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ABSTRACT
SPECIFICATION AND ANALY SIS OF STOCHASTIC PROPERTIES FOR
CONCURRENT SYSTEMS EXPRESSED USING CSP

Publication No.

Frederick T. Sheldon, Ph.D.
The University of Texas at Arlington, 1995

Supervising Professor: KrishnaM. Kavi

This work offers an innovative approach to predicting system behavior (in terms of
reliability and performance) based primarily on the structural characteristics of a formal
functional specification. This work extends parts of the work by E-R. Olderog, by
developing a CSP-based grammar and canonical CSP-to-Petri net translation rules for
process composition and decomposition. The mechanism for process composition is codified
in the CSP-to-Stochastic Petri net (CSPN) tool and consists of expanding the process
description represented as a series of small Petri nets into larger and larger nets while
preserving structural relationships and functional nomenclature. In the last phase, the tool
reconciles synchronization points (for communicating processes), stochastic annotations and
generates an executable "spnp.c” file used for stochastic analysis. Numerous command line
options provide a high degree of versatility and control to the user including the ability to
generate and view the Petri net graph. CSPN supports systematic specification, automatic
translation and subsequent augmentation (e.g., failure rates, service rates, and transition
probabilities) of the resultant Petri nets for assessing stochastic properties of different
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candidate implementations and relating those properties back to the specification level.

The CSPN tool and methodology is based on the sound formalism of CSP. The
approach abstracts the critical information necessary for performance analysis and translates
it to a Petri net for exploring feasible and critical markings and subsequent analysis of the
Markov state space. The CSP-based language, P-CSP, is used for system specification. The
CSPN tool parses the P-CSP specification and, using the set of canonical translation rules,
produces equivalent Petri nets represented as coincidence matrices.

In the design cycle, it is important to systematically and iteratively incorporate
capabilities (enhancements) such as fault-tolerance, and then re-evaluate their impacts to
optimize design parameters in terms of their stochastic properties. Thus, the approach
advanced in this work (1) takes the results of the stochastic analysis and provides a formal
and automated mechanism for annotating those results (and their parameterization) back into
the original specification and, (2) those results are then automatically incorporated into the

computation of subsequent refinements.
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CHAPTER 1

INTRODUCTION

| have six honest serving men, they taught me al | knew. Their names are where and
why and when, and how and what and who.
—Rudyard Kipling

1.1  Problem definition and goal

The main interests in this research involve dependability and fault-tolerance of
computing systems in devising techniques to prevent, detect and compensate for anomalies.
An experimental tool and modeling approach has been developed to explore the specification
and analysis of stochastic properties for concurrent systems expressed using CSP. The idea
is to tranglate the formal system description into the information needed to predict its
behavior as a function of observable parameters (topology, timeliness, communications and
failure categories). The modeling approach uses a theory based on proven translations
between CSP (communicating sequential processes) and Petri nets. In particular, the tool
tranglates the design specification, written in a CSP dialect called P-CSP, into stochastic Petri
nets for analysis based on the structural and stochastic properties of the specification. The
grammar and CSP-to-Petri net (CSPN) tool enable service and failure rate annotations to be
related back to the original CSP specification. The annotations are then incorporated in the
next round of translations and stochastic analysis. The tool automates the analysis and
iterative refinement of the design specification process. Within this setting, we can

investigate whether functional and non-functional requirements have been satisfied.

1.2  Motivation
Today's computing systems are large and complex [Basili91]. Therefore, informal and
intuitive specifications are too vague and imprecise to capture the complete semantics of a
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2
system's requirements [Gomaa94, Hall90]. A formal specification language is founded on
mathematical principles and is used to describe system properties precisely and to provide a
systematic approach to avoid ambiguity, incompleteness and inconsistency [Collins87,
Abadi93, Alur90, Dahbura90, Delisle90, Deng92, 91, 90, Dillon92, Garlan90, Genrich92,
Gerhart90, Heitmeyer9l, Hird91, Hooman90, Van Leeuwen90, Wang93, Wing90, Wood90].
Formal specifications provide good support for designing a functionally correct system,
however they are weak at incorporating non-functional performance requirements (like
reliability) [Enand89, Palumba92]. Current systems must also have high performance and
reliability. Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the
performance and reliability for a system, but they may be too abstract and cumbersome from
the stand point of specifying and evaluating functional behavior [Balbo95, 94, 92a,b, 1be89,
Choi93, 92]. Therefore, one major objective of this research is to provide an integrated
approach to assist the user in specifying both functionality (qualitative: mutual exclusion and
synchronization) and performance requirements (quantitative: reliability and execution
deadlines). In this way, the merits of a powerful modeling technique for performability
analysis (using SPNs) can be combined with awell-defined formal specification language. In
doing so, we can come closer to providing a formal approach to designing a functionally

correct system that meets reliability and performance goals [Wang94, 95].

1.2.1  Predicting thereliability of formal specifications

Our approach is based on the notion that formal, mathematically precise methods should
be used to design complex, safety critical systems [Butler86, 88a,b 89, 93, Jahanian86, 87,
Ostroff91, 92a,b]. Thus, given a formalized functional specification of a system and its
external constraints (e.g., failure rates, communication delays, synchronization dependencies,
deadlines), what mechanisms are available for avoiding or tolerating faults/errors and how do
they impact the performance and reliability (i.e., performability) of the system [Meyer80a,b,
89a,b, Kavi92a,b, 94a,b, 95, Sheldon94]? The approach can be visualized from Figure 1.
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Open(, (Togate 2 Arrivel): 6. How do the external s_lm_pgct
PAR({Train(), Gate() (Arrive, Depart)}. the performance and reliability?

Figure 1. Linking failure behavior to specification characteristics.

As specifications are refined into detailed designs, the reliability and performance
requirements can also be refined to reveal trade-offs in design alternatives such as deciding
—what are the critical system elements; —what features of the system should be changed to
improve the system's reliability; —or validating performance and reliability goals using
stochastic system models. To address these design issues, in the our approach, the critical
components of the requirements specification are abstracted. A system is specified using the
P-CSP language providing a design specification. The CSP-based grammar does not restrict
us from considering correctness properties, however, we are interested only that the structural
properties be preserved. Once the specification has been translated, we enumerate modeling
assumptions, estimate model parameters, and solve the model for specific values of the
parameters using Markov analysis [Johnson89, Ciardo87, 89, 91, 92b, Sahner95]. At this
point it is easy to introduce timing constraints among feasible markings of the net and to
employ any of the numerous tools developed for stochastic Petri net analysis (e.g., GreatSPN,
SPNP, GSPN) [Chiola93a,b, Ciardo92a, 93b, Marsan84, 90]. Thus, having converted the

design specification into Petri nets alowsthe system model to beanalyzed against non-
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functional requirements using any of the various Petri net tools available to predict its
behavior [Johnson88, Lloret92, Shatz90, 88]. SPNP was chosen for our purpose [Ciardo93b,
92a, 89, Mainkar93].

1.3  Organization

The following chapters provide a survey of the related work, mapping of the CSP based
language P-CSP to Petri nets, CSPN trandation tool overview and its implementation details,
as well as an illustration of the usefulness of the tool and the conclusions. There are four
brief appendices which cover the complete set of CSP-to-Petri net canonical trandlation rules,
P-CSP grammar, coincidence matrix expansion algorithms and finally another example
showing a more complex version of the railroad crossing using a monitor to arbitrate multiple

trains arriving in tight succession.



CHAPTER 2

SURVEY OF RELATED WORK

The longer | live, the more | realize the impact of attitude on life. Attitude, to me, is
more important than facts.

Charles Snindoll

21 Inthebeginning

Stochastic Petri nets and stochastic process algebras have somewhat of a common
evolution. Indeed, their original definitions (standard Petri nets and pure process algebra) did
not include any temporal information and thus were only used for qualitative (ordered
sequences of actions/events) analysis of concurrent systems [Ribaudo95, Donatelli95].
Extending these basic formalisms with a notion of time has alowed the study of quantitative
properties of systems. In this work the notion of time is studied in relation to the structural
properties of the process algebraic (CSP) specification and is introduced after translating the
system description into Petri nets. Some of the original ideas used in this work came from a
tutorial by K.M. Kavi and B.P. Buckles, Formal Methods for the Specification and Analysis
of Concurrent Processes, Tutorial Notes, 1993 Int'| Conf. on Parallel Processing, Lake
Charles, IL, August 20, 1993. This tutorial examined and extended a Petri net semantics for
a subset of CCSP (the union of Milner's CCS and Hoare's CSP) based on [Olderog87]. The
semantics are provided by operationally defining for each process term in the subset, a
labeled place/transition net. Olderog's definitions uses predicate/transition style translation
rules that are mainly concerned with concurrency, nondeterminism and recursion. This
dissertation has extended and formalized parts of the work by Olderog, (described in
“Operational Petri Net Semantics for CCSP,” LNCS-266, pp. 196-223, 1987) and that of

Kavi and Buckles.



2.2  Integrating function, performance and structural modeling

Most research in formal methods has been in the devel opment of theories, methods, and
tools for the design and analysis of functional and logical (correctness) aspects of computing
systems [Burns91, Carreno93, 92, Camilleri9o, Cleveland93, Cook91, Craigen93a,b, Firth87,
Hall90. Harel92, 90, Kavi92, Kemmerer90, Mokkedem95, Reisig92]. On the other hand, the
analysis of performance is concerned with the statistical aspects of such systems
[Covington89, Molloy82, 87]. Some have investigated simulation based approach to
integrated performance and reliability modeling [Cutright93, 91, Bagrodia9la,b, 90, Geist93,
90, 89, Goyal87, Heidelberger92, 88, Haverkort93, Nicol93, Nicola92, Rubinstein89,
Shahabuddin88]. These two research communities (functional vs. performance) have largely
proceeded independently.1  Stochastic Petri nets are well established in the field of
performance analysis [Ciardo94, 93a,c, 92b, 91a,b, 90, 87, Lindemann93, ICASE93]. More
recently, a growing interest in stochastic and probabilistic process algebraic techniques has
emerged [Gilmore95, 94, Gotz93, Milner92a,b, Nicollin9lab, Priami95]. Given the
technological means and the financial basis (i.e., cost benefit), there is a clear need to treat
guantitative performance parameters as non-functional requirements in functional
specifications. This merging of functionality and performance is especially attractive and
calls for the integration of qualitative and quantitative approaches to design and realization
[Pomell092].

2.3  Processalgebras provide functional semantics

Typically, process algebraic laws allow the rewriting of a system description into
another, while preserving the notion of correctness that is captured by the equivalence used in
the underlying semantic model [Donatelli95, 94]. Their inherent support of compositional
reasoning enables the construction of complex systems as the combination of conceptually

simpler systems [Buchholz94].

IHowever, a number of efforts have put forth formal models of system behavior into the world of performance
(and dependability analysis) [Priami and Bernardo articles).



24  Processalgebrasprovide a notion of program equivalence

In the concurrent process algebra CCS, two programs are considered the same if they are
bisimilar [Nielsen86]. Many researchers have demonstrated that the theory of bisimulation is
mathematically appealing and useful in practice [Bloom95]. In CSP, the distinction between
two processes can be understood by observing completed traces (sequences of visible actions
performed by a process). The meaning of a process is determined according to a
synchronization tree, which is arooted unordered tree whose edges are labeled with symbols
that denote basic actions or events (typically specified by a structured operational semantics).
Two trees are trace equivalent iff they have the same set of traces2 For example, two
processes P and Q are distinguished iff there is some CSP context C[X] and string s such

that only one of C[P] and C[Q] has s as atrace.

; ; \. \.
AN N "
a 3/ \a | :
- B/NbP b b |
Ao & % o
u] u| m] o c d c d | .
o C. The machines are
A.Traceequivaentbut : B.CSPtracecongruent : different but their transition
not trace congruent. ©but not bisimilar. i behaviour isidentical.

Figure 2. Trace equivalence versus bisimilarity.

In CCS two processes are different according to an interactive game-like protocol called
bisimulation. Indistinguishable CCS processes are bismilar. An example (assuming atomic
actions a, b, c and d) of this relation are the two trees a(b + c) and (ab + ac) in Figure 2A,
which are trace equivalent but not CSP trace congruent (i.e., in both CSP and CCS they are

distinct processes). The trees (abc + abd) and a(bc + bd) in part B, are CSP trace congruent

2In contrast, given any set of operations on trees, trace congruence is defined to be the coarsest congruence with
respect to the operations that refines the trace equivalence.



8
but not bisimilar (i.e., equal in CSP but considered distinct in CCS). Thus, we cannot
simulate the behavior of the first machine with the second and visa versa. In part C, both
machines are bisimilar because one can simulate the other and visa versa [Olderog86].

Figure 3 shows that a recursive loop allowing action "a" to be repeated indefinitely can
be structured such that it provides CSP trace equivalence. However, the two Petri nets (PN|
& PNy for | eft & right) are not bisimilar because the rightmost Petri net produces multiple
instances of the action "b" (i.e., the structural properties of the two graphs are distinct). Thus,
even though the visible actions are trace equivalent they are not bisimilar because PNy can

distinguish the specific firings of individual "b" transitions while PN| can not.

‘uX.(@a—=X || b) i Bisimilar gL @

- A~
Canonical translation ——
codified in CSPN _#~ __Trace Q Q Q

= B _— equivalent v a v b
= — &T
*

v_a b

distinguish the
execution of the b's.

_atb V b
T : g This net (RHS)

Figure 3. CSP-to-Petri net example of trace equivalence versus bisimilarity.

25  Stochastic processalgebras add performance semantics

Sochastic process algebras (SPAS) appeared only recently as a solution to an important
problem of process algebras. their inability to express performance aspects of concurrent
systems [Buchholz94, Brinksma95]. Like classical process algebras, they are abstract
languages used to represent concurrent systems in a compositional way. Such algebras

provide the specfier with a small set of powerful operators whereby it is possible to construct



9
process terms (compositional algebraic formulas) from simpler ones, without the graphical
complexity of nets and making the task of detecting and modifying subsystems easy.3 SPAs
extend the expressiveness of their predecessors by assigning each action a random variable
determining its duration and thus producing algebraic descriptions of concurrent systems
amenable to both functional and performance analysis.

Some early SPAs include PEPA [Hilston93a,b, 94], TIPP [Gotz93], MTIPP
[Hermanns94], and EMPA [Bernardo95a,b,c 94, Herzog94]. Take for example EMPA,
Extended Markovian Process Algebra, which comes equipped with an interleaving semantics,
a Markovian semantics and a net semantics. The main drawback is related to state space
explosion which is due to the interleaving representation of concurrency. This problem
manifests itself in both the state space of the LTS (labeled transition system) underlying the
process term and the reachability graph of the net semantics for the term. One idea that
researchers have used is the notion of equivalence as a rewriting mechanism for reducing the
state space of the LTS. The rewriting system is useful to analyze terms without generating
the underlying state space and also to obtain equivalent terms whose state space is smaller.

In general, the reductions (at least those that are not a congruence) are based on
simplifying assumptions and thus lead to approximate solutions. Clearly, the interleaving
semantics of a parallel composition will lead to an exponential set of states since for instance,

if we combine n processes each with m states, we can end up with as many as m" states.

2.6  Petri netsadd structural semanticsin adistributed setting

Consider modeling and analysis of concurrent systems based on SPAs and SPNs as
presented in Figure 4. Process algebraic laws enable rewriting one description of a system
into another while preserving the notion of correctness. The transformation laws can be used
to model the application of actual design principles in a strategy of stepwise refinement to

obtain concrete descriptions of implementations from abstract system specifications. A key

3Such compositions of stochastic/probabilistic specifications can lead to complex analysis and approximate
solutions.
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feature of SPAs is compositionality. Compositionality concerns both the syntactical and
semantic level of the language. Syntactical compositionality is related to system modeling
using asmall set of operators that make it possible to construct process terms (formulas) from
simpler ones, without the graphical complexity of nets and making the task of recognizing or
modifying components of the system easier. On the other hand, semantic compositionality is
related to system analysis which enables the study of separate system components (provided
an appropriate notion of equivalence over process termsis developed). Thisis accomplished
by decomposing the system so that a given property of the composition can be recognized.

As an alternative to SPAs (and an approach similar to ours), a two phased approach can
be envisioned. In the first phase, components of the concurrent system are represented as a
term of the SPA which, in rich environments like EPOCA [Donatelli94] EMPA
[Bernardo95], are equipped with an interleaving semantics accounting for both the qualitative

(i.e.,, functional) and quantitative (i.e., performance) part of the system behavior.# Thus, the

Concurrency/’\ N

Workbench : SHARPE

[Functional andlysis|  Centralized | . [ Performance Evaluation|
Representation of the concurrent by means of

system by means of aterm of the

stochastic process algebra mathematical

analysis

o

/I\Qual itative L Quantitative . o
GreatSPN — or SPNP
[Functional analysis| Distributed | [Performance Evaluation|
Representation of the concurrent
by 9. - system by means of a stochastic .by 9.
computing Petri et simulative
invariants Ranng anaysis

o

Figure4. Anintegrated approach of stochastic analysis [Bernardo95].

4An interleaving semantics for a concurrent language maps programs to interleaving models. In these models,
every parallel execution is simulated by means of the set of the alternative sequential executions obtained by
just interleaving the activities occurring in the parallel execution itself. For example, consider terms a || b and
ab +b.a. From theinterleaving point of view, these two terms are equivalent because each of them can perform
action a followed by action b, or action b followed by action a. Classical interleaving models are labeled
transition systems. Classical non-interleaving models are Petri nets, because the net semantics of the two terms
above are quite different [Bernardo95].
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interleaving model of the process algebraic representation can be projected onto both a
functional and performance model (top half of Figure 4).

Phase 2 consists of automatically obtaining from the algebraic representation of the
system an equivalent distributed representation (i.e., Petri nets or labeled transition systems).
A suitable distributed model would be stochastic Petri nets (naturally, numerous tools are
available to support performance evaluation within such a context GSPN, SPNP, SHARPE,
ASSIST) [Johnson91, 88, Sahner95]. The net representation of the concurrent system is
derived from the algebraic one without intervention of the designer and is useful when aless
abstract form is needed to highlight dependencies and conflicts among activities, or to
support establishing some properties (e.g., partial deadlock, race hazards). These cases can
be easily checked only in a distributed setting. Yet, there are limitations to this approach

because of the need to make simplifying assumptions which lead to approximate solutions.

2.7  Other related work

Wang presents a procedure (which could be automated) for transforming an Estelle
specification into a Stochastic Reward Net (SRN) formalism.5> The objective of transforming
Estelle into an SRN isto have a system designer specify a system using Estelle and then the
specification is automatically transformed into an SRN to carry out the performance and
reliability analysis [Wang94].

Davies and Schneider ['94] describe the language of real-time CSP used to specify
reactive systems in terms of their communicating behavior (also see Reed91). Each system
component is represented as a process that shows where communication takes place. By
combining processes, a description of the system in terms of its components is produced.
Moore ['90] shows the specification and verified decomposition of system requirements using
CSP for an abstract voice transmitter. Peleska['91] gives aformal method based on CSP to

design fault tolerant systems combining algebraic and assertional techniques to formally

SEstelleis an 1SO standard formal specification language and SRN is a well-devel oped modeling technique that
isused to carry out performance and reliability analysis.



12
verify correctness properties. Liu and Joseph ['92] give a method for transformation of
programs constructed for a fault-free system into fault-tolerant programs suitable for
execution on a system susceptible to failures. Lee ['94a,b] gives a formal language GCSR
(Graphical Communicating Shared Resources) for the specification, refinement, and analysis
of (resource-bound) real-time systems. The semantics are defined through a precise
translation to ACSR, a timed process algebra. Execution of a GCSR specification is
supported through a precise correspondence between GCSR and ACSR and the operational
semantics of ACSR (e.g., requirements and design) [Gerber90, 88, Ben-Abdallah95, 94,
Choi95]. Priami ['95] gives atechnique for integrating behavioral and performance analysis
with topology information using Stochastic pi-calculus. Van Glabbeek [‘90] gives a
structural operational semantics of PCCS as a set of inference rules which constitute a
semantic mapping from the set of process expressions to a particular domain of probabilistic

labeled transition systems. Moller ['90] gives atemporal calculus of communicating systems.

2.8 Communicating Sequential Processes

CSPisaclassic process algebra (like CCS [Milner80], and ACP [Bergstra84]). The CSP
model was developed by Hoare in the late 70's to early 80's and later, in 1986 extended by
Olderog [Olderog86, 87]. Table 1 givesfive of the theoretical foundations that are supported

by CSP.6 Thebasic ideaisthat systems can readily be decomposed into subsystems common

6The theoretical foundations of CSP can be found in [Hoare85]. There, processes are presented as certain
mathematical elements (or structures) that can be manipulated algebraically, combined by various operators to
fork other processes, and proved or disproved to satisfy formally stated specifications. Fridge ['88] has
implemented a working version of the CSP model in LISP. Kourie ['87] has written a working version of the
CSP model in Prolog (without CSP's input/output notation for data transfer between processes). Delisle and
Schwartz ['87] have created a CSP programming environment where programs can be subjected to experiments
and animated on the screen. This model of CSP iswritten in Scheme. Finally, Olszewski ['93] has developed a
CSP laboratory for students of parallel programming which provides tools and facilities to experiment with, test
and analyze CSP descriptions/prototypes of parallel systems. The analysis includes automatic detection of
deadlocks and unsafe behaviors of CSP processes. Visualization facilities are planned with regard to
components of parallel systems and the communication between them.
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TABLE1

THEORETICAL FOUNDATIONS OF CSP [Hoare85]

(1) Mathematical abstraction of process interactions (communication, concurrency, recursion, etc.).

(2) Rulesto help in the implementation of processes (laws used to prove a specification is satisfied).

(3) How processes can be composed together into systems where components interact internally and
with their environment.

(4) Definition of a mathematical theory for deterministic and nondeterministic processes.

(5) Algebraic laws which describe the essential properties of the various operations that are useful
in expressing new problems, solutions and proofs.

environment (e.g., typical real-time). Parallel composition of such systemsis as simple as
sequential composition using traditional languages (e.g., Pascal). Magjor benefits from using
CSP include its ssimplicity, generic nature of the algebraic operations, and the mathematical

foundation on which it is based [ Sanders9oQ].

