driven Construction Methods for
Stochastic Activity Networks,” Computer Performance and Reliability, 14 refs., pp.
383-398, 1988.

Sanders, W.H. and Meyer, J.F., “Reduced Base Model Construction Methods For Stochastic
Activity Networks,” Proceedings of the 3rd International Workshop on Petri Nets and
Performance Models, Kyoto, Japan, 21 refs., pp. 74-84, 1989.

Sanders, William H. and Meyer, John F., “Reduced Base Model Construction Methods for
Stochastic Activity Networks,” IEEE Journal on Selected Areas in Communications,
Vol. 9, No. 1, 26 refs., pp. 25-36, January 1991.

Sanders, William H. and Obal, W. Douglass II, “Dependability Evaluation Using UltraSAN,”
IEEE Fault-Tolerant Comp. Sys. -23, Toulouse, Fr, 14 refs., pp. 674-679, 1993.

Shahabuddin, Perwez, Nicola, Victor F., Heidelberger, Philip, Goyal, Ambuj and Glynn,
Peter W., “Variance Reduction in Mean Time to Failure Simulations,” Proceedings of
the 1988 Winter Simulation Conference, 14 refs., pp. 491-499, 1988.

Shatz, Sol M. and Cheng, W.K., “A Petri Net Framework for Automated Static Analysis of
Ada Tasking Behavior,” Journal of Systems and Software 8, Elsevier Science
Publishing Co., Inc., 24 refs., pp. 343-359, 1988.

Shatz, Sol M., Mai, Khanh, Black, Christopher and Tu, Shengru, “Design and
Implementation of a Petri Net Based Toolkit for Ada Tasking Analysis,” IEEE Trans
on Parallel and Distributed Systems, Vol. 1, No. 4, 19 refs., pp. 424-441, 1990.

125

Sheldon, Frederick T. and Kavi, Krishna M., “Linking Software Failure Behavior to
Specification Characteristics,” Proc. of the IEEE Int’l Workshop on Integrating Error
Models with Fault Injection, Annapolis, MD, 19 refs., pp. 35-39, April 25-26, 1994.

Sheldon, Frederick T., Kavi, Krishna, and Kamangar, Farhad, “Reliability Analysis of CSP
Specifications: A New Method Using Petri Nets,” AIAA Proc. Computing in Aerospace
10, San Antonio, 15 refs., pp. 317-326, Mar. 28-30 1995.

Sheldon, Frederick T., Mei, H. and Yang, S.M., “Reliability Prediction of Distributed
Embedded Fault-Tolerant Systems,” Proceedings of the 4th International Symposium
on Software Reliability Engineering, Denver, CO, 27 refs., pp. 92-102, Nov. 3-6, 1993.

Smotherman, Mark, Geist, Robert M. and Trivedi, Kishor S., “Provably Conservative
Approximations to Complex Reliability Models,” IEEE Transactions on Computers,
Vol. C-35, No. 4, 13 refs., pp. 333-338, April 1986.

Sorensen, Erling Vagn, Nordahl, Jens and Hansen, Niels Herman, “From CSP Models to
Markov Models,” IEEE Trans of S/E, Vol. 19, No. 6, 16 refs., pp. 554-570, June 1993.

Trivedi, Kishor, “Five Examples Using SPNP Adapted from Published Material,” Technical
Report from Duke University, 5 refs., 19 pages, 1993.

Van Glabbeck, Rob, Smolka, Scott A., Steffen, Bernhard and Tofts, Chris M.N., “Reactive,
Generative, and Stratified Models of Probabilistic Processes,” IEEE Proceedings
Symposium on Logic in Computer Science, 13 refs., pp. 130-141, 1990.

Van Leeuwen, Jan, Handbook of Theoretical Computer Science, “Formal Models and
Semantics,” Vol. B, MIT Press, 1243 pages, New York, 1990.

Voas, Jeffrey, Morell, Larry and Miller, Keith, “Predicting Where Faults Can Hide from
Testing,” IEEE Software, 2 refs., pp. 41-48, March 1991.

Wang, Chang-Yu and Trivedi, Kishor, “Integration of Specification for Modeling and
Specification for System Design,” EE Dept., Duke Tech. Rpt., 22 refs., 21 pgs., 1994.

Wang, Chang-Yu, “Some Problems in the Specification and Analysis of Computers and
Networks," Ph.D. Dissertation, Dept. of CS, Duke University, 101 refs., 218 pgs, 1995.

Wang, Farn, Mok, A. and Emerson, E.A., “Symbolic Model Checking for Distributed Real-
Time Systems,” Proc. Formal Method Europe Conf., 17 refs., 20 pgs, 1993.

Wing, Jeannette M., “A Specifier's Introduction to Formal Methods,” IEEE Computer, 12
refs., pp. 8-24, September, 1990.

Wood, William G., “Application of Formal Methods to System and Software Specification,”
Proceedings of the ACM SIGSOFT International Workshop on Formal Methods in
Software Development, Napa, California, 10 refs., pp. 144-146, May 9-11, 1990.

Yount, Charles R. and Siewiorek, Daniel P., “Software-Implemented Fault Injection of
Transient Hardware Errors,” Foundations of Dependable Computing: Models and
Frameworks for Dependable Systems, Edited by Gary M. Koob and Clifford G. Lau,
Kluwer Academic Publishers, Boston, 45 refs., pp. 113-127, 1995.