A CSP program consists of n > 1 communicating processes; thisis normally represented
using the parallel composition operator (||), which is associative: P = {P1 || P> || .....|| Pn}.
Processes are assumed to have a disjoint set of variables (visible actions, trace alphabet).
Processes communicate synchronously by sending and receiving messages:. the sending and
receiving actions (or events) are indicated using the input (?) and output (!) actions. Pj ? X is
the action of receiving a value sent by process Pj (o received on a channel Pj based on the
notation of occam) into variable x. Pj ! <expression> describes the action of sending the
value of the expression to Pj (or sending on a channel Pj). Synchronization uses
complementary input and output commands by two communicating processes (i.e., using the
same channel). Communication can be made selective by providing guards, where one of the
alternative communication actions with a satisfied guard is selected. A guarded command
has the general syntax of the form <guard> — <command list>. A command list is a set of
commands defining a sequence of actions, alternative actions based on either deterministic or

non-deterministic choice, recursive actions, or a STOP action. STOP terminates (or
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deadlocks) a process. The following summarizes CSP syntax (] means 'choice):

P::=STOP|(a—P) [ (Pb) [(PMQ (P I Q [(PllbQ) | (P; Q) | (uXs P).

Notationally, in CSP, capitalized names are process names, and lower case characters
denote visible actions. Here, (a — P) means, action 'a followed by process P, (P\b) is the
same as P except action b is hidden’, (P1Q) represents a non-deterministic choice between P
and Q, (PIQ) represents a deterministic choice between P and Q, ( P||pQ) shows concurrent
processes P and Q that synchronize on action b, (P; Q) a sequence between P and Q, (uXe P)

is used for recursion.

2.8  The CSP-based language (P-CSP) primitives

Systems are built from processes. The simplest process is an action (an assignment,
input or output). SKIP and STOP are two special processes. they both perform no action
(i.e., engage in no event), but SKIP terminates while STOP does not terminate (engages in
infinite internal actions) causing a deadlock. Larger processes are built by combining smaller
processes. PAR (or |[), SEQ (or ;), NDC (or 1), DC (or [I), and Mu.X{} (or uX. P) arethe
constructors that can be used for this purpose. The CSP-based grammar is provided formally
as ayacc specification in Appendix B [Barrett90, Roscoe86, Jones87, INMOS88] .8

An example construction would be: PROCESS My_example = SEQ{P, Q, R}; where
each process is performed in succession. In our language, a process need not be declared,
but declared processes must subsequently be used as a "process call.” In this way, larger
processes are formed from the composition of smaller processes. A statement list is a

sequential list of n = 1 statement(s). A statement can be an event (or trigger) which causes a

7In describing the internal behavior of a mechanism, we often need to consider events representing internal
transitions of that mechanism (interactions and communicationsinternal to that mechanism). After construction
of the mechanism, we may conceal the structure of its components; and also wish to conceal al occurrences of
actions internal to the mechanism. Such actions can occur automatically and instantaneously without being
observed or controlled by the environment of the process. Thus, if b is afinite set of events to be concealed in
this way, then P\b is a process that behaves like P, except that each occurrence of any event in b is hidden and
not visible to be observed.

8In P-CSP, process and channel names are capitalized (at least the first letter) while other elements (i.e., actions
or messages) use only lower case. These are style guidelines and are not inforced by the CSPN tool.
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process to engage in an action (e.g., a — P). Thisprocessis defined as an implication. Input
and output require a channel. Channels provide unbuffered, unidirectional point-to-point
communication of values between two concurrent processes (similar to Ada rendezvous). A
guarded process combines one or more processes, each of which is conditional on an input, a
boolean expression or both. An expression can be integer, boolean or relational (boolean
expressions must consist of boolean variables prefixed with " @"). Operands can be integers,

variables, integer expressions or relational expressions (distinct from boolean).
The first symbol encountered is the start symbol which is always be taken as the system

symbol. The general structure of a P-CSP specification is similar to that of Ada except that
package specifications are process declarations composed of internal activities. Process
declarations must come before the main body of the system specification.® As shown below,
the main body begins after the last semicolon. The system specification ends with a period

(or dot "."):
System =
Global declarations would be located here.
PROCESS = declaration;
PROCESS = declaration;
PROCESS = declaration;
Process constructor { main body of system}.

The use of indentation helps to show subordinate relationships (i.e., activities or
processes that are contained within a given constructor like SEQ are indented). An important
syntactic rule is enforced for messages during the translation. Each message variable
specified in a synchronized PAR must have matching input and output (i.e.,
channel ! messageX-x must match channel ?messageX-x). See Paragraph 4.7 - 8 for the syntax

and usage of failure and service rate annotations.

9C allowstthis if you ignore the "=" signs and consider the system symbol as the "main" part of a C program.
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29  Stochastic Petri nets

The Petri net in its simplest form is a directed bipartite graph, where the two types of
nodes are known as places (circles) and transitions (bars) [Peterson81]. In our approach,
places represent events while transitions represent actions.19 Other researchers have based
their system models on conditions and events (where their events are similar to our actions /
processes). 11 However, in our approach, modeling is based on the notion in CSP of event-
action pairings. The conditions are the events that cause actions (transitions) to take place.
For example, a coin inserted in a vending machine causes a candy to be dispensed, the event
is the coin insertion (token on an input-place) while dispensing a candy is an action which
causes a one-input-place transition firing as a result of the coin insertion (token on an output-
place).

A transition is enabled if all its inputs contain at least one token. When atransition is
enabled, it can fire (asynchronously), leading the Petri net into a different arrangement of
tokens. A marking represents a configuration of tokens in the places of the Petri net, and
denotesthe state of the Petri net. A marking is reachable if, starting in an initial marking, it
is obtained by a sequence of firings. The reachability graph is the set of all reachable
markings connected by arcs representing the transition firings. In a stochastic Petri net, each
transition has an associated firing time, which can be zero (immediate shown as dark bars) or
exponentially distributed random variable (timed shown as light bars).

Completion of the action defined by a transition causes a token to be assigned to each of
its output places. When a place is the input to several transitions, only one of the transitions

is enabled non-deterministically.12 Astransitions are enabled, the state of the Petri net moves

10CSP processes perform the systems actions, while the events that trigger such actions are characterized by the
completion of an action (i.e., process) or the occurrence of conditions that enable the actions (or processes).
1IMurata, describes a slightly different abstraction that defines conditions and events. Murata uses places to
represent conditions, and transitions to represent events. A transition has a certain number of input places and
output places representing the preconditions and post-conditions of an event (see [Murata39] page 542).
12Coincidentally, if several conflicting immediate transitions are enabled in a marking, a firing probability must
be defined. If at least one immediate transition is enabled, the marking is said to be a vanishing marking
(otherwise, if only timed transitions are enabled [or no transitions are enabled] it is atangible marking).
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from marking to marking. An inhibitor arc prevents a transition's firing when its
corresponding input place contains tokens.

A Stochastic Petri net (SPN) is simply a Petri net which has been extended in several
ways. These extensions embed the model into a stochastic environment by associating a
random time with each of the transitions in the net. The most general extensions allow the
usage of random variables for times (rates) and probabilities.13 The underlying stochastic
process is captured by the "extended reachability graph” (ERG), a reachability graph with
additional stochastic information on the arcs. The ERG has been shown to be reducible to a
Continuous Time Markov Chain (CTMC) [Marsan84] provided that exponential distributions
are used for transition firing rates. Since a SPN permits a probability distribution to be
associated with arcs (or transitions) they are very suitable for modeling system performance
and reliability. Thus, each transition is associated with a random variable that expresses the
delay from the enabling to the firing of the transition. When multiple transitions are enabled,
the transition with a minimum delay firesfirst. The transition rate from state Mj to Mj = gjj
isgiven by gjj = Aj1 + Aj2 + .. .+Mm Wwhere Ajk isthe delay in firing atransition tk which
takes the Petri net from marking M to Mj (when several transitions enable the firing from M
to Mj). See an especialy clear discussion of SPN models in chapter 7 of [Sahner95].
Markov and performability models are covered in the same book (chapters 4, and 6
respectively). Examples of these types of models are available in part two (chapters 9, 10
and 12). Also refer to [Ciardo89, Murata89, Kavi93, Balbo95, Laprieds, Levenson87,
Lewis88, Sahner93] for more details on Petri nets and SPNs, as well as Markov processes
and Markov Reward processes (an extension of Markov processes).

Traditional performance analysis, which assumes a fault free system, is separate from
dependability analysiswhich is carried out to study system behavior in the presence of faults.

Dependability analysis generally disregards the different performance levels that may be

13When there are multiple transitions enabled by one token, a probability is associated with each of the
involved transitions. Such atransition isimmediate and its firing is instantaneous (no time is consumed).
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associated with differing configurations [Arlat90, 93, Clark92, 93, 94, Dahlberg93,
Goswami92, Goyal92, lyer89, 95, Yount95]. By combining performance and dependability,
the different types of interactions and their corresponding trade-offs can be assessed (thisis
called performability analysis) [Sanders87, 88, 89, 91, 93, Muppaladl, 94a,b]. Most of the
work on this combined evaluation is based on Markov reward processes (known as SRNS)
where a reward (or weight) is attached to each state of the Markov process (usually by
defining a C function). Markov reward processes can potentially reflect concurrency,
contention, fault-tolerance, and degradable performance [Anderson85, Beli9l, 90, Clark93,
Dugan94, 93a,b, 89, 87, Eckhardt85, 91, EIks91, Geist90, 83, Kim92]. They are used to
obtain not only program and system performance and system reliability (or availability)
measures, but also the combined measure of performability. Though Markov reward models
posses the power to solve dependability, performance and performability problems, there is
still one major drawback which is the largeness of their state space [Aupperle9l, 89,
Bobbio86, 90, Smotherman86, Sorensen93]. SPNP was designed to address this problem.
The SRN model is used to generate the underlying Markov reward model automatically

starting from a concise description written using the language for SPNP.

2.10 Introducing SPNP's C-based Stochastic Petri net Language (CSPL)

The SPNP package allows the user to perform steady state, transient, cumulative
transient, and sensitivity analysis of SRNs. The language used for describing stochastic Petri
nets for the Stochastic Petri Net Package (SPNP) is CSPL. CSPL is a super set of the C
language and thus provides the full expressive power of C. Predefined functions are
available to define SPNP objects. A single CSPL file is sufficient to describe any legal SRN
because the SPNP user can input (at run-time) the number of places and transitions, the arcs
among them, and any other required parameter. The numerical parameters used in the
specification of rates and probabilities are incorporated in the same single CSPL file.

The function parameters allows the user to customize how the package will perform the
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R e e R Y

* SPNP File Nanme: vnt4_spnp.c
* Run this file as follows: SPNP vnt4_spnp.c
*

* Mon Feb 12 12:59:41 1996

********************************************************/
paraneters(){

}
net () {

i‘opt (1 OP_PR_MARK_ORDER, VAL_CANONI C)
i opt (| OP_PR_MERG MARK, VAL_YES)

i opt (1 OP_PR_FULL_MARK, VAL_NO);

i opt (1 OP_PR_RSET, VAL NO);

i opt (1 OP_PR RGRAPH, VAL NO);

i opt (1 OP_PR_NC, VAL

i opt (1 OP_PR_MC_ORDER, VAL_FROMTO) ;
i opt (1 CP_PR_PROB, VAL NO);

i opt (1 OP_MC, VAL_CT

i opt (1 OP_OK_ABSNMBRK, VAL_NO);

i opt (1 OP_OK_VANLQOP, VAL :

i opt (1 OP_OK_TRANS_MD, VAL_YES);

i opt (| OP_METHOD, VAL _SSSOR);

i opt (| OP_CUMULATI VE, _VAL_YES) ;

i opt (1 OP_SENSI TI VI TY, VAL_NO)

i opt (1 OP_I TERATI ONS, 2000) ;

i opt (| OP_DEBUG, VAL

i opt (| OP_USENANE, VAL _NO) ;

fopt (FOP_ABS_RET_MD, 0.000000);

f opt (FOP_PRECI SI ON, 0. 000001) ;

/* Definition of places */

pl ace("p0"); init (" po", 1);

pl ace("pl"); pl ace("p2" ) pl ace("p3");

pl ace("p4"); pl ace(" p5"); pl ace("p6");

pl ace("p7"); pl ace("p8"); pl ace("p9");

pl ace("p10" ), pl ace("p11"); place("pl2")

pl ace("p13"); place("pl4”); place("pl5");
pl ace("p15") pl ace("p16"); place("pl7");
pl ace("p18"); place("pl9"); place("p20")

pl ace("p21"); place("p22"); place("p23")

/* Definition of transitions */
trans("dt_MiX");

trans("sdt 1");

trans("Slot_i _a2p");

trans("dt_i _a2p");

trans("sdtz );

trans("Tray_o Iarge");
trans("dt_o_l arge");
trans("sdt 37);
trans("Tray_o_smal|l");
trans("dt_o_small");
trans("Tray_o_alp");
trans("dt_o_alp");

trans("dt1");

trans("sdt 4");

trans("Slot_i _alp”) ;

trans("dt_i _alp");

trans("sdts );
trans("Tray_o_smal|l");
trans("dt_o_small");
trans("sdtﬁ )

trans("Slot_i
trans("dt i_alp");
trans("Tray_o_l arge");
trans("dt_o_l arge");
trans("dt2");

trans("dt3");
trans("ft_Slot_i _a2p");
trans("ft_Slot_i _alp");

/* Definition of rates */
probval ("dt_MuX", 1.0);
rateval ("sdt1" O 50000000)
rateval ("Sl ot i a2p 0.1);
probval ("dt_i _a2p", 1.0);
rateval ("sdt 27, 0. 50000000)
rateval (" Tray_ o Iarge 0. l)
probval ("dt _o_l arge", 1.0);
rateval ("sdt37, 0. 50000000)
rateval (" Tray_ o_smal | " , 0. l)
probval ("dt_o_smal | ", 1. 0);
rat eval (" Tray_o_alp",0.1);
probval ("dt_o_alp",1.0);
probval ("dt1",1.0);

rateval ("sdt4",0. 50000000)
rateval ("Sl ot i alp 0.1);
probval ("dt_i _alp", 1.0);
rateval ("sdt5", 0. 50000000)
rateval (" Tray_ o_smal | " , 0. l)
probval ("dt_o_smal 1", 1.0);
rateval ("sdt6", 0. 50000000)
rateval ("Sl ot i alp 0.1);
probval ("dt_i _alp", 1. O)
rateval ("Tray_o Iarge 0. 1);
probval ("dt_o Iarge 1.0);
probval ("dt2"

probval ("dt 3" 1 O)

rateval ("ft Siot i _a2p", 0.0055);
rateval ("ft_Slot_i _alp", 0.0045);

/* Definition of |nput arcs */
arc("dt_MX', "p0");

‘ ,.pli.);
arc("SI ot |7a2 ", "p2");
arc("dt_i _a2p", "p3");
arc("sdtZ” "pa");
arc("Tray_o Iarge”,
arc("dt_o_large", "p6");
arc("sdt3” "p4")'
arc("Tray_o_small", "p7");
arc("dt_o_small", "p8");
arc("Tray_o _alp", "p9");
arc("dt_o_alp",
arc("dt1", "pll"),

i
iarc("sdt1",
i
i
i
i
i
i
i
i
i
i
i
iarc("sdt 4" pl")
i
i
i
i
i
i
i
i
i
i
i
i
i

ar c(" Slot i alp s T pl2");
arc("dt_i_alp", "p13");
ar c("sdt 5", "p14")

arc("Tray_o_small", "pl15");
arc("dt_o_small", "pl6");
arc("sdt6", "pl4");
arc("Slot_i_alp", "pl7");
arc("dt_i_alp", " p18") ;
arc("Tray_o Iarge "pl9");
arc("dt_o Iarge " p20");

arc("dt2", "p21 ),

arc("dt3", "p22");
arc(”fthIot i a2p, "p2");
iarc("ft_Slot_i_alp", "pl2");
/* Definition of output arcs */
oarc("dt_mux', "p1");
oarc("sdt1", "p2");

oarc("Sl ot _i _azp", "p3");
oarc("dt_i_a2p", "p4");
oarc("sdt2", "p5");
oarc("Tray_o_| ar ge" ,
oarc("dt_o_l arge",
oarc("sdt3” "p7")'
oarc("Tray_o small", "p8");

oarc("dt_o_small", "p9");
oarc("Tray_o alp , "pl0");
oarc("dt_o_alp", "pll");
oarc("dt1", "p22");
oarc("sdt4" "pl2")

oarc("Sl ot _i _alp", "p13");
oarc("dt_i_alp", "pl4");
oarc("sdt 5", "pl5");
oarc("Tray_o_small", "pl6");
oarc("dt_o_small", "p21");

oarc("sdt6”, " pl7") ;
oarc("Sl ot i alp", "pl8");
oarc("dt_i _alp", " p19")

oarc("Tray_o Iarge , "p20");
oarc("dt_o_large", "p21");
oarc("dt2"] "p 2"
oarc("dt3", "p0");
oarc("ft_SI ot _i a2p "p23");
) oarc("ft_Slot_i_alp", "p23");
assert() {
ret ur n( RES_NCERR) ;
ac_init() {
fprintf(stderr,"\n<<<Run title goes here>>>");
fprintf(stderr,"\nGenerating SRN data ...\n\n");
pr_net_info();

%-m_r each() {

fprintf(stderr,"\nThe reachability graph is being *

fprintf(stderr,"generated ...\n\n");
pr_rg_info();

/* - reward_type definitions go here -------------

ac_final (){
int I
tinme val ue( 0.1);
pr_nc_info();
pr_std_average();
pr_std_cum average();

")

Figure 5. SPNP input file structure.
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analysis. Several parameters establishing a specific behavior can be selected (a complete
description of parameters are available in [Ciardo94]). The function net permits the user to
completely define the structure and parameters of an SRN model. The basic functions that
can be used inside the net include place(), trans(), iarc(), oarc(), and init() which defines the
initial marking. The CSPL input file has the basic structure shown in Figure 5.

More advanced functions include harc() for making inhibitor arcs while the functions
miarc(), moarc(), and mharc() define multiple input, output and inhibitor arcs (these more
advanced functions are not synthesized during the translation process). Guards which are
logical conditioning functions associated with a transition(s) and priorities can be specified
using guard() and priority(). Probabilistic behavior may be specified using probval(), the
timing of events can be specified by assigning rates to the transitions in rateval () and variable
cardinality arc can also be specified for input, output and inhibitor arcs. Marking dependence

is specifiable using the mark() and enabled() functions.

211 Theoriginal contribution of thiswork

Our approach predicts system behavior (in terms of reliability and performance) based
primarily on the structural characteristics of a formal functional specification. The core
augmentation to existing approaches is provided by our CSP-based grammar and canonical
CSP-to-Petri net translation rules for process composition/decomposition. The mechanism
for process composition is codified in the CSPN tool and consists of expanding the process
description represented as sub-Petri netsinto larger and larger nets. In the last phase the tool
reconciles synchronization points, failure annotations and generates an executable spnp.c file
(at various levels of user controllable interaction). In essence the contribution provides for
systematic and automatic translation and subsequent augmentation (e.g., failure rates, service
rates, and deadlines) of the resultant Petri nets for assessing different candidate
implementations; relating stochastic parameters back to the specification level; and analyzing

the stochastic Petri nets using the SPNP tool [Ciardo87, 89, 90, 91, 92, 933, b, Trivedi93].
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2.12 Wheredoesthiswork fit
The CSPN tool and methodology is based on a sound formalization of CSP which
provides process constructors, including primitives for parallel and sequential composition,
nondeterministic choice, and recursion. To support top-down development, the grammar and
CSPN tool provide a notion of refinement (see Figure 6 below) that allows a designer to
describe a system at an appropriate abstract level. At thislevel, a designer may estimate the
values of non-functional requirements (so called budgeting). Later, the designer may add
more details by showing the internal structure of a component, explicitly presenting local
communications, and modifying the budget. It is important to facilitate systematic
refinements and then re-evaluate their impacts to optimize design parameters. Figure 6
shows that the approach involves abstraction from the requirements specification into a
design specification and subsequent evaluation based on the stochastic analysis of the system
models. Automatic translation of the design specification into a stochastic Petri net

representation enables the use of agood number of sophisticated design and analysis tools.

""""ll|
] .
" Prototypmg
uuuuuuuuuuuuuuu Mathematica' (closed form stochastic analysis) NN 0
User Simulation s T "
Needs
/ Requirements Design.
Specification —| Specification e e
Validate Validate Validate
Model
Development Model 0.0 Model 1.0 Model n.0
Evaluate Evaluate Evaluate
T
! ! \
Iteratively add capabilities and k k ] Best Design
enhancements with concomitant evaluation —_——— = Refinement —

Figure 6. Refinement of system models.



CHAPTER 3

MAPPING CSP TO PETRI NETS

The heart has its reasons which reason knows not of.
—Pascal

3.1 Mapping CSP to Petri nets

An initial set of rules for translating CSP specifications into Petri nets (Petri nets) is
defined in [Kavi93]. Thetrandations between CSP and Petri nets are based on the CSP
premise that processes execute actions which in turn enable other actions (in this way, CSP
processes move from one action to another). Activities that enable a process can be viewed
as conditions (or events) which are represented by places, while the actions themselves are

viewed as transitions. Some example tranglations are given in Figure 7. Note that the P-CSP

allb uX.(blMc—X) allb (allb) (@r1b) |lagy (@lb) |@—=b—>c) [lts (d—b—>e)
From environment From environment
/\ED O/\b iaid
O N IORNOR LI &5
WANNIFANIN RS EEON N AN r
SR K PRI (A Y

SO A L8
H O |00 O e

PAR{
e NDC{a, b},
Mu.X{ aAND DC{aAND PAR{
NDC{ {chl?msgl}
? ! —h—
NDC{ a b} boox | PAR{ab} |  Lohl?msgl}, b AND {a=b=d},
' b AND {d—b—€}(b)
} {ch2 ?msg2}
) {ch2?msg2} } }
) (ab)
}
A. Nondeterministic| B. Nondeterministic | C. Parallel actions| D. Deterministic E. Non- and deterministic F. Parallel actions
choiceto procaor b| choicew/ recursion aretransitions choice choicesrunin parallel synchronize on b

Figure 7. Example CSP to Petri net trandlation rules (P-CSP shown in lower portion).
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(our textual language for CSP) equivalents constructions are shown below the graphs. the P-
CSP grammar is described in Appendix B.

The CSP to Petri net trandlations were designed to facilitate automatic decomposition of
the CSP constructs into Petri net sub-components and subsequent composition of the subnet
components into a complete system Petri net. The Petri net translation from a given CSP
construction (i.e., specification) need not be unique because ultimately, the composition of
subnets requires that we introduce dummy places and transitions to maintain the Petri net's
bipartite nature.14 Thus, the CSP to Petri net trandations are not isomorphic because of the
introduction of dummy transitions and places which are necessary to facilitate the automatic
composition of the subnets. However, for our purpose, we do not require isomorphism.
Once the complete system net is obtained, the structure itself may be reduced (e.g., by
combining adjacent dummy transitions or collapsing such places and transitions into their
predecessor/successor transitions) to a smaller model that is trace equivalent to the CSP
specification. Thisinitself is all that is necessary to define a complete set of markings and

hence an equivalent Markov process.1>

3.2  CSPtrandation incongruencies

Petri nets are inherently non-deterministic and asynchronous while CSP is inherently
deterministic and synchronous (though an explicit definition of non-deterministic choice
existsfor CSP). Since our purpose is stochastic analysis, we depend on the non-deterministic
nature of the Petri nets. This may appear that the determinism of CSP (and the
nondeterministic construct) are translated to the same PN representation. The translation of

the CSP structural properties is standardized (i.e., based on canonical rules of trandation).16

14 ntuitively, it is possible to reduce different Petri net equivalents into a canonical form. A set of canonical
translation rules are applied to derive each component's Petri net equivalent. Refer to Appendix A for the
complete set of canonical translation rules.

I5A task which is left to the Petri net tool (i.e., SPNP).

16However, the nondeterministic choice composition operator of CSP (i.e., NDC in P-CSP) is treated as a
selection between two or more transitions which is made on the basis of assigning a (discrete) probability to
esch.
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The goal is to demonstrate the feasibility of translating from CSP and Petri nets by
decomposing a CSP specification into its component parts (processes, actions, and
synchronizing actions etc.). This is done by choosing one standard (canonical) translation

path from among potentially numerous equivalents.

3.3 CSPtrandation mechanism and commentary

This section provides the conventions and mechanisms that have been defined for the
canonical tranglations [see Olderog87]. All CSP composition constructs (e.g., PAR, SEQ,
NDC, etc.) have an input place and this input maybe connected to the output of a different
process. All processes have an initial marking. Synchronization actions (a transition
common to communicating processes) do not consume time or resources.1’ The solid black
bar represents such a case. The open light bar does consume resources (so called timed
transition) [Muppala94, Sahner95]. Solid bar transitions are used (primarily) to represent
dummy transitions (transitions added to maintain the bipartite structure of Petri nets). This
type of transition is known as immediate. In addition, some transitions are needed to indicate
synchronization with the environment (Figure 7D and E). Such transitions are represented

with solid bars even though there may be delays associated with this type of synchronization.

0 i o 0
An action @pl nput 5 po po SKIPis @F)I nput @pl nput
with one wion (@™ (@ PO TSKIP [ skiP
inputand —/——a occamand ¥ 5
one output ¢ hasno L STOP STOP | performsno ¢ 3
olace. output. [— 1 O — actiqn and 7 (]’
@3, emnaes @1, @,

Figure 8. CSP to Petri net rules for Actions and the STOP and SKIP processes.

An action is represented with one (or more) input places, atransition and one (or more)

output places as illustrated in Figure 8. However, the STOP action has no output place

17synchronization is represented by a synchronized action and is shown as a transition between two processes
(i.e., Channel-X ? message-X [for input] and Channel-X ! message-X [for output]).
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because it never terminates. Actions comprising a process must be composed to form the
process. In order to achieve this, input places and output places must be overlapped (is
combined) whenever an action follows another asillustrated in Figure 9B. The sameruleis
observed when one process "P" is followed by another process Q as shown in Figure 9C. In
general, the process "P," as shown in Figure 9A, has an input place and an output place on
the boarder of a box. The box symbolizes a complete process. The box encompasses the
process transition(s) and any of the requisite places which may be necessary to compose
other transitions. A box can contain other boxes just as a process can be made up of other
processes. It should be clear that, within this framework, all Petri nets start with an input
place which is used to represent an initial marking (or initial state). During the compositions,
these input places are combined with output places of other processes. The complete

specification has exactly one input place, and hence oneinitial marking.

New "combined process" are represented by a dashed box.

7QM | nput
| nput %} a :]
(‘paom put out put
: ® @
¢nput | np ut
- P ? Q
L 1 |
@put @put
A. Process with one input - g -
and one output place. B. Combining action "a" with the process P. C. Combining two processes P and Q.

Figure 9. CSP to Petri net rules for Combining actions and processes.

In Figure 10, the action "a" triggers the nondeterministic composition of actions b and c.
Part A of this figure sufficiently represents the meaning of the composition: a — NDC{b, c}.

When transition "a" fires, this enables a choice between [dtl — b] and [dt2 — c]. The

whole composition consumes one token and produces one token on either place "pp" or place
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"pe." Thus, part A has a certain compact and sufficient semantics, but lacks in its ability to
combine cleanly with other constructs. For example, consider [a— NDC{b, c}] combined
using " —" with [PAR{P, Q}]. The composition rewritten is. a — NDC{b, c} — PAR{P,

Q}. This construction represents an action "a" that triggers the choice between b and ¢ which
in turn triggers both processes "P" and "Q" to proceed in parallel. However, there is no
single (unambiguous) place for connecting the succeeding PAR construct to the NDC
predecessor. In Figure 10A, would the PAR be connected to place "pp" or place "p¢'? The
answer is both. The solution however, is shown in Figure 10B as the place "pgt3." The
connection is made as described for figure 9B and C, by overlapping (or snapping together)

the output place of one with the input place of the other.

One input place

a— NDC{b, c}

BT

out put ou pu

t

1 dt 2
@ nput @i nput i nput i nput
%W %ﬁ ( e
Ly ©

out put out put / out put

One output ; dt 3
A. Combining action "&" with the process NDC (that contains plze—e @ 3
two actions"b" and "c"). If another construction was to be t
combined (attached as a successor) then this structure B. Dummy transtion "dt3" and place "pdt3" are added
would need away to attach to both the pj, and p . places. " to enable future compostions.

Figure 10. CSP to Petri net example of combining actions to form one process.

It is necessary to create additional places (and transitions) when the choice of an
action(s) is made in a deterministic sense (conditionally) or in a non-deterministic sense as
illustrated in Figure 11A and B respectively. The same rule is observed for processes. In
Figure 11A the additional darkened places and dummy transitions represent the possible

states or values of guards. When these guards are combined with the initial place of the
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given process, this represents the deterministic enabling (or choosing) of one action (or
process) over another. Thus, if msgl occurs prior to msg2 the dummy transition dtl is

enabled and thusfires to enable the process"P* to become active.

DC{ '
channel ? msgl P(), NDC{P(), Q0}:

channel ? msg2 Q()
|3
channel ? m;glfcjgvuard guar channel ? nsg2 @ i

¥hlnlnm¥dt2 Sdtlill#sdtz
@

e dt 3 =t dt 1
4 A
A. Deterministic choice requires an external condition / B. Anaction"a" combined with a process"P"
event occur to select apath (P or Q). causes an overlapping of input and output places.

Figure 11. CSP to Petri net rules for Deterministic and nondeterministic choice.

In Figure 11B, there are no environmental conditions that provide for the enabling of one
path versus the other. Instead the choice is random (i.e., arbitrary): a path is chosen on the
basis of probability and the sum of the probabilities across al choices is one. The special
nature of the Non-Deterministic Choice (NDC) construct requires that the initial dummy
transitions be distinguished form other normal dummy transitions. Thus, norma dummy
transitions can be assigned a firing probability of one (e.g., dt3 in Figure 10B), whereas the
"sdtx" (x =1, 2, ...) or special dummy transitions are assigned a probability.

In accordance with the 1-input place rule, the parallel composition of Figure 12A shows
an additional input place (and the transition "dt1" is added to keep the bipartite structure).
The immediate firing of "dt1" enables both processes P and Q to proceed independently.
However, before a token can be deposited in the "p5" place to conclude the complete

sequence of feasible markings, both P and Q must finish. This subsequent joining is an
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artifact for observing the one input place one output place per process composition rule (or

the combining rule) described above. This rule implements the combining of sub-Petri nets.

PAR{P(), Q0};

A. Two processes"P" and "Q" are combined in a parallel
composition. There are two dummy transitions the
first forks the composed processes and the second
joinsthem

| PAR(
(Cromsgy,  (®)PO
{Chimsg} dt 1
_ (msg)

I§ 7 @7
#Ch?rrsg #Ch!rrsg

po—— p5——

\%@
07
B. The synchronized parallel composition here has two
processes sending (Ch!msg) and receiving (Ch?msg)
the "msg." Both prcesses are blocked until "dt:msg"
trangition fires. Each of the solid black transtionsis
immediate and fires with probability one.

Figure 12. CSPto Petri net rules for Parallel and synchronized parallel composition.

In Figure 12B, two CSP processes synchronize using a channel. The channel and

message by necessity, are common to both processes. The two processes that are

participating in the synchronization are without names. As shown, they are simply the input

and output statements composed using a synchronized parallel composition. Both processes

must first complete their part of the synchronizing action. Once complete, they cooperate in

a joint synchronization transition (shown as a solid "immediate" transition since it is an

artifact of the translation). This representation is more appropriate since the individual

processes must execute their respective actions and these actions consume time (and other

resources), while the rendezvous action is an event that consumes no time (or resources).

This type of synchronization causes both the sender (Ch ! msg) and the receiver (Ch ? msg)

to be blocked until the transition labeled "dt:msg" has fired.
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Figure 13. Comparing CSP and P-CSP to Petri net rules for recursion.

In Figure 13, a number of recursive compositions are shown. In the top half on the left

are two equivalent nets that represent a recursive non-deterministic choice. The use of the

"dummy" provides a way to combine uX.((P ' Q) — X) with another composition. The

adjacent (top middle) Petri net shows an equivalent solution (without the dummy transition).

Since dummy transitions are immediate (consume no time or resource) and fire with

probability one, they can be eliminated without a loss of generality. The rightmost Petri net

was created by the CSPN tool. The four dummy transitions can be reduced to either of the
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other two Petri netsin the top half of Figure 13. This Petri net exemplifiestail recursion.

In the lower half of Figure 13 there is an example which isnot atail recursion. Thefirst
Petri net on the left is the smallest possible translation (most reduced). The other two Petri
nets on the right (bottom half) illustrate a two step process where the tail recursion is cut and
the result is thus equivalent to the small one on the left. Actually, CSPN, in structuring a
recursive composition assumes tail recursion. Thus, CSPN begins the translation by
attaching a recursive link back to the initial place. After doing so, CSPN checks all of the
elements within the scope of the link to see if there is any cause (such as Q() —X) to cut the
tail recursive link and re-attach it in some other fashion, as shown in the example of Figure
13 (bottom half). Figure 14 shows how these process compositions are viewed when
combining (or nesting) a non-deterministic choice inside a recursive construction. The larger
clear shaded box defines the recursive process. The smaller shaded boxes define the

component processes. See the Appendix for further examples.

Mi. X{ND P() , Q) }} - MEXINDP(), { Q) ->X}}

Figure 14. CSP to Petri net rules for recursion.

34  Specification of failuresand failure handling in CSP

A failure can be specified for any action in CSP (or any process). For example, consider
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the term "a—P" which can be extended to include failure specificationas"(a— P) [1 (a —
Faillure — Repair).” The trandlation into a Petri net from this composition would look like
that of Figure 11B except the (a — P) term would replace P and the (a — Failure — Repair)
term would replace Q. The Q transition is the failure (and repair) transition which could be
further expanded to account for the repair action. This type of non-deterministic construction

can be extended to other types of CSP constructions.
Consider the vending machine (VMC) example specified in Figure 15. This figure

shows how afailure annotation can cause a structural change in the Petri net. A smple VMC
may include only two kinds events. (1) insertion of a coin in the VMC dlot(s), and (2)
dispensing of acandy. A more complex VMC may offer a choice of slots for inserting a 2p
(i.e., two penny coin) or a 1p coin (thus, the customer may make the choice externa to the
machine which slot). Also, in the complex VMC case, there can be the possibility of
receiving a small or large candy. In Figure 15 the particular choice of a 2p or a 1p is made
non-deterministically. Examine the body of the VMC specification which begins with
construct "Mu.X{ ... " and concludes with "}." which includes the ending period. Thisisa
recursive construction because once a VMC transaction is compl ete the system can return to
a state which allows it to engage in another transaction. Inside of the recursion, we see that
the choice is either one of two SEQ constructs that represent the 2p or the 1p input actions.
When the 2p path is chosen, the VM C will either dispense a small candy (and 1p change) or a
large candy. If the 1p path is chosen then either another 1p will cause a large candy to be
produced or, with out the additional 1p coin, only asmall candy can be dispensed.

The failure annotations are attached to the OnePenny and TwoPenny process
descriptions. CSPN thus includes three additional failure transitions that all deposit their
tokens into place "p23." Assume the transition "Slot ? a2p" may fail with a failure rate of
0.0055 while, transition "Slot ? alp” fails with afailure rate of 0.0045 (of which there are two

actual transitions). Only tangible (light colored) markings can fail.
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VMC=

PROCESS Di spLg =
{Tray ! large};

PROCESS Di spSm =
{Tray ! small};

PROCESS Di spSrilp =

SEQ
D spSm() ,
{Tray ! alp}
b

PROCESS OnePenny =
{Slot ? alp}:FAIL(r= 0.0045);

PROCESS TwoPenny =
{Slot ? a2p}:FAIL(r= 0.0055);

Mu. X{
NDC{
SEQ
TwoPenny(),
NDC{
Di spLg(),
Di spSnilp()
}
I
SEQ
OnePenny(),
NDC{
D spSm() ,
SEQ
OnePenny(),
Di spLg()
}
}
}
}
}.

Figure 15. VMC specification for CSP to Petri net with failure annotations.

Notice that in the Figure 15 Petri net there are three (light colored) transitions of which

two are labeled "ft:slot?a2p™” and one is labeled as "ft:slot?alp.” These three transitions are
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generated by CSPN automatically when the failure annotations are encountered and represent

the structural changes mentioned above (in this section).

3.5  Preservingthetracebehavior of CSP specifications

Lets consider a sequence from the set of possible traces given by a particular CSP
composition structure (refer to Section 3.1.2 on program equivalence). A CSP action takes
place when an enabling predicate is true. The enabling predicate is defined either by some
external system events or by the completion of some other actions (remember, the completion
of an action may be viewed as an event). A trace specification of a CSP processis the set of
dl possible traces. A traceis a sequence of events drawn from the process al phabet (which
defines the set of all visible events).

Now, consider the structure of a Petri net in relation to a trace specification. The Petri
net that results from a CSP specification can be viewed as follows. An action is represented
by a transition, and the completion of the action is represented by token(s) in its output
place(s). A sequence of enabling transitions can easily be mapped to a feasible trace. The
sequence of transitions produce a sequence of Petri net markings. Accordingly, for each
trace, it is possible to find a sequence of Petri net markings. It is necessary to prefix all
sequences of Petri net markings with an initial marking based on the definition of a Petri net.
Also, the asynchronous nature of a Petri net may lead to more markings in the sequence than
a CSP trace (unless time is associated with the CSP actions and Petri net transitions). If time
is used as a criterion to constrain the set of feasible markings, then it may be possible to show
that the traces and the feasible markings coincide.

Using the translation / composition rules that are codified in CSPN, the Petri net of
Figure 16 was created. This Petri net is the same net as the one shown in Figure 15 except
the failure annotations have been removed and thus it has three fewer transitions. Let us
examine, the various characteristics of the trandlations in greater detail so as to understand

how isit possible to preserve the trace behavior of CSP specifications. Thesolid colored



VMC = (SIt?2p—(Tr!Lrg—VM) []
(Tr! Sm—=Tr! 1p—VMD))
M
(St ?21p—((Tr!Sm—=VNO) []
(SIt?1p—=(Tr!Lrg—VM)))
VMC =

PRCCESS Di spLg = {Tray ! |arge};
PRCCESS Di spSm = {Tray ! small};
PROCESS Di spSnilp = SEQ
D spSn(),
{Tray ! alp}
b
PROCESS OnePenny = {Slot ? alp};

PROCESS TwoPenny = {Slot ? a2p};

Mu. X{
NDC{
SEQ
TwoPenny(),
NDC{
Di spLg(),
Di spSmip()
}
1
SE
OnePenny(),
NDC{
Di spSn() ,
SEQ
OnePenny(),
Di spLg()
}
}
}
}
}.

Figure 16. CSPN trandation of the VMC example.

bars are of three types (1) dtx, (2) sdtx or (3) dt<:Mu/?/!>, where x is an integer. A label
prefixed with "dt" is a dummy transition. Dummy transitions are further broken into those

associated with the composition constructs (e.g., PAR, SEQ, etc.), and those associated with
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and an identifier (e.g., large, small, etc.)

are manufactured for the purpose of creating a synchronization (or rendezvous) point.18 A

label prefixed with "sdtx" is a special dummy transition which has a probability associated

with its firing. Also shown in Figure 16 is the specification (top one uses CSP bottom uses

P-CSP) used by CSPN to generate the associated Petri net.

TABLE 2

MARKINGS FOR VMC PETRI NET

10

11

12

13

14

15

16

17

18

19

20

21

22

MO

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20

M21

M22

18When processes rendezvous, CSPN matches an input with an output (i.e., same message and channel
identifiers). The result is to combining the two synchronizing transitions into one. The one is re-labeled
"dt:msg_name." In the VMC construction there are no rendezvous as such (just input of change and output of
candy). See more details on the notion of rendezvous (that cause a combining of two into one) in the Appendix.
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Figure 17. Structure of the feasible sequences of VMC Marking transitions.

In the VMC construction of Figure 16, there are no rendezvous (just input of change and

output of candy). The path choice is made nondeterministically. The complete deterministic

Deterministic choice

An additional place and transition ! dt: M. X
may be visualized when the choice T
of an actionismadein a : S A
: Deposit in 1
deterministic sense (conditionally). Deposit in 2 P

In the case of the VMC the } penny sl ot / penny sl ot
selection is made by the customer.

dtl = dt 4
'

AB

‘ Qut orrer :
C——(external) | L ¢
Action

Figure 18. Partial VMC trandation showing deterministic choice.
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construction is envisioned based on Figure 18. Each dummy transition (e.g., dt1 and dt4) has
two different places which must contain a token before a choice (firing) can be possible. |If
the customer chooses to deposit a 2-penny coin in the 2penny slot the place labeled pel gains
atoken (or pe2 for the 1penny slot). Thisisan external action.

The place "p01" has atoken whilethe VMC isin an idle (waiting state) until inputs from
the environment (customer selections) cause a choice to be made. The environmental input
in the case of the VMC example represents user selections. If the NDC compositions are
replaced with DC compositions, then the complete solution would use six additional places.

Table 2 shows the markings of the VMC Petri net. Figure 17 gives the marking
transitions. The dummy markings (in shaded ovals) can be combined into a single marking.
Likewise, the markings that are due to synchronization (in the clear rounded rectangles) can
be combined if the synchronization action is instantaneous. The CSP specification in Figure

16 has the following possible traces:

1. ? a2p, ! large

2. ? a2p, ! small, ! alp
3. ? alp, ! snall

4. ? alp, ? alp, I large

The corresponding transitions of Markings that are possible from the Petri net are:

1. MOM1M2 M3M4M5M6 M11M22

2. MOM1M2 M3M4M7M8 MO9M10M11 M22

3. MOM1M12 M13M14M15M16 M21 M22

4. MOM1M12 M13M14M17 M18 M19 M20 M21 M22

The bold face markings are the essential markings while the others are an artifact of the
translation rules. Note that there is a one to one correspondence between the set of CSP

traces and the bold face marking (assume that the MO marking is removed).



CHAPTER 4

CSPN TOOL OVERVIEW AND IMPLEMENTATION DETAILS

And if you don't give up and you don't give in you may just be OK. from "In the
living years."
—Mike Rutheford

41  CSPN tool overview

The CSP-to-Petri net (CSPN) tool is textual based. The initial specification and
parameterization work must be completed using a text editor (see Figures 15, 16, 38, 42, and
43) for examples of P-CSP specifications). Viewing the Petri net's distribution of places and
transitions as a graph after a trandlation is accomplished by setting the "-d" (for dot) on the
command linel Other command line options are described in Table 4.

The translation rules described in Chapter 3 and enumerated in the Appendix A are
codified in the CSPN tool (CSP-to- Stochastic Petri Net). In brief, the mechanism consists of
decomposing individual CSP constructions into canonical Petri net structures. The elemental
Petri net structures are linked together in a hierarchical fashion according to their adjacency
and nesting within the CSP specification. Once CSPN has created this network of linked
structures it traverses the net and expands the process descriptions which are represented as
sub-Petri netsinto larger and larger nets. Also, as CSPN decomposes the CSP constructions,
it identifies and records service and failure rate annotations which are embedded in the P-
CSP specification. When CSPN encounters failure annotations (and the "-f" command line
option is set), it creates supplemental failure transitions with afailure rate as designated in the

annotation. When CSPN encounters service rate annotations it will assign those valuesto the

1version 1.0 of CSPN does not automatically invoke the dot program to create the postscript graphic file. To
do so use the command: >> dot -Tps filename.dot > filename.ps. Dot is a available from AT&T Bell
Laboratories.

38
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appropriate (timed) transition in the resultant SPNP specification. All of the values assigned
from annotations are subject to change if the user so chooses during an interactive CSPN run.

Once the preliminary structure of the Petri net is complete, CSPN must reconcile
synchronization points because all CSP input/output actions rendezvous at a particular point.
This point is a transition that is named by the message being sent and received. Finally,
CSPN generates the Petri net graphic specification and the SPNP Petri net specification file
"<file>_spnp.c.” All of these activities occur at various levels of user controllable interaction

aswill be described.

4.2  Trandation phases of the CSPN tool

There are four basic activities (parts) involved in the context of Figure 26. The first part
(1) involves specification. The second part (2-7) involves running CSPN which invokes any
of the available command line options (see Table 3). See Appendix C for the Composition
Phase 4 algorithms. The third part (8-10) is interacting with CSPN to direct how the SPNP
analysis is run (setting the SPNP run parameters) and to parameterize the elements of the
translation (e.g., assign rates and probabilities to the resultant transitions). The fourth and

last phase (11-12) concerns the structural and stochastic analysis of the Petri net.

Phase Phase Phase Phase Phase Phase

1 2 3 4
Specification J*{ Scan/Parse J*{Decomposjtioﬂ*{ Composition

5 6
P Failure
. Synchroni Zaloﬂ—»{ Annotation J

o

! Resolve ’ °  Filter and 10 Output file: 1 2
i . i fn.dot i Stochastic
Recursion Synthesis | | Graphics  |»| ———— || AndysisPhase | »|
Phase i Output file: Results

Phase Phase fn_spnp.c

—>|

Figure 26. Activities associated with the trandation phases of the CSPN tool.

Structural analysis involves viewing the distribution of places and transitions of the
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graphical representation of the Petri net.2 The stochastic analysis involves running SPNP to

derive dependability and performance results based on the work from phase three (i.e.,

parameterizing the model) and relating the results to the graph and back to the original

specification. The SPNP specification file may be edited to finely tune specific values of the

parameters or other characteristics of the SPNP specification prior to running the analysis.3

Once SPNP isrun, the results can be considered in the process of conducting further analysis.

Specification Scan/Parse Decomposition Co%ositi on Synchronization
Phase Phase Phase ase Phase
P-CSP Specfication R
=d on systen h Individual Combine ™\ Resolve
requi rements ﬁacc\ CSP constructions mT‘F;O:ﬁLF;ﬁTI synchronization
CFITe name s 51 scanner/ parser | > — into atomic N " : links (messages).
Syls’gggsiégé = | (cp) ) (epy) canonical Petri system’” Petri net.
AEASE \\ net structures. :
N % ' - (net_main) v RegisterProcess) (syncLink)
Pil(), - — (scoring) / (Register )
o P1 § e un CSAN usng.> (getsym) ) (procPosition)
s 531N $>csp-osyl f YL/ e re— [Datastructure hierarchy | [ Coincidence matrix (deleteProc)
H dores captures specification (replProc)
procE Eé) B0 symbols and structure
SE}é RO, PLO) ) their
NELELD). B2 O} attributes
Failure Annotation Resolve Recursion 2 Synthesis Phase
S e}
Phase Phase T I Thisphase usesreachability as System
{ £ aaiteriawith in the context of coincidence (gen)
Failure rate Process of & : ; matrix is decoded :

; ili arecursive construction to (emd_main)
anotations cause reconciling g decide whether to bresk atal | oProducethe B g
failure transitions recursvelinks | g | £ & recursivelink output files. (choose)

to be created. (creste/break). i s 35 ’ (decodeSys)
; (rResolve) . \FO User interaction:
h(soll<¥e) recursive -~ -set SPNP parameters,
(iéglﬁcnm%pe) loop_ L -set prioities/rates/probs.
Filter and Graphics Analysis Phase Directed graph used
Phase Outputfile: frdot ~— ipesssmssssmsssse toverfy sructur
A net list containing — - : Run dot using... : characteristics (e.g.,
transition labels and Thisfile describes the I >dot-Tpsfn.dot>fn.ps |[: correctness and race
draw control parameters. Petri net asanet list, A | hazzards)
i including labels of each _>: Generate graphicsto view |+
QDRI place and transition. ‘| digtribution of placesand |1 Relate the stochastic
nggfr::rix H transitions. H parameters back to the
ile: : : P-CSP specificati
»| toproducethe Output file: fn_spnp.c :> <: specification
graphlt;ix_l SPNP input file uses the : Run SPNP using...
representation. / isfi
(flter) cSPL 'a”g;age' Thisfile > spnp fn_spnp : Relalility
‘ describesthe Petri net, ‘[ Manually revise spedific SPNP | and MTTF
Specia characters including failure annotations, _>: o M
inherited from the CSP and other discrete and iveigablil
specification are removed stochastic parameters. : funci i
for SPNP compliance. :{E””””?[]'ﬁn's rrrrrrr s

Figure 27

Context diagram and translation phases of the CSPN tool.

2This option causes CSPN to generate afn.dot file which is processed to provide the graphical representation
of the Petri net (embedded postscript). Dot isatool used to create the Petri net graphic. The CSPN version 1.0
does not automatically invoke the dot program to create the postscript file. To do so, the user must manually
run dot using the following command: >> dot -Tps filename.dot > filename.ps.
3The SPNP specification file can be run for asimple analysis without manual intervention.
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In viewing Figure 27, note that the following eight steps occur during the translation
process. (1) Scanning and Parsing —action rules embedded in the parser enable CSPN to
capture the structural semantics of the specification, (2) Decomposition —allocating or scoring
a coincidence matrix for each CSP element and the recording of any annotated service rates
and probabilities, (3) Composition —combining elemental coincidence matrices and building
their requisite process lists, (4) Synchronization —resolution or combining of message links,
(5) Failure annotations —if active, an appropriately annotated process is augmented with a
failure transition, (6) Resolving recursion, (7) Synthesis phase —takes the system coincidence
matrix and creates the SPNP Petri net specification file during an interactive session with the
user, and (8) Filter —removes special characters inherited from the CSP specification that are
not valid in an SPNP specification and graphics —creates a digraph specification net list that
is later compiled using “dot” to produce an embedded postscript graphic. In general, Figure
27 shows the various tranglation phases and the use of SPNP as it applies to this approach.
The names in parenthesis are the C-function name(s) and are associated with a given phase.

The CSPN tool is used in the context of the seven steps listed in Table 3.

TABLE3

GENERAL STEPS FOR USING THE CSPN TOOL

Step | Description of stepsin the approach

1 Abstract the critical elements of the requirement specification and formulate a CSP specification
for the system under study.

2 Trandate between CSP and Stochastic Petri nets.

3 Assign performance and reliability parameters among subsystem components.

4, Analyze the Petri nets for stochastic properties [using SPNP] (validate performance and
reliability goals using stochastic system models).

5. Decide what features of the system should be 1changed to improve the system's reliability (and/or
other stochastic properties, e.g., performance).

6. Augmentation: relate stochastic properties back to top level (CSP) specifications (e.g., failure
rates, service rates, error handling).

7. Understand the effect these non-functional requirements have on cost..




42

4.3  Running the CSPN tool
Running CSPN (i.e., $> csp <options> specification-file) and using the various
command line options described in Table 4 enables the numerous features and functionalities.
For example, if the user is in the process of correcting the syntax of the CSP specification
then it would not be necessary to specify any of these options, only the input file. Also, if the
user just wants to understand how the CSP specification looks in terms of the structural

characteristics (i.e., investigating inherent weaknesses in communications, race hazards etc.)

TABLE4

LISTING OF THE CSPN COMMAND LINE OPTIONS.

Option Description

-h Used to generate a help screen which displays the contents of the table below: “csp -h”

-v Used to set the verbose mode and is only valid when the "-0" option is specified. An
interactive menu isinvoked which allows the user to set SPNP run parameters.

-f Used to generate failure transitions into the filename_spnp.c file. This option enables
detection of failure annotations and causes interactive inputs with the "-0" option
specified.

-F Set to invoke the filter which will replace the 3 special characters (?,!,:) in the
filename_spnp.c with SPNP compliant characters (i , o , and _respectively).
Otherwise, SPNP will not compile theinput file. Valid only when the "-0" option is
used.

-S Use the default service rates for timed transitions. If no servicerate is specified as an
annotation then CSPN will use 0.1.

-o<name> To generate the SPNP input specification file (filename_spnp.c) this option must be
specified ("name" is optional and the default used is the tool name "cspn™).

-i<number> Number of iterations used by SPNP (default is 2000).

-a<number> Rate for return to initial marking from absorbing markings (default is 0.0).

-p<number> Set floating point precision used by SPNP (default is 0.000001).

-P Set to enable selection of priorities for individual transitions (the default is none).

-d Set to generate a"dot" graphicsfile. Dot uses this digraph specification file to generate
the graphical representation of the Petri net.

-n Set to enable anetwork list file. Thisfile shows how CSPN has interpreted the
structural aspects of the CSP specification.

-t Set to generate asymbol table file containing all the data recorded for each element
(process names, constructions, variables, channels, ...) of the process specification.
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then adding the "-d" option would enable only the production of the graph. The "-F" option
invokes afilter and is necessary only when the user plans to run an SPNP analysis. The "-f"
option is a nice feature because it enables the analyst to assume afailure free environment by
simply ignoring any embedded fail annotations that may exist in the CSP specification
(without "-f* CSPN ignores failure annotations). Omitting failure annotations from the P-
CSP specification has the same affect. The option "-s" streamlines the process of generating
the SPNP input specification by assigning default service rates to timed transitions without
guerying the user to provide such. As mentioned above, the "-0" option generates afile for
SPNP analysis. Itisbest if afile name be given with this option (i.e., "-ofilename”). This
settles the problem of overwriting previous files generated using the default name that is
assigned by CSPN if no name is provided. The "-i", "-a" and "-p" options are used to
parameterize the SPNP run by setting the iteration number, absorbing rate (for recycling back
to the initial marking), and precision for floating point operations respectively. The "-P"
option is only valid when "-0" is used and enables the user to assign priorities to any of the
transitions. The "-d", "-n" and "-t" options are useful when something unexpected happens
after running CSPN such as arun time error. The user may wish to rerun the translation and

view the internal data structures that are generated during the translation process.

44  CSPN datastructures

Internally, there are four basic data structures employed by CSPN: (1) Symbol table
which maintains attributes assigned to all system elements (actions, processes,
communications and constructions), (2) Process lists which consist of al the names of the
associated actions/processes involved in a particular construction, (3) A network of linked
lists which capture the structure of the specification (adjacency and nesting), and (4) The
bipartite digraph which defines the structural character of the Petri net is represented as a
coincidence matrix. The coincidence matrix (or co-matrix) maintains the distributions of

places, transitions and their connectivity.
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Note: each box in the Petri net (excluding transitions) represents a process.

Figure 28. P-CSP constructions with co-matrix and Petri net representations.

The construction of the n-by-m co-matrix is defined in terms of the transitions (CSP-process

names become transition names). Transitions are associated with rows (from top to bottom).
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Places are associated with columns (numbered from left to right starting from zero). A non-
zero element in the matrix A represents an arc which links a transition to a place or a place to
atransition. Elements (&jj) can have one of three values (zero, +1 or -1): &; = +1 indicates an
arc from the transition of row i to the place of column j; &j = -1 indicates an arc to the
transition of row i from the place of column j. The process list stores the transition namesin
the order of their appearance in the CSP specification. The naming of placesis ordered (e.g.,
pl, p2, ... pn), and the meaning associated with each is defined in terms of the transitions
with which they are connected. Each element and each expanded composition from the CSP
specification has a coincidence matrix (or co-matrix) maintained in the symbol table.

Figure 28 gives examples of P-CSP compositions. During the parsing phase, each
construct (e.g., PAR, SEQ, etc.) is separated into its component elements (process names,
channels, variables) and represented as a sub-Petri net. The sequential (i.e., SEQ) construct,
shown in the top portion of Figure 28, illustrates scoring of the co-matrix (marked with "-" or
"+") to denote input to and output from the given transition (e.g., P, Q, R). The middle part
of Figure 28 shows a similar trandation for the parallel (i.e., PAR) construct and the last part

shows a synchronized parallel construction.

45  Petri net compositions

] A Expand Co-matrix A using B
B!
i f ' {use Method 1 expansi on}
A
else if — |[{use Method 2 expansi on}
B EEREE
el se Bl {use Method 3
||}i expansi on}

Figure 29. Choosing a combining method for expansion that depends on locality.

The Petri net compositions, based on the P-CSP specification structure, are achieved by
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combining the co-matrices of the component Petri nets to obtain a new co-matrix for the
combined Petri net. Combining all of the sub-component co-matrices produces a complete
system Petri net. The combining process expands one co-matrix by another. Figure 29
highlights the basics that involve expanding a co-matrix A by another co-matrix B. Thus,

depending on the locality of co-matrix B one of three possible expansion methods is used.

Expand A (3x4) with B (5x6) into C (7x8).

01234567 0123
C O-bbbbboo A O-|[+aa—— asput inC beginat J4,6].
l1bbbbbbo0o lylggag
2bbbbbbo00o0 2ylgagg
Sbbbbbb0oO0
Abbbbb+aa Rows 1 and 2:put g's in Cstart at d5,5].
5y0000ggyg o
6y0000ggg Rows 1 and 2: put y's in Cstart at 5,0].

Figure 30. Diagram of expansion method one.

The Method 1 algorithm is pictured in Figure 30. The C matrix dimensions C[x,y] are
determined asfollows: X =xg+Xp-landy =yg+Yypb- 2 (where[xaYya], ahd [Xbh,yb] are the
dimensions of the A and B matrices). In the C matrix diagram, O's are constant (i.e., not
assigned from A or from B to C). Also, the "-" and "+" shown in A are now separated

diagonally as shownin C.

Case 1. Expand A (5x5) with B (4x4) into C (8x7).

12345 1234 1234567
A laaaaz + B 1-+bb -->C l1aaaa00z
2aaaaz 2bbbb 2aaaal0o0z
3aaaaz 3bbbb 3aaaal000z
4 aaaaz 4 bbbb 4 aaaal000z
5yyy- i+ 5000- +bb
6000bbbb
7000bbbb
8yyybbbb

Case 2: If A5,5]="-" => ((8x6).

Figure 31. Diagram of expansion method two.

Method 2 is described in Figure 31. In case 1, the resultant C matrix is8x7. Case2isa

variation which occurs when "-" is discovered in the last column and row. Thiswill occur
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P4t
@

seoo| 1| 2| 3| 4
P1 -+
P2 N
P3 - |+
SEQ1 [ - |
Pa |

Using expansion method 3

The expansion methods provides

5x6

a means to combine two co-matricies.

P1—1—
SEQD v
®2
P2$]
— ?
SEQL P3
— P5| =1
—{ Combined |- @
Pe| —1—
:
& P4 ==
®?
SEQ1 |1 |2 |3
/ P5 - +
P6 - | +2x3
SEQO 3la|s|e6e |7
P1
P2 +
P3 - |+
P5 -
P6 - |
P4 : | 6ex7

Figure 32. Diagram of expansion method three (shows Petri nets and co-matrices).

when arecursive construct is used in the P-CSP specification. In such a case the last column

is dropped and the C matrix is 8x6. Also, for case 1 (where A[m,n] = C[5,5] ="+"), if a"Z"

in A is"+" then it will be moved to the last column (same row).4 Similarly, in either case 1

or2,a"y" in Ais"+" then it is moved to the last row in C (same column). The Method 3

expansion is too detailed to describe in the same terms as was done for Method 1 and 2 (refer

to the Appendix C for the code on Method 3). The basic ideais given in Figure 32 which

shows how the SEQ1 co-matrix (analogous to co-matrix B in Figure 29) is inserted into the

4Method 2a exception: catch all the +'sin last column which are to be moved to the new last column. These +'s
are outputs from transitions to the last place in A so now they must be connected to the new last place in C.
Only consider rows above rowMark which is the row being expanded (with the "- +" pair in the diagram).
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SEQO co-matrix (analogous to co-matrix A in Figure 29). The expansion replaces the
transition SEQ1 by the two process names P5 and P6. The final combined result retains the
SEQO name. Note, the term SEQ is a key word (for sequential composition of processes), it
may itself be considered a process. CSPN treats each occurrence of this type as a unique
process by appending a unique number to the name (0 is appended to the first occurrence of
SEQ to give SEQO and the next occurrence of SEQ will have "1" appended). This strategy
allows the program to track each occurrence of a given keyword type. The keywords

subjected to numbering include SEQ, PAR, NDC, DC, STOP and SKIP.>

Expandi ng Sys[0], Net: TrainXing .C A<-Bis a new (9x11) Matrix
Searching |inks of net[1], synbol: PARL * Runni ng Method 3:
ProcList0: 1-dtl 2-Train 3-Gate 4-dt2 B
1. Synbol: dt1, Type: 21 ¢ ProcL3: 1-dtl 2-InTransit 3-Togate!Arrive
2. Synbol: Train, Type: 10 : 4-dt!Arrive 5-Atlntersection
: 6- Togat e! Depart 7-dt! Depart

Merge processes PARL <- Train . 8-CGate 9-dt2
Expansi on i ncl udes the follow ng: .
A: PARL PRMr: 12345678901
ProcLl: 1-dtl1 2-Train 3-Gate 4-dt2 © [ 1]: - +000000 0 Train inserted
PRMr: 123456 [ 2]:0[-J+00000[000 inthe PARL

[ 1]: - +0+,00 —— i i v [ 3:00-+0000/000

[ 2]: O[-[+]0°0 O Replace with Train symbol . [ 4: 0/00-+000/000

[ 3: 000- +0 . [ 5]: 0)/000- +00{000

[ 4: 00-0- + [ 6]: 0]j00OO0O0- +0/000O0

[ 77: 0l0o0000-[+¥l00O
B: Train [ 8]: 00000000- +0
ProcL2: 1-InTransit 2-Togate!Arrive [ 9: 000000O0-0- +
3-dt!Arrive 4-Atlntersection
5-Togat e! Depart 6-dt! Depart

PRMr: 1234567

[ 1]1: - +00000

[ 2]: 0-+0000

[ 3: 00- +000

[ 4: 000- +00 Conpl et ed expansi on!

[ 5]: 0000- +0

[ 6]: 00000 - +

Figure 33. CSPN run shows before and after combining coincidence matrices.

In Figure 33 a more complex expansion is depicted where the "Train" symbol is located
within the process list of the PARL symbol. CSPN expands PARL1's coincidence matrix
(matrix A) by inserting the coincidence matrix of the Train (matrix B) into matrix A at the g

location (at i=2 and j=2). Because the Train symbol is of type 10 (indicating a compound

SIncidentally, the first four words listed give rise to P-nodes which constitute composition constructs which can
themselves contain other P-nodes or L-nodes. Lnodes are nodes which can be'listed' inside of a P-nodes (e.g., a
channel!output or channel 2input) which themselves are atomic. Not mentioned are stmtlist, MU.identifier, and
SystemlID which are other possible Pnodes. These distinctions are made for the purpose of capturing structural
characteristics of the specification.
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sub-Petri net that can be embedded into other Petri nets), it can be replaced by its expanded
coincidence matrix (including the replacement of the Train symbol in the PAR1 process list
with the Train's process list). The resultant C matrix has 9 rows and 11 columns.

The combining of the sub-Petri net co-matrices is constrained to preserve the process
algebraic structure in three dimensions (1) adjacency of terms within a process, (2) adjacency
among declarations of processes and (3) nesting. Figure 34 shows an instance of the data
structure which is used to capture all three structural dimensions. Adjacency refers to the
sequential ordering of terms in the algebra while the word nesting is used in the normal
algebraic sense. The first type of adjacency is illustrated by the sequence of process
components: PAR1, dtl, Train, Gate, Arrive, Depart, dt2. In the case of nested structures,
each new level of nesting requires a new NET[i+1] be appended to the tail of the declared
process pointed to by SY §[i]. Each of the two listsis anchored by a pointer contained in an
array of pointers. The two arrays SY §[] and NET[] are shown in Figure 34 as anchoring the

lists of either adjacent or nested structures. The second type of adjacency (among declared

TrainXing =
PROCESS Train =
SEQ(I nTransit(),{Togate!arrive}, Atlntersection(),{Togate! depart}};
PROCESS Gate =
{SEQ{{Togat e?arrive}, d osed(), { Togat e?depart}, Open()};
PAR
Train(), Gate() {arrive, depart}}.

Three Di nensi on Process Hi erarchy-

Adj acency anong decl ared processes

SB[0] —
SB[1]
Nesti ng NETIO] SwB[2]
TrairKing NET[O]
PARL Train NET[O]
s
\

i

dtl

Adj acency
thi
within a res
process [Gae ]
dt2

Figure 34. Data structure for nesting and adjacency detected in the specification.

Togate'Arrive

dt Arrive

TogateDepart

Tog ate ?De part

Tog ate?Arrive
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processes) is recorded sequentially as follows SY 0], SYS[1], ... SYS[n]. The SY 0]
pointer always gives the system identifier (the actual symbol itself is pointed-to by NET[O]
[see Figure 37 to verify this example]) and the body (or main part) of the system
composition. Each new SY g[i] pointer is a new "PROCESS" declaration. Each new
NET[i+1] is a new level of nesting. The list attached to a given NET[i] contains the
components within a given process constructor (so-called a p-node using the nomenclature of
Figure 36).

Figure 35 gives another example of the linking associated with the process hierarchy for
the specification named "SysSimpleEx." In this example, the nesting is overstated. Thus, the
leg of SY S[1] runsfrom NET[O] to NET[5]. Thefirst element of each list is the name of the
process node (p-node for short, which caused anew NET]i] pointer to be generated).6 The p-
nodes of the SY §[1] leg are as follows: Egl, SEQ1, SEQ2, SEQ3, PAR1 and SEQ4. The
depth is 6 but the level of nesting is not depth 6 (the deepest level of nesting is actualy 4).
To trangdlate the nesting and the adjacency out of thisleg into a Petri net, we must traverse the
tree as shown in Figure 35 from left to right and from the bottom up. Actually, we start from
the bottom of SY §[1] and move right to the end and then finish with SY §[0]. Let us consider
the SY 1] leg starting at NET[5]. Moving up the leg past NET[4] to NET[3] we encounter a
p-node "PAR1" which must be expanded. By virtue of the syntactical correctness, we are
guaranteed that the this p-node has been fully expanded. Thus, by accessing the symbol table
entry for "PAR1" we find the list of sub-components (which includes dt1, P11, P12, dt2), and
simply replace PARL in SEQ3's list (i.e., at position NET[3]) with the PAR1 list of sub-
components. Actually the list is known as a process list (i.e., contains the sub-component
symbols, each separated by a comma) and individual elements of the list are known as p-
nodes. The new process list for SEQ3 that results is the following P1, P2, dt1, P11, P12, dt2.

This same kind of replacement (expansion) mechanism continues until the top of the leg is

6See Figure 36 for a definition of P-nodes and L-nodes.
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SysSi npl eEx =
PROCESS Egl =
SEQ{ SEQ{ SEQ{ P1(), P2(), PAR{ P11(), P12()}}, P3(),P4()},P5(),P6()}, SEXP7(),P8()};
PROCESS Eg2 =
SEQ{ P9(), P10() };
PAR{ Egl(), Eg2() }.

Process Hi erarchy for SysSi npl eEx-

Adj acency anopng
S¥s[0] decl ared processes

T NET[0]

Nest -
ingi

Adj acency
within a
pr ocess

S¥W[1]

Figure 35. Process hierarchy for system " SysSimpleEx" with exaggerated nesting.

visited (i.e., at NET[O] = "Egl"). The processis then repeated for both SEQ1 and for SEQ4.
Thus, to recompose the whole process algebraic system in terms of a Petri net from the
combined "SY §[] x NET[]" structure CSPN expands each of the p-node component and
records the results in the symbol table entry recursively. Refer to Figure 36 for a relational
diagram of the network (or process hierarchy) data structures and to Figure 37 for an exact
definition of the (1) symbol table entry, (2) the net_node and (3) the node data structures used

in recording the process hierarchical structure.
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46  P-CSPsemanticsasit relatesto the data structures
The structural characteristics of a P-CSP specification necessitate the framework of P-
nodes and L-nodes defined in Figure 36. Table 5 enumerates the various symbol names
assigned to the P-CSP components during the translation (parsing). The P-nodes are
anchored by the "SY §[]" array. Thisisan array of NET_NODE pointers. The L-nodes are
anchored by an array of NODE pointers called "NET[]." Each NET_NODE contains a

NET][] array to capture both the nesting and adjacency defined within a P-node.

Syg0..n] where n+1isthe There are two levels of data
number of net_nodes . .
dlocated. ) used in this framework (P-
Each process declaration causes anet_node
structure to be allocated and linked to the sys[i] nodes and L-nodes). The
which isapointer to aNET_NODE. Therefore ) .
sysli] contains as many non-null pointers as there firstis syq[], an array of
are PROCESS declarations. " " .
net_node" pointers. The
Each L-node (list node) islinked | N€Et_nodeis astructure that
itssibli NODE withi .
o ltesibling asaNODEwithina | ;< Al ocated for each P-node

P-node.

Process declaration. The second is
net[], an array of "nodes"
W pointersto all of theL-

nodes for this P-node.

Figure 36. Relationa diagram for the network (or process hierarchy) data structures.

Process.
declaration

&/aen] The system body or "main"
main body part of the specification is

linked from sys[0]. NET[L..m]

Each P-node (process node) is
linked from sys[1..n] array.

The P-CSP grammar distinguishes 3 categories of primitive elements. The P-nodes are
the composition statements used to express the semantics of the system description. The list
elements (or L-nodes) are instances of pre-declared processes, variables or channels. The
final category is other elements which consist of all other elements not included by the
previous two categories (e.g., connectives, grouping symbols or punctuation). Each element

is assigned a type number according to Table 5.
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ENTRY structure (symbol table entry)

Syl =
PROCESS EX1 =

typedef struct entrydef {
char *nane,

Synbol name poi nter
short type;.
short uid; ..
char *frate;.
char *f prob;

struct entrydef *next Link to next ENTRY
} ENTRY;

Synbol Table entry definition

... Synbol type (values O through 23)
... Unique identification nunber (pid)
Failure Rate in ASCI| pointer
Failure Probability in ASCIl pointer | |- .- i

char *p_pl Process list pointer Sys[0..2] f poi

_| [ . 222l ters to nod
short rsize Nunber of rows in PR Matrix arey of painers to noces
short csize;. .. ... Nunber of cols in PR Matrix
p_matrix p_prm._....... . Process Relation (PR) Matrix pointer 1

1 =
SEQ[ SE{ SEQ{ P1(), P2()}, P(), P4()}, P5(), P6() },
NDC{ P7() , P8() };
PROCESS EX2 =
PAR{P9() , P10} ;
NDG{ EXL() , EX3() }.

t ypedef ENTRY *entryptr;

} NET_NOCDE;

NET_NODE structure (pnodes declaration instance) Net[o. -
— e
typedef struct netdef
{yghar *net_nang ... Roint er to the node/synbol nane o— >[N\ F[Ba j»Be R
short numNodes; ——.Nunber of pnodes in this linked list o—
short nunsi bs[ NETSI ZE] ;____. Nurmber of siblings within each pnode :
nodeptr net[NETSI ZE] ; ---eounnnee Rootptr's to Process Nodes

NODE's

- EXL]16 Net [ 0. . 4]
typedef NET_NCDE *net Nodeptr; Pointer to net_node structure e[ ]
net Nodeptr sys[ SYSSI ZE] ; Rootptr's to "PROCESS_DEC' net nodes
o >{sEQU->[sEel>{sEQI*[PL | >{P2_ [
o~ [SER]~[SEBI P8 _|[Pa_ ]
L g 5] g [T g [0 o
NODE structure (pnode or Inode instance) —>[C [P s}
typedef struct nodedef { —Hin
{ char *n_name; ... Pointer to the node/ symbol name \
char *n_fail; _.NULL if no fail rate/prob specified
short israte; _...Bool ean: legal values are (-1, 0, 1) NET_NCDE
short n_type; _...Node type consistent w synbols EX2 [ 4 Net[0.. 1]
short uid; ... System | evel unique identifier —»[EXL Hn
struct nodedef *I S Poi nter to next node, o |»[PARL-» I
struct. PAL]
i
typedef NODE *nodeptr; Pointer to a NODE strucutre M

Figure 37. Definitions of the symbol table and process hierarchy data.

TABLES

CONSTRUCTSUSED IN P-CSP AND THEIR TYPE VALUES

Process nodes and artifacts

NULL_TYPE 0

SYSTEM | D 1 p- node
STMI_LI ST 2 p- node
STCP_PRCC 3 | - node
SKI P_PRCC 4 | - node
PAR_PRCC 5 p- node
SEQ PRCC 6 p- node
NDC_PRCC 7 p- node
DC_PROC 8 p- node
MJ_PRCC 9 p- node
PROC CALL 10 | - node
PROCESS DEC 11 speci al
CHAN PROC 12 | - node (contains 13-14)
| NPUT 13 | - node
QUTPUT 14 | - node

There are twenty three different types.

Channelsand variables

BOOL_VAR 15 | - node

VAR 16 | - node

EXPRESSI ON 17 | - node

R GHTBRACE 18 not defi ned
LEFTBRACE 18 not defi ned
BRACE 18 not defined
SEM COLON 19 not defi ned
SEM C 19 not defi ned
Dor 20 not defined
DUMWY 21 not defi ned
SYNCH MBG 22 | - node

GUARDL 23 not defined
QUARD? 24 not defi ned
RECURSE 25 not defi ned
REQR TCP 26 not defined
SDT 27 not defi ned
TYPES 28 not defi ned
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The symbol table contains all of the identifiers used in the specification (i.e., names of
declared processes, channel variables, simple variables and system defined names) and is the
primary source of information about the system. A hash function enables an efficient means
of accessing the associated data shown in Figure 37. Any symbol used or defined within the

specification is accessible.

4.7  P-CSP’'susage of failure and servicerate annotations

When the "- f " option flag is set on the command line, CSPN will incorporate any legal
failure annotations into the SPNP file. Naturally, the "- o<f n>" option must also be
specified, otherwise CSPN will not produce the fn_spnp.c file. Legal annotations are
specified as either aprobability ": FAI L( p=x. xx) " or rate™: FAI L( r =x. xx) " of failure.

@
TrainXing = du
-- Two processes Train and Gate consist of /@
-- sequential actions and run concurrently. ftinTransitc—=— ©—— InTransit ®
- Two synchroni zati on nmessages are required v Togate?ar
- to conmand the Gate. © camierare v
ft: Togate!larrive —— :]* Togatelarrive @
PROCESS Train =
SEQ
InTransit(): FA L(p= 0.01), dearrive
{ToGate ! Arrive}:FAIL(r= 0.02), ® @
Atlntersection(), ¥ _ v
{ToGat e ! Depar t} *EAl L( r= 0. 03) }; ? Atintersection Closegl
PROCESS Gate = ft-Togateldepart / ¥_Togate!depart v
SEQ ' . v Togate?depart §
{ToGate ? Arrive}, ©) ®
d osed(), \4{@
{ToGate ? Depart},
Qpen() }; v
Open ?1
PAR{Train(), Gate() {Arrive, Depart}}. @?ailplace /
(absorbing) + di2

Figure 38. Specifying failure annotations in P-CSP and the resulting Petri net.

Thisisillustrated in Figure 38. A failure annotation can be related into the specification at

any level. However, only the values that are associated with a non-expandable element (one
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which may not be further decomposed) will actually be translated into the SPNP file. Thus,
if arate were attached to the process call: "Trai n() : FAI L(r=x. xx)" inFigure 38
(composed inside a PAR construction) then the value would not be translated into the SPNP
file. Thus, annotations associated with composite processes are not incorporated into the
fn_spnp.c file but can be maintained as a record of the results of any current or subsequent
runs (e.g., failure probability of agroup of components).” Note, that service rates can also be
annotated in a similar fashion with the same caveat that in order to be utilized in the SPNP

file it must be attached to an non-expandable element. The notationis": SERV(r =x. xx) ".

4.8  Linking synchronization primitives
I'n synclink for synbol: TrainXing ... - Rel ease: Row. 9
: Row: 11
ProcLO: 1-dtl1 2-InTransit 3-Togate!Arrive . ) .
4-dt! Arrive 5-Atlntersection  ProcLO: 1-dtl 2-InTransit 3-Togate!Arrive
6- Togat e! Depart 7-dt! Depart : 4-dt: Arrive 5-Atlntersection
8- Togate?Arrive 9-dt?Arrive 6- Togat e! Depart 7-dt: Depart
10- Cl osed 11- Togat e?Depart 8- Togat e?Arrive 9-C osed
12- dt ?Depart 13- Open 14-dt2 10- Togat e?Depart 11-Open 12-dt2
Sync nessage: Arrive, PRMr: 1234567890123456
Find transition: dt!Arrive, at pos: 4. 1]: -+000000+0000000
Mat ching trans: dt?Arrive, with pos: 9 21: 0-+00000000000O0O
31: 00- +000000000000O0
Sync nessage: Depart, 4: 000- +0000-+00000
Find transition: dt!Depart, at pos: 7. 51: 0000-+0000000000
Mat ching trans is: dt?Depart, with pos: 11 6]: 00000-+000000000
77: 000O00O0-+000-+000
PRMr: 1234567890123456 8]: 00000000-+000000O0
1]: - +000000+0000000 99: 0000000000-+0000
21: 0- +0000000000000 10]: 00000000000-+000
31: 00- +000000000000O 11]1: 0000000000000 - +0
4: 000- +0000-+00000O0 12]: 0000000 -000000O0 - +
51: 0000- +0000000O0O0O
6]: 00000-+000000000O
77: 000000-+000-+000
8]: 00000000-+000000 .
9]: 0 00000000-+00000 J]*<———— Renove
10]: 00 0O00O0O0O0O0O00OO0-+0000 :
11]: 000 00000000-+000 |«——— Renove
12]: 000000000000 - +00 :
13]: 0000000000000- +0
14]: 0000000-000000O0- +

Figure 39. Resolving synchronization links.

The process of linking the synchronization primitives occurs after all expansions have
completed (except adding failure annotations). In Figure 39 rows 9 and 11 are removed in

merging the output message transition with the matching input message transition.

"Sensitivity analysis is an examination of the effect of small variations in system parameters on the output
measures can be studied by computing the derivatives of the output measures with respect to the parameter
[Mainkar93]. Sensitivity analysisis useful to estimate how the output measures of a system model are affected
by variations of itsinput parameters (as well asfor system optimization and bottleneck analysis).
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4.9 CSPN filedescriptions
There are twelve files that make up the CSPN tool (not including the C files generated by
lex and yacc and two small header files used in the lex and yacc specification files). These
files are named here and are briefly described with respect to their contents (and in some
cases multiple function capabilities): (1) cmd_line.c, (2) csp.l, (3) csp.y, (4) expn_cspy.c, (5)
itoa.c, (6) net.c, (7) petri_cspy.c, (8) prlist.c, (9) prmatrix.c, (10) scoring.c, (11)
symbol_cspy.c, (12) symbol_cspy.h.

49.1 Cmd_line.cdescription

Command line checks for command line arguments. If there are none it uses the
defaults. Otherwise it alows the user to change certain options available from SPNP (SPNP
Reference). There are three other noteworthy functions. The do_file is a function that
displays the command line defaults for each run, usage displays the help screen, gen setsthe
defaults for the parameters part of the SPNP.c file, and choose is an interactive routine that is
invoked by the command line verbose mode option flag "-v." This routine allows the user to
choose from any of the available options in the parameters part of the SPNP.c file. Picl and

Pic2 are functions associated with choose.

49.2 Thecsp.l and csp.y descriptions

Lex and yacc are tools designed for writers of compilers and interpreters (i.e., any
application that looks for patterns in its input, or has an input or command language). They
help one write programs that transform structured input. Lex takes a set of descriptions of
possible tokens and produces a C routine (called the lexical analyzer or lexer or scanner).
The set of descriptions given to lex is called alex specification. The lex specification for the
P-CSP language is found in Appendix B and isfound in the csp.| file.

The token descriptions that lex uses are known as regular expressions. As the input is
divided into tokens, the CSPN tool must establish the relationship among tokens. CSPN

needs to find expressions, statements, declarations, blocks, and processes in the specification
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program. Thistask is known as parsing and the list of rules that define the relationships that
CSPN understands is the grammar (also called the yacc specification and for the P-CSP
language is found in Appendix B). Yacc takes a concise description of the grammar
(basically in BNF notation and is found in the csp.y file) and produces a C routine that can
parse the grammar, called the parser. The parser detects when a sequence of input tokens
matches one of the rules in the grammar and also detects syntax errors whenever the input

doesn't match any of the rules.

49.3  Symbol_cspy.h and symbol_cspy.c description

Symbol_cspy.h is the primary header file included in the csp.y file. This file contains
included C library files, global variable declarations and prototype declarations.
Symbol_cspy.c manages updates to the symbol table as each new symbol token arrives to the
parser from the scanner via a call to the getsym function. Table 6 lists all the functions

associated with managing the symbol table structure.

TABLEG6

SYMBOL TABLE UTILITY FUNCTIONS

Function name | Description

look Takes a pointer to a symbol name and returns a pointer to the entry if it
exists (including found=1 => true). Otherwise, it returns a ptr to the
free entry where it could be inserted.

getsym Used in the parser to pick up the symbols and to "insert" and verify
insertion into the symbol table.

insert Takes a pointer to symbol and returns a ptr to the symbol table entry.
The duplicate_sym pointer passes back: -1 is if a duplicate symbol
exists (afailed operation), O isif the symbol was inserted successfully.

init_table Initializes the symbol table.

print_table Print_table has 2 loops to print (1) index the table, (2) index the linked
list while traversing the links for collided symbols.

dumptable Dumptable prints the contents of the symbol table in a stylized fashion.
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494  Net.cdescription

Thisfile contains two prime functions: (1) net_main and (2) search_net. Net_main isthe

driver function that invokes 12 other utility functions used to build a net hierarchy to capture

the P-CSP specification structure. Once the net hierarchy is completed search net traverses

the net hierarchy in the process of constructing the process lists and co-matrices for each

individual component (i.e., p-node) in the specification. The sub-functions push, pop, peak

and printStack are used to manage the stack which is used to track the nesting of process

compositions. The other functions are responsible for allocating and linking up new nodes

that are generated for every new term in the process algebra. When search_net has

completed, the specification is decomposed. The utility functions arelisted in Table 7.

TABLE7

NET UTILITY FUNCTIONS

Function name

Description

push Puts integers on Stack| STACKSIZE].

pop Returns the integer on top of stack.

peak Non-destructive pop.

printStack Prints the stack contents top to bottom.

linkToSiblings If cur_pnode has sib relation link to the sib.

append Given net[root pointer] append anodeto end list.

dlocate net AllocateaNET_NODE for a PROCESS declared symbol.

allocate Allocate aNODE for a symbol w/in a PROCESS definition.

linkup Link aNET_NODE to a net[root pointer].

searchNet Traverse the net[i]'s to build atomic co-matrices.

updateNet Traverses the net[i]'s to transfer any failure annotations in the symbol
table to the net data structure (in the *n_fail field of NODE).

printNet Given a netNodeptr print the contents of aNET_NODE.

net_init Initializes net_main's global variables.

net_main A (large) switch on sym_type to decide structure of the net.
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Each invocation of the searchNet function requires a pointer to aNODE structure. These
NODE structure pointers are contained in the array syq[] (each i in syq[i] is a PROCESS
declaration). Each PROCESS declaration is represented by a NET_NODE which contains a
net[i] pointing to individual p-nodes (see Figure 36) nested within the process declaration.
The net[i] array contains pointers to related p-nodes (i.e., when they are used in a syqi]
PROCESS declaration). Each p-node instance is represented by a NODE with a name field

for its name (process information is kept in the symbol table referenced by the n_namefield).

495  Prlist.cdescription

In the P-CSP specification, process names are identified during translation and included
in a process list according to their contextual relation in the specification. This file contains
numerous utility functions which are defined in terms of a process list structure. The
process list is a string of symbol names contained in the symbol table, each separated by a
comma and terminated by an eos (end-of-string character). These routines can check if a
process nameisin the list (and its position), put a namein the list, replace a name with a new
name or new list (called insertion), delete a name, count the occurrences of a name, remove
by replacing a name with "*'s", destroy the list (and deallocate the memory), and display the
list. In essence, the process list defines the transition names of the Petri net which are

ordered row-wise in the co-matrix of each Petri net.8

4.9.6  Scoring.c description

This file contains two major functions: scoring and AddFailures. Scoring updates an
integer array with "-1" indicating an input to the current row[i] (atransition) from the current
column([j] (aplace). A "+1" isused to indicate an output from atransition to a place. Given
the number of rows (processes in the process list for this symbol), it returns the number of
columns. Scoring knows what each P-CSP construct should look like in terms of the Petri

net (i.e., it scores coincidence matrix using the canonical trandation rules) by marking the n-

8These routines were devel oped with help from David Sheely (at The University of Texas at Arlington).



60
by-m co-matrix appropriately (i.e., n transitions and m places).

AddFailures is called from the main line code in the parser (csp.y) routine if the "-f"
option was specified on the command line meaning that the ignoreFailures flag is not set.
The routine parses through the process list of the system co-matrix (which is named as
prmatrix), looks up each process in the symbol table and checks if a failure annotation is
stored there. If so it will append a failure transition to the co-matrix and update the process

list for the system symbol.

4.9.7  Expn_cspy.c description

The expn function combines two co-matrices using the following steps: (1) looks up the
symbol name in the symbol table, (2) gets the size (m-by-n) of the co-matrix, (3) recalculates
the mxn for the new (combined) co-matrix, (4) reallocates a new data structure, (5) combines
the two co-matrices into the new one using one of three methods, (6) links up the result back
in the symbol for that particular symbol name. See Appendix C for a complete description of
these expansion algorithms.

Synclink matches transitions in the process list that ook like dt'msgX with dt?msgX by
the following algorithm:

(1) Locate dt'msgX and rewrite! <- :;

(2) Locate dt?msgX and remember its location;

(3) Remove dt?magX transition from a duplicate process list;
(4) Until all messagesin the synclist[] array are located;

(5) Now sort the remembered locations in descending order;

(6) Delete the co-matrix row corresponding to the locations starting from the bottom
up (descending order).

498  Petri_cspy.c description

Thisfile contains the function decodeSys which uses the system (i.e., sys[0]) process list
and co-matrix (these two items are the final product of the composition and clean-up phases
in CSPN) to generate the net() part of the fn_spnp.c file. The net() function gives the CSPL
(i.e., the SPNP language) specification for the stochastic Petri net.
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499 Miscellaneousfile descriptions
Two additional files are the prmatrix.c, and itoa.c files. Given the number of rows and
columns, prmatrix returns a pointer to an empty (zeroed) n-by-m process relation table (i.e.,
the coincidence matrix) used to specify a component Petri net. There is also a print routine
which is designed to print the matrix in an easy to read format. The itoa function returns the

ASCII (i.e., string representation) value of an integer.

4.9.10 Intermediate output filesused for debugging

Numerous intermediate files are created by CSPN. All files are prefixed with the input
file name dot "xxx" where xxx distinguishes the type of file. For example, if the input file (a
P-CSP specification) were named "train” then the output file that contains all of the tokens
generated during the trandlation of atrain specification would be named "train.tok.” Table 8

contains alist of the intermediate files and their contents.

TABLES8

DESCRIPTION OF INTERMEDIATE TRANSLATION FILES

File name Description
fn.tok Lists the tokens passed from the scanner to the parser
fn.dec Output from the searchNet routine (in net.c). Lists the symbols that

were found in searching the net hierarchy, their co-matrix (Petri net
representation) and failure annotation (if any).

fn.dsdl Snapshot of the symbol table after the decomposition phase completes.

fn.epn Lists all intermediate steps taken during expansion of the component
Petri nets into the one system Petri net (i.e., combining co-matrices).
This includes the steps associated with resolving synchronization links
(areduction process) and including failure annotations.

fn.net A key filewhich lists all of the net hierarchy in a staggered format that
shows the nesting and adjacency relationship in 2 dimensions.

fn.dsd2 Snap shot of the symbol table after the expansion process has
completed.
fn_spnp.c This is the CSPL specified Petri net file on which the stochastic

analysis may commence using the SPNP tool.




CHAPTER S

ILLUSTRATION OF THE USEFULNESS OF THE CSPN TOOL

Some men see things the way they are and say, 'Why?. | dream things that never
were and say, 'Why not?
—Robert F. Kennedy

5.1  Combining functional and performance analysis

A simple example showing a translation from the CSP specification into the stochastic
Petri nets (SPNs) is provided to illustrate how performance and reliability analyses may be
obtained. In this way, the merits of a powerful modeling technique using SPNs can be
combined with awell defined formal specification language. The railroad crossing example
was first formulated as a benchmark problem used to compare different formal methods for
specifying, designing and analyzing real-time systems. Although it is both simple and easy
to understand, it is complex enough to illustrate a number of aspects of the modeling and
verification of timed systems. Basically, it concerns apoint at which road vehicles attempt to
cross over railroad tracks unless prevented by the gate which closes when atrain is passing.

The requirements are described in the next section.

5.2  Requirement specification for therailroad crossing

As modeled, the system combines asingle train, a draw gate and a communications link.
The system continuously handles one train at a time by closing the gate when the train is
approaching [Heitmeyer94]. There are two basic properties the system must satisfy.® (1)
Safety property — the gate is down during all occupancy intervals (when the Train is at the

intersection), and (2) Utility property — the gate is open when no train isin the crossing. The

9This model encompasses the environment which includes the train(s) and the gate, as well as the interface
between them. Thus, the gate closes when a train arrives at the intersection and remains closed until the train
completely passes by the intersection.

62
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solution in general terms proceeds as follows:

» Train sends an "arrive" message to the Gate as it nears the intersection and proceeds
towards the intersection.

» Gate, upon receiving the message, closes the gate and remains closed until the train
departs.

» Train sends a"depart” signal after leaving the intersection.
» Gate, upon receiving the signal opens the gate and remains open.

In order to simplify this example we represent multiple interactions between these two

processes, instead of multiple trains interacting with the gate.

53 TheCSP for therailroad crossing

At the intersection, the gate closes for arriving trains and remains closed until the train
has completely passed. The problem can be extended to handle multiple trains (see Appendix
D which incorporates a monitor program), but only one train is specified here in Figure 40.

Train = (InTransit);
(Togate ! arrive — Atlntersection);

(Togate ! depart — Train)
Gate = (Togate ? arrive — dose);

(Togate ? depart — (pen — (Gate)
TrainXing = Train | |{arrive’depart} Gat e

Figure 40. Pure CSP specification of the railroad crossing problem.

Two concurrent processes, the Train and the Gate, communicate by sending and
receiving messages. The Train outputs "arrive" on channel Togate to inform the Gate that it
will soon arrive at the intersection. Upon passing through the intersection, the train sends a
"depart” message to the Gate. The Gate process receives the "arrive" message and closes the
gate. Once closed, the Gate waits for the "depart” message before causing the gate itself to

open. Note how easy it isto identify the sender and receiver connected by the channel .10

10However, there are some drawbacks associated with using CSP. First, CSP as defined by Hoare has no
concept of time. Recent extensions to CSP permit the association of time with actions [see Davies 94 and see 1,
2, 3 TBD and the references therein]. Second, since CSP uses point-to-point communication it is awkward to
describe the case where the Gate process accepts inputs from multiple Train processes.
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In Figure 41 the train and gate processes are specified using the CSP-based language P-
CSP along side the CSPN derived Petri net.

Trai nXing = O
--Two processes Train and Gate consist dt1
--of sequential actions and run ;
--concurrently. Two synchroni zation O
--negs are required to conmand the gate.E i | nTr ansi t O
PROCESS Train = Q Togat e?arrive c——
SEQ : &Togat elarrive @

O

InTransit(),
{Togate ! arrive}, !
At ntersection() : \ dt:arrive

{Togate ! departi}; 4/\,

PROCESS Gate = y
— 1 Aose —
SEQ (i)At I ntersection
{C|Toga;t(e)? arrive}, * Togat e°depart *
osed(), :
{Togate ? depart} : *Togat el depart

pen() } : ' /Q
dt: depart
PARY :

Train(), Gate() {arrive, depart}}.

Figure 41. P-CSP specification for parallel composition of the railroad crossing.

The original CSP specification in Figure 37 provides that both processes repeat their
internal activities continuously. However, given the P-CSP specification of Figure 38, the
resultant Petri net graphically reveals the absence of iteration to provide for the handling of a
continuous stream of trains. To provide iteration, an additional composition is added: namely

Mu.X{PAR{Train(), Gate() (arrive, depart)} — X}. In this case, X is a recursive process
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that provides the link between the dummy transitions dt1 and dt2 shown in Figure 41. The

new net which incorporates iteration is shown in Figure 42.

Trai nXi ng = : @ "M X{}" generated
--Two processes Train and Gate consist ; /_’. ~
: dt X

--of sequential actions and run

--concurrently.
PROCESS Train = %] I nTransi t
) \QEIQI{_E TRUE Togat e?arr i ve#
InTransit(), : —_JTogate!arrive

{Togate ! arrive}, } /
At ntersection(), E
; : \ dt:arrive

{Togate ! depart}};

--END whi l e A

| v v
— - —— d ose
PRG:\EAf“SL(éa';_EUE } y Atlntersection v
SEQ _ 5 Togat e?depart ¥
{Togate ? arrive}, : —

y Togat e! depart

v
Cl osed(), ; \
{Togate ? depart}, 3 /

dt: depart

Open() }; . . ;
--END whi |l e dtX is generated fromthe "M. X{} @
construct. Actually, the "—X' part v
M. X{ is provided for readability since Qpen ——
iDAR{ in this case the cycling is taken

by defaul t.

Train(), Ljﬁdt{

Gate() {arrive, depart}} —X}.

Figure 42. P-CSP specification for the (tail type) recursive composition.

55  Semanticsof the Petri net for therailroad crossing

The train and gate operate concurrently and independently. However, for the system to
meet its functional requirements both components must synchronize. To accomplish their
missions (i.e., passing through the intersection and holding traffic to permit the train to pass
safely) they use the channel "Togate" to synchronize. The synchronization described by the
CSP may not readily reveal the potential race hazard that is more detectable in the Petri net.
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The Train process could arrive to Atlntersection before the gate closes!11 To avoid this
unsafe state an extra "ok" gate closed synchronization message is used. In Figure 43 the
messages are represented by transitions dt:arrive, dt:ok and dt:depart. The prefix "dt:"

denotes a"dummy transition” that fires with probability one (i.e., an immediate transition).

CSP
Train =
(I'nTransit);
(Togate ! arrive — Togate ? ok
— Atlntersection);
(Togate ! depart — Train)
Gate =
(Togate ? arrive — Cose
— Togate ! ok);
(Togate ? depart — Open — (Gate)

TrainXing = Train || arive ok, depart; CAtE

P- CSP
Trai nXing =
PROCESS Train =
SEQ}
InTransit(),
{Togate ! arrive},
{Togate ? ok},
Atl ntersection(),
{Togate ! depart}};
PROCESS Gate =
SEQ}
{Togate ? arrive},
C ose(),
{Togate ! ok},
{Togate ? depart},
Open() };
M. X{
PAR{ Trai n(), Gate()
{arrive, ok, depart}}—=Xx}.

— %

# InTransit

Togat e?arrive F
&1 Togatel arrive
&

v v
C——— Togat e?0k dose——
v
Togat e! ok :}
.

%
G

Togat e?depart V
— ]

+ Atlntersection s
v
:} Togat e! depart
.
\ dt : depart
6B

oen é

v
‘dtz/

Figure 43. CSP and P-CSP specifications which address race hazard.

11This is possible because after the synchronization on the "Togate" channel occurs (i.e., the "arrive" signal is
received), the "Atlntersection” transition may fire before the "Close" transition denoting the case where the train
arrived sooner than the time needed for the gate to close.
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The gate will not begin to close until it receives the "arrive” message. First, the train
must fire the transition "InTransit,” and then send the "arrive" message by firing
"Togatelarrive.” In turn, the gate must be ready to receive the message by firing the
transition "Togate?arrive." After all these actions have occurred, the gate may receive the
command to close. The close command may occur (i.e., firesat some definite rate) when a
token is on place "p13." This will occur immediately after the synchronizing "dt:arrive"
transition has been enabled (tokens on "p4" and "p12") since this transition is immediate
(consumes no resources). The marking with one token each on places p14 and p12 which
enable the "dt:arrive" transition to fire.

In following the logical flow of feasible markings, we see that it is impossible for the
train to proceed to the "Atlntersection™ transition until the gate is closed and has fired off a
message to the train: "ok" its safe to proceed. We can also notice that the same applies for
the gate opening process by virtue of the transition "dt2" which essentially forces the two
processes to synchronize. We could re-label the transition as "Motorist-Proceed” (perhaps).

In review, the semantics of synchronization provided by the revised CSP specification
forces the train to wait until the gate closes to preserve the safety property.12 Moreover, the
"dt:ok" transition is needed because, after firing the "dt:arrive” transition (i.e., which enables
the Togate?ok and Close transitions), the train may reach the intersection faster than the gate
could close (e.g., "Atlntersection” fires sooner than the transition "Close").13 Consequently,
with regard to this approach, we must ask what other possible failures are there that may

cause aviolation of the safety property.

55.1  Enumerating all possible failuretransitions
In the Petri net of Figure 44, al of the possible failures are identified with respect to the

activities described in the CSP specification. Transitions labeled with "ft:process-name” are

12\We have studied the case where multiple trains may arrive at the intersection. In such cases, it becomes
necessary to have a monitor arbitrate (see Appendix E for abrief look at the solution to such a case).

131 we assume the gate always opens and closes sooner than the time it takes the train to reach the crossing, the
PN can be viewed as hazard free (except for the possibility of the gate having mechanical failure [unsafe]).
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failure transitions. Dummy transitions are assigned a probability one and do not have any
associated failure transitions. It is interesting to note, that instead of transitioning to place
"p20" as shown in Figure 44, it would be possible to separate distinct failure types into
different "absorbing" places so that the MTTF values (or the failure rate) associated with

each type of failure mode can be separately denoted and computed.

0
dt X

/ )
ft:InTransit == :InTransM
Loconotive failure

Togat e?arriver—— ——ft: Togat e?arri ve

/ ; + Comunication failure
ft:Togate!arrive —— :}Togate'arrlve

Communi cation failure
.\

ft: Togate?ok [—"3 1 Togat e?ok Qose————ft:dose
Cormmuni cation failur V v Mechani cal failure

Togat e! ok ?1 ——ft: Togat e?0k

Communi cation failure
/
) ¢
/ Togat e?depart ¥ N

ft:Atlntersection— ° —— —— ft: Togat e?depart
Loconotive failure V Atl ntersection [ Comuni cation failure

v
ft:Togate! depart — ] :Togat e! depart

Communi cation failure

dt: depart

Qpen —— ft: Qpen

\ 4,%2

Figure 44. Railroad crossing Petri net showing all possible failure transitions.
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For example, we could distinguish three types of failures based on the Petri net of Figure
44: (1) mechanical failures where the gate may fail to close or to open properly, (2)
communication failures —the sending or receiving of signals could be lost, and (3) timing
related failures where the train takes less time than the time taken for the gate to close. We
can then distinguish three separate failure places, each to be associated with one of the failure
types. The distribution of tokens in the various places of the Petri net defines the markings of
the Petri net. Asdescribed in Section 3.3, we consider atransition enabled if each of itsinput
places contains at least one token. An enabled transition may fire removing a token from
each of its input places and depositing a token in each of its output places. In stochastic
analysis actions are associated with an exponentially distributed times to indicate the amount
of time needed for that action to complete. Thisfiring time is the time that elapses form the
point at which the transition becomes enabled to the point at which the transition actually
fires. Thefiring of atransition causes the redistribution of the tokens in the stochastic Petri
net resulting in a new marking.14
The set of all such markings together with the transitions among them is called the
reachability graph. The states in the reachability graph are isomorphic to the states in a
continuous (discrete) time Markov chain. We may identify unique markings that may lead to
a failure and those failure transitions are then associated with an absorbing state in the
Markov state diagram. Different markings potentially lead to different types of failures (e.g.,

amechanical failure or some other such failure).

5,5.2  Enumerating safety critical failuretransitions

We discussed the groupings of failures based on the similarity of their failure
mechanism. Here we are now concerned with the manifestation (or impact) that a given
failure has on the system (i.e., whether the failure may have catastrophic consequences or

not). This categorization is important for determining for instance the cost or the risk that a

14For example, the time to failure of ft:close is known to be exponentially distributed with rate A 1 (lets say).
Thisismodeled in the stochastic Petri net by associating a firing time with each of the transitions.
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given failure presents to its users (and/or developers). In this section the discussion will be
based on the railroad crossing that is discussed above which has a race hazard resulting from
a'"runaway" train. The states in Figure 45 (which are based on the Petri net pictured at the
right) demonstrate that there are two unique manifestations of failures (i.e., critical and non-
(safety)-critical). In considering the criticality of timing, we see that the slow firing of
transition Close makes it possible for the train to enter the intersection before the gate has
properly (or completely) closed. Similarly transition Open makes it possible for the train to

have departed and still, the gate is not open.

(O~G ‘
/ \ Non-critical condition: é InTransit
@" > Train departed ! v
but gate is still closed : ©) Togate?arri ve?
®_'® Critical condition: Train at ! é Togatelarrive
intersection but gate is still ! v
open @

Markings: pL p2 p3 p4 p5 p6 p7 p8 p9 pl0 pil pi2 pi3 pi4 pi5 Description of marking: ' \ dt:arrive
MO: 1 000 OOOOOUOUO OO 0 O Train gone (idle state), gate open. ! A
M1: (0100 00O0OO0O1 0O O O O O 0 Train gone non-idle gate, gate open. I & @
M2: (0010 00001 0O O O O 0 O Train in transit (approach), gate open. i v a ¥V
M3: 0001 00001000 0 0 0 Train sends arr msg, gate not revng. V== 0s€——
M4: (0O1 00 00O0O0OOT1O0O0OTOTO O Train gone, gate waits arr msg. ' ¥ Atlntersection v
M5: (0 010 0000011 O0O0O0 0 0 Train in transit, gate w aits arr msg. | ®

M6: ©O 001 00O0OO0ODO0OT1 0 0 0 0 0 Train sends arr msg, gate w aits arr msg. | v Togat e?depart ¥
M7: 0O 000 1000O0OO0O1 0 0 0 0 M sg synchronization complete. | == —
M8*: (0O 000010000 T1TUO0TO0O0 0 Train passing intersect, gate open. ' y Togat e! depart

MO*: OO0 00D 00100010 0 0 0 Train departing, gate open. @ @
M10: (0O 000 1O00O0OO0OTO0OTOTZ1O0 0 O Train approach, gate closed. ' \ /
M11: (0O 000 1 00O0OO0OUOTOTOT1 0 0 Train approach, gate waits dprt msg. i dt: depart
M12: (0O 000 0O0O10O0O0OO0OTOTZ1O0O0 O Train at intersect, gate clos ed. '
M13: (0O 000 010O0O0OO0OUOUOT1 0 0 Train at intersect, gate w aits dprt msg.

M14: (0O 000 0O0O0O1O0O0OTOOTOTZ1O0 0 O Train sends dprt msg, gate not receiving. Open é
M15: 0O 000 O0OO0O1ITO0O0OTUO0OTO0OTUO0OT1I 0 0 Train sends dprt msg, gate w aits for msg.,

M16: (000 0O0O0O10O0O0 OO 1 0 Msg synch complete, gate closed. ! ()
M17: © o000 O0OO0OO0OI1ITO0TUO0OTO0OO0O O0 0 1 Msg synch complete, gate open. ! 4{
*Critical condition: Train at intersection but gateis still open |

Figure 45. Markings and requisite Markov state transition diagram.

Missing from the Petri net of Figure 45 are transitions to reflect physical, communication
related or mechanical failures. In our analysis, we do assume the existence of such failure
transitions (and corresponding places) as discussed in the previous section (5.5.1). The CSP
specification (and the corresponding Petri net) can be augmented to show how such failures
should be handled. For example, the communication failures can be handled using time-out

and re-transmit techniques. But still, should the gate fail to close, the question becomes
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what can be done to possibly avoid a catastrophe. Perhaps an audible and visual alarm would
alert unsuspecting pedestrians and traffic. Such fault-tolerant and fault-handling actions can
be specified both with the CSP and Petri net models. However, they become more obvious by
examining and analyzing the stochastic Petri net. The cost of providing fault-tolerance

should be traded-off with the required level of reliability.

5.6  Parametric Sensitivity Analysis

Using conventional techniques such as those used by stochastic Petri net tools (e.g.,
SPNP), discrete and continuous analyses can be performed.1> For the purpose of this
presentation, we have computed reliability of the train crossing with different failure rates (or
probabilities) and service rates (e.g., speed of the train, rate at which the gate mechanism
operates). The values used in this paper (and hence the results of the analysis) are only for
illustrating the approach. It is not our intention to attach significance to the failure rates,
MTTFs obtained, or the probability of detected and undetected failures. These analyses are
useful in exploring different fault-handling mechanisms and the cost-benefit of providing

fault tolerance. The following subsections outline the discrete and continuous anal yses.

5.6.1 Discrete Analysis

Table 9 presents the probability assignments for our test runs of the train crossing
ignoring deadline related failures (i.e., Ptf= 0). Four different trials were run with differing
failure probabilities where Pc= communication failure, Pm= mechanical failure (either in
opening or closing the gate). In all runs Pm > Pc, and in order to reduce the probability of
critical failure in runs 2 - 4, we set Pm(close) < Pm(open) by the factors of 100, 3 and 5
respectively. Using fault-tolerant methods such reliability improvements are possible.
Consequently, the probability of critical failures (Pcf) are reduced by the factors of 17.573,

1.975 and 2.974 respectively. Such analyses showing the magnitude of improvement

15The classic steady-state solution method for stochastic models that maps GSPN models to CTMCs is
compared with a method based on DTMCsin [Ciarsdo89]. The DTMC method is shown to perform better.



DISCRETE ANALYSIS (Pif = 0)

TABLE9
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Desc. |Run1 Run 2 Run3 Run 4 Desc. |Run1 Run 2 Run 3 Run 4
R .0001 .00001 .0001 .00001 Pcf 0.5026 0.0286 0.2544 0.1690
Pm(clo) | .01 .00001 01 .001 Pncf 0.4974 0.9714 0.7456 0.8310
Pm(op) | .01 001 03 005 MTTF | 49026 | 9524.07 | 24819 | 1656.21

associated with a given design improvement can be useful in deciding what level of fault

tolerance is appropriate. Note, Pncf is the non-critical failure probability and the MTTF is

given in the number of discrete steps (or time units).

5.6.2

Continuous Analysis

The results of the continuous analysis are shown in Figure 46. These results are based

on the CTMC shown in Figure 45. The mechanical (Am), communication (A¢) and timing

(v) failure rates are shown associated with their transition arcs. The trade-off between the

rate of train arrivals (u1), speed of the train (u3), service rate of the gate mechanism (ug, w9)

and the failure rates were investigated.
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The unreliability of communications do not significantly impact the MTTFs because we
have set those failure rates much lower than the rates associated with the gate's open/close
mechanism by afactor of 1,000 (i.e., Am = 0.0001 > A¢ = 0.0000001). Mechanical failures
and the possibility of the gate not closing (opening) in time (before the train arrives at the
intersection) are assumed to be greater. In Figure 46 an interesting relation is evident. We
observe that, if the train's speed tends to bring it to the intersection sooner than the gate can
close, then an improvement in the gate's mechanical reliability doesn't really help! To
improve the overall system's reliability it is more important to provide the additional
synchronization between the train and gate processes as described in Section 5.5 (and Figure
43), so as to avoid the possibility of having the gate miss its deadline (t5). Alternatively, the
train may signal "arrive" much sooner, allowing ample time for the gate to close.

In general, it is important to see how much the least reliable entity impacts the overall
system reliability. In Figure 46, there are incremental improvements seen in the reliability of
the system at 10,000 time units from 10-40 to 10-5 for various values of t5 (which reflects
the probability that the train arrives before the gate closes). The next most significant gainin
system reliability comes when the gate's mechanical failure rate is improved by a factor of
ten (note the difference between run 6 and 7 in the graph). In this case, the MTTF improves
by 6 times while the corresponding system reliability improves significantly from ~2.6x10°
to ~3.4x10°1,



CHAPTER 6

CONCLUSIONS

Things which matter most must never be at the mercy of things which matter least.
—-Goethe

6.1 Conclusion

The objective of this work was to show how CSP specifications can be translated into
SPNs for the purpose of reliability and performance analyses. This objective was met with
the construction of the CSPN tool. Such translations can give (1) insight into the feasibility
of meeting non-functional requirements, (2) help to identify the best candidate design, (3)
help to identify failure modes, and (4) to provide a means for describing how fault handling
mechanisms can be incorporated as a part of the CSP specification. This approach enables
the stochastic properties of the system specification to be ascertained while allowing the
parameters used in the analysis to be formally captured in the P-CSP design specification.
Subsequent analyses can then be run without having to rewrite all of the pertinent values.
Only those parameters that are identified as critical in terms of their impact to the integrity of
the overall system (i.e., sensitivity analysis) need be perturbed. The parameters (e.g., timing
delays, probabilities, and rates) which are selected for sensitivity analysis are then considered
in terms of their impact on system reliability and performance. In addition, these same
parameters can be correlated to cost as is show in [Sheldon95]. In general, this approach
provides the designer with an analysis tool that facilitates judicious cost-benefit trade-offsin
terms of the how structural changes in the design specification will satisfy system's
requirements (e.g., providing fault-avoidance and fault-tolerance).

A textual language for CSP specifications was designed. A software tool was
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implemented for translating the CSP specifications into stochastic Petri nets. The Petri nets
are coded in the form of a coincidence matrix. The graphical representation of the resulting
Petri net can be viewed using the dot tool [a Unix filter for drawing directed graphs].16 The
system coincidence matrix is converted into afile format needed for analysis using SPNP.

The tool has been tested using a diversity of process compositions and nesting of
compositions. Some validation testing has been employed with the goal of determining how
similar the resultant Petri nets are to those which motivated the CSP specification
[Trivedi93]. Thus, some well known example Petri nets were first manually coded into P-
CSP specifications and then translated back into Petri nets using the CSPN tool. The original
Petri net was then compared to the translated Petri net. Except for additional dummy
transitions and places which are the artifacts of the canonical transglation rules, the Petri nets

which were generated by the CSPN tool were equivalent to the original Petri nets.

6.2 Futureplans

This work can be extended to incorporate a broader scope of translations and the
characterization of properties other than structural that are useful for error avoidance, fault
tolerance, detection of deadlocks and unsafe behaviors, and timeliness. Other issues include
(1) ease of use (e.g., GUI) including mechanisms for detecting characteristics of the Petri net
that can be used in automaticallyl’ parameterizing the SPNP formatted file, (2) relating the
analysis results back to the original specifications in a more rigorous and formal way, (3)
expanding the language to incorporate some of the ideas of real-time CSP and others, (4)
developing some state reduction techniques for the CSPN (e.g., combining dummy
transitions with tangible transitions) and (5) validating our approach by applying the method

to larger examples and/or area system.

165ee Drawing graphs with dot by Eleftherios K outsofios and Stephen C. North at AT& T Bell Laboratories.
17Currently, CSPN uses a hard coded set of defaults that define the parameters part of the SPNP output file.
Those defaults can be changed interactively using the "-v" verbose mode flag on the command line. For
instance, in nets which generate absorbing states it only makes sense to run atransient analysis.
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CSP-TO-PETRI NET CANONICAL TRANSLATION DIAGRAMS
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In this appendix a complete collection of standard trandlations from classic CSP and P-
CSP to Petri nets is provided. The CSP primitives include STOP, SKIP (not included in
CSP), recursion, parallel, deterministic and nondeterministic choice, hiding and sequential
compositions. Thearrow ( — ) is aso shown in various compositions.

Figure A-1 shows STOP which performs no action and never terminates (like deadlock)
and SKIP which performs no action and terminates are shown at the top. In the center of
Figure A-1 simple recursion is presented (note that P-CSP incurs an extra dummy transition
which is an immediate non-timed transition). In the bottom, a parallel composition is shown
and P-CSP uses two dummy transitions.

Figure A-2 shows DC (deterministic choice) where P-CSP employs three dummy
transitions. In the center NDC (nondeterministic choice) is shown which also uses three
dummy transitions. Note that the sdt1 and sdt2 dummy transitions are given as such because
associated with each is a (by definition) probability. In the bottom of this figure, a sequential
composition using the arrow is shown. The CSP trandlation for hiding is also shown (thereis
no P-CSP equivalent at thistime).

Figure A-3 shows Mu.X (recursion where "X" can be any character). Compare the
various configurations and notice that the translations are comparable to those of Figure 13
which defines the way CSPN translates P-CSP. Figure A-3 provides equivaent but reduced
trandations. The top half shows tail recursion and the bottom show a variation of such which
cuts the tail recursion. Recursion using the CSP prefix notation is desirable because it
describes the entire behavior of a process that eventually stops. For example, it would be
tedious to write the full behavior of some systems which cycle over and over (e.g., atrain
crossing or vending machine). Recursion is useful for describing repetitive behavior patterns
using much shorter notations. Such systems should not require a prior decision on the length
of life of an object in order to permit the description of objects that continue to act and

interact with their environment indefinitely.
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Figure A.4 shows two varieties of synchronization. The first (top half) is blocking send
and receive. This forces synchronization to occur while preventing either participant from
moving forward until the other catches up. The CSPN tool has adopted this method because

the interpretation of chnl!msg combined with chnl?msg was more natural (i.e., closer to the

' STOP SKIP (not defined in CSP)
Classic CSP: P-CSP: P-CSP: @ o @
@ T (o Performs 1 SKI P + SKI P
Performs no ' no action I
action and never i —— STCP STOP | and Q Q
terminates! terminates.
Recur si on

Classic CSP: P-CSP: @
uX. (b —=X) Mu. X{b() } %

@ X

— 1 b

Paral | el Conposition
Classic CSP: P-CSP: @
all b PAR{a(),b()} |

Q acts oy
L4 E s
O O SN

Figure A.1 Trangdationsfor (top) STOP / SKIP, (center) recursion and (bottom) PAR.
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Det erm ni stic choice conposition
Classic CSP; allb P-CSP; DC{a(), b()}
from environment from environment
from environment from environment Q Q
@, @ : :
\ '/b dt 1 dt 2
—a
T ? 9
O O v b
+dt 2
O
Nondet erm ni sti c choi ce conposition
Classic CSP: P-CSP: @
allb NDC{ a(), b()} - \
T sdt 1 T sdt 2
A ' o
g dt 1
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ClassicCSP. a—b P-CSP. a—b ClasscCSP. (a—b—c)\b)
O, ® O,
e e e
O O O
v v v
=" S0 5
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Figure A.2 Trandlationsfor (top) DC, (center) NDC and (bottom) arrow and hiding.
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The two recursive trandations shown here (top and bottom) are the same translations as
those shown in Figure 13 except those shown here are reduced. In thetop figure, there
are two fewer transtions and one less place. In the bottom figure, there are also two

fewer transitions and two fewer places.

Figure A.3 Trandation of recursive compositions in areduced format.
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Synchroni zati on using input and out put actions

C|aSSIC CSP: Train
Train= Pictured at right T

(InTransit); chnl ! arrive = Chnl ? arrive

(Chritarrive Atintersect

(Chnl!depart +Train);

Gate

Gate=

(Chnl?arrive —Closg);

Chnldepart —Open —Gate);
( P P ) Synchroni zati on
Event

Nonbl ocki ng Synchroni zati on using i nput and output actions

Classic CSP: Trai

. rain
Train= Pictured at right .
(InTransit); Chnl ! arrive

(Chnitarrive —Atintersect);

(Chnl!depart +=Train);

Gate=

(Chnl?arrive —Close);

(Chnl2depart —Open —Gate);

Atlntersection l Chnl ? arrive

Asynchronous
Communication
Event

Synchronization is syntactically the same for both CSP and P-CSP. There are 2 possible
tranglations that could be used. In the Petri net fragments shown, the train sends and the
gateisreceives. The actua synchronizing action (dt:arrive) is an immediate transition
and itsfiring is necessary before either process can proceed. In the bottom of the figure
the sending process (Train) is not blocked and can proceed (this 2nd type of
synchronization is not used by the CSPN tool).

Figure A.4 Trandations showing blocked and non-blocked send synchronization.
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Figure A.5 Combined trandations for parallel, sequential and nondeterministic choice.
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inherently synchronous semantics of CSP) and more readable. Also, using the notion of
hiding in CSP, both actions (input and output) can be replaced by tau (like "\b" in Figure A.2
bottom). In the bottom half (of Figure A-4) a message is output (on channel "Chnl") while
processing continues (a token is distributed to place pk) for the sending process independent
of whether the message is received. On the receiving end, the transition that models the
activity of message input (on the channel "Chnl" is this case) fires only after both places pk
and p; have tokens. The interpretation of this type of communication is that the receiver must
wait for the message from the sending process (the Train in this case). Thisis known as a
blocking receive.

Finally, in Figure A-5 a number of larger compositions are collected to illustrate a
combined parallel and sequential composition that has synchronization (blocking send and
receive). The CSP tranglation uses 5 transitions and 8 places while the P-CSP translation
uses 7 transitions and 10 places. In the bottom half of Figure A-5 two nondeterministic
choice constructs are composed in parallel with an action "a" prefixed to the one and an
action "a" suffixed to the other. Notice that the direct CSP trandlation only uses 6 transitions

and seven places while the P-CSP trandlation uses 12 transitions and 12 places!
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THE LEX AND YACC SPECIFICATION OF THE PARSEABLE CSP
(GRAMMAR GIVEN IN BACKUS NORMAL FORM)
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B.1 Lexregular expressions
delimter [ \t\n]
whi t e_space {delimter}+
letter [A-Za-z_+\ - %
digit [0-9]
identifier {letter}({letter}|{digit})*
i nt eger {digit}+
comment B
B.2  Yaccgrammar specification
1. System production (start symbol = "system™).
system ldentifier Equals processdeclist processlistl Dot;
2. Processdec used to declare process names.
processdec: PROCESS Identifier Equals processlistl Sem col on
3. Processdeclist for listing multiple declarations under system.
processdeclist: EnptylList | processdeclist processdec;
4. Process definitions
process:
STOP
| LeftBrace stntlist RightBrace
| PAR LeftBrace processlist2 synclist R ghtBrace
| SEQ LeftBrace processlistl RightBrace
| NDC LeftBrace processlist3 RightBrace
| DC LeftBrace guardedprocl st R ghtBrace
| Mu Dot ldentifier LeftBrace processlistl R ghtBrace
| processcall
5. Failable describes the format of an annotation (rate or probability).
fail abl e:
FAIL LeftParen rEqual s Real Ri ghtParen
| FAIL LeftParen pEqual s Real Ri ghtParen
6. Probable describes the format of a probability annotation.
pr obabl e:
PROB Left Paren pEqual s Real Ri ghtParen
7. Servable describes the format of a service rate annotation.
servabl e:
SERV LeftParen rEqual s Real Ri ghtParen
8. Biprocess distinguishes an annotated process and permit such on any process.
bi process:
process | process Colon failable
| process Col on probable
| process Col on servable
9. Processlistl permits one or more processesin alist.

processlistl: biprocess | processlistl Conma biprocess;
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15.
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19.
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22.

23.

24,
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Processlist2 permits no less than two processesin alist.

processli st 2:
bi process Coma bi process | processlist2 Comma bi process;

Processlist3 permits no less than two processesin alist and specialized for NDC.

processli st 3:
bi process Coma bi process | processlist3 Comma bi process;

Synclist used with PAR to indicate synchronization messages.
synclist: EnptyList | LeftParen anyvarlist Ri ghtParen;

Anyvar used to permit concise grammar of the rule for lists.
anyvar: bool eanvar | vari abl e;

Anyvarlist specifies an arbitrary number of anyvar in alist.
anyvarlist: anyvar | anyvarlist Comma anyvar;

Statement list allows an arbitrary number of statementsto be listed.
stmtlist: stnt | stntlist Comma stnt;

Statements can COMpPOSe a Process.
stnt:
i mplication
| expression
| 1nput
| out put
| SKIP;
Implication (a statment event -> action [for P->Q use SEQ{ P(),Q()}].
i mplication:
stm Arrow consequent | variable Arrow consequent | biprocess;

Consequent belongs to the right hand side of an arrow.
consequent: variable | biprocess;

Processcall is an instance of adeclared PROCESS and is simply set to Identifier().
processcall: ldentifier LeftParen R ghtParen;

Assignment is covered by expression in integer

I nput
i nput: channel InSym vari abl e;

Output (note an operand is an integer or boolean expression).
out put: channel Qut Sym operand;

Guarded processis defined for use in the guarded process list.
guar dedprocess: guard bi process;

Guarded process list

guar dedpr ocl st :
guar dedprocess | guardedprocl st Comra guar dedprocess;



25.

26.
27.

28.

29.

30.

31

32.

33.
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Guard us used to provide for choosing an alternate in a determinstic choice (DC).
guard: i nput

| bool eanexpr AND i nput

| bool eanexpr AND SKI P

Recursive definition is defined in the definition of processes (see Mu).

Channel is matched by paring ainput message with an output message.
channel : ldentifier;

Variable
vari able: ldentifier;

Boolean variable (AtSym to distinguish a variable from a boolean variable).
bool eanvar: At Sym ldentifier

Expression
expression: integerexpr | bool eanexpr | relational expr

Boolean expression.

bool eanexpr:
bool eanvar
| TRUE
| FALSE
| bool eanexpr AND bool eanexpr
| bool eanexpr OR bool eanexpr
| NOT bool eanexpr
| bool eanvar Var Asgn bool eanexpr

Relational expression.

rel ati onal expr:
oper and LESym oper and
| operand LTSym operand
| operand EQSym operand
| operand NESym oper and
| operand GESym operand
| operand GISym oper and;

Integer expression.
i nt egerexpr:
operand Pl us operand
| operand M nus operand
| operand Star operand
| operand Sl ash operand
| operand Var Asgn operand
| M nus operand;

Operand.

oper and:
I nt eger
| variable
| integerexpr
| relational expr;



35.
36.
37.
38.
39.
40.
41.
42.
43.

45.
46.
47.
48.

Monadic operand (never used).
Dyadic operand (never used).
Integer isdefined in lexer.
Digits are defined in lexer.
Digit isdefined in lexer.
Declaration (never used).
Type (never used).

Selection (never used).
Conditional (never used).
Option (never used).

Loop (never used).

Relational operator (never used).
Timer (never used).

Hide (never used).
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This appendix presents five algorithms. The first chooses one of three methods of expansion
(Section C.1), the 3 expansion methods (Section C.2-4), and ‘expand’ which combines two
matrices into one (Section C.5),. First, the variable definitions are presented immediately

below: Note, the user defined types are found at the end of Appendix C.

/* * * % *x * % * *x *x * *x * *x * * *x * *x * *x * * *x * *x * * *x *

* Three matrices are involved: C = A <- B where "<-" neans
* "is inserted into by." So Ais the original matrix, Bis
* the matrix which is poured and Cis the new matrix that

* hol ds bot h conbi ned.

*/
i nt orA, rA, /* orA X ocAis size of A (original)*/
OCA, CA, /* TAX cAis size of C (new) */
rB, cB, /* rBx cBis size of B (pored) */
rib, rub, /* B row | ower and upper bounds in C+/
cl b, cub, /* B colum | ower and upper bounds in Ct/
rlbA, r ubA, /* A row | ower and upper bounds in C+/
cl bA, CubA; /* A columm | ower and upper bounds in Ct/
cur Lnkl ndx =0, /* Current link index */
r owMar k =0,
col Mar kRnht = 0,
col Mar kLft = 0,
Bf | ag = FALSE_,
Af |l ag = FALSE ,
p_matrix A = NULL,
B = NULL,
C = NULL;
FI LE *epn,
voi d prt Expn( FI LE *epn); /* Prototype */
voi d expand( FI LE *epn, int rnj; /* Prototype */
char *syncl i nk(FI LE *epn, entryptr s); /* Prototype */
voi d expn(FILE *epn, int cpi, netNodeptr nnptr)
{
i nt e, f,i,j,rowcol,link,
, /* k nunber of nodes in this list */
typ =0,
t hi nA =FALSE_,
synt here =0; /* Bool ean: |s synbol there? */
nodept r p =NULL,
cur_p =NULL,
q =NULL;
entryptr sO =NULL,
sl =NULL;

char *cal | =NULL;
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C.1  Algorithm for choosing the correct expansion method

k = (nnptr ->numNodes);

while (((p=(nnptr ->net[--Kk]))

s0 =

ook (p ->n_name, &synthere);

if (symhere < 1) {
fprintf(epn,"\nExpn: Synbol % not found!",p->n_nane); exit(1);

fprintf(epn,"\n\nSearching |inks of net[%],

/* kis now 1l nore than needed */

Di spl ayProcessLi st(epn, 0, sO->p_pl);

cur_p = p;

= NULL) && (k > -1)) {

synbol : %", k, sO ->nane);

/* Skip over the head node (a pnode) */

if ((p=p->link) == NULL) fprintf(epn,"\nExpn: No sibs for this pnode!");

el se {

cur Lnkl ndx=0;
(a=p; g!=NUL g=gqg->1link) {
cur Lnkl ndx++;

typ = g->n_type,
fprintf(epn,"\n%. Synbol: %,

/* There are three cases where an expansion is appropriate:
(1) Node type is 5-9 (PAR, SEQ NDC, DC, M)
(2) Node type is 10 and cpi=0 (cpi is
Node type 10 indicates an instance of a previously defined
process known as a process call
(3) Node type 11 is really type 10 except it was 1lst encountered

for

*

= %k X X 3 X %

/
f

in "PROCESS symnbol

Type: %

', curLnkl ndx, g->n_nane,typ );

current process index)

, thus was narked as type 11

((typ > SKIP_PROC) && (typ < PROC_CALL)) || (typ == STMI_LIST) []
(t ==0)) ||

(typ == PROCESS_DEC)) {

printf(epn,"\nSynb % not found in synbol table!",q ->n_nane);

(
((typ == PROC_CALL) && (cp
sl = look (q ->n_nane, &synthere);
if (symhere < 1) {
f
}
el se {

/* * * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * *x * * *x * * *

* This logic determ nes the size of

*/

rA = s0 ->rsize; /*
cA = sO ->csi ze; /*
orA=rA /*
OCA= CcA; /*
rB = sl ->rsize; /*
cB = s1 ->csize; /*

/* * * % *x * % * % *x % *x *

* Check if the B Matrix is
*/
if ((rB==20) || (cB==0)

fprintf(stderr,"\nln expn[B]:

Row si ze
Col size
Save t he
Save t he
Row si ze
Col size

the matrices invol ved.

of A */
of A */
original Rsize of A */
original Csize of A */
of B */
or B */

* * % *x % *x * % *x % *x * * *x * *x * *x *

nul | and

if so abort the expansion.

|| (sl->p_prm== NULL)) {

fprintf(stderr,”"\n% may have not
fprintf(stderr,"” Expansion nust

exit(1);

% has null matrix!", g->n_nane);

been decl ared!", g->n_nane);

be aborted ...\n\n");

/* * * *x % * *x * * *x * * *x * * *x * * *x *x * * *x * * *x * * *x * * %

* Rem Bis inserted into A (A<-B (or Ais expanded by B)
* Thus the following logic sets the stage for an expansi on

*/
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fprintf(epn,"\n\nExpansi on includes the follow ng:");

A =5s0 ->p_prm

fprintf(epn,"\n\nA %", sO->nane);

Di spl ayProcessLi st(epn, 0, sO->p_pl);
print_prn(epn, A sO->rsi ze, sO->csi ze) ;

B =sl1 ->p _prm

fprintf(epn,"\n\nB: %", g- >n_nane);

Di spl ayProcessLi st(epn, 0, sl->p _pl);
print_prn{epn, B, sl1->rsize, sl->csize);

/* * * % *x * *x * *x *x % *x * *x * * *x * *x * *x * * *x * *x * *x * * *x *

* Calc size of the new C matrix (unless B matrix is null)
*/
thi nA = FALSE ;
rA = rA+(rB-1);
if (AJorA-1].p_row ocA-1] > 0)
CA = cA+(cB-2);
el se
if (AlorA-1].p_row ocA-1] < 0) {
CA = cA+(cB-2);
thi nA = TRUE_;

}
el se
fprintf(stderr,"\nAlorAl[ocA] = 0! Aborting expansion ...");
/********************************
* Create the new matrix Cthat A and B will be conbined into.
K o e e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
*/

C = prmatrix(rA cA;
fprintf(epn,"\n\nC. A<-B is a new (%lx%) Matrix",rA cA;

/* * * % % * *x % % *x * % *x * % *x * % * *x % * *x * * *x * * *x * * *

* Determ ne the rowhark where expansi on begins. The rowvark

* tracks the place in Athat will be replaced. sO0->p pl is the
* process list of A g->nane is the process who will be replaced.
* Determine where that is in the co-matrix (0 =1st position).

*/

r owMar k=pr ocPosi ti on(s0->p_pl, g->n_nane);

if (rowvark == -1) {
fprintf(stderr, "\ nrowvark undetern ned!");
exit(1);
[* - - - - - - G B T Y |

/* * * *x k* * *x % * * *x % * *x * % *x * % * *x * * *x * * *x *

* * %
* Use Method | if B goes into Upper Left corner of C
* * *

*x * * % % *x * * *x * * % % *x * * % *x *x * * % *x *x * * * */
if (rowvark == 0) {
fprintf(epn,"\n\nRunning Method 1:\n----------------- "),

SEE SECTION C. 2 FOR METHOD 1 LOG C

} /*fi use Method 1 */
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el se {

O < w5 T
/*******************************
* Use Method Il if B goes into Lower Right corner of C

* A goes into Upper left corner of C

*

/

if (rowmvark == (orA-1)) {

fprintf(epn,"\n\nRunning Method 2:\n----------------- ");

SEE SECTION C. 3 FOR METHOD 2 LOG C

[*fi use Method Il */

el se {

J* - - = - o o o 4 4 4 4 - - LgL3B>- - - - - e 4 - e - - e
* *x % *x * *x * % *x % *x * *x * *x * * *x * *x * *x * * *x * *x * * *
* Method I11: all other cases B goes in center of C
*/
fprintf(epn,"\n\nRunning Method 3:\n----------------- ");

SEE SECTION C. 4 FOR METHOD 3 LOG C

}/* esle in all other cases */
}/* esle */

/* * * % *x * % * % *x % *x * * * % *x * *x * * *x * *x * *x *

* CLEAN UP: Free the old prnatrix to conserve nenory.

*/

for (i = 0; i <s0 ->rsize; i++) {
free(A[i].p_row;
free(A);

/* * * % *x * % * * *x * *x * *x * * *x * *x * *x * * *x * *x * * *x *

* Update the synbol table entry for this pnode

*/

sO ->rsize = rA;, sO ->csize = cA;, sO ->p prm= C
/******************************

* repl Proc takes a process |ist and replaces a process nane

* known to exist in the |list by another process |ist of

* Oone Or nDre process nanes.

*/

call = replProc (& sO ->p_pl), sl ->nanme , &(sl ->p_pl));

if (call == NULL) {
fprintf(stderr,"\nExpn: ReplProc failed update %", s0O ->nane);
exit(1);

/* * * *x % * *x * * *x * * *x * * *x *x * * *x * * *x * * *x * * *

* Adjust the link index to conply with the prior expansion
*/
cur Lnkl ndx=cur Lnkl ndx+r B- 1;
} /*esle*/
Y oIrfi (typ... ¥/
} /*rof*/
} /*esle*/
} /*elihw/
fprintf(epn,"\nConpl eted expansion!");
}/ *npxe*/



C.2 Algorithm for expansion method 1 (upper LH corner)

/* * * % *x * *x * % *x % *x * *x * *x * * *x * *x * *x * * *x * *x * * *

* Determ ne indexes for B whose size is rB x cB (C <- B).

* rilb = row | ower bound, rub = row upper bound
* clb = col I ower bound, cub = col upper bound
*/

rib curbnklindx - 1; rub rkb +rB - 1;

clb 0; cub clb + ¢cB - 1;

[ Rk k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_Kk_Kk_k_Kk_Kk_Kk_k_Kk_Kk_k_k_k_k_x*

Rows 1 and 2: put y's

in Cstart at (5,0].
In C above, 0's are constant (i.e., not x-fered fromA or
Binto C. Also note that the "-" and "+" paired in A are
now seperated as shown in C
* Determ ne indexes for A whose size is orA x ocA (C <- A).
*/
rtbA=rA- (orA-1); rubA
clbA = cA - (ocA -1); cubA
(voi d) expand(epn, ZERO);

* Expand A (3x4) with B (5x6) into C (7x8).

*

* 01234567 0123

*C O-bbbbbo0oO A 0-|+aac<-asput inC
* l1bbbbbbo00O0 l1vylggg begin at (4, 6].
* 2bbbbbbo0o0 2vylggo

* S3bbbbbbo0o / \

* 4 bbbbb+aa / Rows 1 and 2:

* 5y 0000ggg / put g's in C,

* 6 yoo00ggg / start at (5,5].
) /

*

*

*

rA- rlb - 1;
cA - clb - 1;

/* * * *x % * *x * * *x * % *x * % *x * * * *x * * *x * * *x * * *x *

* In Method I, finish copying the y's (if any) fromAto C
*/
if (orA>1) {
fprintf(epn,"\nMethod | exception!");
i = rB;
for (j =1; ] <orA j++) {
di].p_row0] = Aj].p_row0];
i ++;
}
}

C.3 Algorithm for expansion method 2 (lower RH corner)

/* * * *x % * *x * * *x * % *x * % *x * * * *x * * *x * * *x * * *x *

* Determ ne indexes for B whose size is rB x cB (C <- B).
* rilb = row | ower bound, rub = row upper bound

* clb = col Iower bound, cub = col upper bound

*/
rib
rub

r owMar k;
rlb + rB - 1;



if ('thinA) clb = cA - cB;
else clb = cA - cB + 1;
cub = cA - 1;

/* * * *x % * *x * * *x * % *x * % *x * * * *x * * *x * * *x * * *x *

* Determ ne indexes for A whose size is orA x ocA (C <- A).

*/

ri bA = 0;

rubA = orA - 2;
cl bA = 0;

CubA = ocA - 1;

/*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_

* (orA x ochA) (rB x cB) (rA x chA
12345 1234 1234567
A laaaaz + B 1-+bb --> C laaaa0®0z
2aaaaz 2bbbb 2aaaa0boz
3 aaaaz 3 bbbb 3aaaa0bO0z
4 aaaaz 4 bbbb 4 aaaal00z
5yyy- + 5000- +bb
/ 6 000bbbb
Case 2: 7000bbbb
If A[5,5]="-" => C(8x6). 8yyybbbb

Here (in case 1), A(5x5) + B(4x4) -> C(8x7).

There is one variation (Case 2) occurs when the "-" is
in the last colum (e.g., occurs with Mi recursion). In
this case, A(5x5) + B(4x4) -> C(8x6).

For e.g.., (remenber rowiark=row to replace [exactly]):
Case 1: C(8x7) Case 2: C(8x8)
rib = 4 (counting from Q) 4
rub = 7 =4+4-1 7
clb = 3=7-4 3=6- 4+ 1 (test)
cub= 6 =7-1 5=6-1
ribA= 0 0
rubA= 3 =5- 2 3
clbA= 0 0
CubA= 4 =5 -1 4
For case 1 (where (C[5,5] = "+") the z's in A are noved

to the last col of C ONLY if "+" otherw se, they stay
put (this is handled in the nethod 2a exceptions bel ow).
Simlarly, in either case 1 or case 2, the y's in A are
noved to the last rowin C ONLY if "+" otherw se they
stay put (this is handled in the nmethod Il1b exceptions).

E I T T R R R I I N N N BN N N T N R T R T R N B

or a "y" is noved it nmust be replaced by a "0".

(voi d) expand(epn, ZERO) ;

95
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[* * * * <<< Method |la Exception >>> * * * x % x % x & x *
* Catch all the ones (+'s) in last colum which are to be
* moved to the new | ast colum. These +'s are outputs

* fromtransitions to the last place in A so now t hey

* must be connected to the new | ast place (test cases are
* t2, t10 and wgood). Only consider rows above row\varKk.
*
*
[

-~

('thinA) {
i = rowMark;
for (i=rowMark-1; i>=0; i--) {
if (Ali1].p_rowcubAl > 0) {
dil.p_rowfcub] = Ali].p_row cubAl;
di].p_row cubA] = 0;
fprintf(epn,"\nMethod Ila expn (linked |ast place)!");

}
}
[* * * * <<< Method |1b Exception >>> * * * x & x % x & x *
* Moving the y's formthe marked row if they are "+".
*/
for (j=clbA;, j < clb; j++) {
if (Alrlb]l.p_rowj] > 0) {
qrub].p_rowj] = Alrlb].p_rowj];
qrlib].p_rowj] =0;
fprintf(epn,"\nMethod I1b expn (linked recursive loop)!");
}

}

C.4  Algorithm for expansion method 3 (centrally located)

/* Determne indexes for B whose size is rB x cB.
* rilb = row | ower bound, rub row upper bound
* clb = col I[ower bound, cub col upper bound
* Renenmber: A<- expanded by <-B

*/

ri bA = 0;

rubA = rowMark -1;

cl bA = 0;

rlb = rowMark;

rub =rlb + rB -1;
/*****************************
* Find point in A for expanding B (1st '-' in marked row)
*/

i =0

while (Alrowvark].p_rowj] >= 0) j++;

clb =j;

cubA = clb + ONE

cub =clb + ¢cB -1;

/* * * % *x * % * * *x * *x * *x * * *x * *x * *x * * *x * *x * * *

* Mark the RHS of A to be pushed right past B
* Mark the LHS of A to be replacenent starting point.

*/
col Mar kRht = cubA;
col MarkLft = cl b;



/*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*

* Finish all colums in nmarked row up to clb (x's in comrent

* bel ow).

*/

for (j =0; j <clb; j++) Crowvark].p_rowj] = Alrowvark].p_rowj];

J XKk k_k_ ok _ck_k_k_k_k_k_k_k_k_k_k_k_k_Kk_k_Kk_k_Kk_Kk_*_Kk_*_x%

/* Finish the m ddl e box...

*

C

DY OYOOYDLDYX DD
DY OYOOYDLDYX DD
QO TCTCTOTTOLO®
QO TCTCTOTTOLO®
D YOO TOCTTTKCQQ
D YOO TOCTTTKCQQ
D YOO TOCTTTKCQQ
D YOO TOCTTTKCQQ
DYDY IDYVYQEQ
DYDY IDYVYQEQ

* %k X ok 3k X X 3k X X X

At this point, a's cone fromA and b's are put from
the B matrix (x's have been put but a's have not).
g's are then added in the next segnment of code.

*

*/
(voi d) expand(epn, ZERO);

J Rk ok ok ok ok _k_k_k_k_k_k_k_k_k_k_k_k_k_k_k_Kk_K_k_Kk_*_Kk_*_%

* Finish update for the upper part of A which (g's in
* the above conment) goes in the URH corner of C

*/

cl bA = col MarkRht +1;

CubA = ocA -1,

rl bA = 0;

rubA = rowvark -1;

clb = cA - (cubA - clbA) -1;

cub = cA - 1;

rlb = 0;

rub = rowvark -1;

e =rlb;

for (i = rlbA i <= rubA i++) {
f = clb;

for (j = clbA, j <= cubA;, j++) {
de].p_rowf] = Ali].p_rowj];
if (!(f>cub)){f++}
el se {
fprintf(stderr,"\nl-Method Il error(clb)!\n");
exit(1l);

}
if (!(e>rub)){e++;}
el se {
fprintf(stderr,"\n2-Method Il error(rlib)!\n");
exit(1l);



-

*

*

* Ok X X kX

/

e
fo

}
/*-

*

*
*
*
*
*
*
*
*
*
*

*

¥ 0% % Sk kX %k X F 3k X X 3k X X X F

98

ko _k_k_k_K_Kh_Kk_Kk_Kk_Kk_*_K_K_Kh_k_Kk_Kk_*_K_K_Kh_k_*k_*k_*_%*_%*_*

col MarkRht is the clb + 1 replacenent point
Fi ni sh update for the lower part of A (LHS or x's)

AN ddddd "-" is replaced by B
d- ddd
XYVYyVyy Put x's ---> C
Xyyyy

= rowMark + rB

r (i =rowark + 1; i < orA i++) {

for (j = 0; j < colMarkLft; j++)

de].p_rowj] = Ali].p_rowj];

e++;

k_k_k_Kk_Kk_Kk_Kk_Kk_K*_K*_*K _*_K*_*K _*_*_* _*_*_* _*_*_* _*_*_%*_*_%*_

col MarkRht is the cl b+l replacenent point (delta =cA-ocA)

Fi ni sh update for the lower part of A (RHS or y's)
col MarkLft is the col 2 in fig below where the mnus is
(which is the sane as the clb).
12345
A1ttt tt t's & e's are put using above code
2e-ddd "-" is replaced by B (d's are handl ed
3XYyVyyy as exceptions bel ow).
4 Xyyyy Put y's --->C
= rowMark + rB
r (i =rowark + 1; i < orA i++) {
f = cA- 1,
for (j = ocA- 1; j >= col MarkLft; j--)
del.p_rovf--1 = Ali].p_rowj];
e++;
*okokox. <<< Method 111 Exceptions >>> -*--*_x_*_*_%_x_x

The output fromthe transition bei ng expanded nust go to
the sane place it was before. Check the rest of the row
right of the intersection of AlrowMark][col LftMark] for
pluses (+1). Place themin the last row of the B matrix
inside of C The sane distance fromthe last col in C
as they are in fromthe last col in A

12345
A1ttt tt t's, e's, x's are put using above code
2e-ddd "-" is replaced by B (d's are handl ed
3Xyyyy as exceptions bel ow).
4 Xyyyy Put ds --->C

The idea is to connect the output fromthe transition being expanded
to the sane place as it originally was connected to in A (a place
basically). Note the foll owi ng code assunes that the last row of B has
a plus (i.e., that its actually connected as it was in the higher

| evel abstraction to another place.
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A case where this is not true: SEQ(P1(), P2(), STOP}. Until you know
exactly what's in the transition being expanded you cannot decide to
elimnate the connection. Here the STOP doesn't have an QP pl ace!
This case is assuned not to occur. First print sone diagnostics:

/

f (s0->type == NDC _PROC){

fprintf(epn,"\nMethod 11l exception!");

prt Expn(epn);

print_prnm(epn, C rA cA,; fprintf(epn,"\n");

zer oGapEnds = col MarkRnt + (cA - ocA);

_ % kX X X

/* Zero out the colums starting with the col utmm Col Mar kRht
* making sure to stay above the rowvark
*/
for (i =0; i < rowhark; i++)
for _(j = col I\/_artht; j < zeroGapEnds; j++)
di].p_rowfj] = 0;

C<- Afor the values on the right of the zeroGap
colum(s) and above the rowiark. Rem .. the col MarkRnht
defines the boundary in A (not C) where the expansion

* occurs (just one col to the left of the col MarkRnht col um).

*  F X

*/
zeroGp = cA - OcA
for (i =0; i < rowwark; i++)

for (j = colMarkRht; j < OCA;, | ++)
qi].p_rowzeroGap + j] = Ali].p_rowj];
for (j=col MarkRht; j< ocA; | ++)
C rowMar k+rB-1] . p_row cA-(ocA-j)] = Alrowvark].p_rowj];

C5 Expand algorithm for combining co-matrices

/* Expand copies the old matrices (A, B) to the new one (C. */
voi d expand(FILE *epn, int rm {
int i, j, e, f, m n; /* M scel | aneous i ndices */
e=rm m=0;
for (i =0; i <rA i++) {
f =0, n=0;
for (j =0; j <cA j++) {
if ((i>=rlb) && (i<=rub) && (j>=clb) && (j<=cub)) {
qi].p_rowj] = B[nl.p_row n++];
Bf | ag=TRUE_;

el se {
if ((i>=rlbA) && (i<=rubA) && (j>=cl bA) && (j<=cubA)) {
Ai].p_rowj] = Ale].p_row f++];

Af | ag=TRUE_;
}

}
} /*rof*/
if (Bflag) {Bflag=FALSE_; m++;}
el se

if (Aflag) {Aflag=FALSE ; e++;}

} /*rof*/

}



C.6  User defined datatypes

/* Integer array of pointers to the rows in the matrix called the Process

* Relation Table (prm which is dynanmically allocated (2-D array matrix).

*/

typedef struct int_array

{

int *p_row,
} 1Array;
typedef [Array *p_matrix;
typedef struct entrydef

{

char *nane;

short type;

short ui d;

char *frate;

char *f prob;

char *sprob;

char *srate;

char *p_pl;

short rsize;

short csi ze;

p_matrix p_prm

st ruct entrydef *next;
} ENTRY;
t ypedef ENTRY *entryptr;
typedef struct nodedef
{ char *n_nane;

char *n_fail;

short israte;

short n_type;

short uid;

struct nodedef *Ilink;

} NODE;

t ypedef NODE *nodeptr;

Synbol Table entry definition */

Synbol nane */

Symtype (assune < 32,767 inpl dpndt) */
Uni que id nunmber (process id or pid) */
Failure Rate in ASCII| */

Failure probability in ASC | */

Service Probability in ASC| */

Service Rate in ASCI| */

Process list ptr (can be diff types) */
Nunber of rows in PR Matrix */

Nunber of cols in PR Matrix */

Process Relation (PR) Matrix */

Li nk to next ENTRY */

/[* Ptr to the node/synbol nanme */

* NULL if no fail rate/prob spec'd */
* Bool ean: legal vals (-1, 0, 1) */
/* Node type consistent w synbols */
* System | evel unique identifier */

* Ptr node,

to next if any */

/* Ptr to a NODE structure */
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D.1  Overview of the multipletrain / monitor problem

This appendix describes a solution to: (1) the race (safety) hazard (described in 15.5)
and, (2) controlling passage of multiple trains using a monitor to arbitrate the trains and the
gate. Figure E.1 shows the monitor's finite state machine. We assume that trains cannot
arrive simultaneously but that they do arrive in close enough succession that it would be
dangerous for the gate to be opened if another train is pending. The Petri net of Figure E.2 is

atrandation of the CSP in Figure E.2. Table E.1 describes the markings and failure states.

FSM for Monitor: CSP for Monitor:

After Gate is finshed closing:

72 i Gate s open Monitor =
ToG!Close : ((T1? a[l T2 ? a) & GateClosed — Monitor);
Closed
,4 , (TL?a[] T2 2 a) & GateOpen — (GateCh !
MoniTor $ Close) — Monitor);
IpbLE

(1) If Gate is closed.
(2) If t1 is approaching.

(T1?2d)&(T2?2a) [1 (T22d) & (T1? a))

4 — Monitor);
T22d gate
ToG!O pen
Hf not(T1? 2)- (T1?2d)&(T2?a) [[ (T2?2d)&(T1?a))

After Gate is finshed opening. — (GateCh | C|OSE) — MOI’]itOI’).

(3) if t2 is approaching.

Figure D.1 Finite sate machine and CSP for the monitor.

= At_| Imersecuon Tx? &
%] © ©
g = S
| approachlng a
c ate
®—> ;@+ » + @ closed @ o TG? CloseC———
Train in T )
vent interstcton 1oy usgrovd
Closed ?]

closed

TG? Open :}
Msg vcvd

Closed

T2rdC— 1

n_Transit ﬁ

.
¥ Train
) approaching
~ 4
= At_Intersection
TGNStayCC——]

TwotrainsT1and T2 Monitor Gate
(O = Inhibitor Arc (Token in P13 prevents t14 firing)

TG!Open[—__ Open :]

Figure D.2 Petri Net for the monitor (controller) to handle multiples trains.
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Improving the system's performability is accomplished using more "slack” time for the

Gate process to finish its task. Requiring the Train to send the arriving "a" signal sooner

effectively increases the slack. Thus we have analyzed the Performability of the system by
changing the slack time. The Stochastic Petri net of Figure D.2 is analyzed for reliability of
the system under various failure modes. In this case, the Petri net elucidated the need for
additional synchronization (so as to avoid a safety-critical failure). Accordingly, this is
facilitated by tranglating CSP specifications into Stochastic Petri nets.

TABLED.1
FAILURE MODES AND MARKINGS FOR THE RR-MONITOR

Mrkng | Monitor Trains Gate Possible Failure Type
M1 Status = open Both in transit Open Assumefailureis not possible
M2 Status = open TxCh'!a Open Critical communication failure
M3 TxCh?a Tx approaching | Open Critical communication failure
M4 Status=pendng train | Tx approaching | Open Critical communication failure
& GateChl!close
M5 Status = wait Tx approaching | GateCh?close | Critical communication failure
M6 Status = wait Tx approaching | Closing Critical mechanical failure
M7 Status = closed Tx at crossing Closd Assume failure not possible
M8 Tx?a Tx at crossing Closd Critical communication failure
M9 Status = closed TxCh'!d Closed Non-critical communication failure
M10 Status= pending Tx approaching | Closed Non-critical communication or
train and TxCh ?d + onein transit critical system failure (of monitor)
possible.
M11 Status= not pending | Oneat crossing, | Closed Assume failure is not possible
train and closed onein transit
M12 TxCh?d Both in transit Closd Non-critical communication failure
M13 GateCh ! open Both in transit Closd Non-critical communication failure
M14 Status = wait Both in transit GateCh?open | Non-critical communication failure
M15 Status = wait Both in transit Opening Non-critical mechanical failure
FM16 Mcf and Mncf Communication failures
FM17 Mcf and Mnfc Mechanical failure (of gate)
FM18 Mcsf System failure (of monitor)
FM19 Mtf Timing failure (of train/gate)

Communication failures possible (Key: a — approaching, d — departing):

1) Failure when train sends message.
2) Failure when monitor receives message.

3) Failure when monitor sends message.
4) Failure when gate receives message.
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In the Petri net of Figure D.2, we assume that all transitions can fail. The failure modes
associated with transitions can be translated into failure modes of their corresponding CSP
actions. When interpreting the failures of these actions, the user should identify critical
failures. Improbable failures are easily identified in the Petri net (i.e., some transitions may
not realistically fail or can be reasonably tolerated). Such evaluations can lead to an
augmentation of the system model such as that of the multi-train/monitor system shown in
Figure D.2. The markingsin Table D.1 are based on the feasible states that trace the natural
(and familiar) process: (M1) an idle state, (M2-5) communication transactions between the
train, monitor, gate and status = pending train, (M6) gate begins to close, (Mtf) timing
failureif train arrives before the gate is closed, (M7-9) process of a new train arriving while
the current train is passing, (M10) monitor has to decide not to open the gate when the
current train departs since there is a pending train, (Mcsf) safety critical failure of the
monitor, (M11) the current train starts the departing process and no trains are pending, and

(M12-15) involve the actions necessary to restore the system to the idle state.

S S N S S
'S S S > g
NS & S S & & N o S
oo > 9 IES & ) > R
K S ° & AR O & & RN
oL & 2 FLE © © Fs S &
° & ) © G N4 & ©\ 7 S L&
@ & o X PN & & @ & NS
T & & L 2 & SIS NN
TE <& & £ & & S S
< < < 9
@m@m@u@m Us @Ms m@
}\’C )\c c c m c
1 2 3
Crmcal Timing
Failure
Non-Critical Fail Critical
on-Critical Fallure
Crltlcal ?gﬁ:ﬁ;n
Failurt .
ailure K W (of monitor)
U1 U3 M11
<— ] — <—
/8 /; ,<>
QSafe states 6%’ O@, %, 005 ,5470 O s, ’b ~8,
. o, o %0, ® % o o %%
% 3 O, /75\ 25 RNSCNCTIN f/ % %, % ’% %, 00
"= mechanical failure rate %, 2 &/) ‘90 Yo % "9, oy d‘/,'&’?g@); /;) LN N KON
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//)0 o % % PR QY 7, O”o »% 6-/ 2, o;/} %
c N .
2 = communication failure rate 4 ¢ © % %

Figure D.3 Statetransitions [CTMC] for the trains-monitor-gate.
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Figure D.3 shows the formalized flow of events and actions (i.e., CTMC) which include
two failure states: (Mcf) safety critical failures involving gate closure, and (Mncf) non-
critical failuresinvolving gate opening. Markings FM16-19 enumerate all failure categories.
Redlistically, one should account for the transitions which take the system from anywhere
trains are being received (or are passing by) to new arrivals without having to visit the idle
state. Admittedly this diagram is simplified, yet it incorporates all states necessary for
receiving subsequent trains (assuming arrivals are not simultaneous).

Markings M6 and M7 are (safety) critical markings because the slow firing transitions
(TG?close[ts]) and (Closed [tg]) make it possible for the train to enter the intersection before
the gate has properly (or completely) closed. Similarly, non-critical conditions occur when
the train departs the intersection but the gate stays closed resulting from the slow firing of
transitions (TG?open [t7]) and (Open [tg]).1

The CSP specification (and the corresponding Petri net) can be refined or augmented to
state how such hazards could be avoided or handled. For example, communication failures
can be handled using time-out and re-transmit techniques. Gate closing failures can be
handled by sounding an alarm. Tolerance to time-related failures can be improved by
requiring more slack time. In Figure D.3 the only critical deadline, is the one that requires
the gate to close before the train arrives (i.e., gate closure must complete in atime less than:

distance to the gate when "arriving" signal was sent
(the speed of the train)

A failure mode resulting from incorrect (both logical and timing) operation of the
monitor is modeled. The monitor must track all approaching trains, and command the safe
operation of the gate. In controlling the gate, the monitor prevents the gate from opening
when a train departs if another is too close down the line that opening the gate would

endanger other traffic since the next train could arrive before the gate could again be closed.

INote: Waiting in M7 is assumed so that the gate has time to close (the end of the delay is the event that allows
the next state transition to occur. Considering M11 we see that no waiting is necessary since the gate is already
closed (i.e., apervious train just passed trough).
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D.2 Stochastic analysis
Using conventional techniques (i.e., SPNP's Markov solvers), discrete and/or continuous
analyses can be performed. Mathematica® was used to compute the reliability of the
railroad crossing system with different failure rates (or probabilities) and service rates (e.g.,
speed of the train, gate closing/opening rates etc.). The sensitivity of the system to variations
in train speed (u7) and the gate closure rates (ug) were evaluated. The system's
performability was studies to determine how reliably the gate closes before the train arrives
with and without hardware and communication failures (i.e., mechanical gate failures[As, A13
superscript 'm'] and communication failures [A 2347, and Ag1011,12,13 superscript 'c]) - The
values used (and hence the results of the analysis) are only for illustrating the approach (i.e.,
do not attach empirical significance to the failure rates or MTTFs obtained. This type
analysisis useful in exploring different fault-handling mechanisms and the cost of providing

fault-tolerance.2 The discrete analysis was not performed.

D.21 Continuousanalysis

The results shown in Figures D.4 through D.7 predict reliability over the same
operational life: up to 10,000 time units (tus) on the x-axis (each unit is further divided into
1000 sub-tus). The sensitivity of the a system to different transition rates (i.e., ws and uy for
the various train speeds and the speed of the gate closing) are presented in Figure D.4. Note,
the "rel" stands for reliability and is the instantaneous reliability of the data point at 10,000
tus. However, since the reliability was so close to zero the plotter stopped at the position
indicated by the arrow head. The predicted mean timeto failureisalso provided (MTTF). In
Figure D.5 the effect of varying the timing failure rate, in the presence of timing failures

[including o g failures caused by software or hardware or timing problems]) is shown.

2More elaborate fault-handling and fault-recovery mechanisms should be used to tolerate or prevent safety
critical failures, while less attention may be paid to non-safety critical failures. Failure to open the gate may
anger people waiting at the crossing but such failures can be handled inexpensively by providing a mechanism
to manually open the gate. On the other hand, failure to close the gate is more severe, so traffic at the crossing
should be alerted reliably and automatically.



107

Performability / Reliability
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1/u7 = 90% of the time the train takes at most 500tus to reach the gate crossing.
1/u6 = 80% of the time the gate takes at most 10, 20 or 50tus to close.
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*u6 = thisrate was varied from .002, .05, to .1.
##u7 = this rate was varied from .0002, .005, to .01.

Figure D.4 Performability for different train and gate speeds (based on CTMC).
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1/u6 = 80% of the time the gate takes at most 10tus to close.
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*16 = this rate was varied from 0.0 to .0000908.
##u6 and u7 = held constant at 0.1 and 0.01.
##+0 9 = held constant at 0.001 (zeroed in 3rd run).

Figure D.5 Performability for different timing failure and monitor failure rates.
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Performability / Reliability
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Figure D.6 Performability for different train speeds and gate closing speeds.
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Figure D.7 Performability for different train speeds and gate closing speeds.
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Figure D.6 shows the relation between the time needed for the train to reach the
intersection (1/u7), the time needed for the gate to close (1/ wg) , and the timing failure rate
(t¢). These parameters are negatively correlated (i.e., asthedack time[l/u; - 1/ ug] gets
smaller t¢ increases). The differences between rates associated with the train and the gate
transitions were taken as a factor of 10, 5 and 2 for runs 1 - 3 while the ¢ timing failure rate
varied from 0.00000908 by a factor of 2 and 5 for runs 1 - 3 respectively. As can be seen
from the graphs, the performability of the system decreases dramatically as the slack time
decreases.
In order to study the effect of the timing critical transition rates on the predefined failure
rates Figure D.7 isincluded. Compared this figure to Figure D.5. All of the parameters are
the same except that instead of assuming large transition rates for ug and w7 (i.e., 0.1 and 0.01

respectively) smaller rates were assumed (i.e., 0.002 and 0.0002).

D3 Summary

The results show that the model is fairly sensitive to small changes in the rate
assignments. There is less of an impact to the performability caused by the inherent failure
rates of the subsystems when the transition rates are small. For example, comparing the
difference between the best and the worst MTTF in each of the three runs of Figure D.5, we
find adifference of afactor of 10, whereas that same comparison in Figure D.7 yields only a
difference factor of 0.5 (approximately). Once again, do not attach any significance to the
actual numbers. These numbers only illustrate the usefulness of these analyses in designing
real-time systems with sufficient slack times and fault-tolerance to achieve a desired level of

performability.
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